Communications in Cryptology IACR CiC


Dates are inconsistent
31 results sorted by publication date
Editors in chief
Frequently asked questions The International Association for Cryptologic Research (IACR) Communications in Cryptology (CiC) was approved by the Membership in the IACR 2022 election and targets publications that advance the field, but with a broader range of contributions than the ones accepted by the IACR flagship or area conferences. What are the main principles of CiC? Low-cost open ...
Chunzhi Zhao, Junqi Zhang, Jinzheng Cao, Qingfeng Cheng, Fushan Wei
Published 2024-10-07 PDFPDF

At PKC 2009, May and Ritzenhofen proposed the implicit factorization problem (IFP). They showed that it is undemanding to factor two h-bit RSA moduli N1=p1q1, N2=p2q2 where q1, q2 are both αh-bit, and p1, p2 share uh>2αh the least significant bits (LSBs). Subsequent works mainly focused on extending the IFP to the cases where p1, p2 share some of the most significant bits (MSBs) or the middle bits (MBs). In this paper, we propose a novel generalized IFP where p1 and p2 share an arbitrary number of bit blocks, with each block having a consistent displacement in its position between p1 and p2, and we solve it successfully based on Coppersmith’s method. Specifically, we generate a new set of shift polynomials to construct the lattice and optimize the structure of the lattice by introducing a new variable z=p1. We derive that we can factor the two moduli in polynomial time when u>2(n+1)α(1−α^1/(n+1)) with p1, p2 sharing n blocks. Further, no matter how many blocks are shared, we can theoretically factor the two moduli as long as u>2αln(1/α). In addition, we consider two other cases where the positions of the shared blocks are arbitrary or there are k>2 known moduli. Meanwhile, we provide the corresponding solutions for the two cases. Our work is verified by experiments.

Yansong Feng, Abderrahmane Nitaj, Yanbin Pan
Published 2024-10-07 PDFPDF

Let (N,e) be a public key of the RSA cryptosystem, and d be the corresponding private key. In practice, we usually choose a small e for quick encryption. In this paper, we improve partial private key exposure attacks against RSA with a small public exponent e. The key idea is that under such a setting we can usually obtain more information about the prime factor of N and then by solving a univariate modular polynomial with Coppersmith's method, N can be factored in polynomial time. Compared to previous results, we reduce the number of d's leaked bits needed to mount the attack by log_2 (e) bits. Furthermore, our experiments show that for 1024-bit N, our attack can achieve the theoretical bound on a personal computer, which verified our attack.

Alexander Bille, Elmar Tischhauser
Published 2024-10-07 PDFPDF

Mixed-Integer Linear Programming (MILP) modeling has become an important tool for both the analysis and the design of symmetric cryptographic primitives. The bit-wise modeling of their nonlinear components, especially the S-boxes, is of particular interest since it allows more informative analysis compared to word-oriented models focusing on counting active S-boxes. At the same time, the size of these models, especially in terms of the number of required inequalities, tends to significantly influence and ultimately limit the applicability of this method to real-world ciphers, especially for larger number of rounds.

It is therefore of great cryptographic significance to study optimal linear inequality descriptions for Boolean functions. The pioneering works of Abdelkhalek et al. (FSE 2017), Boura and Coggia (FSE 2020) and Li and Sun (FSE 2023) provided various heuristic techniques for this computationally hard problem, decomposing it into two algorithmic steps, coined Problem 1 and Problem 2, with the latter being identical to the well-known NP-hard set cover problem, for which there are many heuristic and exact algorithms in the literature.

In this paper, we introduce a novel and efficient branch-and-bound algorithm for generating all minimal, non-redundant candidate inequalities that satisfy a given Boolean function, therefore solving Problem 1 in an optimal manner without relying on heuristics. We furthermore prove that our algorithm correctly computes optimal solutions. Using a number of dedicated optimizations, it provides significantly improved runtimes compared to previous approaches and allows the optimal modeling of the difference distribution tables (DDT) and linear approximation tables (LAT) of many practically used S-boxes. The source code for our algorithm is publicly available as a tool for researchers and practitioners in symmetric cryptography.

Ritam Bhaumik, André Chailloux, Paul Frixons, Bart Mennink, María Naya-Plasencia
Published 2024-10-07 PDFPDF

In order to maintain a similar security level in a post-quantum setting, many symmetric primitives should have to double their keys and increase their state sizes. So far, no generic way for doing this is known that would provide convincing quantum security guarantees. In this paper we propose a new generic construction, QuEME, that allows one to double the key and the state size of a block cipher in such a way that a decent level of quantum security is guaranteed. The QuEME design is inspired by the ECB-Mix-ECB (EME) construction, but is defined for a different choice of mixing function than what we have seen before, in order to withstand a new quantum superposition attack that we introduce as a side result: this quantum superposition attack exhibits a periodic property found in collisions and breaks EME and a large class of its variants. We prove that QuEME achieves n-bit security in the classical setting, where n is the block size of the underlying block cipher, and at least (n/6)-bit security in the quantum setting. We finally propose a concrete instantiation of this construction, called Double-AES, that is built with variants of the standardized AES-128 block cipher.

Sebastian Kolby, Elena Pagnin, Sophia Yakoubov
Published 2024-10-07 PDFPDF

We study signatures well suited for sensitive applications (e.g. whistleblowing) where both the signer's anonymity and deniability are important. Two independent lines of work have tackled these two goals: ring signatures ensure the signer's anonymity (within a set of signers, called a ring), and — separately — multi designated verifier signatures ensure that all the intended recipients agree on whether a signature is valid, while maintaining the signer's deniability by preventing the intended recipients from convincing an outsider of the validity of the signature. In this paper, we introduce multi designated verifier ring signatures (MDVRS), which simultaneously offer both signer anonymity and deniability. This makes MDVRS uniquely suited for sensitive scenarios.

Following the blueprint of Damgård et al (TCC'20) for multi designated verifier signatures, we introduce provably simulatable designated verifier ring signatures (PSDVRS) as an intermediate building block which we then compile into an MDVRS. We instantiate PSDVRS in a concretely efficient way from discrete logarithm based sigma protocols, encryption and commitments.

Franklin Harding, Jiayu Xu
Published 2024-10-07 PDFPDF

Blind signature schemes enable a user to obtain a digital signature on a message from a signer without revealing the message itself. Among the most fundamental examples of such a scheme is blind Schnorr, but recent results show that it does not satisfy the standard notion of security against malicious users, One-More Unforgeability (OMUF), as it is vulnerable to the ROS attack. However, blind Schnorr does satisfy the weaker notion of sequential OMUF, in which only one signing session is open at a time, in the Algebraic Group Model (AGM) + Random Oracle Model (ROM), assuming the hardness of the Discrete Logarithm (DL) problem.

This paper serves as a first step towards characterizing the security of blind Schnorr in the limited concurrency setting. Specifically, we show that blind Schnorr satisfies OMUF when at most two signing sessions can be concurrently open (in the AGM+ROM, assuming DL). Our argument suggests that it is plausible that blind Schnorr satisfies OMUF for up to polylogarithmically many concurrent signing sessions. Our security proof involves interesting techniques from linear algebra and combinatorics.

Aron van Baarsen, Marc Stevens
Published 2024-10-07 PDFPDF

Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection.

In this paper we consider several settings in which parties take part in multiple Circuit-PSI executions with the same input set, and aim to amortize communications and computations. To that end, we build up a new framework for Circuit-PSI around generalizations of oblivious (programmable) PRFs that are extended with offline setup phases. We present several efficient instantiations of this framework with new security proofs for this setting. As a side result, we obtain a slight improvement in communication and computation complexity over the state-of-the-art semi-honest Circuit-PSI protocol by Bienstock et al. (USENIX '23). Additionally, we present a novel Circuit-PSI protocol from a PRF with secret-shared outputs, which has linear communication and computation complexity in the parties' input set sizes, and is able to realize a stronger security notion. Lastly, we derive the potential amortizations over multiple protocol executions, and observe that each of the presented instantiations is favorable in at least one of the multiple-execution settings.

Yi-Fu Lai
Published 2024-10-07 PDFPDF

In this work, we introduce two post-quantum Verifiable Random Function (VRF) constructions based on abelian group actions and isogeny group actions with a twist. The former relies on the standard group action Decisional Diffie-Hellman (GA-DDH) assumption. VRFs serve as cryptographic tools allowing users to generate pseudorandom outputs along with publicly verifiable proofs. Moreover, the residual pseudorandomness of VRFs ensures the pseudorandomness of unrevealed inputs, even when multiple outputs and proofs are disclosed. Our work aims at addressing the growing demand for post-quantum VRFs, as existing constructions based on elliptic curve cryptography (ECC) or classical DDH-type assumptions are vulnerable to quantum threats.

In our contributions, our two VRF constructions, rooted in number-theoretic pseudorandom functions, are both simple and secure over the random oracle model. We introduce a new proof system for the factorization of group actions and set elements, serving as the proofs for our VRFs. The first proposal is based on the standard GA-DDH problem, and for its security proof, we introduce the (group action) master Decisional Diffie-Hellman problem over group actions, proving its equivalence to the standard GA-DDH problem. In the second construction, we leverage quadratic twists to enhance efficiency, reducing the key size and the proof sizes, expanding input size. The scheme is based on the square GA-DDH problem.

Moreover, we employ advanced techniques from the isogeny literature to optimize the proof size to 39KB and 34KB using CSIDH-512 without compromising VRF notions. The schemes feature fast evaluations but exhibit slower proof generation. To the best of our knowledge, these constructions represent the first two provably secure VRFs based on isogenies.

Avishek Majumder, Sayantan Mukherjee
Published 2024-10-07 PDFPDF

Broadcast Encryption (BE) allows a sender to send an encrypted message to multiple receivers. In a typical broadcast encryption scenario, the broadcaster decides the set of users who can decrypt a particular ciphertext (denoted as the privileged set). Gritti et al. (IJIS'16) introduced a new primitive called Broadcast Encryption with Dealership (BrED), where the dealer decides the privileged set. A BrED scheme allows a dealer to buy content from the broadcaster and sell it to users. It provides better flexibility in managing a large user base. To date, quite a few different constructions of BrED schemes have been proposed by the research community.

We find that all existing BrED schemes are insecure under the existing security definitions. We demonstrate a concrete attack on all the existing schemes in the purview of the existing security definition. We also find that the security definitions proposed in the state-of-the-art BrED schemes do not capture the real world. We argue about the inadequacy of existing definitions and propose a new security definition that models the real world more closely. Finally, we propose a new BrED construction and prove it to be secure in our newly proposed security model.

Laurent-Stéphane Didier, Nadia El Mrabet, Léa Glandus, Jean-Marc Robert
Published 2024-10-07 PDFPDF

This paper presents software implementations of batch computations, dealing with multi-precision integer operations. In this work, we use the Single Instruction Multiple Data (SIMD) AVX512 instruction set of the x86-64 processors, in particular the vectorized fused multiplier-adder VPMADD52. We focus on batch multiplications, squarings, modular multiplications, modular squarings and constant time modular exponentiations of 8 values using a word-slicing storage. We explore the use of Schoolbook and Karatsuba approaches with operands up to 4108 and 4154 bits respectively. We also introduce a truncated multiplication that speeds up the computation of the Montgomery modular reduction in the context of software implementation. Our Truncated Montgomery modular multiplication improvement offers speed gains of almost 20 % over the conventional non-truncated versions. Compared to the state-of-the-art GMP and OpenSSL libraries, our speedup modular operations are more than 4 times faster. Compared to OpenSSL BN_mod_exp_mont_consttimex2 using AVX512 and madd52* (madd52hi or madd52lo) in 256-bit registers, in fixed-window exponentiations of sizes $1024$ and $2048$, our 512-bit implementation provides speedups of respectively 1.75 and 1.38, while the 256-bit version speedups are 1.51 and 1.05 for $1024$ and $2048$-bit sizes (batch of 4 values in this case).

Robin Geelen
Published 2024-10-07 PDFPDF

Numerous applications in homomorphic encryption require an operation that moves the slots of a ciphertext to the coefficients of a different ciphertext. For the BGV and BFV schemes, the only efficient algorithms to implement this slot-to-coefficient transformation were proposed in the setting of non-power-of-two cyclotomic rings. In this paper, we devise an FFT-like method to decompose the slot-to-coefficient transformation (and its inverse) for power-of-two cyclotomic rings. The proposed method can handle both fully and sparsely packed slots. Our algorithm brings down the computational complexity of the slot-to-coefficient transformation from a linear to a logarithmic number of FHE operations, which is shown via a detailed complexity analysis.

The new procedures are implemented in Microsoft SEAL for BFV. The experiments report a speedup of up to 44 times when packing 2^12 elements from GF(8191^8). We also study a fully packed bootstrapping operation that refreshes 2^15 elements from GF(65537) and obtain an amortized speedup of 12 times.

Ruixiao Li, Hayato Yamana
Published 2024-10-07 PDFPDF

To address security issues in cloud computing, fully homomorphic encryption (FHE) enables a third party to evaluate functions using ciphertexts that do not leak information to the cloud server. The remaining problems of FHE include high computational costs and limited arithmetic operations, only evaluating additions and multiplications. Arbitrary functions can be evaluated using a precomputed lookup table (LUT), which is one of the solutions for those problems. Previous studies proposed LUT-enabled computation methods 1) with bit-wise FHE and 2) with word-wise FHE. The performance of LUT-enabled computation with bit-wise FHE drops quickly when evaluating BigNum functions because of the complexity being O(s·2^d·m), where m represents the number of inputs, d and s represent the bit lengths of the inputs and outputs, respectively. Thus, LUT-enabled computation with word-wise FHE, which handles a set of bits with one operation, has also been proposed; however, previous studies are limited in evaluating multivariate functions within two inputs and cannot speed up the evaluation when the domain size of the integer exceeds 2N, where N is the number of elements packed into a single ciphertext. In this study, we propose a non-interactive model, in which no decryption is required, to evaluate arbitrary multivariate functions using homomorphic table lookup with word-wise FHE. The proposed LUT-enabled computation method 1) decreases the complexity to O(2^d·m/l), where l is the element size of FHE packing; 2) extends the input and output domain sizes to evaluate multivariate functions over two inputs; and 3) adopts a multidimensional table for enabling multithreading to reduce latency. The experimental results demonstrate that evaluating a 10-bit two-input function and a 5-bit three-input function takes approximately 90.5 and 105.5 s with 16-thread, respectively. Our proposed method achieves 3.2x and 23.1x speedup to evaluate two-bit and three-bit 3-input functions compared with naive LUT-enabled computation with bit-wise FHE.

Jinzheng Cao, Qingfeng Cheng, Jian Weng
Published 2024-10-07 PDFPDF

The Learning with Errors (LWE) problem has become one of the most prominent candidates of post-quantum cryptography, offering promising potential to meet the challenge of quantum computing. From a theoretical perspective, optimizing algorithms to solve LWE is a vital task for the analysis of this cryptographic primitive. In this paper, we propose a fine-grained time/memory trade-off method to analyze c-sum BKW variants for LWE in both classical and quantum models, then offer new complexity bounds for multiple BKW variants determined by modulus q, dimension k, error rate alpha, and stripe size b. Through our analysis, optimal parameters can be efficiently found for different settings, and the minimized complexities are lower than existing results. Furthermore, we enhance the performance of c-sum BKW in the quantum computing model by adopting the quantum Meet-in-the-Middle technique as c-sum solver instead of the naive c-sum technique. Our complexity trade-off formula also applies to the quantum version of BKW, and optimizes the theoretical quantum time and memory costs, which are exponentially lower than existing quantum c-sum BKW variants.

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal
Published 2024-07-08 PDFPDF

There has been a notable surge of research on leakage-resilient authenticated encryption (AE) schemes, in the bounded as well as the unbounded leakage model. The latter has garnered significant attention due to its detailed and practical orientation. Designers have commonly utilized (tweakable) block ciphers, exemplified by the TEDT scheme, achieving $\mathcal{O}(n-\log(n^2))$-bit integrity under leakage and comparable AE security in the black-box setting. However, the privacy of TEDT was limited by $n/2$-bits under leakage; TEDT2 sought to overcome these limitations by achieving improved security with $\mathcal{O}(n-\log n)$-bit integrity and privacy under leakage.

This work introduces FEDT, an efficient leakage-resilient authenticated encryption (AE) scheme based on fork-cipher. Compared to the state-of-the-art schemes TEDT and TEDT2, which process messages with a rate of $1/2$ block per primitive call for encryption and one for authentication, FEDT doubles their rates at the price of a different primitive. FEDT employs a more parallelizable tree-based encryption compared to its predecessors while maintaining $\mathcal{O}(n-\log n)$-bit security for both privacy and integrity under leakage. FEDT prioritizes high throughput at the cost of increased latency. For settings where latency is important, we propose FEDT*, which combines the authentication part of FEDT with a CTR-based encryption. FEDT* offers security equivalent to FEDT while increasing the encryption rate of $4/3$ and reducing the latency.

Thomas Attema, Aron van Baarsen, Stefan van den Berg, Pedro Capitão, Vincent Dunning, Lisa Kohl
Published 2024-07-08 PDFPDF

Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph. Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for the secure evaluation of “message passing” algorithms, such as the PageRank algorithm. Their protocol's computation and communication complexity are both $\tilde{O}(M\cdot B)$ instead of the $O(M^2)$ complexity achieved by general-purpose MPC protocols, where $M$ denotes the number of nodes and $B$ the (average) number of incoming edges per node. On the downside, their approach achieves only a relatively weak security notion; $1$-out-of-$3$ malicious security with selective abort.

In this work, we show that PageRank can instead be captured efficiently as a restricted multiplication straight-line (RMS) program, and present a new actively secure MPC protocol tailored to handle RMS programs. In particular, we show that the local knowledge of the participants can be leveraged towards the first maliciously-secure protocol with communication complexity linear in $M$, independently of the sparsity of the graph. We present two variants of our protocol. In our communication-optimized protocol, going from semi-honest to malicious security only introduces a small communication overhead, but results in quadratic computation complexity $O(M^2)$. In our balanced protocol, we still achieve a linear communication complexity $O(M)$, although with worse constants, but a significantly better computational complexity scaling with $O(M\cdot B)$. Additionally, our protocols achieve security with identifiable abort and can tolerate up to $n-1$ corruptions.

Scott Griffy, Anna Lysyanskaya
Published 2024-07-08 PDFPDF

To be useful and widely accepted, automated contact tracing schemes (also called exposure notification) need to solve two seemingly contradictory problems at the same time: they need to protect the anonymity of honest users while also preventing malicious users from creating false alarms. In this paper, we provide, for the first time, an exposure notification construction that guarantees the same levels of privacy and integrity as existing schemes but with a fully malicious database (notably similar to Auerbach et al. CT-RSA 2021) without special restrictions on the adversary. We construct a new definition so that we can formally prove our construction secure. Our definition ensures the following integrity guarantees: no malicious user can cause exposure warnings in two locations at the same time and that any uploaded exposure notifications must be recent and not previously uploaded. Our construction is efficient, requiring only a single message to be broadcast at contact time no matter how many recipients are nearby. To notify contacts of potential infection, an infected user uploads data with size linear in the number of notifications, similar to other schemes. Linear upload complexity is not trivial with our assumptions and guarantees (a naive scheme would be quadratic). This linear complexity is achieved with a new primitive: zero knowledge subset proofs over commitments which is used by our "no cloning" proof protocol. We also introduce another new primitive: set commitments on equivalence classes, which makes each step of our construction more efficient. Both of these new primitives are of independent interest.

Ji Luo
Published 2024-07-08 PDFPDF

Traitor tracing schemes [Chor–Fiat–Naor, Crypto ’94] help content distributors fight against piracy and are defined with the content distributor as a trusted authority having access to the secret keys of all users. While the traditional model caters well to its original motivation, its centralized nature makes it unsuitable for many scenarios. For usage among mutually untrusted parties, a notion of *ad hoc* traitor tracing (naturally with the capability of broadcast and revocation) is proposed and studied in this work. Such a scheme allows users in the system to generate their own public/secret key pairs, without trusting any other entity. To encrypt, a list of public keys is used to identify the set of recipients, and decryption is possible with a secret key for any of the public keys in the list. In addition, there is a tracing algorithm that given a list of recipients’ public keys and a pirate decoder capable of decrypting ciphertexts encrypted to them, identifies at least one recipient whose secret key must have been used to construct the said decoder.

Two constructions are presented. The first is based on functional encryption for circuits (conceptually, obfuscation) and has constant-size ciphertext, yet its decryption time is linear in the number of recipients. The second is a generic transformation that reduces decryption time at the cost of increased ciphertext size. A matching lower bound on the trade-off between ciphertext size and decryption time is shown, indicating that the two constructions achieve all possible optimal trade-offs, i.e., they fully demonstrate the Pareto front of efficiency. The lower bound also applies to broadcast encryption (hence all mildly expressive attribute-based encryption schemes) and is of independent interest.

Vincent Hwang
Published 2024-07-08 PDFPDF

We survey various mathematical tools used in software works multiplying polynomials in \[ \frac{\mathbb{Z}_q[x]}{\left\langle {x^n - \alpha x - \beta} \right\rangle}. \] In particular, we survey implementation works targeting polynomial multiplications in lattice-based cryptosystems Dilithium, Kyber, NTRU, NTRU Prime, and Saber with instruction set architectures/extensions Armv7-M, Armv7E-M, Armv8-A, and AVX2.

There are three emphases in this paper: (i) modular arithmetic, (ii) homomorphisms, and (iii) vectorization. For modular arithmetic, we survey Montgomery, Barrett, and Plantard multiplications. For homomorphisms, we survey (a) various homomorphisms such as Cooley–Tukey FFT, Good–Thomas FFT, Bruun's FFT, Rader's FFT, Karatsuba, and Toom–Cook; (b) various algebraic techniques for adjoining nice properties to the coefficient rings, including localization, Schönhage's FFT, Nussbaumer's FFT, and coefficient ring switching; and (c) various algebraic techniques related to the polynomial moduli, including twisting, composed multiplication, evaluation at $\infty$, truncation, incomplete transformation, striding, and Toeplitz matrix-vector product. For vectorization, we survey the relations between homomorphisms and vector arithmetic.

We then go through several case studies: We compare the implementations of modular multiplications used in Dilithium and Kyber, explain how the matrix-to-vector structure was exploited in Saber, and review the design choices of transformations for NTRU and NTRU Prime with vectorization. Finally, we outline several interesting implementation projects.

Ky Nguyen, David Pointcheval, Robert Schädlich
Published 2024-07-08 PDFPDF

Decentralized Multi-Client Functional Encryption (DMCFE) extends the basic functional encryption to multiple clients that do not trust each other. They can independently encrypt the multiple plaintext-inputs to be given for evaluation to the function embedded in the functional decryption key, defined by multiple parameter-inputs. And they keep control on these functions as they all have to contribute to the generation of the functional decryption keys. Tags can be used in the ciphertexts and the keys to specify which inputs can be combined together. As any encryption scheme, DMCFE provides privacy of the plaintexts. But the functions associated to the functional decryption keys might be sensitive too (e.g. a model in machine learning). The function-hiding property has thus been introduced to additionally protect the function evaluated during the decryption process.

In this paper, we provide new proof techniques to analyze a new concrete construction of function-hiding DMCFE for inner products, with strong security guarantees: the adversary can adaptively query multiple challenge ciphertexts and multiple challenge keys, with unbounded repetitions of the same tags in the ciphertext-queries and a fixed polynomially-large number of repetitions of the same tags in the key-queries. Previous constructions were proven secure in the selective setting only.

Camille Mutschler, Laurent Imbert, Thomas Roche
Published 2024-07-08 PDFPDF

We introduce InspectorGadget, an Open-Source Python-based software for assessing and comparing the complexity of masking gadgets. By providing a limited set of characteristics of a hardware platform, our tool allows to estimate the cost of a masking gadget in terms of cycle count equivalent and memory footprint. InspectorGadget is highly flexible. It enables the user to define her own estimation functions, as well as to expand the set of gadgets and predefined microcontrollers. As a case-study, we produce a fair comparison of several masked versions of Kyber compression function from the literature, together with novel alternatives automatically generated by our tool. Our results confirm that an interesting middle ground exists between theoretical performance measures (asymptotic complexity or operations count) and real implementations benchmarks (clock cycle accurate evaluations). InspectorGadget offers both simplicity and genericity while capturing the main performance-related parameters of a hardware platform.

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak
Published 2024-07-08 PDFPDF

Distributed key generation (DKG) is a key building block in developing many efficient threshold cryptosystems. This work initiates the study of communication complexity and round complexity of DKG protocols over a point-to-point (bounded) synchronous network. Our key result is the first synchronous DKG protocol for discrete log-based cryptosystems with $O(\kappa n^3)$ communication complexity ($\kappa$ denotes a security parameter) that tolerates any $t < n/2$ Byzantine faults among $n$ parties. We present two variants of the protocol: (i) a protocol with worst-case $O(\kappa n^3)$ communication and $O(t)$ rounds, and (ii) a protocol with expected $O(\kappa n^3)$ communication and expected constant rounds. In the process of achieving our results, we design (1) a novel weak gradecast protocol with a communication complexity of $O(\kappa n^2)$ for linear-sized inputs and constant rounds, (2) a protocol called “recoverable-set-of-shares” for ensuring recovery of shared secrets, (3) an oblivious leader election protocol with $O(\kappa n^3)$ communication and constant rounds, and (4) a multi-valued validated Byzantine agreement (MVBA) protocol with $O(\kappa n^3)$ communication complexity for linear-sized inputs and expected constant rounds. Each of these primitives is of independent interest.

Yehuda Lindell
Published 2024-04-09 PDFPDF

In a multiparty signing protocol, also known as a threshold signature scheme, the private signing key is shared amongst a set of parties and only a quorum of those parties can generate a signature. Research on multiparty signing has been growing in popularity recently due to its application to cryptocurrencies. Most work has focused on reducing the number of rounds to two, and as a result: (a) are not fully simulatable in the sense of MPC real/ideal security definitions, and/or (b) are not secure under concurrent composition, and/or (c) utilize non-standard assumptions of different types in their proofs of security. In this paper, we describe a simple three-round multiparty protocol for Schnorr signatures that is secure for any number of corrupted parties; i.e., in the setting of a dishonest majority. The protocol is fully simulatable, secure under concurrent composition, and proven secure in the standard model or random-oracle model (depending on the instantiations of the commitment and zero-knowledge primitives). The protocol realizes an ideal Schnorr signing functionality with perfect security in the ideal commitment and zero-knowledge hybrid model (and thus the only assumptions needed are for realizing these functionalities).

In our presentation, we do not assume that all parties begin with the message to be signed, the identities of the participating parties and a unique common session identifier, since this is often not the case in practice. Rather, the parties achieve consensus on these parameters as the protocol progresses.

Loïs Huguenin-Dumittan, Serge Vaudenay
Published 2024-04-09 PDFPDF

Proving whether it is possible to build IND-CCA public-key encryption (PKE) from IND-CPA PKE in a black-box manner is a major open problem in theoretical cryptography. In a significant breakthrough, Gertner, Malkin and Myers showed in 2007 that shielding black-box reductions from IND-CCA to IND-CPA do not exist in the standard model. Shielding means that the decryption algorithm of the IND-CCA scheme does not call the encryption algorithm of the underlying IND-CPA scheme. In other words, it implies that every tentative construction of IND-CCA from IND-CPA must have a re-encryption step when decrypting.

This result was only proven with respect to classical algorithms. In this work we show that it stands in a post-quantum setting. That is, we prove that there is no post-quantum shielding black-box construction of IND-CCA PKE from IND-CPA PKE. In the type of reductions we consider, i.e. post-quantum ones, the constructions are still classical in the sense that the schemes must be computable on classical computers, but the adversaries and the reduction algorithm can be quantum. This suggests that considering quantum notions, which are stronger than their classical counterparts, and allowing for quantum reductions does not make building IND-CCA public-key encryption easier.

Gorjan Alagic, Chen Bai, Alexander Poremba, Kaiyan Shi
Published 2024-04-09 PDFPDF

In the permutation inversion problem, the task is to find the preimage of some challenge value, given oracle access to the permutation. This fundamental problem in query complexity appears in many contexts, particularly cryptography. In this work, we examine the setting in which the oracle allows for quantum queries to both the forward and the inverse direction of the permutation—except that the challenge value cannot be submitted to the latter. Within that setting, we consider three options for the inversion algorithm: whether it can get quantum advice about the permutation, whether the query algorithm can restrict the distribution with which the challenge input is sampled, and whether it must produce the entire preimage (search) or only the first bit (decision). We prove several theorems connecting the hardness of the resulting variations of the permutation inversion problem and establish lower bounds for them. Our results show that, perhaps surprisingly, the permutation inversion problem does not become significantly easier when the adversary is granted oracle access to the inverse—provided it cannot query the challenge itself.

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López
Published 2024-04-09 PDFPDF

Efficient polynomial multiplication routines are critical to the performance of lattice-based post-quantum cryptography (PQC). As PQC standards only recently started to emerge, CPUs still lack specialized instructions to accelerate such routines. Meanwhile, deep learning has grown immeasurably in importance. Its workloads call for teraflops-level of processing power for linear algebra operations, mainly matrix multiplication. Computer architects have responded by introducing ISA extensions, coprocessors and special-purpose cores to accelerate such operations. In particular, Apple ships an undocumented matrix-multiplication coprocessor, AMX, in hundreds of millions of mobile phones, tablets and personal computers. Our work repurposes AMX to implement polynomial multiplication and applies it to the NTRU cryptosystem, setting new speed records on the Apple M1 and M3 systems-on-chip (SoCs): polynomial multiplication, key generation, encapsulation and decapsulation are sped up by $1.54$–$3.07\times$, $1.08$–$1.33\times$, $1.11$–$1.50\times$ and $1.20$–$1.98\times$, respectively, over the previous state-of-the-art.

Yi-Hsiu Chen, Yehuda Lindell
Published 2024-04-09 PDFPDF

Verifiable secret sharing (VSS) protocols enable parties to share secrets while guaranteeing security (in particular, that all parties hold valid and consistent shares) even if the dealer or some of the participants are malicious. Most work on VSS focuses on the honest majority case, primarily since it enables one to guarantee output delivery (e.g., a corrupted recipient cannot prevent an honest dealer from sharing their value). Feldman's VSS is a well known and popular protocol for this task and relies on the discrete log hardness assumption. In this paper, we present a variant of Feldman's VSS for the dishonest majority setting and formally prove its security. Beyond the basic VSS protocol, we present a publicly-verifiable version, as well as show how to securely add participants to the sharing and how to refresh an existing sharing (all secure in the presence of a dishonest majority). We prove that our protocols are UC secure, for appropriately defined ideal functionalities.

Subhadeep Banik, Andrea Caforio, Serge Vaudenay
Published 2024-04-09 PDFPDF

The LowMC family of block ciphers was proposed by Albrecht et al. in Eurocrypt 2015, specifically targeting adoption in FHE and MPC applications due to its low multiplicative complexity. The construction operates a 3-bit quadratic S-box as the sole non-linear transformation in the algorithm. In contrast, both the linear layer and round key generation are achieved through multiplications of full rank matrices over GF(2). The cipher is instantiable using a diverse set of default configurations, some of which have partial non-linear layers i.e., in which the S-boxes are not applied over the entire internal state of the cipher.

The significance of cryptanalysing LowMC was elevated by its inclusion into the NIST PQC digital signature scheme PICNIC in which a successful key recovery using a single plaintext/ciphertext pair is akin to retrieving the secret signing key. The current state-of-the-art attack in this setting is due to Dinur at Eurocrypt 2021, in which a novel way of enumerating roots of a Boolean system of equation is morphed into a key-recovery procedure that undercuts an ordinary exhaustive search in terms of time complexity for the variants of the cipher up to five rounds.

In this work, we demonstrate that this technique can efficiently be enriched with a specific linearization strategy that reduces the algebraic degree of the non-linear layer as put forward by Banik et al. at IACR ToSC 2020(4). This amalgamation yields new attacks on certain instances of LowMC up to seven rounds.

Emmanuela Orsini, Riccardo Zanotto
Published 2024-04-09 PDFPDF

In this work we study algebraic and generic models for group actions, and extend them to the universal composability (UC) framework of Canetti (FOCS 2001). We revisit the constructions of Duman et al. (PKC 2023) integrating the type-safe model by Zhandry (Crypto 2022), adapted to the group action setting, and formally define an algebraic action model (AAM). This model restricts the power of the adversary in a similar fashion to the algebraic group model (AGM). By imposing algebraic behaviour to the adversary and environment of the UC framework, we construct the UC-AAM. Finally, we instantiate UC-AAM with isogeny-based assumptions, in particular the CSIDH action with twists, obtaining the explicit isogeny model, UC-EI; we observe that, under certain assumptions, this model is "closer" to standard UC than the UC-AGM, even though there still exists an important separation. We demonstrate the utility of our definitions by proving UC-EI security for the passive-secure oblivious transfer protocol described by Lai et al. (Eurocrypt 2021), hence providing the first concretely efficient two-message isogeny-based OT protocol in the random oracle model against malicious adversaries.

Marloes Venema, Leon Botros
Published 2024-04-09 PDFPDF

Predicate encryption (PE) is a type of public-key encryption that captures many useful primitives such as attribute-based encryption (ABE). Although much progress has been made to generically achieve security against chosen-plaintext attacks (CPA) efficiently, in practice, we also require security against chosen-ciphertext attacks (CCA). Because achieving CCA-security on a case-by-case basis is a complicated task, several generic conversion methods have been proposed, which typically target different subclasses of PE such as ciphertext-policy ABE. As is common, such conversion methods may sacrifice some efficiency. Notably, for ciphertext-policy ABE, all proposed generic transformations incur a significant decryption overhead. Furthermore, depending on the setting in which PE is used, we may also want to require that messages are signed. To do this, predicate signature schemes can be used. However, such schemes provide a strong notion of privacy for the signer, which may be stronger than necessary for some practical settings at the cost of efficiency.

In this work, we propose the notion of predicate extension, which transforms the predicate used in a PE scheme to include one additional attribute, in both the keys and the ciphertexts. Using predicate extension, we can generically obtain CCA-security and signatures from a CPA-secure PE scheme. For the CCA-security transform, we observe that predicate extension implies a two-step approach to achieving CCA-security. This insight broadens the applicability of existing transforms for specific subclasses of PE to cover all PE. We also propose a new transform that incurs slightly less overhead than existing transforms. Furthermore, we show that predicate extension allows us to create a new type of signatures, which we call PE-based signatures. PE-based signatures are weaker than typical predicate signatures in the sense that they do not provide privacy for the signer. Nevertheless, such signatures may be more suitable for some practical settings owing to their efficiency or reduced interactivity. Lastly, to show that predicate extensions may facilitate a more efficient way to achieve CCA-security generically than existing methods, we propose a novel predicate-extension transformation for a large class of pairing-based PE, covered by the pair and predicate encodings frameworks. In particular, this yields the most efficient generic CCA-conversion for ciphertext-policy ABE.

Aurélien Dupin, Simon Abelard
Published 2024-04-09 PDFPDF

The problem of Broadcast Encryption (BE) consists in broadcasting an encrypted message to a large number of users or receiving devices in such a way that the emitter of the message can control which of the users can or cannot decrypt it.

Since the early 1990s, the design of BE schemes has received significant interest and many different concepts were proposed. A major breakthrough was achieved by Naor, Naor and Lotspiech (CRYPTO 2001) by partitioning cleverly the set of authorized users and associating a symmetric key to each subset. Since then, while there have been many advances in public-key based BE schemes, mostly based on bilinear maps, little was made on symmetric cryptography.

In this paper, we design a new symmetric-based BE scheme, named $\Sigma\Pi$BE, that relies on logic optimization and consensual security assumptions. It is competitive with the work of Naor et al. and provides a different tradeoff: the bandwidth requirement is significantly lowered at the cost of an increase in the key storage.