
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 34 pages.

https://doi.org/10.62056/akgyl86bm
Check for updates

FEDT: Forkcipher-based Leakage-resilient
Beyond-birthday-secure AE

Nilanjan Datta1 , Avijit Dutta1, Eik List2 and Sougata Mandal1,3

1 Institute for Advancing Intelligence, TCG CREST, Kolkata, India
2 Independent Researcher, Singapore, Singapore

3 Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India

Abstract. There has been a notable surge of research on leakage-resilient authenti-
cated encryption (AE) schemes, in the bounded as well as the unbounded leakage
model. The latter has garnered significant attention due to its detailed and practical
orientation. Designers have commonly utilized (tweakable) block ciphers, exempli-
fied by the TEDT scheme, achieving O(n − log(n2))-bit integrity under leakage and
comparable AE security in the black-box setting. However, the privacy of TEDT
was limited by n/2-bits under leakage; TEDT2 sought to overcome these limitations
by achieving improved security with O(n − log n)-bit integrity and privacy under
leakage.
This work introduces FEDT, an efficient leakage-resilient authenticated encryption
(AE) scheme based on fork-cipher. Compared to the state-of-the-art schemes TEDT
and TEDT2, which process messages with a rate of 1/2 block per primitive call
for encryption and one for authentication, FEDT doubles their rates at the price
of a different primitive. FEDT employs a more parallelizable tree-based encryption
compared to its predecessors while maintaining O(n − log n)-bit security for both
privacy and integrity under leakage. FEDT prioritizes high throughput at the cost of
increased latency. For settings where latency is important, we propose FEDT*, which
combines the authentication part of FEDT with a CTR-based encryption. FEDT*
offers security equivalent to FEDT while increasing the encryption rate of 4/3 and
reducing the latency.

1 Introduction
The study of authenticated encryption (AE) schemes, designed to safeguard both message
confidentiality and ciphertext integrity, has been a dynamically evolving research domain
since its conceptualization as a cryptographic primitive [BN00,Rog02]. Over the years,
various variants such as online schemes, nonce-based, and deterministic authenticated
encryption [BBKN01,HRRV15,RS06] have emerged. This proliferation of designs aims to
strike a balance between efficiency and security, with recent contributions from competitions
like CAESAR [Ber14] and the NIST Lightweight Competition [TMC+23] further enriching
the landscape. In addition to these general considerations, a significant body of research has
focused on enhancing the robustness of AE schemes. This includes addressing challenges like
security under nonce-misuse [RS06], mitigating the impact of accidental nonce repetitions
[DNT19], and addressing scenarios where unverified plaintexts might be released [ABL+14,
CDD+19]. Another very important practical challenge in this direction is to have designs
with protection against side channel attacks.

E-mail: nilanjan.datta@tcgcrest.org (Nilanjan Datta), avijit.dutta@tcgcrest.org (Avijit Dutta),
elist@posteo.de (Eik List), sougata.mandal@tcgcrest.com (Sougata Mandal)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-09 Accepted: 2024-06-03

https://doi.org/10.62056/akgyl86bm
https://crossmark.crossref.org/dialog/?doi=10.62056/akgyl86bm&domain=pdf&date_stamp=2024-06-28
https://orcid.org/0009-0002-9761-1192
https://orcid.org/0000-0003-0369-4901
mailto:nilanjan.datta@tcgcrest.org
mailto:avijit.dutta@tcgcrest.org
mailto:elist@posteo.de
mailto:sougata.mandal@tcgcrest.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

The conventional theoretical security considerations for Authenticated Encryption (AE)
treat cryptographic primitives as black boxes, not accounting for real-world threats where
adversaries exploit additional information from side channels. Such leaks, including timing,
power consumption, or electromagnetic radiation, can reveal internal states and keys.
Power-consumption attacks, such as Differential Power Analysis (DPA) [KJJ99], expose
vulnerabilities in widespread AEAD schemes such as OCB [RBBK01,KR16], GCM [MV04,
Dwo07], or CCM [Dwo04], which invoke a block cipher multiple times with a single key.
Typically, the responsibility of protecting the underlying block cipher against leakage
falls on implementors. Hardware-level measures involve introducing noise or specialized
circuits, while at the implementation level, techniques like masking [CJRR99, GP99]
or shuffling [HOM06, VMKS12] are employed. However, robust protection often incurs
significant area, power, or efficiency penalties, substantially impacting performance in both
software and hardware implementations (e.g. [GSF13]).

To address this, research has explored more efficient schemes with trade-offs between
security and performance. Instead of uniformly applying strong protection to all block-
cipher invocations in an AEAD scheme, leakage-resistant modes of operation have emerged
[BMOS17,BKP+18,BPPS17,DEM+17,BPS19]. These modes support dedicated, leveled
implementations, where certain calls to the cryptographic primitive receive strong protection
against DPA attacks, while others, which constitute the majority of computations, are
allowed to leak information. In essence, leakage-resilient AE schemes prioritize security
despite potential leaks, striking a balance between efficiency and protection in practical
scenarios.

1.1 Leakage-resilient Authenticated Ciphers
A portfolio of leakage-resilient schemes for leveled implementations has been developed in
the past few years. We consider the notions for leakage-resilient authenticated encryption
by Guo et al. [GPPS19,BKP+18,BPPS17]. In [GPPS19], they proposed a comprehensive
framework and the relations between them. As the strongest notions for AE, they identified
(1) Ciphertext Integrity with Misuse-resistance and Leakage in encryption and decryption,
or CIML2 [BKP+18,BPPS17]; (2) chosen-ciphertext security with misuse-resilience and
Leakage in encryption and decryption oracle, called CCAmL2 [GPPS19], along with a
multi-user multi-challenge variant [GPPS18]. Bellizia et al. [BBC+20] referred to leveled
designs achieving both CIML2 and CCAmL2 security as Grade-3 protected. Grade-3
protected authenticated ciphers include tweakable block cipher based constructions such
as TEDT [BGP+20], TEDT2 [Lis21] and permutation-based designs like ISAP [DEM+17,
DEM+20]. However, all these constructions are two-pass modes of operation. As a result,
it seems interesting to investigate for single-pass Grade-3 designs. While nonce-based
single-pass schemes can also achieve CIML2 security, CCAmL2 is out of range, but they
can achieve CCA security with misuse-resilience and leakage in encryption only, which
was formulated as CCAmL1 [GPPS19]. Following [GPPS19], the designs achieving CIML2
and CCAmL1 security are called Grade-2 protected. Grade-2-protected designs include
tweakable block cipher based designs AEDT [BPPS17], Triplex [SPS+22], Multiplex [SPS24],
and Tweplex [DDLM23].

Grade-3-protected Leakage-resilient Authenticated Ciphers. In this paper we
focus on efficient Grade-3 protected designs. Most of these constructions are (1) based on
tweakable block cipher and (2) share a common structure. First, they use a key-derivation
function (KDF) that employs a highly-protected implementation of the primitive to derive
a session state from the nonce and the long-term secret key (master key, hereafter). Then,
the plaintext is encrypted using the session state using less protected implementations of
the primitive. The encryption function adopts the idea of continuous rekeying. It ensures

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 3

that the security does not degrade too much even if the underlying less protected primitive
calls leak continuously. After encryption, a hash function is applied on the ciphertext, the
nonce, and associated data again using a less protected implementation of the primitive to
generate a forward chaining value. Finally, this value is input to a tag-generation function
(TGF) that employs a highly protected implementation and the master key to generate the
authentication tag.

In [BPPS17], Berti et al. introduced the design structure of Encrypt, Digest and Tag,
dubbed EDT. To address the limitations of EDT, in [BGP+20], Berti et al. proposed a
tweakable block cipher based EDT construction, dubbed TEDT. TEDT uses two primitive
calls per message block: one to derive a new subkey to process the subsequent block and
one to generate the keystream block which is added to the current message block to produce
the current ciphertext block. The resulting rate-1/21 encryption provides n/2-bit security
under leakage. TEDT employs Hash-then-TBC framework with Hirose’s double-block hash
function [Hir06] to obtain beyond-birthday-secure authentication even in the presence of
unbounded leakage. TEDT2 [Lis21] uses a tweakable block cipher with a 3n-bit tweakey
efficiently to strengthen the security of the encryption to obtain beyond-birthday-bound
security also under leakage. The basic structural difference between TEDT and TEDT2
lies in the fact that TEDT2 replaced TEDT’s previous internal Hirose’s double-block hash
function with Naito’s MDPH [Nai19], and it moved the nonce from the hash to the
tag-generation function both for better efficiency. TEDT2 processes a 2n-bit message
block with each iteration of two primitive calls. Thus, the hash-function rate increases
from 1/2 to 1. Using a TBC with 3n-bit tweakey, they could spare to process the nonce
during hashing and use it in the tag-generation function (TGF) instead. Using a TBC
based on the TWEAKEY framework, TEDT2 obtain a longer tweakey for higher security,
whose encryption needs two primitive calls for the tweakey update per message block. To
compensate for the additional call, it uses the tweakey for processing two message blocks.
They obtain a more secure rate-1/2 construction that provides O(n− log(n))-bit security
in both the black-box setting and under leakage, where they adopted from TEDT the
assumption that the distinguishing advantage for the XORs of the plain/ciphertexts with
the PRG keystream does not endanger the security.

1.2 Our Contribution

In this paper, we introduce a leakage-resilient authenticated encryption scheme, namely
FEDT, based on fork-ciphers [ALP+19]. FEDT employs a balanced tree-structured en-
cryption and a fork-cipher-based hash function. For processing a message of mn bits
along with associated data of an bits, the encryption function of FEDT needs m and the
authentication component requires (a + m)/2 + 1 primitive calls. In terms of security,
FEDT achieves nearly optimal security bounds of O(n− log(n)) bits, both in the black-box
setting and under leakage. FEDT is well-suited for applications with a considerable - but
limited - message length that benefit from parallelizability, such as disk encryption or
memory encryption, where frame lengths are typically of 512 bytes or 4 kB. There, leakage
resistance is relevant while the security goals demand offline ciphers. On the downside,
our proposal induces a non-trivial latency of roughly log2(d) fork-cipher calls for a dn-bit
message. As part of a remedy, we propose a variant of FEDT with lower latency, dubbed
FEDT*, which employs an unbalanced tree-like encryption where each level generates two
keys and processes four message blocks. The encryption function of FEDT* employs 3m/4
primitive calls to process a mn-bit message at the same security level as FEDT. Table 1
compares its parameters with that of similar Grade-3 designs.

1The rate of a construction is the ratio of number of message blocks to the number of primitive calls.

4 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Table 1: Comparison of leakage-resilient Grade-3 constructions. TBC/TFC = tweakable
block cipher/tweakable fork-cipher.

Security (bits) #Primitive calls
Construction CIML2 CCAmL2 Prim. Enc Hash KDF TGF
Romulus-LR-TEDT [GKP20] n− log(n2) n/2 TBC 2m a + m + 3 1 1
TEDT [BGP+20] n− log(n2) n/2 TBC 2m 2(a + m + 2) 1 1
TEDT2 [Lis21] n− log(n) n− log(n) TBC 2m a + m + 2 2 1
FEDT [This work] n− log(n) n− log(n) TFC m (a + m)/2 + 1 1 1
FEDT* [This work] n− log(n) n− log(n) TFC 3m/4 (a + m)/2 + 1 1 1

2 Preliminaries
An adversary A is an algorithm and the notation y ← A(x1, x2, . . . , xi; r) denotes running
the algorithm A with randomness r on inputs x1, . . . , xi and assigning the output to y.
Equivalently, we can express the notation above as follows: let y

$←− A(x1, . . . ; r) be the
result of picking r uniformly at random, computing A(x1, . . . ; r), and assigning the result
to y. For a set X , the notation X ∪←− x denotes X = X ∪ {x}. For bit strings x and y, x∥y
denotes the concatenation of x and y. We denote by [X]x the encoding of a non-negative
integer X < 2x as its x-bit representation. For an algorithm A and an oracle O, we write
AO to denote the output of A at the end of its interaction with O. A distinguisher A is an
adversary that tries to distinguish between two oracles O0 and O1 via black-box interaction
with one of them. At the end of interaction, it returns a bit b ∈ {0, 1}. We write AO = b to
denote the output of A at the end of its interaction with O. The distinguishing advantage
of A against O0 and O1 is defined as

∆A (O1;O0) ∆=
∣∣Pr[AO1 = 1]− Pr[AO0 = 1]

∣∣ ,

where the probabilities depend on the random coins of O0 and O1 and the random coins
of the distinguisher A. The time complexity of the adversary is defined over the usual
RAM (random-access machine, see e.g. [Ost90]) model of computations.

2.1 Fork-ciphers
A fork-cipher (FC) [ALP+19] F̃ : K × T × {0, 1}n → {0, 1}2n is a family of tweakable
keyed functions, with an associated key space K and tweak space T , comprised of a pair
of deterministic algorithms (F̃+, F̃−), where the encryption algorithm

F̃+ : K × T × {0, 1}n × {0, 1, 2} −→ {0, 1}n ∪ ({0, 1}n × {0, 1}n)

takes as inputs a key k ∈ K, a tweak J ∈ T , a message m ∈ {0, 1}n, and a selector bit
s ∈ {0, 1, 2}, and produces an output as

F̃+(k, J, m, s) =

c0, if s = 0
c1, if s = 1
(c0, c1), if s = 2

where the ciphertext is c = (c0, c1). We call c0 the left and c1 the right ciphertext block,
respectively. The decryption algorithm

F̃− : K × T × {0, 1}n × {0, 1} × {0, 1, 2} −→ {0, 1}n ∪ ({0, 1}n × {0, 1}n)

takes as input a key k ∈ K, a tweak J ∈ T , a ciphertext block cb, a bit b ∈ {0, 1} specifying
whether cb is the left or the right ciphertext block, and a selector bit s ∈ {0, 1, 2} and

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 5

Algorithm 1 STFP Game.
Real world Real World

function Initialize
K

$←− K
function Finalize

b′ ∈ {0, 1} ← AF̃+
K

,̃F−
K

function Oracle F̃+
K(J, x, s)

return F̃+(K, J, x, s)

function Oracle F̃−
K(J, x, b, s))

return F̃−(K, J, x, b, s)

Ideal world
function Initialize

P̃0, P̃1
$←− TP(T , n)

function Finalize
b′ ∈ {0, 1} ← A$+,$−

function Oracle $+(J, x, s)

return

P̃0(J, x) if s = 0
P̃1(J, x) if s = 1
(P̃0(J, x), P̃1(J, x)) if s = 2

function Oracle $−(J, y, b, s)

return

P̃ −1

b (J, y) if s = 0
P̃1⊕b(J, P̃ −1

b (J, y)) if s = 1
((P̃ −1

b (J, y), P̃1⊕b(J, P̃ −1
b (J, y)) if s = 2

outputs

F̃−(k, J, cb, b, s) =

m if s = 0
c1−b, if s = 1
(m, c1−b), if s = 2

where m is the plaintext block. The correctness condition of a fork-cipher states that
for every key k ∈ K, tweak J ∈ T , plaintext m ∈ {0, 1}n, and b ∈ {0, 1}, the following
conditions should hold:

1. F̃−(k, J, F̃+(k, J, m, b), b, 0) = m,

2. F̃−(k, J, F̃+(k, J, m, b), b, 1) = F̃+(k, J, m, 1− b),

3. F̃−(k, J, x, b, 2) = (F̃−(k, J, x, b, 0), F̃−(k, J, x, b, 1)), and

4. F̃+(k, J, x, 2) = (F̃+(k, J, x, 0), F̃+(k, J, x, 1)).

For nonempty sets K, T , B, we define TFC(K, T ,B ∪ B2) as the set of all tweakable
fork-ciphers with key space K, tweak space T , and input space B.

Tweakable Fork-permutation Notion. The security of a tweakable fork-cipher is
evaluated against an ideal forked permutation in the Tweakable Fork-permutation (TFP)
notion with encryption queries only or the Strong Tweakable Fork-Permutation (STFP)
notion. Algorithm 1 shows the strong STFP notion. The ideal world provides access to the
same interfaces as a real fork-cipher, consisting of encryption and decryption oracles $+

and $−. Both use two random tweakable permutations P̃0 and P̃1 internally. The Strong
Tweakable Fork-permutation (STFP) advantage of a distinguisher A in distinguishing the
real world (F̃+

k , F̃−
k) from the ideal world ($+, $−) as

Advstfp
F̃k

(A) = ∆A

(
(F̃+

k , F̃−
k); ($+, $−)

)
.

We say that F̃ = (F̃+, F̃−) is (q, t, ϵ)-STFP-secure if the maximal STFP advantage on F
is at most ϵ where the maximum is taken over all distinguishers that make a total of at
most q queries to both the encryprtion and decryption oracle altogether and run in time
at most t steps.

Here, we state a fact on secure fork-ciphers which we will require later.

6 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Lemma 1. Let F̃ : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}2n be an ideal fork-cipher.
Given k, x ∈ {0, 1}n and y∥z ∈ {0, 1}2n, the probability of finding a tweak J such
that F̃[k, J, x, 2] = y∥z is bounded by 2−2n. Moreover, for any given y∥z ∈ {0, 1}2n, the
probability of finding a key k, a tweak J , and an input x such that F̃[k, J, x, 2] = y∥z can
be bounded by 2−n.

Proof. The proof is straight-forward and follows directly from the definition of a secure fork-
cipher. For the first part, the event is identical to finding J such that (F̃[k, J, x, 0] = y) and
(F̃[k, J, x, 1] = z), the probability of which can be bounded by 2−2n from the randomness
of F̃. For the second part, the adversary can guess a key k and set x = F̃−1[k, J, z, 1, 0].
This essentially ensures that the above equality holds if and only one can find J such that
F̃[k, J, F̃−1[k, J, z, 1, 0], 0] = y, the probability of which can be bounded by 2−n.

2.2 Nonce-based Authenticated Encryption and Its Security in
The Presence of Leakage

Let K,N ,A,M, C, T be non-empty sets for keys, nonce, associated data, messages, cipher-
text, and tags, respectively. A nonce-based authenticated encryption scheme with associated
data (nAEAD) consists of a pair of deterministic algorithms, called the encryption algorithm
E : K×N×A×M→ C×T and the decryption algorithm D : K×N×A×C×T →M∪{⊥},
where ⊥ indicates an invalid ciphertext-tag pair. We will often write EN,A

K (M) and
DN,A

K (C, T) for E(K, N, A, M) and D(K, N, C, T), respectively.
It holds that DN,A

K (C, T) = ⊥ if ∄ M ∈M satisfying EN,A
K (M) = (C, T). In this case,

we call (N, A, C, T) an invalid decryption query. The correctness condition of an nAE scheme
states that for every K ∈ K, N ∈ N , A ∈ A, and M ∈M, it holds that DN,A

K (EN,A
K (M)) =

M ; the tidiness condition states that for all (K, N, A, C, T) ∈ K ×N ×A× C × T , where
DN,A

K (C, T) ̸= ⊥, it holds that EN,A
K (DN,A

K ((C, T))) = (C, T). Let Π = (E ,D) be an nAEAD
scheme. We define the nAEAD advantage of A on Π as

AdvnAEAD
ΠK

(A) ∆= ∆A ((EK ,DK); ($,⊥)) ,

where $ is a random oracle that returns a tuple of uniform random strings (C, T) of
expected lengths on input (N, A, M) and ⊥ is a reject oracle that always returns ⊥ on
any input (N, A, C, T). We call A nonce-respecting if and only if it refrains from reusing
nonces in queries directed to the first oracle (referred to the encryption oracle), and the
corresponding advantage is termed nonce-respecting advantage. In contrast, should A
reuse nonces in queries to the first oracle, it is classified as a nonce-misuse adversary, with
the associated advantage termed as nonce-misuse advantage. Note that in both scenarios
we presume that A can repeats nonces in queries to the second oracle (refered to as the
decryption oracle). Throughout this work, we will consider non-trivial adversaries i.e. it
will not forward a response from its encryption oracle to the decryption oracle as a forgery.

Security under Nonce Misuse and Leakage. We consider two different classes of
adversaries, called nonce-misuse-resilient adversary and leakage adversary. In the setting
with nonce-misuse resilience, an adversary A is allowed to make two types of queries:
non-challenge queries and challenge queries. Non challenger queries are answered through
the real oracles and the challenge queries are answered either through the real oracles or the
ideal oracles. A nonce-misuse resilient adversary can repeat nonces during non-challenge
queries to both the encryption and decryption oracles, but must employ a fresh nonce for
every challenge query. On the other hand, in the leakage setting, a leakage adversary A is
allowed to make queries to the encryption and to the decryption oracle in either of the
two worlds and is given not only the output but also the leakages from the constructions.

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 7

Algorithm 2 The CIML2 experiment.
11: procedure Initialize
12: K

$←− K
13: b← 0
14: S ← ∅

21: function LE(K, N, A, M,LE)
22: (C, T)← E(K, N, A, M)
23: S

∪←− {(N, A, C, T)}
24: R

$←− R
25: L← LE(K, N, A, M, R)
26: return (C, T, L)

31: function LD(K, P, N, A, C, T,LD)
32: M ← D(K, N, A, C, T)
33: R

$←− R
34: L← LD(K, N, A, C, T, R)
35: return (M, L)

41: function Finalize
42: return b

51: function LDch(K, N, A, C, T,LD)
52: R

$←− R
53: L← LD(K, N, A, C, T, R)
54: if (N, A, C, T) ∈ S then
55: return (⊥, L)
56: if D(K, N, A, C, T) = ⊥ then
57: return (⊥, L)
58: M ← D(K, N, A, C, T)
59: b← 1
60: return (M, L)

2.2.1 Authenticity of nAEAD under Leakage

Our attention will be directed towards nonce-based AEAD under leakage. We specifically
consider cases where the AEAD scheme exhibits nonce-misuse-resistant integrity and nonce-
misuse-resilient confidentiality. Achieving complete nonce-misuse-resistant confidentiality
under leakage assumptions appears challenging, as shown in [BGP+20]. Leakage in the
AEAD implementation is categorized into leakage during encryption and leakage during
decryption. Berti et al. initially introduced a nonce-misuse-resistant leakage integrity
concept with only encryption leakage (CIML) in [BKP+18]. Subsequently, they extended
this notion to encompass both encryption and decryption leakage (CIML2) in [BPPS17].
In [BGP+20], Berti et al. further defined a multi-user distinguishing version of the CIML2
notion called muCIML2, emphasizing the equivalency between forgery and distinguishing
attacks. The follow-up work [Lis21] introduced a single-user, multi-challenge variant of the
muCIML2 notion, called qCIML2 to prove the integrity security of the TEDT2 construction.
However, qCIML2 has been introduced as a distinguishing game advantage, but we use
the notion in our work in terms of the forging game to prove the integrity security of our
construction for single user. Therefore, we will use the CIML2 notion in terms of single
user forging, described in Algorithm. 2.

Let Π = (E ,D) be a nonce-based AEAD scheme and LE ,LD be two leakage functions
associated with the encryption and decryption function, respectively. We define two
functions called encryption with leakage and decryption with leakage, denoted as LE and
LD respectively corresponding to the encryption and decryption function E ,D as follows:
on input (K, N, A, M), LE returns (EN,A

K (M),LE(K, N, A, M, R)) for some randomness
R

$←− R sampled uniformly at random from a non-empty set of randomness R, which
models randomness (e.g. implementation and measuring noise) in practice. Similarly, on
input (K, N, A, C, T), LD returns (DN,A

K (C, T),LD(K, N, A, C, T, R) for some R
$←− R. In

the following, we recall the CIML2 definition for Π[IC], i.e. an AEAD scheme based on an
ideal i.e. random cipher IC. We write IC± as short form to indicate that oracles to IC and
IC−1 are available.

Definition 1 (CIML2). Let K
$←− K and let A be an adversary for a nonce-based AEAD

scheme Π[IC]K = (E [IC]K ,D[IC]K) based on an ideal cipher IC. Let LE and LD be two
leakage functions associated with encryption and decryption, respectively. Then, we define

AdvCIML2
Π[IC]K ,LE ,LD

(A) ∆= Pr[ALE[IC]K ,LD[IC]K ,IC±
forges] .

8 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Algorithm 3 The qCCAmL2 experiment.
11: procedure Initialize
12: K

$←− K
13: b

$←− {0, 1}
14: SN ← ∅
15: Sch ← ∅

21: function LE1(K, N, A, M,LE)
22: (C, T)← E(K, N, A, M)
23: SN

∪←− N

24: R
$←− R

25: L← LE(K, N, A, M, R)
26: return (C, T, L)

31: function LD1(K, N, A, C, T,LD)
32: if (N, A, C, T) ∈ Sch then
33: return ⊥
34: R

$←− R
35: M ← D(K, N, A, C, T)
36: L← LD(K, N, A, C, T, R)
37: return (M, L)

41: function Finalize(b′)
42: return b = b′

51: function LE2(K, N, A, M,LE)
52: if N ∈ SN then
53: return ⊥
54: if b = 0 then
55: (C, T)← E(K, N, A, M)
56: else
57: M∗ $←− {0, 1}|M |

58: M ←M∗

59: (C, T)← E(K, N, A, M)
60: SN

∪←− N

61: Sch
∪←− (N, A, C, T)

62: R
$←− R

63: L← LE(K, N, A, M, R)
64: return (C, T, L)

61: function LD2(K, N, A, C, T,LD)
62: if (N, A, C, T) /∈ Sch then
63: return ⊥
64: R

$←− R
65: L← LD(K, N, A, C, T, R)
66: return L

We define AdvCIML2
Π[IC]K

(p, q, σ) as the maximum advantage of all adversary making at most
q queries of at most σ blocks to its oracles and every leakage will be computed at most p
times.

2.2.2 Privacy of nAEAD under Leakage

Next, we consider privacy under leakage. Let Π, LE , and LD be defined as before.
We define the following two pair of oracles corresponding to the encryption and de-
cryption functions: (LE1, LD1) and (LE2, LD2), where on input (K, N, A, M), LE1 re-
turns (EN,A

K (M),LE(K, N, A, M, R)) for a randomly sampled R. Similarly, on input
(K, N, A, C, T), the oracle LD1 returns (DN,A

K (C, T),LD(K, N, A, C, T, R)) for a randomly
sampled R. Another pair of oracles (LE2, LD2) are functionally almost identical to that
of (LE1, LD1), with the only difference that LE2 and LD2 additionally checks for nonce
repetitions. We call the first pair of oracles (LE1, LD1) non-challenge oracles and the
other pair of oracles (LE2, LD2) challenge oracles. Informally, qCCAmL2 is defined as a
distinguishing game to distinguish the output of the challenge oracle in both the real and
ideal worlds with additional access to the non-challenge oracle in both the worlds.

Definition 2 (qCCAmL2). Let K
$←− K and let A be an adversary for a nonce-based

AEAD scheme Π[IC]K = (E [IC]K ,D[IC]K) based on an ideal cipher IC. Let LE and LD be
two leakage functions associated with the encryption and decryption function, respectively.
Then, we define

AdvqCCAmL2
Π[IC]K ,LE ,LD

(A) ∆= ∆A(LE1
K [IC]K , LD1

K [IC]K , LE2
K [IC]K , LD2

K [IC]K , IC± ;

LE1
K [IC]K , LD1

K [IC]K , $E , $D, IC±) .

Here, E1
K ,D1

K are non-challenge oracles. These two oracles are the same for both the
real and ideal world. The adversary can repeat nonces to these two oracles. The security
is defined as distinguishing event between E2

K ,D2
K and $E , $D. As we are considering a

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 9

nonce-misuse-resilient adversary, A cannot repeat nonce for the queries to these challenge
oracles. In the ideal world, $E encrypts a random string of the same length as the original
message. D2

k accepts only the previous reply of E2
k and outputs only the leakage, but

not the decryption result to avoid trivial wins. Similarly, $D accepts only outputs from
previous queries to $E and outputs the decryption leakages but not the decryption results
to avoid trivial attacks.

In this work, we prove the confidentiality of the construction in the nonce-misuse-
resilient setting, where adversaries must use a fresh nonce for each challenge query to
LE2

K and $E . By assuming there is no non-challenge valid decryption query, we define the
qCPAmL2 notion as follows:

Definition 3 (qCPAmL2). Let K
$←− K and let A be an adversary for a nonce-based

AEAD scheme Π[IC]K = (E [IC]K ,D[IC]K) based on an ideal cipher IC. Let LE and LD be
two leakage functions associated with the encryption and decryption function, respectively.
Then, we define

AdvqCPAmL2
Π[IC]K ,LE ,LD

(A) ∆= ∆A(LE1
K [IC]K , LE2

K [IC]K , LD2
K [IC]K , IC± ; LE1

K [IC]K , $E , $D, IC±) .

We define AdvqCCAmL2
Π[IC]K ,LE ,LD

(p, q, σ) as the maximum advantage of all adversaries making
at most q queries of at most σ blocks in total and every leakage will be computed at most
p times and define AdvqCPAmL2

Π[IC]K ,LE ,LD
(p, q, σ) similarly in the natural manner.

3 Design and Specification of FEDT
In this section, we formally specify the FEDT authenticated encryption scheme and give a
brief design rationale.

3.1 Specification

FEDT uses a fork-cipher F̃ as its underlying primitive that takes an n-bit key, a 2n-bit tweak,
and an n-bit input and produce a 2n-bit output: F̃ : {0, 1}n×{0, 1}2n×{0, 1}n → {0, 1}2n.
The mode follows an Encrypt-then-MAC composition.

Encryption Module. The encryption function takes as inputs a nonce N , a message
M , and a master key K and generates the ciphertext C (with |C| = |M |). The encryption
is essentially a one-time pad, where the key-stream is generated from the nonce using the
tweakable fork cipher in a tree-like structure as shown in Figure 1a.

Authentication Module. The authentication module takes as inputs the nonce N ,
associated data A, the ciphertext C, and generates the tag T . First, we use an in-
jective padding function pad similarly as in [BGP+20] on N , A, C to generate a bit
string U whose length is a guaranteed multiple of 2n bits, where, pad(N, A, C) =
(A∥C∥02n−δ) ∥N ∥ ([|A|]n/2∥[|C|]n/2). The padding function ensures that for different
(N, A, C), (N ′, A′, C ′), we have U ̸= U ′. Next, the authentication module generates a
2n-bit string V ∥W from U using 2n-bit parts as tweak inputs to F̃. The i-th fork-cipher
invocation takes the most significant n-bits of the previous fork-cipher output as the key,
the least significant n-bits as the input and Ui as tweak and generates a 2n-bit output.
The initial input and key is taken as 0n, and the last fork-cipher output is considered as
V ∥W . Finally, V ∥W is used as the tweak with input 0n, and key K into F̃ to generate the
tag. A pictorial description of the authentication module is shown in Fig. 1b.

10 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Algorithm 4 Specification of FEDT.
11: function E(K, N, A, M)
12: k1∥k2 ← KDF(K, N∥0n, N)
13: C ← Enc(k1∥k2, N, M)
14: V ∥W ← Hash(A, N, C)
15: T ← TGF(K, V ∥W, 0n)

21: function D(K, N, A, C, T)
22: V ∥W ← Hash(A, N, C)
23: ip← TGF−1(K, V ∥W, T)
24: if ip = 0n then
25: return Enc(K, N, C)
26: return ⊥

31: function pad(A, N, C)
32: l← |A∥C|
33: δ ← l mod 2n
34: Y ← (A∥C∥02n−δ)∥N∥([|A|]n/2∥[|C|]n/2)
35: return Y

41: function KDF(K, J, X)
42: return F̃+(K, J, X, 2)

46: function TGF(K, J, X)
47: return F̃+(K, J, X, 0)

51: function Enc(k1∥k2, N, M)
52: l← ⌈|M |/n⌉
53: M1∥M2∥ · · · ∥Ml ←M
54: for i← 3, 5, 7, . . . , (2l − 3) do
55: a← (i− 1)/2
56: Ja ← N∥[a]n
57: ki∥ki+1 ← F̃+(ka, Ja, N, 2)
58: for i← 1, 2, 3, . . . , l do
59: Ci ←Mi ⊕ kl−2+i

60: C ← C1∥C2∥ · · · ∥Cl

61: return C

61: function Hash(A, N, C)
62: U ← pad(A, N, C)
63: U1∥U2∥ · · · ∥Ul ←2n U
64: u0 ← 0n

65: v0 ← 0n

66: for i← 1, 2, 3, . . . , l do
67: ui∥vi ← F̃+(vi−1, Ui, ui−1, 2)
68: return ul∥vl

71: function TGF−1(K, J, Y)
72: return F̃−(K, J, Y, 0, 0)

Decryption Algorithm. The corresponding decryption algorithm takes as inputs a
nonce N , associated data A, and a ciphertext-tag pair (C, T) and outputs the message M
if the verification was successful and ⊥ otherwise. The algorithm is a verify-then-decrypt
type algorithm. First, it invokes the authentication module on (N, A, C), and the inverse
of the fork-cipher to verify the authenticity of the submitted ciphertext-tag pair. If the
input is proven authentic, then it decrypts the ciphertext to get the plaintext. The usage
of the inverse fork-cipher prevents leaking the correct tag for an invalid ciphertext. The
complete specification of FEDT is provided in Algorithm 4. It is pictorically depicted in
Fig. 1a and Fig. 1b for messages of 8n bits.

3.2 Design Rationale
In this section, we describe our design rationale of FEDT. Prior, we will briefly describe
two existing Grade-3 leakage-resilient nAEAD constructions: (a) TEDT and (b) TEDT2,
and a overview of our construction FEDT.

TEDT. The structure of TEDT is as follows:
IV ← Ẽ(K, PK∥0, N∥0n/4) ,

C ← G[Ẽ](IV, N)⊕M ,

V ∥W ← H[Ẽ](N, A, C) ,

T ← Ẽ(K, [W]n−1∥1, V) .

A public user-specific value PK aids TEDT in maintaining security integrity within a multi-
user framework. The underlying PRG, denoted as G, is derived from Bellare-Yee [BY03]
re-keying principles, following guidelines proposed for leakage resilience in [PSV15]. Notably,
each TBC call in G shares the same tweak within a user and utilizes an identical key in two
TBCs at each level. Consequently, only n bits differ between two 2n-bit tweakeys. The hash
function H employed in TEDT is a variation of Hirose’s double-block hash function [Hir06].

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 11

F̃

N K

N∥0n

F̃

N

k1 k2

J1 F̃

N

J2

F̃

N

F̃

N

F̃

N

F̃

N

J3 J4 J5 J6

k3 k4 k5 k6

M1

C1

M3

C3

M5

C5

M7

C7

M2

C2

M4

C4

M6

C6

M8

C8

Ji = N∥[i]n

(a) Encryption for a message of eight blocks.

PAD

A

N

C

U · · ·

F̃
0n

0n
F̃

· · ·

· · ·
F̃

F̃
0n

K

T

(b) Authentication, composed of hashing and the TGF.

Figure 1: Schematic view of FEDT for eight message blocks.

The tag generation involves a call to a strongly protected implementation of the TBC
utilizing W as a tweak, V as input, and the master key K to produce the tag T .

TEDT2. TEDT2 adheres to a structure akin to TEDT with modifications in the KDF
and TGF. A synopsis of TEDT2 is as follows:

a∥b← KDF(K, N) ,

C ← G[Ẽ](a, b, N)⊕M ,

U∥V ← H[Ẽ](A, C) ,

T ← Ẽ(K, 8∥N∥V, U) .

The KDF employs two TBC calls sharing the same master key K, fixed input 0, and
distinct tweaks using domain separation. TEDT2 utilizes the encryption function G, which
is a CTR-based mode, where each TBC employs a 3n-bit tweakey with domain-separated
2n-bit tweaks. The hash function H is a variant of Naito’s hash function [Nai19] based
on MDPH [HPY07]. Ultimately, TEDT2 employs a call to a strongly protected TBC
implementation with the master key K, input U , a nonce N , input V , and a domain
separation factor in tweak to generate the tag T .

12 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

FEDT. The outline of FEDT is as follows:
K1∥K2 ← F̃(K, N∥0n, N) ,

C ← G[Ẽ](K1, K2, N)⊕M ,

U∥V ← H[Ẽ](N, A, C) ,

T ← F̃(K, U∥V, 0n) .

FEDT uses a call to a strongly protected implementation of a fork-cipher in the KDF
using master key K and the nonce in both input and tweak. The encryption function
Enc uses then a less protected implementation of the fork-cipher with a tweakey of 3n
bit. The tweaks of each fork-cipher call depend on the nonce and the index of the call in
the encryption tree which yields a distinct tweak for every primitive call. FEDT employs
a fork-cipher-based hash function that is heavily inspired from TBC-based double-block-
length hashing. FEDT uses the fixed input 0n in the TGF in a similar way as [BGPS21].
Finally, FEDT uses a call to a strongly protected implementation of the fork-cipher with
the master key K, the 2n-bit hash output as the tweak, and the fixed input 0n as inputs.
FEDT output the most significant n-bit of the output as the tag. Note that FEDT does
not use the nonce in the TGF.

Comparison. The privacy of TEDT is limited to the birthday bound primarily since
it uses the same tweak in each TBC call in the encryption for the same user. TEDT
processes the fresh n-bit key at every step in the encryption. To address this bottleneck,
TEDT2 uses a fresh 2n-bit tweakey for every step of the encryption. To preserve the
rate of TEDT, TEDT2 processes two message blocks per step compared to TEDT’s single
block. Instead of refreshing the tweak in each step to achieve beyond-birthday-bound
privacy, FEDT uses distinct tweaks of the form N∥[i]n. This approach eliminates the
need for an extra primitive call to process fresh tweaks, yielding an efficient solution for
beyond-birthday-bound privacy. The tree structure also restricts the length of the longest
TBC sequence to log(d) for a dn-bit message, surpassing the efficiency of the d-length
TBC sequence in both TEDT and TEDT2. Thus, it can enhance parallelization, and have
a primitive rate of one compared to 0.5 for TEDT and TEDT2. However, the different
primitives demand a more fine-grained comparison.

The authentication in FEDT follows a sequence similar to the pad-Hash-TGF employed
in TEDT and TEDT2. We introduce a hash function based on a fork-cipher, which follows
from the TBC-based double-block-length hash function. In this hash, every call to the
primitive takes a 2n-bit block of the padded nonce, associated data, and ciphertext string
as a tweak. Subsequently, in the TGF, the 2n-bit hash serves as the tweak in a strongly
protected call to the fork-cipher with the master key K. FEDT employs a fixed input 0n,
distinguishing it from the variable input in TEDT and TEDT2. The primitive rate in this
hash function is twice that of TEDT and TEDT2, however, under a different primitive.

3.3 FEDT*: A Low-latency Variant of FEDT
While FEDT may benefit from parallelization because of its tree-structured encryption,
this induces also a non-trivial latency of roughly log2(d) fork-cipher calls before the first
ciphertext can be output for a message of d n-bit blocks. As part of a remedy, we propose
FEDT* as a second approach, that replaces the encryption function of FEDT with a
fork-cipher-based variant of the RCTR encryption in TEDT2. A schematic diagram of
FEDT* is depicted in Figure 2 along with a description in Algorithm 5. FEDT* inherits the
KDF, Hash function, and TGF from FEDT. However, it processes four message blocks in
each level of encryption using three calls to the primitive, achieving an increased rate (of
4/3), where each level generates two keys for the next level and four n-bit ciphertext blocks.
Note that these three fork-cipher calls can be computed in parallel. The rate at each level

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 13

F

N K

N∥0n

k1 k2

F

N k2i−1

J0
i

k2i+1 k2i+2

F

N k2i

J1
i

C4i−3

M4i−3 ⊕

C4i−2

M4i−2⊕

F

N k2i

J1
i

C4i−1

M4i−1 ⊕

C4i

M4i⊕

J0
i = N∥i∥0

J1
i = N∥i∥1

J1
i = N∥i∥2

Figure 2: Encryption function of FEDT*.

Algorithm 5 Specification of FEDT*.
11: function E(K, N, A, M)
12: k1∥k2 ← KDF(K, N∥0n, N)
13: C ← Enc(k1∥k2, N, M)
14: V ∥W ← H(A, N, C)
15: T ← TGF(K, V ∥W, 0n)

21: function D(K, N, A, C, T)
22: V ∥W ← H(A, N, C)
23: ip← TGF−1(K, V ∥W, T)
24: if ip = 0n then
25: return Enc(K, N, C)
26: return ⊥

31: function pad(A, N, C)
32: l← |A∥C|
33: δ ← l mod 2n
34: Y ← (A∥C∥02n−δ)∥N∥([|A|]n/2∥[|C|]n/2)
35: return Y

41: function KDF(K, J, X)
42: return F̃+(K, J, X, 2)

46: function TGF(K, J, X)
47: return F̃+(K, J, X, 0)

51: function Enc(k1∥k2, N, M)
52: l← ⌈|M |/n⌉
53: M1∥M2∥ · · · ∥Ml ←M
54: for i = 1, 2, 3, . . . , l/4 do
55: k2i+1∥k2i+2 ← F̃(k2i−1, N∥[i]n−8∥[0]8, N, 2)
56: Y4i−3∥Y4i−2 ← F̃(k2i, N∥[i]n−8∥[1]8, N, 2)
57: Y4i−1∥Y4i ← F̃(k2i, N∥[i]n−8∥[2]8, N, 2)
58: for s← 0, . . . , 3 do
59: C4i−s = M4i−s ⊕ Y4i−s

60: return C ← C1∥C2∥ · · · ∥Cl

61: function Hash(A, N, C)
62: U ← pad(A, N, C)
63: U1∥U2∥ · · · ∥Ul ←2n U
64: u0 ← 0n

65: v0 ← 0n

66: for i← 1, 2, 3, . . . , l do
67: ui∥vi ← F̃+(vi−1, Ui, ui−1, 2)
68: return ul∥vl

71: function TGF−1(K, J, Y)
72: return F̃−(K, J, Y, 0, 0)

can be further increased by employing more parallel fork-ciphers with domain-separating
tweaks. We note that a complete comparison must depend on the cost of the primitives for
achieving a similar security level. Since the optimal security and efficiency of fork-ciphers
are less studied than tweakable block ciphers, we leave the further understanding of the
security of concrete instances as an open problem.

4 Security Analysis of FEDT
In this section, we analyze the security of FEDT. First, we study the collision security of
the underlying hash function, before we consider its CIML2 security and qCCAmL2 security
bounds.

4.1 Collision Security of the Hash Function

Here, we bound the collision security of the underlying hash function of FEDT H[F̃].

14 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Lemma 2. Let A be an adversary aiming to discover a collision in the hash function
H[F̃] while making a maximum of qp primitive queries, including those made during hash
queries. Let Coll be the event that A finds a collision in H i.e., A output U and U ′ such
that H[F̃](U) = H[F̃](U ′). Then,

Pr[Coll] ≤ qp

2n
+

q2
p

22n
+

q3
p

23n
.

Proof. A can make two kinds of queries to oracles: construction queries and ideal-cipher
queries. In the former, A submits an input U of dn bits for some integer d and obtains a
2n-bit output H[F̃](U) = V ∥W . For ideal-cipher queries, A chooses a key k, a tweak J ,
and evaluate both the forward and backward queries to the ideal-cipher F̃ as follows: for
the forward query, A submits a key k, a tweak J , and an n-bit input X with a selector
bit s and A gets F̃+(k, J, X, s) as the response. On the other hand, for a backward query,
A submits a key k, a tweak J , and an n-bit input Y with a bit b and a selector bit s
and gets F̃−(k, J, Y, b, s) as the response. The collection of all construction queries and
ideal-cipher queries constitute the attack transcript as follows: τ = {τh, τp}, where τh

consists of queries of the form (U, V ∥W), where U is queried to the hash function H[F̃]
during construction queries and V ∥W is the corresponding response, i.e H[F̃](U) = V ∥W .

On the other hand, τp consists of ideal-cipher queries of the form (k, J, X, Y ∥Z), where
Y ∥Z ← F̃+(k, J, X, 2). Note that, for a fixed key k and a tweak J , any of X, Y, Z will fix
the value of other two.

Let bad be a Boolean flag, which is true if and only if there exists an ideal-cipher query
that hits the initial value 02n. Formally,

bad← 1 if ∃(k, J, x, y∥z) ∈ τp such that y∥z = 02n.

To set the boolean flag bad, the adversary must discover a key, tweak, input tuple
(k, J, x) such that F̃(k, J, x, 2) = 02n holds. Following Lemma 1, for a fixed tuple of (k, J, x),
the probability that F̃(k, J, x, 2) = 02n is at most 2−n. Moreover, the number of choices of
such tuple is at most qp. Hence we have

Pr[bad] ≤ qp

2n
. (1)

We will now establish an upper bound on the collision probability of the hash function
given that bad condition does not occur. Following Eqn. (1), we have

Pr[Coll] ≤ Pr[Coll|¬bad]] + Pr[bad] ≤ Pr[Coll|¬bad]︸ ︷︷ ︸
(1)

+ qp

2n
. (2)

It remains to bound (1). Note that a collision in the hash function implies

(U, V ∥W), (U ′, V ′∥W ′) ∈ τh : V ∥W = V ′∥W ′.

Let U and U ′ be represented as follows: U ← U1∥U2∥ · · · ∥Ul and U ′ ← U ′
1∥U ′

2∥ · · · ∥U ′
l′ ,

where each Ui and U ′
j is a 2n-bit block. Note that, (U, V ∥W) ∈ τh, implies the existence

of a sequence
(

(u0, v0), (u1, v1), . . . , (ul, vl)
)

, where each ui, vi ∈ {0, 1}n with the initial

values (u0, v0) = (0n, 0n) and (ul, vl) = (V, W). Similarly, for (U ′, V ∥W) ∈ τh, implies the

existence of a sequence
(

(u′
0, v′

0), (u′
1, v′

1), . . . , (u′
l′ , v′

l′)
)

, where each u′
i, v′

i ∈ {0, 1}n with

the initial values (u′
0, v′

0) = (0n, 0n) and (u′
l′ , v′

l′) = (V, W). Furthermore, it must hold that{
F̃+(vi−1, Ui, ui−1, 2) = ui∥vi, ∀i = 1, 2, . . . , l

F̃+(v′
i−1, U ′

i , u′
i−1, 2) = u′

i∥v′
i ∀i = 1, 2, . . . , l′

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 15

During the hash evaluation for input U and U ′, we add all the intermediate state variables
(vi−1, Ui, ui−1, ui∥vi) and (v′

i−1, U ′
i , u′

i−1, u′
i∥v′

i) to the ideal-cipher query transcript τp.
Without loss of generality, we assume that no (ui, vi) is equal to any (u′

j , v′
j) except for the

initial and final pairs.2 Furthermore, we also assume that (vl−1, Ul, ul−1, ul∥vl) is added
to τp after (v′

l′−1, Ul′ , u′
l′−1, u′

l′∥v′
l′). Now, we have the following cases:

Case (1): (vl−1, Ul, ul−1, ul∥vl) is added to τp after (vl−2, Ul−1, ul−2, ul−1∥vl−1) : Let
Coll1 represent the event where A finds a collision in H. In this scenario, with a given key
vl−1 and a given input ul−1, the adversary must discover a suitable tweak J = Ul, such
that F̃+(vl−1, J, ul−1, 2) = ul∥vl for a given output ul∥vl. For a fixed value of (ul−1, vl−1)
and for a fixed value of (ul, vl), we apply Lemma 1, and it follows that the probability of
finding such a tweak J is upper bounded by 2−2n due to the randomness of the fork-cipher
F̃. Furthermore, there are at most qp choices for (ul−1, vl−1) and at most qp choices for
(ul, vl). Therefore, by varying over all possible choices of indices, we have

Pr[Coll1|¬bad] ≤
q2

p

22n
. (3)

Case (2): (vl−1, Ul, ul−1, ul∥vl) is added to τp before (vl−2, Ul−1, ul−2, ul−1∥vl−1) :
In this scenario, with a given output ul∥vl, the adversary A must obtain a key k = vl−1, a
tweak J = Ul, and an input x = ul−1, such that F̃+(k, J, x, 2) = ul∥vl. For a fixed choice
of (ul−1, vl−1) and for a fixed choice of (ul, vl), we apply Lemma 1, and it follows that the
probability of finding such (key, tweak, input)-tuple is upper bounded by 2−n due to the
randomness of F̃. However, we have to analyze the probability of getting the primitive
query (vl−2, Ul−1, ul−2, ul−1∥vl−1), which we do in the following two subcases:
• Subcase (2a): (vl−2, Ul−1, ul−2, ul−1∥vl−1) is added to τp after (∗, ∗, ∗, ul−2 ∥ vl−2):

Let Coll2a represent the event where A finds a collision in H. In this scenario, similar
to Case (1), the collision follows from the right choice of the tweak Ul−1, as the
adversary has to find a suitable tweak for a given output ul−1∥vl−1 with a given
key vl−2 and input ul−2. By virtue of Lemma 1, the probability of finding such a
suitable tweak is upper bounded by 2−2n due to the randomness of F̃. Furthermore,
there are at most qp choices for each of ul−2∥vl−2, ul−1∥vl−1, and ul∥vl. Over all
possible choices of indices, we have

Pr[Coll2a|¬bad] ≤
q3

p

23n
. (4)

• Subcase (2b): (vl−2, Ul−1, ul−2, ul−1∥vl−1) is added to τp before (∗, ∗, ∗, ul−2 ∥ vl−2):
Let Coll2b represent the event in which A finds a collision in H. This scenario is
analogous to Case (2). Note that u0∥v0 is set to 02n. By continuing with a similar
argument recursively, we reach a point where there exists some a ∈ [0, l] such that
either ua∥va = 02n or (∗, ∗, ∗, ua∥va) is added to τp before (va, Ua+1, ua, ua+1∥va+1).
In both cases, the adversary must find a suitable tweak Ua+1 such that ua+1∥va+1 ←
F̃+(va, Ua+1, ua, 2), where ua∥va and ua+1∥va+1 are given. Then, for a fixed choice
of indices, by applying Lemma 1, the probability for finding such a tweak is upper
bounded by 2−2n due to the randomness of F̃. Furthermore, there are at most qp

choices for each of ua∥va, ua+1∥va+1, and ul∥vl. Over all possible choices of indices,
we have

Pr[Coll2b|¬bad] ≤
q3

p

23n
. (5)

The result follows by combining Equations (2) through (5).
2If the collision occurs at some earlier point α, we would have considered the sequence up to α.

16 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

4.2 CIML2 Security of FEDT

Theorem 1. Let K
$←− K and let F̃ : {0, 1}n×{0, 1}2n×{0, 1}n → {0, 1}2n be a fork-cipher.

Let A be a CIML2-adversary on FEDT[F̃]K that makes at most qc construction queries and
at most qp ideal-cipher queries. Then, we have

AdvCIML2
FEDT[̃F]K

(qc, qp) ≤ 4q

2n
+ q2

22n
+ q3

23n
,

where q = max{qc, qp}.

Proof. We define the transcript containing all queries and responses of the adversary A as
τ = (K, τp, τc, τh, τKDF, τTGF), where τp contains all queries and responses to the ideal fork-
cipher F̃ including both the ideal-cipher query and the internal state variables generated
during the computation of the construction queries in the following way: (k, J, X, Y ∥Z),
where Y ∥Z ← F̃+(k, J, X, 2). τc contains all construction queries and responses as
(K, N, A, M, C, T), where either (C, T)← E(K, N, A, M) or M ← D(K, N, A, C, T). More-
over, τh consists all queries to the hash function and the corresponding responses in the
form (U, V ∥W), where V ∥W ← H(U). The transcript corresponding to the key-derivation
function τKDF consists of all queries and responses to the assumed leak-free key-derivation
function as (K, J, X, Y ∥Z), where K is the secret key and Y ∥Z ← F̃+(K, J, X, 2). Finally,
τTGF consists of all queries and responses to the tag generation function as (K, J, X, Y ∥Z),
where X ← F̃−(K, J, Y, 0, 0) or Y ∥Z ← F̃+(K, J, X, 2). We assume that KDF and TGF do
not leak the master secret key K and all other primitives leak all key, input and output.
We reveal the master key K to the adversary and add it to the transcript at the end of the
interaction. We call a transcript τ = (K, τp, τc, τh, τKDF, τTGF) attainable if the probability
of realizing it in the ideal world is non-zero.

Bad Transcripts and Their Probability. We call an attainable transcript Bad if at
least one of the following events occurs:

• Bad1: ∃(Ui, Vi∥Wi), (Uj , Vj∥Wj) ∈ τh such that Ui ̸= Uj but (Vi, Wi) = (Vj , Wj).

• Bad2: ∃(K, Ji, Xi, ∗) ∈ τKDF and ∃(K, Jj , 0n, ∗) ∈ τTGF such that Xi = 0n ∧ Ji = Jj .

• Bad3: ∃(K, Ji, Xi, Yi∥Zi) ∈ τKDF and (kp, Jp, Xp, Yp∥Zp) ∈ τp such that (K, Ji, Xi) =
(kp, Jp, Xp), or (K, Ji, Yi∥Zi) = (kp, Jp, Yp∥Zp).

• Bad4: ∃(K, Ji, 0n, Yi∥Zi) ∈ τTGF and (kp, Jp, Xp, Yp∥Zp) ∈ τp such that (K, Ji, Xi) =
(kp, Jp, Xp), or (K, Ji, Yi∥Zi) = (kp, Jp, Yp∥Zp).

Note that the TGF uses a strongly protected fork-cipher implementation with a fixed key
K and the input 0n. A collision in the tweak of the TGF for two queries would result
in a forgery. The output of the hash function H is employed as the tweak for the TGF.
Therefore, Bad1 is designed to prevent such forgery attempts by removing collisions in the
tweak values. Furthermore, guessing the master key K could also lead to a trivial forgery.
Since K is utilized exclusively in the KDF and the TGF. To mitigate this risk, Bad3 and
Bad4 are introduced to address the chance of a forgery from guessing the master key.

Bounding Bad1 ∨ Bad2. By definition, Bad1 essentially says that there is a collision in
the hash function as defined in Lemma 2. Moreover, Bad2 happens if Xi = Ni = 0n and
the adversary can find a hash-function pre-image of Ji = Ni∥0n = 02n. This condition is
equivalent to bad condition defined on Lemma 2. It follows that

Pr[Bad1 ∨ Bad2] = Pr[Coll] ≤ qp

2n
+

q2
p

22n
+

q3
p

23n
. (6)

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 17

Bounding Bad3. Among all primitive queries, this bad event will occur if the adversary
successfully guesses the master key K since all KDF queries rely on the same master key.
Furthermore, there are at most qp primitive queries. From the randomness of K, we have

Pr[Bad3] ≤ qp

2n
. (7)

Bounding Bad4. Similar as Bad3, this bad event will occur if the adversary successfully
guesses the master key K since all TGF queries rely on the same master key. Furthermore,
there are at most qp primitive queryies. From the randomness of K, we have

Pr[Bad4] ≤ qp

2n
. (8)

Hence, by applying the union bound on the three cases above, we obtain

Pr[Bad] ≤ qp

2n
+

q2
p

22n
+

q3
p

23n
+ qp

2n
+ qp

2n
= 3qp

2n
+

q2
p

22n
+

q3
p

23n
. (9)

Bounding The Forging Advantage Conditioned on ¬Bad. We upper bound the
probability of a forgery conditioned on the case that no Bad events have occurred. A
successful forgery implies the existence of a tuple (K, N, A, M, C∥T) ∈ τc, which yields a
valid decryption query i.e., M ̸= ⊥. Following the processing of (N, A, C, T), we can find
an element (pad(A, N, C), V ∥W) ∈ τh, a (kp, Jp, xp, V ∥W) ∈ τp, and (K, V ∥W, 0n, T∥∗) ∈
τTGF. To bound the probability of this event, we proceed as follows: First, we argue
that the tuple (K, V ∥W, 0n, T∥⋆) cannot represent a forward query. If it were a forward
query, there would exist an encryption query (N ′, A′, M ′) such that E(K, N, A, M) =
C ′, T . Furthermore, since (N, A, C, T) is a valid decryption query, we have (N, A, C) ̸=
(N ′, A′, C ′), which implies that pad(A, N, C) ̸= pad(A′, N ′, C ′). This would lead to a
collision in the hash function H, which contradicts the assumption of ¬Bad1. Hence, for the
successful forgery, A must find values for J and T such that F̃−(K, J, T, 0, 0) = 0n, where
K is secret, as assumed by ¬Bad3 and ¬Bad4, and J must be fresh and distinct from all
the tweak values used in the TGF during encryption queries. From the security properties
of the primitive fork-cipher, we know that for any (J, T), Pr[F̃−(K, J, T, 0, 0) = 0n] ≤ 2−n.
Therefore, we have:

Pr[Forge|¬Bad] ≤ qc

2n
. (10)

By combining Equations (9) and (10) and using q = max{qc, qp}, we have

AdvCIML2
FEDT[̃F]K

(qc, qp) ≤ Pr[Bad] + Pr[Forge|¬Bad] ≤ 4q

2n
+ q2

22n
+ q3

23n
,

which proves the result.

4.3 CCAmL2 Security of FEDT
In this section, we establish the CCAmL2 security of FEDT. Before delving into our main
theorem, we will explore two security concepts following [BBC+20,BGP+19,Lis21], that
will play a crucial role in our analysis. To ensure confidentiality, we will incorporate two
additional security notions that address non-invertibility under leakage, as described in
Algorithm 6, and indistinguishability under leakage for the XOR function, as outlined in
Algorithm 7.

18 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

F̃

? K0

J0

J1 J2F̃

N K1

F̃

N K2

K3 K4 K5 K6

Figure 3: F-LUP setting in FEDT[F̃].

4.3.1 F-LUP and F-XOR Security Notions

For TEDT [BGP+19], the LUP-2 game was introduced to capture the notion of non-
invertibility or unpredictability under leakage for a single iteration of the underlying
PRG. Following the result, LUP-4 game was designed in TEDT2 [Lis21] to encompass
unpredictability in a more generalized scenario related to the RCTR encryption. In this
work, we take a comparable approach and following the notion of LUP-2 and LUP-4, we
introduce a similar security game, called F-LUP, which is designed to capture the notion of
unpredictability in the context of our tree-based encryption function of FEDT. To ensure
that the repetition of same query yields different leakage outcomes, we choose random
coins R from a non-empty finite set R and use it during the computation of the leakage
function.

F-LUP. In this game, the adversary A provides a key K0 and tweaks J0, J1, and J2 to
the challenger. The challenger will choose two random keys K1 and K2 and accordingly
computes X1 and X2. The challenger will compute K3 and K4 using K1, J1, and N as in
the tree-based encryption of FEDT. Moreover, it will also compute K5 and K6 using K2,
J2, and N in a similar way. The adversary will get output leakage only for the computation
involving X1 or X2. We assume that A repeats a query at most p times and for each query,
it will get K3, K4, K5, K6, and the corresponding leakages. For the p-time evaluation of a
leakage function L on inputs X, Y , we write {L(X, Y)}1..p. At the end of the interaction,
A will output a set K′ of cardinality of at most q. We say that A wins if either K1 ∈ K′

or K2 ∈ K′. A formal description of the F-LUP game is shown in Algorithm 6 and the
computations are depicted in Fig. 3.

Definition 4. Let F̃ : {0, 1}n×{0, 1}2n×{0, 1}n → {0, 1}2n be a fork-cipher and Lin,Lout

be two leakage functions. Let A be an adversary playing the F-LUP game in Algorithm 6
against the encryption module of the FEDT[F̃] construction that provides K0 ∈ K and
J0, J1, J2 ∈ {0, 1}2n and outputs a set K′. Then, the F-LUP advantage of A is defined as

AdvF-LUP
FEDT.Enc[̃F],Lin,Lout(A) = Pr [A wins Game F-LUP] .

We define AdvF-LUP
FEDT.Enc[̃F]

(p, q) for the maximum advantage over all F-LUP adversaries on
the encryption module of the FEDT construction where A makes at most p queries and
|K′| ≤ q.

F-XOR. We also have to study the security of all constituent operations, given that even
the slightest information leakage can imperil confidentiality. Like other operations, the
XOR operation also warrants careful scrutiny. There exist two predominant approaches

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 19

Algorithm 6 Game F-LUP.
11: function Query(K0, J0, J1, J2)
12: L ← ∅
13: K1

$←− {0, 1}n, K2
$←− {0, 1}n

14: X1 ← F̃−(K0, J0, K1, 0, 0)
15: X2 ← F̃−(K0, J0, K2, 1, 0)
16: for i← 1, . . . , p do
17: R1, R2, R3, R4, R5, R6

$←− R
18: K1 ← F̃+(K0, J0, X1, 0)
19: L ∪←− Lout(K0, J0, K1, 0; R1)
20: K2 ← F̃+(K0, J0, X2, 1)
21: L ∪←− Lout(K0, J0, K2, 1; R2)
22: K3 ← F̃+(K1, J1, N, 0)
23: K4 ← F̃+(K1, J1, N, 1)
24: L ∪←− {Lin(K1, J1, N, 0; R3),Lin(K1, J1, N, 1, R4)}
25: K5 ← F̃+(K2, J2, N, 0)
26: K6 ← F̃+(K2, J2, N, 1)
27: L ∪←− {Lin(K2, J2, N, 0, ; R5),Lin(K2, J2, N, 1; R6)}
28: return (K3, K4, K5, K6,L)

31: function Finalize(K′)
32: return ((K1 ∈ K′ ∨K2 ∈ K′)
33: ∧ |K′| ≤ q)

for characterizing the security of XOR operations in the presence of leakage. In prior
works [BBC+20,BGP+19,GPPS20], a left-or-right approach has been employed, concen-
trating on individual components in isolation for security analysis. Conversely, a variant
known as the real-or-random approach, as introduced by [Lis21], is adopted in this work
to maintain an alignment with the FEDT framework. In the real-or-random approach,
the evaluation takes place in both the real and the ideal world. In the real world, the
challenger processes the original message M , while in the ideal world, the challenger
operates on a random message M∗ of the same length as M . The adversary wins if it can
correctly identify the world it interacts with. Note that in real-or-random notion, we are
not computing random function in ideal case. Instead, we encrypt a randomly sampled
message using the original construction, eliminating dependencies on the adversary’s choice
of an alternative message. However, it is easy to see that our proof holds for both the
left-or-right and real-or-random notions. A formal definition of the F-XOR game is defined
in Algorithm 7.

Definition 5. Let K
$−→ K and let F̃ : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}2n be a fork-

cipher and L⊕,Lout be two leakage functions. Let A be an adversary playing F-XOR game
as shown in Algorithm 7 against the encryption module of the FEDT[F̃] construction that
provides K0 ∈ K, J ∈ {0, 1}2n, M1, M2 ∈ {0, 1}n and output a bit β′. Then, the F-XOR
advantage of A as follows:

AdvF-XOR
FEDT.Enc[̃F],L⊕,Lout(A) =

∣∣∣∣Pr [β = β′]− 1
2

∣∣∣∣ .

We define AdvF-XOR
FEDT.Enc[̃F]

(p, q) as the maximum of all F-XOR adversaries A on FEDT.Enc[F̃]
that make at most q queries and repeat every query at most p times.

4.3.2 Main Security Theorem

Theorem 2. Let F̃ : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}2n be a fork-cipher. Let A be a
qCCAmL2-adversary on FEDT[F̃]K that makes at most qc construction queries such that
each message consists of at most σm blocks. Let qp be the total number of ideal-cipher
queries including the internal state variables generated during the computation of the

20 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Algorithm 7 Game F-XOR.
11: procedure Initialize
12: L ← ∅
13: Y

$←− {0, 1}n, Z
$←− {0, 1}n

14: β
$←− {0, 1}

21: function Finalize(β′)
22: return β = β′

31: function Query(K0, J, M1, M2)
32: M∗

1 , M∗
2 ←M1, M2

33: if β = 0 then
34: M∗

1 , M∗
2

$←− {0, 1}n × {0, 1}n

35: X1 ← F−(K0, J, Y, 0, 0)
36: X2 ← F−(K0, J, Z, 1, 0)
37: for i← 1, . . . , p do
38: Y ← F+(K0, J, X1, 0)
39: L ∪←− Lout(K0, J, Y, 0)
40: Z ← F+(K0, J, X2, 1)
41: L ∪←− Lout(K0, J, Z, 1)
42: C ← (M∗

1 ⊕ Y)∥(M∗
2 ⊕ Z)

43: L ∪←− L⊕(Y, M∗)
44: return (C,L)

construction queries. Let Lin, Lout, and L⊕ be leakage functions as defined in the F-LUP
and F-XOR game. Then, for q = max{qp, qc}, we have

AdvqCCAmL2
FEDT[̃F]K ,Lin,Lout,L⊕

(A) ≤ q

2n
+

σm∑
i=1

AdvF-LUP
FEDT.Enc[̃F],Lin,Lout(qc, qp) +

σm ·AdvF-XOR
FEDT.Enc[̃F],L⊕,Lout(p, qc) + AdvCIML2

FEDT[̃F]K
(qc, qp) .

Proof. qCCAmL2 security is defined as a distinguishing notion between a real and an
ideal world. Without loss of generality, let us assume the CIML2 security of FEDT as
the leakage assumptions are weaker in the qCCAmL2 notion. Otherwise, we can define a
CIML2 adversary B that simply simulates A and inherits the latter’s advantage, which is
upper bounded by

AdvCIML2
FEDT[̃F]K

(qc, qp) . (11)

In the remainder, we can safely assume that there will be no valid non-challenge decryption
query. As any invalid decryption query does not compute the encryption function of FEDT,
it does not leak any valid information about the encryption. In absence of valid decryption
queries, qCCAmL2 security reduces to the qCPAmL2 setting. Thus, we have to prove the
qCPAmL2 security of FEDT in the remainder. For this purpose, a qCPAmL2 adversary
can make two kinds of encryption queries: one for information gathering, say E1, and
another type in the challenge phase, say E2. The challenge decryption oracle D2 will accept
only outputs from E2 queries as inputs and will output only the leakage corresponding to
decryption queries. Non-challenge queries will be processed with the original construction
and the submitted message. In the challenge phase, adversary queries will be processed
with original construction with the given message or with the original construction but
a message sampled independently and uniformly at random by the challenger from all
messages of the same length as the input message. Moreover, for nonce-misuse resilience,
each nonce of these challenge queries must be distinct from all nonces in other challenge
and non-challenge queries.

To upper bound the distinguishing probability, we will introduce two more intermediate
games called Ideal(M) and Ideal($) as defined in Algorithm 8 the challenge phase. Thus,
we define four games G1 through G4 in Algorithm 8 as follows:

• G1 : Real(M): Encrypt the given message M with the real encryption algorithm.

• G2 : Ideal(M): Encrypt the given message M with the ideal encryption algorithm.

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 21

Algorithm 8 Games G1 through G4 in our qCPAmL2 proof. Left: G1 and G4, where the
difference is that the boxed statements belong only to G4. Right: G2 and G3, where the
difference is that the boxed statements belong only to G3.

11: function Real[F̃](K, N, M)
12: L ← ∅
13: Q ∪←− {K}
14: K1∥K2 ← F̃(K, J0, N, 0)
15: Q ∪←− {K1, K2}
16: (M1, M2, . . . , Mm) n←−M
17: for i← 1, 2, . . . , m− 2 do
18: Ji ← N∥[i]n
19: for i← 4, 6, . . . , (2m− 2) do
20: a← (i/2)− 1
21: Ki−1∥Ki ← F̃(Ka, Ja, N, 2)
22: Q ∪←− {Ki−1, Ki}
23: L ∪←− {Lin(Ka, Ja, N, 2)}1..p

24: L ∪←− {Lout(Ka, Ja, Ki−1, 0)}1..p

25: L ∪←− {Lout(Ka, Ja, Ki, 1)}1..p

26: for j ← 1, 2, . . . , m do

27: Mj
$←− {0, 1}|Mj |

28: Cj = Mj ⊕Km−2+j

29: L ∪←− {L⊕(Mj , Km−2+j , Cj)}1..p

30: C ← C1∥C2∥ · · · ∥Cm

31: return (L, C)

31: function Ideal[F̃](K, N, M)
32: L ← ∅
33: Q ∪←− {K}
34: (M1, M2, . . . , Mm) n←−M
35: for i← 1, 2, . . . , m− 2 do
36: Ji ← N∥[i]n
37: for i← 2, 4, 6, . . . , (2m− 2) do
38: a← (i/2)− 1
39: Ki−1∥Ki

$←− {0, 1}2n

40: Q ∪←− {Ki−1, Ki}
41: L ∪←− {Lin(Ka, Ja, N, 2)}1..p

42: L ∪←− {Lout(Ka, Ja, Ki−1, 0)}1..p

43: L ∪←− {Lout(Ka, Ja, Ki, 1)}1..p

44: for j = 1, 2, . . . , m do

45: Mj
$←− {0, 1}|Mj |

46: Cj = Mj ⊕Km−2+j

47: L ∪←− {L⊕(Mj , Km−2+j , Cj)}1..p

48: C ← C1∥C2∥ · · · ∥Cm

49: return (L, C)

• G3 : Ideal($): Encrypt a randomly chosen message M∗ with the ideal encryption
algorithm.

• G4 : Real($): Encrypt a randomly chosen message M∗ with the real encryption
algorithm.

By definition and from the triangle inequality, we obtain that

AdvqCPAmL2
FEDT[̃F]K ,Lin,Lout,L⊕

(A) = ∆G14 ≤ ∆G12 + ∆G23 + ∆G34 .

Now, we state the following result that bounds the difference between games.

Lemma 3. With the definition of games G1-G4, it holds that

∆G12 + ∆G23 + ∆G34 ≤
σm∑
i=1

AdvF-LUP
FEDT.Enc[̃F],Lin,Lout(qc, qp) + qp

2n

+ σm ·AdvF-XOR
FEDT.Enc[̃F],L⊕,Lout(p, qc) .

From Lemma 3, we obtain that

AdvqCPAmL2
FEDT[̃F]K ,Lin,Lout,L⊕

(A) ≤
σm∑
i=1

AdvF-LUP
FEDT.Enc[̃F],Lin,Lout(qc, qp) + qp

2n

+ σm ·AdvF-XOR
FEDT.Enc[̃F],L⊕,Lout(p, qc) ,

from which our result follows.

4.3.3 Proof of Lemma 3

It remains to prove Lemma 3. First, we define some bad conditions:

22 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Bad1: This happens if the (key, tweak)-pair of an internal primitive call during some
challenge query to E2

K or $E collides with a (key, tweak)-pair of another internal primitive
query during the same encryption query. Let (Ni, Ai, Mi) be such an encryption query.
Let a, b any two indices from [1, l − 1], where |Mi| = ln bits. Then, the tweak for the a-th
primitive call is J i

a = Ni∥a and the tweak for the b-th query is J i
b = Ni∥b. From Ja ̸= Jb,

we obtain

Pr[Bad1] = 0 .

Bad2: This happens if the (key, tweak)-pair of a primitive call during some challenge
query to E2

K or $E collides with a (key, tweak)-pair of another primitive call during another
encryption query. Let (Ni, Ai, Mi) and (Nj , Aj , Mj) be two encryption queries such that
the (key, tweak)-pair of the a-th primitive call of the i-th query collides with the (key,
tweak)-pair of the b-th primitive call of the j-th query. We have J i

a = Ni∥a and Jj
b = Nj∥b.

Moreover, we have Ni ̸= Nj due to the unique nonce in each challenge query. Hence

Pr[Bad2] = 0 .

Bad3: This happens if the (key, tweak)-pair of a primitive call during some challenge
query to E2

K or $E collides with the (key, tweak)-pair of an ideal primitive query. Let
(Ni, Ai, Mi) be the i-th query to the challenge oracle E2

K or $E . Let the (key, tweak)-pair
of j-th primitive i.e (kj , Ni∥j) collide with an ideal primitive query. Note that for each
primitive call in the challenge oracle, the tweaks are unique. Hence, for any ideal-primitive
query, the adversary can target the key of at most one internal primitive call. Since there
are at most qp ideal-primitive queries, we obtain

Pr[Bad3] ≤ qp

2n

We define an event Bad if any of the above three conditions are satisfied. Hence

Pr[Bad] = Pr[Bad1 ∪ Bad2 ∪ Bad3] ≤ qp

2n
. (12)

The absence of Bad ensures a fresh (key, tweak)-pair for each internal primitive call in the
queries to E2

K . Thus, there is no difference between the real and the ideal game G1 and
G2 in the black-box scenario. Under leakage, however, there may be. We will show that
for an adversary A12 which will try to distinguish between G1 and G2, the probability of
success of A12 is bounded by the maximal advantage of an F-LUP distinguisher on the
isolated primitive call. In the following, let → and ← indicate for- and backward direction,
respectively. Let ALUP be an adversary for the F-LUP game defined in Algorithm 6 and
A12 be the adversary that shall distinguish between Games Real(M) and Ideal(M). ALUP
simulates A12’s challenger as follows:

• For a primitive query (→, k, J, X, b) or (←, k, J, Yb, b, s), ALUP replies by quering its
own primitive oracle ˜̃F.

• For a construction query (Nr, Ar, Mr) (in encryption direction) with message Mr =
M1

r ∥ M2
r ∥ · · · ∥ Mm

r , ALUP replies as follows:

– Choose K1, K2
$←− {0, 1}n.

– Choose j ∈ {1, 2, . . . , ⌈m
2 ⌉ − 2}.

– For i← 3, 4, . . . , j, ALUP will get Ki and the corresponding leakages by querying
its primitive oracle with (→, Ka, N∥[a]n, N, b), where b = (i + 1) mod 2 and
a = ⌊(i− 1)/2⌋.

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 23

– ALUP will get K2j+1 and K2i+2 and corresponding leakages by querying its own
primitive oracle with (→, Kj , Nr∥[j]n, Nr, 2).

– ALUP will get K4j+3, K4j+4, K4j+5, K4j+6 and corresponding leakages by query-
ing its own F-LUP challenger with (Kj , N∥[j]n, N∥[2j + 1]n, N∥[2j + 2]n).

– For all other i’s in [2m− 2], ALUP will get Ki and corresponding leakages by
querying its primitive oracle with(→, Ka, N∥[a]n, N, b), where b = (i + 1) mod 2
and a = ⌊(i− 1)/2⌋.

– ALUP will compute Ci
r = M i

r ⊕Km−2+i.
– Send Cr = C1

r∥C2
r∥ · · · ∥Cm

r and all leakages.

• ALUP stores all the primitive queries in the set τp.

At the end of an iteration, ALUP will output a set of keys used in the primitive queries
by adversary A12 as S = {k : (k, J, ∗, ∗) ∈ τp ∧ ((J = N∥[j]n) ∨ (J = N∥[2j + 1]n) ∨ (J =
N∥[2j + 2]n))}. The advantage of the adversary A12 will be inherited by ALUP. Moreover,
there are at most σm choices for j. Thus, in absence of Bad, we obtain

∆G12 ≤
σm∑
i=1

AdvF-LUP
FEDT.Enc[̃F],Lin,Lout(qc, qp) + qp

2n
. (13)

Bounding the Difference between Ideal(M) and Ideal($). Let A⊕ be an adversary
for the F-XOR game defined in Algorithm 7 and A23 be an adversary that shall distinguish
between the games Ideal(M) and Ideal($). A⊕ simulates the challenger of A23 as follows:

• For a primitive query (→, k, t, X, s) or (←, k, t, Y1∥Y2, b, s), A⊕ replies by quering its
own primitive oracle ˜̃F.

• For a construction query (in encryption direction) with a message Mr = M1
r ∥M2

r ∥
· · · ∥ Mm

r , A⊕ replies as follows:

– First, choose j ∈ {m− 1, m, . . . , 2m− 2} and K0 ∈ K.
– A⊕ initializes an empty leakage list L.

– For i = 1, 2, . . . , 2m− 2, A⊕ will choose Ki
$←− K and compute leakages using

L⊕,Lout as in the F-XOR game.
– For i = 1, 2, . . . , j − 1, j + 1, . . . , m; A⊕ will compute Ci

r = M i
r ⊕Km−2+i.

– A⊕ queries its challenger with M j
r and get back Cj

r and corresponding leakages.
– Send Cr = C1

r∥C2
r∥ · · · ∥Cm

r and all leakages.

At the end, A⊕ relays the output of A23 to its challenger. As the only difference
between the two games is in the j-th position, the advantage of A23 will be inherited
by A⊕. Since we have to consider it for all the message blocks to reduce to the full A23
security, we obtain

∆G23 ≤ σm ·AdvF-XOR
FEDT.Enc[̃F],L⊕,Lout(p, qc) . (14)

Bounding the Difference between Ideal($) and Real($). It is easy to see that
distinguishing between Ideal($) and Real($) – that is between games G3 and G4 – is the
same setting as distinguishing between Ideal(M) and Real(M), i.e. between games G1 and
G2. Thus,

∆G34 ≤ ∆G12 . (15)

The result follows by combining Equations (13), (14), and (15).

24 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

5 Security Analysis of FEDT*
5.1 CIML2 security of FEDT*

Theorem 3. Let K
$−→ K and F̃ : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}2n be a fork-cipher.

Let A be a CIML2-adversary on FEDT*[F̃]K that makes at most qc construction queries
and at most qp ideal-cipher queries. Then, for q = max{qc, qp}, we have

AdvCIML2
FEDT*[̃F]K

(qc, qp) ≤ 4q

2n
+ q2

22n
+ q3

23n
.

Proof. Similarly as for FEDT, one can choose a suitable message to get any desired
ciphertext for a given nonce. Therefore, the forgery security of FEDT* can be reduced to
that of its authentication module, which is identical to that of FEDT. Consequently, the
CIML proof of FEDT applies to FEDT* as well.

5.2 CCAmL2 security of FEDT*
In this section, we establish the CCAmL2 security of FEDT*. Similar as FEDT, to ensure
confidentiality, we need two auxiliary notions that address non-invertibility under leakage,
as described in figure. 4, and indistinguishability under leakage for the XOR function, as
outlined in Algorithm. 7. For the former, we will define a F∗-LUP game, similarly as for
FEDT. For leakage during XORing, we will use the same F-XOR game as FEDT.

5.2.1 The F∗-LUP Security Notion

In this game, the adversary A provides a key K0 and tweaks J0, J1, J2, and J3 to the
challenger. The challenger will choose two random keys K1, K2 and accordingly computes
X1, X2. The challenger will compute K3, and K4 using K1, J1, and N as in the encryption
of FEDT*. Moreover, it will also compute Y1 and Y2 using K2, J2, and N in a similar
way. It will also compute Y3 and Y4 using K2, J3, and N in a similar way. The adversary
will get output leakage only for the computation involving X1 or X2. We assume that
A repeats a query at most p times and for each query, it will get K3, K4, Y1, Y2, Y3, Y4
and the corresponding leakages. At the end of the interaction, A will output a set K′ of
cardinality of at most q. We say that A wins if either K1 ∈ K′ or K2 ∈ K′. A formal
description of the F-LUP game is shown in Algorithm 9 and the game is pictorially depicted
in Fig. 4.

Definition 6 (F∗-LUP). Let F̃ : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}2n be an ideal fork-
cipher and Lin and Lout be two leakage functions. Let A be an adversary playing the
F∗-LUP game as shown in Algorithm 9 against the encryption module of the FEDT*[F̃]
construction that provides K0 ∈ K and J0, J1, J2, J3 ∈ {0, 1}2n and output a set K′. Then,
the F∗-LUP advantage of A is defined as

AdvF∗-LUP
FEDT*.Enc[̃F],Lin,Lout(A) = Pr [A wins Game F∗-LUP] .

We define AdvF∗-LUP
FEDT*.Enc[̃F]

(p, q) for the maximum advantage over all F∗-LUP adversaries
on the encryption module of the FEDT* construction that makes at most p queries and
|K′| ≤ q.

5.2.2 Main Security Result

Theorem 4. Let K
$−→ K and F̃ : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}2n be an ideal fork-

cipher. Let A be a qCCAmL2-adversary on FEDT*[F̃]K that makes at most qc construction

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 25

F̃

? K0

J0

F̃

N K1

J1

K3 K4

F̃

K2N

J2

Y1 Y2

F̃

N K2

J3

Y3 Y4

Figure 4: F∗-LUP setting in FEDT*[F̃].

Algorithm 9 Game F∗-LUP for FEDT*.
11: function Query(K0, J0, J1, J2, J3)
12: L ← ∅
13: K1

$←− {0, 1}n, K2
$←− {0, 1}n

14: X1 ← F̃−(K0, J0, K1, 0, 0)
15: X2 ← F̃−(K0, J0, K2, 1, 0)
16: for i← 1 . . . p do
17: R1, R2, R3, R4, R5, R6

$←− R
18: K1 ← F̃+(K0, J0, X1, 0)
19: L ∪←− Lout(K0, J0, K1, 0; R1)
20: K2 ← F̃+(K0, J0, X2, 1)
21: L ∪←− Lout(K0, J0, K2, 1; R2)
22: K3 ← F̃+(K1, J1, N, 0)
23: K4 ← F̃+(K1, J1, N, 1)
24: L ∪←− {Lin(K1, J1, N, 0; R3),Lin(K1, J1, N, 1; R4)}
25: Y1 ← F̃+(K2, J2, N, 0)
26: Y2 ← F̃+(K2, J2, N, 1)
27: L ∪←− {Lin(K2, J2, N, 0, ; R5),Lin(K2, J2, N, 1; R6)}
28: Y3 ← F̃+(K2, J3, N, 0)
29: Y4 ← F̃+(K2, J3, N, 1)
30: L ∪←− {Lin(K2, J3, N, 0, ; R7),Lin(K2, J3, N, 1; R8)}
31: return (K3, K4, K5, Y1, Y2, Y3, Y4,L)

41: function Finalize(K′)
42: return ((K1 ∈ K′ ∨K2 ∈ K′)
43: ∧ |K′| ≤ q)

queries such that each message consists of at most σm blocks. Let qp be the total number of
ideal-cipher queries including the internal state variables generated during the computation
of the construction queries. Let Lin, Lout, and L⊕ be leakage functions as defined in the
F∗-LUP and F-XOR games. Then, for q = max{qp, qc}, we have

AdvqCCAmL2
FEDT*[̃F]K ,Lin,Lout,L⊕

(A) ≤ q

2n
+

σm∑
i=1

AdvF∗-LUP
FEDT.Enc[̃F],Lin,Lout(qc, qp) +

σm ·AdvF-XOR
FEDT.Enc[̃F],L⊕,Lin(p, qc) + AdvCIML2

FEDT[̃F]K
(qc, qp) .

Proof. qCCAmL2 security is defined as distinguishing security between real and random.
Without loss of generality, assume the CIML2 security of FEDT* as the leakage assumptions
are weaker in the qCCAmL2 notion. Otherwise, we can define a CIML2 adversary B that
simply simulates A and inherits the latter’s advantage, which is upper bounded by

AdvCIML2
FEDT[̃F]K

(qc, qp) . (16)

In the remainder, we can safely assume that there will be no valid non-challenge decryption
query. As any invalid decryption query does not compute the FEDT*.Enc function of the

26 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

encryption module of FEDT*, it does not leak any valid information about encryption. In
absence of valid decryption queries, qCCAmL2 security reduces to the qCPAmL2 setting.
Thus, we have to prove the qCPAmL2 security of FEDT* in the remainder. For this purpose,
a qCPAmL2 adversary can make two kinds of encryption queries: one for information
gathering, say E1, and another type in the challenge phase, say E2. The challenge decryption
oracle D2 will accept as inputs only outputs from E2 queries and will output only the
leakage corresponding to the decryption. Non-challenge queries will be processed with
the original construction and the submitted message. In the challenge phase, adversary
queries will be processed with the original construction with the given message or with the
original construction but with a message sampled independently and uniformly at random
by the challenger from all messages of the same length as the input message. Moreover, for
nonce-misuse resilience, each nonce of these challenge queries must be unique from other
challenge and non-challenge queries. To upper bound the distinguishing probability, we will
introduce two intermediate games called Ideal(M) and Ideal($) as defined in Algorithm 10
the challenge phase. Thus, we define four games G1 through G4 in Algorithm 10 as follows:

• G1 : Real(M): Encrypt the given message M with the real encryption algorithm.

• G2 : Ideal(M): Encrypt the given message M with the ideal encryption algorithm.

• G3 : Ideal($): Encrypt a randomly chosen message M∗ with the ideal encryption
algorithm.

• G4 : Real($): Encrypt a randomly chosen message M∗ with the real encryption
algorithm.

By definition and from the triangle inequality, we obtain that

AdvqCPAmL2
FEDT*[̃F]K ,Lin,Lout,L⊕

(A) = ∆G14 ≤ ∆G12 + ∆G23 + ∆G34 .

The following result bounds the difference between the games.

Lemma 4. With the definition of games G1-G4, it holds that

∆G12 + ∆G23 + ∆G34 ≤
σm∑
i=1

AdvF∗-LUP
FEDT*.Enc[̃F],Lin,Lout(qc, qp) + qp

2n

+ σm ·AdvXOR
FEDT*.Enc[̃F],L⊕,Lout(p, qc) .

From Lemma 4, we obtain that

AdvqCPAmL2
FEDT*[̃F],Lin,Lout,L⊕

(A) ≤
σm∑
i=1

AdvF∗-LUP
FEDT*.Enc[̃F],Lin,Lout(qc, qp) + qp

2n

+ σm ·AdvXOR
FEDT*.Enc[̃F],L⊕,Lout(p, qc) .

and hence the result follows.

5.2.3 Proof of Lemma 4

It only remains to prove Lemma 4. First, we define some bad conditions:

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 27

Algorithm 10 FEDT*: Games G1 through G4 in our qCPAmL2 proof. Left: G1 and G4,
where the difference is that the boxed statements belong only to G4. Right: G2 and G3,
where the difference is that the boxed statements belong only to G3.

11: function Real[F̃](K, N, M)
12: L ← ∅
13: Q ∪←− {K}
14: k1∥k2 ← F̃(K, N∥0n, N)
15: Q ∪←− {k1, k2}
16: l← ⌈|M |/n⌉
17: M1∥M2∥ · · · ∥Ml ←M
18: for i← 1, 2, 3, . . . , l/4 do
19: k2i+1 ← F̃+(k2i−1, J0

i , N, 0)
20: L ∪←− Lin(k2i−1, J0

i , N, 0)
21: L ∪←− Lout(k2i−1, J0

i , k2i+1, 0)
22: k2i+2 ← F̃+(k2i−1, J0

i , N, 1)
23: L ∪←− Lin(k2i−1, J0

i , N, 1)
24: L ∪←− Lout(k2i−1, J0

i , k2i+2, 1)
25: Y4i−3 ← F̃+(k2i, J1

i , N, 0)
26: L ∪←− Lin(k2i, J1

i , N, 0)
27: L ∪←− Lout(k2i, J1

i , Y4i−3, 0)

28: M4i−3
$←− {0, 1}n

29: C4i−3 = M4i−3 ⊕ Y4i−3

30: L ∪←− {L⊕(M4i−3, Y4i−3, C4i−3)}1..p

31: Y4i−2 ← F̃+(k2i, J1
i , N, 1)

32: L ∪←− Lin(k2i, J1
i , N, 1)

33: L ∪←− Lout(k2i, J1
i , Y4i−2, 1)

34: M4i−2
$←− {0, 1}n

35: C4i−2 = M4i−2 ⊕ Y4i−2

36: L ∪←− {L⊕(M4i−2, Y4i−2, C4i−2)}1..p

37: Y4i−1 ← F̃+(k2i, J2
i , N, 0)

38: L ∪←− Lin(k2i, J2
i , N, 0)

39: L ∪←− Lout(k2i, J2
i , Y4i−1, 0)

40: M4i−1
$←− {0, 1}n

41: C4i−1 = M4i−1 ⊕ Y4i−1

42: L ∪←− {L⊕(M4i−1, Y4i−1, C4i−1)}1..p

43: Y4i ← F̃+(k2i, J2
i , N, 1)

44: L ∪←− Lin(k2i, J2
i , N, 1)

45: L ∪←− Lout(k2i, J2
i , Y4i, 1)

46: M4i
$←− {0, 1}n

47: C4i = M4i ⊕ Y4i

48: L ∪←− {L⊕(M4i, Y4i, C4i)}1..p

49: C ← C1∥C2∥ · · · ∥Cl

50: return (L, C)

51: function Ideal[F̃](K, N, M)
52: L ← ∅
53: Q ∪←− {K}
54: k1∥k2

$←− {0, 1}2n

55: Q ∪←− {k1, k2}
56: l← ⌈|M |/n⌉
57: M1∥M2∥ · · · ∥Ml ←M
58: for i = 1, 2, 3, . . . , l/4 do
59: k2i+1

$←− {0, 1}n

60: L ∪←− Lin(k2i−1, J0
i , N, 0)

61: L ∪←− Lout(k2i−1, J0
i , k2i+1, 0)

62: k2i+2
$←− {0, 1}n

63: L ∪←− Lin(k2i−1, J0
i , N, 1)

64: L ∪←− Lout(k2i−1, J0
i , k2i+2, 1)

65: Y4i−3
$←− {0, 1}n

66: L ∪←− Lin(k2i, J1
i , N, 0)

67: L ∪←− Lout(k2i, J1
i , Y4i−3, 0)

68: M4i−3
$←− {0, 1}n

69: C4i−3 = M4i−3 ⊕ Y4i−3

70: L ∪←− {L⊕(M4i−3, Y4i−3, C4i−3)}1..p

71: Y4i−2
$←− {0, 1}n

72: L ∪←− Lin(k2i, J1
i , N, 1)

73: L ∪←− Lout(k2i, J1
i , Y4i−2, 1)

74: M4i−2
$←− {0, 1}n

75: C4i−2 = M4i−2 ⊕ Y4i−2

76: L ∪←− {L⊕(M4i−2, Y4i−2, C4i−2)}1..p

77: Y4i−1
$←− {0, 1}n

78: L ∪←− Lin(k2i, J2
i , N, 0)

79: L ∪←− Lout(k2i, J2
i , Y4i−1, 0)

80: M4i−1
$←− {0, 1}n

81: C4i−1 = M4i−1 ⊕ Y4i−1

82: L ∪←− {L⊕(M4i−1, Y4i−1, C4i−1)}1..p

83: Y4i
$←− {0, 1}n

84: L ∪←− Lin(k2i, J2
i , N, 1)

85: L ∪←− Lout(k2i, J2
i , Y4i, 1)

86: M4i
$←− {0, 1}n

87: C4i = M4i ⊕ Y4i

88: L ∪←− {L⊕(M4i, Y4i, C4i)}1..p

89: C ← C1∥C2∥ · · · ∥Cl

90: return (L, C)

Bad1: This event happens if the (key, tweak)-pair of an internal primitive call during some
challenge query to E2

K or $E collides with a (key, tweak)-pair of another internal primitive
query during the same encryption query. Note that, tweak of any internal primitive is
defined as N∥[i]n−8∥[d]8, where i represents the index of each level processing four message
blocks and d is the domain separator for the primitive calls on the same level. Clearly, the
tweaks of every two primitive queries during the same construction query differs either by
the index i or by the domain separator (0, 1, or 2). Therefore

Pr[Bad1] = 0 .

28 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

Bad2: This event happens if the (key, tweak)-pair of a primitive call during some challenge
query to E2

K or $E collides with a (key, tweak)-pair of another primitive call during another
encryption query. Let (Na, Aa, Ma) and (Nb, Ab, Mb) be two encryption queries such that
the (key, tweak)-pair of the i-th primitive call of the a-th construction query collides with
the (key, tweak)-pair of the j-th primitive call of the b-th construction query. We have
Na∥[i]n−8∥[d]8 = Nb∥[j]n−8∥[d′]8. Moreover, we have Na ̸= Nb due to the unique nonce in
each challenge query. Hence

Pr[Bad2] = 0.

Bad3: This event happens if the (key, tweak)-pair of a primitive call during some challenge
query to E2

K or $E collides with the (key, tweak)-pair of an ideal-primitive query. Let
(Na, Aa, Ma) be the a-th query to the challenge oracle E2

K or $E . Let the (key, tweak)-pair
of the i-th primitive call i.e (ki, Na∥[i]n−8∥[d]8) collide with an ideal-primitive query. Note
that for each primitive call in the challenge oracle, the tweaks are unique. Hence, for any
ideal-primitive query, the adversary can target the key of at most one internal primitive
call. Since there are at most qp ideal-primitive queries, we obtain

Pr[Bad3] ≤ qp

2n
.

We define an event Bad that is true if and only if any of the above three conditions is
satisfied. Hence

Pr[Bad] = Pr[Bad1 ∪ Bad2 ∪ Bad3] ≤ qp

2n
. (17)

The absence of Bad ensures a fresh (key, tweak)-pair for each internal primitive call in
the queries to E2

K . Thus, there is no difference between the real and the ideal game G1
and G2 in the black-box scenario. Under leakage, however, there may be a difference.
We will show that for an adversary A12 that tries to distinguish between G1 and G2,
the probability of success of A12 is bounded by the maximal advantage of an F∗-LUP
distinguisher AF∗-LUP on the isolated primitive call. In the following, let → and ← indicate
forward and backward direction, respectively. Let AF∗-LUP be an adversary for the F∗-LUP
game defined in Algorithm 9 and A12 be the adversary that shall distinguish between
Games Real(M) and Ideal(M). AF∗-LUP simulates A12’s challenger as follows:

• For a primitive query (→, k, J, X, b) or (←, k, J, Yb, b, s), AF∗-LUP replies by quering
its own primitive oracle ˜̃F.

• For a construction query (Nr, Ar, Mr) (in encryption direction) with message Mr =
M1

r ∥ M2
r ∥ · · · ∥ Mm

r , AF∗-LUP replies as follows:

– Choose k1, k2
$←− {0, 1}n.

– Choose j ∈ {2, . . . , m
4 }.

– For i← 1, 2, . . . , j − 1, AF∗-LUP will get k2i+1, k2i+2, Y4i−3, Y4i−2, Y4i−1, Y4i and
corresponding leakages by querying its primitive oracle with keys k2i−1, k2i and
tweaks Nr∥[i]n−8∥[d]8.

– AF∗-LUP receives k2j+1, k2j+2, Y4j−3, Y4j−2, Y4j−1, Y4j and corresponding leak-
ages by querying its primitive oracle with keys k2j−1, k2j and tweaks Nr ∥ [j]n−8
∥ [d]8.

– AF∗-LUP will get k2j+3, k2j+4, Y4j+1, Y4j+2, Y4j+3, Y4j+4 by querying its own
oracle with (k2j−3, Nj∥[j]n−8∥[0]8, Nj∥[j]n−8∥[1]8, Nj∥[j]n−8∥[2]8).

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 29

– For all other i’s in [m
4], AF∗-LUP will get ki and corresponding leakages by

following same query as i ∈ [1, j − 1].

– AF∗-LUP will compute Ci
r = M i

r ⊕ Yi, ∀ i ∈ [1, m].

– Send Cr = C1
r∥C2

r∥ · · · ∥Cm
r and all leakages.

• AF∗-LUP stores all the primitive queries in the set τp.

At the end of an iteration, AF∗-LUP will output a set of keys used in the primitive queries
by adversary A12 as S = {k : (k, J, ∗, ∗) ∈ τp ∧ (J = N∥[j]n−8∥[d]8), d ∈ {0, 1, 2}}. The
advantage of the adversary A12 will be inherited by AF∗-LUP. Moreover, there are at most
σm choices for index j. Thus, in absence of Bad, we obtain

∆G12 ≤
σm∑
i=1

AdvF∗-LUP
FEDT*.Enc[̃F],Lin,Lout(qc, qp) + qp

2n
. (18)

Bounding the Difference between Ideal(M) and Ideal($). Let A⊕ be an adversary
for the F-XOR game defined in Algorithm 7 and A23 be an adversary that shall distinguish
between the games Ideal(M) and Ideal($). A⊕ simulates the challenger of A23 as follows:

• For a primitive query (→, k, t, X, s) or (←, k, t, Y1∥Y2, b, s), A⊕ replies by querying
its own primitive oracle ˜̃F.

• For a construction query (in encryption direction) with a message Mr = M1
r ∥

M2
r ∥ · · · ∥ Mm

r , A⊕ replies as follows:

– First, choose j ∈ [1, m/4] and k0 ∈ {0, 1}n.

– A⊕ initializes an empty leakage list L.

– For i = 1, 2, . . . , 4j − 4, 4j − 1, . . . , m, A⊕ will compute Ci
r by sampling Yi’s

randomly and xoring with corresponding message block and compute leakages
using Lin, Lout as in the F-LUP game.

– A⊕ queries its challenger with key k2j , tweak Nr∥[j]n−8∥[1]8, two message block
M4j−3

r , M4j−2
r and get back C4j−3

r , C4j−2
r and corresponding leakages.

– Send Cr = C1
r∥C2

r∥ · · · ∥Cm
r and all leakages.

At the end, A⊕ relays the output of A23 to its challenger. As the only difference
between the two games is in the j-th position, the advantage of A23 will be inherited
by A⊕. Since we have to consider it for all the message blocks to reduce to the full A23
security, we obtain

∆G23 ≤ σm ·AdvF-XOR
FEDT.Enc[̃F],L⊕,Lout(p, qc) . (19)

Bounding the Difference between Ideal($) and Real($). It is easy to see that
distinguishing between Ideal($) and Real($) – that is between games G3 and G4 – is the
same setting as distinguishing between Ideal(M) and Real(M), i.e. between games G1 and
G2. Thus,

∆G34 ≤ ∆G12 . (20)

The result follows from combining Euations (18), (19), and (20).

30 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

6 Conclusion
This work introduced two leakage-resilient AEAD schemes, FEDT and FEDT*, which
utilize fork-ciphers as a primitive. FEDT and FEDT* achieve state-of-the-art throughput,
beyond-birthday-bound security akin to previous constructions like TEDT and TEDT2,
and propose a new hash function inspired by the TBC-based double-block-length hashing.
While recent advancements indicate that efficiency can be enhanced with a larger tweakey,
the exploration of more efficient hash functions based on fork-ciphers remains an interesting
open problem. Comparing the performance of our proposed schemes with existing ones
through concrete implementations is left as an open problem. Moreover, FEDT and FEDT*
provide Grade-3 security and thus set the stage for future endeavors, with a new avenue
being the construction of a Grade-2 leakage-resilient AEAD security based on fork-ciphers.

Acknowledgments
We thank the reviewers of IACR Communications in Cryptology for their fruitful comments.
Eik List has been supported by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – LI 4223/1-1.

References
[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,

and Kan Yasuda. How to Securely Release Unverified Plaintext in Authenticated
Encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT I, volume
8873 of Lecture Notes in Computer Science, pages 105–125. Springer, 2014.
doi:10.1007/978-3-662-45611-8_6.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A New Primitive for Authenticated
Encryption of Very Short Messages. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT II, volume 11922 of Lecture Notes in Computer Science,
pages 153–182. Springer, 2019. doi:10.1007/978-3-030-34621-8_6.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-Level vs. Implementation-Level Physical Security in Symmet-
ric Cryptography - A Practical Guide Through the Leakage-Resistance Jungle.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO I, volume
12170 of Lecture Notes in Computer Science, pages 369–400. Springer, 2020.
doi:10.1007/978-3-030-56784-2_13.

[BBKN01] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Nam-
prempre. Online Ciphers and the Hash-CBC Construction. In Joe Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
292–309. Springer, 2001. doi:10.1007/3-540-44647-8_18.

[Ber14] Daniel J. Bernstein. CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. last update 20 Feb 2019, last accessed
18 July 2023, 2014. URL: https://competitions.cr.yp.to/caesar.html.

[BGP+19] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. Strong Authenticity with Leakage Under Weak and Falsifiable
Physical Assumptions. In Zhe Liu and Moti Yung, editors, Inscrypt, volume

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/3-540-44647-8_18
https://competitions.cr.yp.to/caesar.html

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 31

12020 of Lecture Notes in Computer Science, pages 517–532. Springer, 2019.
doi:10.1007/978-3-030-42921-8_31.

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a Leakage-Resistant AEAD Mode for High Physical
Security Applications. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(1):256–320, 2020. doi:10.13154/tches.v2020.i1.
256-320.

[BGPS21] Francesco Berti, Chun Guo, Thomas Peters, and François-Xavier Standaert.
Efficient Leakage-Resilient MACs Without Idealized Assumptions. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT II, volume 13091 of
Lecture Notes in Computer Science, pages 95–123. Springer, 2021. doi:10.1
007/978-3-030-92075-3_4.

[BKP+18] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. Ciphertext Integrity with Misuse and Leakage: Definition
and Efficient Constructions with Symmetric Primitives. In Jong Kim, Gail-Joon
Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors,
AsiaCCS, pages 37–50. ACM, 2018. doi:10.1145/3196494.3196525.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated Encryption in the Face of Protocol and Side Channel Leakage.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT I, volume
10624 of Lecture Notes in Computer Science, pages 693–723. Springer, 2017.
doi:10.1007/978-3-319-70694-8_24.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition Paradigm.
In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000. doi:10.1007/3-540-444
48-3_41.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
On Leakage-Resilient Authenticated Encryption with Decryption Leakages.
IACR Transactions on Symmetric Cryptology, 2017(3):271–293, 2017. doi:
10.13154/tosc.v2017.i3.271-293.

[BPS19] Francesco Berti, Olivier Pereira, and François-Xavier Standaert. Reducing the
Cost of Authenticity with Leakages: a CIML2-Secure AE Scheme with One
Call to a Strongly Protected Tweakable Block Cipher. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje-eddine Rachidi, editors, AFRICACRYPT,
volume 11627 of Lecture Notes in Computer Science, pages 229–249. Springer,
2019. doi:10.1007/978-3-030-23696-0_12.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-Security in Private-Key Cryptogra-
phy. In Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2003. doi:10.1007/3-540-36563-X_1.

[CDD+19] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,
Somitra Sanadhya, and Ferdinand Sibleyras. Release of Unverified Plaintext:
Tight Unified Model and Application to ANYDAE. IACR Transactions on
Symmetric Cryptology, 2019(4):119–146, 2019. doi:10.13154/tosc.v2019.i4
.119-146.

https://doi.org/10.1007/978-3-030-42921-8_31
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.1007/978-3-030-92075-3_4
https://doi.org/10.1007/978-3-030-92075-3_4
https://doi.org/10.1145/3196494.3196525
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.13154/tosc.v2017.i3.271-293
https://doi.org/10.13154/tosc.v2017.i3.271-293
https://doi.org/10.1007/978-3-030-23696-0_12
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.13154/tosc.v2019.i4.119-146
https://doi.org/10.13154/tosc.v2019.i4.119-146

32 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
398–412. Springer, 1999. doi:10.1007/3-540-48405-1_26.

[DDLM23] Nilanjan Datta, Avijit Dutta, Eik List, and Sougata Mandal. On the Security of
Triplex- and Multiplex-Type Constructions with Smaller Tweaks. In Anupam
Chattopadhyay, Shivam Bhasin, Stjepan Picek, and Chester Rebeiro, editors,
INDOCRYPT I, volume 14459 of Lecture Notes in Computer Science, pages
25–47. Springer, 2023. doi:10.1007/978-3-031-56232-7_2.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP – Towards Side-Channel Secure Authenticated
Encryption. IACR Transactions on Symmetric Cryptology, 2017(1):80–105,
2017. doi:10.13154/tosc.v2017.i1.80-105.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR
Transactions on Symmetric Cryptology, 2020(S1):390–416, 2020. doi:10.131
54/tosc.v2020.iS1.390-416.

[DNT19] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Beyond Birthday Bound
Secure MAC in Faulty Nonce Model. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT I, volume 11476 of Lecture Notes in Computer Science,
pages 437–466. Springer, 2019. doi:10.1007/978-3-030-17653-2_15.

[Dwo04] Morris Dworkin. NIST Special Publication 800-38C – Recommendation for
Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality [including updates through 7/20/2007]. Technical report, U.S.
National Institute of Standards and Technology, 2004. doi:10.6028/NIST.SP.
800-38C.

[Dwo07] Morris Dworkin. NIST Special Publication 800-38D – Recommendation for
block cipher modes of operation: Galois/Counter Mode (GCM) and GMAC.
Technical report, U.S. National Institute of Standards and Technology, 2007.
URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpub
lication800-38d.pdf.

[GKP20] Chun Guo, Mustafa Khairallah, and Thomas Peyrin. AET-LR: Rate-1 Leakage-
Resilient AEAD based on the Romulus Family. In NIST LWC Workshop, 2020.
last accessed 24 June 2024. URL: https://csrc.nist.rip/CSRC/media/Eve
nts/lightweight-cryptography-workshop-2020/documents/papers/AET
-LR-lwc2020.pdf.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The
"Duplication" Method). In Çetin Kaya Koç and Christof Paar, editors, CHES,
volume 1717 of Lecture Notes in Computer Science, pages 158–172. Springer,
1999. doi:10.1007/3-540-48059-5_15.

[GPPS18] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Authenticated Encryption with Nonce Misuse and Physical Leakages: Defi-
nitions, Separation Results, and Leveled Constructions. Cryptology ePrint
Archive, Paper 2018/484, 2018. URL: https://eprint.iacr.org/2018/484.

[GPPS19] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Authenticated Encryption with Nonce Misuse and Physical Leakage: Defi-
nitions, Separation Results and First Construction - (Extended Abstract).

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-031-56232-7_2
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.1007/978-3-030-17653-2_15
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38C
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://csrc.nist.rip/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/AET-LR-lwc2020.pdf
https://csrc.nist.rip/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/AET-LR-lwc2020.pdf
https://csrc.nist.rip/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/AET-LR-lwc2020.pdf
https://doi.org/10.1007/3-540-48059-5_15
https://eprint.iacr.org/2018/484

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal 33

In Peter Schwabe and Nicolas Thériault, editors, LATINCRYPT, volume
11774 of Lecture Notes in Computer Science, pages 150–172. Springer, 2019.
doi:10.1007/978-3-030-30530-7_8.

[GPPS20] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards Low-Energy Leakage-Resistant Authenticated Encryption from the
Duplex Sponge Construction. IACR Transactions on Symmetric Cryptology,
2020(1):6–42, 2020. doi:10.13154/tosc.v2020.i1.6-42.

[GSF13] Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking vs.
Multiparty Computation: How Large Is the Gap for AES? In Guido Bertoni
and Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in
Computer Science, pages 400–416. Springer, 2013. doi:10.1007/978-3-642
-40349-1_23.

[Hir06] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture
Notes in Computer Science, pages 210–225. Springer, 2006. doi:10.1007/11
799313_14.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart
Card Implementation Resistant to Power Analysis Attacks. In Jianying Zhou,
Moti Yung, and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes in
Computer Science, pages 239–252, 2006. doi:10.1007/11767480_16.

[HPY07] Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the
Merkle-Damgård Scheme with a Permutation. In Kaoru Kurosawa, editor,
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113–
129. Springer, 2007. doi:10.1007/978-3-540-76900-2_7.

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár.
Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In
Rosario Gennaro and Matthew Robshaw, editors, CRYPTO I, volume 9215
of Lecture Notes in Computer Science, pages 493–517. Springer, 2015. doi:
10.1007/978-3-662-47989-6_24.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999. doi:10.1007/3-540-48405-1_25.

[KR16] Ted Krovetz and Phillip Rogaway. OCB (v1.1), 2016. URL: https://compet
itions.cr.yp.to/round3/ocbv11.pdf.

[Lis21] Eik List. TEDT2 – Highly Secure Leakage-Resilient TBC-Based Authenticated
Encryption. In Patrick Longa and Carla Ràfols, editors, LATINCRYPT,
volume 12912 of Lecture Notes in Computer Science, pages 275–295. Springer,
2021. doi:10.1007/978-3-030-88238-9_14.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Com-
puter Science, pages 343–355. Springer, 2004. doi:10.1007/978-3-540-305
56-9_27.

[Nai19] Yusuke Naito. Optimally Indifferentiable Double-Block-Length Hashing With-
out Post-processing and with Support for Longer Key Than Single Block.
In Peter Schwabe and Nicolas Thériault, editors, LATINCRYPT, volume

https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.13154/tosc.v2020.i1.6-42
https://doi.org/10.1007/978-3-642-40349-1_23
https://doi.org/10.1007/978-3-642-40349-1_23
https://doi.org/10.1007/11799313_14
https://doi.org/10.1007/11799313_14
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-540-76900-2_7
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/3-540-48405-1_25
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://doi.org/10.1007/978-3-030-88238-9_14
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27

34 FEDT: Forkcipher-based Leakage-resilient Beyond-birthday-secure AE

11774 of Lecture Notes in Computer Science, pages 65–85. Springer, 2019.
doi:10.1007/978-3-030-30530-7_4.

[Ost90] Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In Harriet Ortiz,
editor, STOC, pages 514–523. ACM, 1990. doi:10.1145/100216.100289.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
Resilient Authentication and Encryption from Symmetric Cryptographic Prim-
itives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, CCS,
pages 96–108. ACM, 2015. doi:10.1145/2810103.2813626.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, CCS, pages 196–205. ACM, 2001.
doi:10.1145/501983.502011.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, CCS, pages 98–107. ACM, 2002. doi:10.1145/586110.5
86125.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.
doi:10.1007/11761679_23.

[SPS+22] Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Cassiers, and
Corentin Verhamme. Triplex: an Efficient and One-Pass Leakage-Resistant
Mode of Operation. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2022(4):135–162, 2022. doi:10.46586/tches.v2022.i4.
135-162.

[SPS24] Yaobin Shen, Thomas Peters, and François-Xavier Standaert. Multiplex: TBC-
Based Authenticated Encryption with Sponge-Like Rate. IACR Transactions
on Symmetric Cryptology, 2024(2):1–34, Jun. 2024. URL: https://tosc.iac
r.org/index.php/ToSC/article/view/11618, doi:10.46586/tosc.v2024.
i2.1-34.

[TMC+23] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, , Lawrence E.
Bassham, Jinkeon Kang, Noah D. Wallerand John M. Kelsey, and Deukjo
Hong. NIST IR 8454 – Status Report on the Final Round of the NIST
Lightweight Cryptography Standardization Process. Technical report, US
National Institute of Standards and Technology, June 2023. URL: https:
//nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against Side-Channel Attacks: A Comprehensive
Study with Cautionary Note. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT, volume 7658 of Lecture Notes in Computer Science, pages 740–
757. Springer, 2012. doi:10.1007/978-3-642-34961-4_44.

https://doi.org/10.1007/978-3-030-30530-7_4
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/2810103.2813626
https://doi.org/10.1145/501983.502011
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/11761679_23
https://doi.org/10.46586/tches.v2022.i4.135-162
https://doi.org/10.46586/tches.v2022.i4.135-162
https://tosc.iacr.org/index.php/ToSC/article/view/11618
https://tosc.iacr.org/index.php/ToSC/article/view/11618
https://doi.org/10.46586/tosc.v2024.i2.1-34
https://doi.org/10.46586/tosc.v2024.i2.1-34
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf
https://doi.org/10.1007/978-3-642-34961-4_44

	Introduction
	Leakage-resilient Authenticated Ciphers
	Our Contribution

	Preliminaries
	Fork-ciphers
	Nonce-based Authenticated Encryption and Its Security in The Presence of Leakage

	Design and Specification of FEDT
	Specification
	Design Rationale
	FEDT*: A Low-latency Variant of FEDT

	Security Analysis of FEDT
	Collision Security of the Hash Function
	CIML2 Security of FEDT
	CCAmL2 Security of FEDT

	Security Analysis of FEDT*
	CIML2 security of FEDT*
	CCAmL2 security of FEDT*

	Conclusion
	References

