
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 42 pages.

https://doi.org/10.62056/ayfhsgvtw
Check for updates

Synchronous Distributed Key Generation without
Broadcasts

Nibesh Shresthaa, 1, Adithya Bhat2, Aniket Kate1,3 and Kartik Nayak4

1 Supra Research, USA
2 Visa Research, USA

3 Purdue University, USA
4 Duke University, USA

Abstract. Distributed key generation (DKG) is a key building block in developing
many efficient threshold cryptosystems. This work initiates the study of commu-
nication complexity and round complexity of DKG protocols over a point-to-point
(bounded) synchronous network. Our key result is the first synchronous DKG pro-
tocol for discrete log-based cryptosystems with O(κn3) communication complexity
(κ denotes a security parameter) that tolerates any t < n/2 Byzantine faults among
n parties. We present two variants of the protocol: (i) a protocol with worst-case
O(κn3) communication and O(t) rounds, and (ii) a protocol with expected O(κn3)
communication and expected constant rounds. In the process of achieving our results,
we design (1) a novel weak gradecast protocol with a communication complexity of
O(κn2) for linear-sized inputs and constant rounds, (2) a primitive called “recoverable-
set-of-shares” for ensuring recovery of shared secrets, (3) an oblivious leader election
protocol with O(κn3) communication and constant rounds, and (4) a multi-valued
validated Byzantine agreement (MVBA) protocol with O(κn3) communication com-
plexity for linear-sized inputs and expected constant rounds. Each of these primitives
is of independent interest.
Keywords: Distributed Key Generation · Synchrony · Multi-valued Validated
Byzantine Agreement

1 Introduction
The problem of distributed key generation (DKG) is to set up a common public key
and its corresponding secret keys among a set of participating parties without a trusted
entity. DKG protocols are used to reduce the number of trust assumptions placed in
cryptographic protocols such as threshold signatures [Bol03, Sho00] and threshold en-
cryption schemes [DF90]. These threshold cryptosystems can themselves be used to
implement random beacons [Dra, CKS00], reduce the complexity of consensus proto-
cols [YMR+19, SARN20], in multiparty computation protocols [HNP05, HMQ04], or to
outsource management of secrets to multiple, semi-trusted authorities [DS02, Lab21].

Given its widespread applications and their recent adoption in practice (e.g., [Dra]), we
need efficient solutions for DKG. An ideal solution for DKG would have low communication
complexity, low latency, optimal resilience, and provide uniform randomness of generated
keys such that the generated keys can be useful in a wider class of cryptosystems while being
secure. This work focuses on the synchronous network setting which has the advantage of
tolerating up to a minority corruption (as against one-third corruption in other settings).

E-mail: nibeshrestha2@gmail.com (Nibesh Shrestha), haxolotl.research@gmail.com (Adithya
Bhat), aniket@purdue.edu (Aniket Kate), kartik@cs.duke.edu (Kartik Nayak)

aWork done while the author was a PhD student at Rochester Institute of Technology

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-09 Accepted: 2024-06-03

https://doi.org/10.62056/ayfhsgvtw
https://crossmark.crossref.org/dialog/?doi=10.62056/ayfhsgvtw&domain=pdf&date_stamp=2024-07-04
mailto:nibeshrestha2@gmail.com
mailto:haxolotl.research@gmail.com
mailto:aniket@purdue.edu
mailto:kartik@cs.duke.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Synchronous Distributed Key Generation without Broadcasts

Table 1: Comparison of related works on Distributed Key Generation

Net.Res. Comm. Round Sim.Dlog Comp. Setup Crypto
Assumption

Pedersen [Ped91] sync. 1/2 O(n.B(κn)) O(Rn) ✗ ✓ O(n2) PKI DL
GJKR [GJKR07] sync. 1/2 O(n.B(κn)) O(Rn) ✓ ✓ O(n2) PKI DL
CGJ+99[CGJ+99] sync. 1/2 O(n.B(κn)) O(Rn) ✓ ✓ O(n2) PKI DL
Neji et al. [NBBR16] sync. 1/2 O(n.B(κn)) O(Rn) ✓ ✓ O(n2) PKI RO+CDH
ETHDKG [SJSW19] sync. 1/2 O(n.B(κn)) O(Rn) ✗ ✓ O(n2) PKI RO+CDH

GJM+21[GJM+21] sync.log n
O(n.B(κ))+

O(log n.B(κn))
O(Rn+
log n) ✗ ✗ O(n log 2n) PKI RO+SXDH+(1)

NIDKG [Gro21] sync. 1/2 O(n.B(κn)) O(Rn) ✓ ✓ O(n2) PKI RO+DDH+(2)

CDSV[CDSV23] sync. 1/2 O(n.B(κn)) O(Rn) ✓ ✓ O(n2) PKI RO+DDH

Hybrid-DKG [KHG12] psync. 1/3 O(κn4) O(t) ✓ ✓ O(n2) PKI RO+DL
KKMS [KMS20] async. 1/3 O(κn4) O(t) ✗ ✓ O(n3) PKI RO+DDH
AJM+21[AJM+21] async. 1/3 Õ(κn3) E(O(1)) ✗ ✗ O(n2) PKI RO+SXDH
Das et al. [DYX+22] async. 1/3 O(κn3) E(O(log n)) ✓ ✓ O(n3) PKI RO+DCR+DDH
Das et al. [DXKKR23]async. 1/3 O(κn3) E(O(log n)) ✓ ✓ O(n2) PKI RO+CDH
AJM+23[AJM+23] async. 1/3 O(κn3) E(O(1)) ✓ ✓ O(n2) PKI+AGM RO+OMDL+(3)

Our work (§ 8.1) sync. 1/2 O(κn3) E(O(1)) ✓ ✓ O(n2) PKI+PoT RO+CDH+q-SDH
Our work (§ 8.2) sync. 1/2 O(κn3) O(t) ✓ ✓ O(n2) PKI+PoT RO+q-SDH

We use B(ℓ) to denote the communication cost of Byzantine consensus primitive for ℓ bit message and Rn to
denote the round complexity of n parallel invocation of the Byzantine consensus primitive. κ is the security

parameter. Net. refers to the network model. Res. refers to the number of Byzantine faults tolerated in the
system. Comm. refers to the communication complexity. Sim. means the protocol maintains secrecy which can
be proven via a simulator. Dlog. refers to the generation of keys for discrete log based cryptosystems. Comp.

refers to the computational complexity per party. PoT refers to the power of tau setup required for bilinear
accumulators. This setup can be removed by making use of Merkle trees at the cost of log n multiplicative
communication overhead. E(.) implies “in expectation”. (1) GJM+21 [GJM+21] also assumes CBDH. (2)

NIDKG [Gro21] assumes RO, rleaf-IND-CCA, DDH, Erasures, and one-more DH. (3) AJM+23 [AJM+23] also
assumes q-SDH assumption.

While a myriad of DKG protocols [Ped91, GJKR07, CGJ+99, NBBR16, GJM+21] have
been proposed in this setting, existing solutions fall short in one way or the other. For
example, Pedersen’s DKG [Ped91] produces non-uniform keys in the presence of the
adversary, the DKG protocol due to Gennaro et al. [GJKR07] has high latency as it
requires additional secret sharing using Feldman’s VSS [Fel87], and the protocol due to
Gurkhan et al. [GJM+21] does not generate keys for discrete log-based cryptosystems. A
key concern with all the DKG protocols published in the synchronous model is that they
assume the existence of a broadcast channel (that provides a consensus abstraction) and
invoke Ω(n) broadcasts across two or more rounds [BKP11], where n is the number of
parties. Such a broadcast channel does not exist in typical settings and must be realized
from point-to-point communication channels. Can we achieve this efficiently?
Communication and round complexity of existing synchronous DKG protocols.
A natural approach to instantiate the broadcast channels is via Byzantine consensus
primitives such as Byzantine broadcast (BB) [DS83, TLP22] or Byzantine agreement
(BA) [KK06]. To the best of our knowledge, all optimally resilient deterministic Byzantine
consensus protocols incur O(κn3) communication (κ is a security parameter) without
threshold signatures and heavier cryptographic primitives1 and require O(t) rounds [DS83].
For randomized consensus protocols, the best known protocol with optimal resilience
and without threshold signature setup is Katz and Koo [KK06] which incurs O(κn4)
communication and expected constant rounds.

Given that existing DKG protocols typically require Ω(n) broadcasts across two
or more rounds, utilizing state-of-the-art deterministic Byzantine consensus protocols
to instantiate the broadcast channels would result in a communication complexity of
O(κn4) and O(t) rounds. In the context of randomized Byzantine consensus protocols, n

1Heavier cryptographic primitives such as zk-SNAKRS [Gro16] can be used to obtain threshold signatures
of size O(κ) without a prior DKG. When combined with BA protocol of Momose and Ren [MR21], this
results in optimally resilient BA protocol with O(κn2) communication and O(t) rounds.

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 3

parallel BA protocols can be composed to achieve protocols with an expected constant
number of rounds [BOEY03, KK06]. However, this approach leads to a significantly high
communication complexity of Ω(κn4). This leaves us with the following open question:
Can we design a synchronous DKG protocol supporting a wide class of cryptosystems with
o(κn4) communication complexity, good latency, and tolerating a minority corruption?

We answer this question positively by showing two DKG protocols for discrete log-based
cryptosystems each with O(κn3) communication complexity. The first DKG protocol is
a randomized protocol which has expected O(κn3) communication and expected con-
stant rounds. Our second DKG protocol is deterministic and has the worst-cast O(κn3)
communication and O(t) rounds.

1.1 Key Technical Ideas and Contributions
Our DKG protocols avoid the broadcast channel assumption and use only a single
Byzantine consensus invocation (instead of n instances) to achieve O(κn3) communi-
cation. While DKG protocols [KMS20, AJM+21, DYX+22, DXKKR23] without broadcast
channel assumption have been explored in the asynchronous model, they either incur
high communication [KMS20] or do not generate keys for discrete log-based cryptosys-
tems [AJM+21] or use stronger cryptographic assumptions [DYX+22, AJM+23] and have
longer latency [DYX+22, DXKKR23]. More importantly, protocols designed for asyn-
chronous or partially-synchronous settings can only tolerate up to t < n/3 Byzantine
failures, which is sub-optimal for many DKG applications such as random beacons [Dra].
In the synchronous model, we provide the first solutions to DKG without a broadcast
channel with all the desirable properties with O(κn3) communication.
Typical approach using broadcast channels. A common approach in existing
works [GJKR07, Ped91] is to employ n parallel verifiable secret sharings (VSS) [Fel87,
Ped92]. A VSS scheme allows a dealer to distribute shares of a secret among a group
of parties such that (i) each party can validate the secret shares they receive to confirm
their consistency with the shared secret and (ii) a specific number of parties can later
reconstruct the secret if they combine their secret shares. The protocols typically assume
the existence of a broadcast channel, which ensures that the dealer shares the same secret
with all honest parties and that all honest parties receive correct secret shares. In the
context of DKG, due to the reliance on the broadcast channel, all honest parties reach
a consensus on a common set of qualified parties, denoted as QUAL, who have correctly
performed the secret sharing. At this stage of the protocol, the assurance obtained is that
all honest parties have acquired correct secret shares, which correspond to the secrets
shared by the qualified parties in QUAL. Following this, the final public key and secret keys
are computed from the secret shares of all parties in QUAL.

Our Approach

The use of broadcast channels by each of the n different parties is expensive from the
standpoint of communication complexity and round complexity. Thus, in our protocols, we
replace the use of n broadcast/consensus instances with a combination of weaker primitives
such as gradecast [FM88, KK06] and use a single consensus instance. Unlike broadcast,
where the honest parties must reach a unanimous decision, gradecast allows the honest
parties to disagree by “a small amount”. Specifically, parties output a grade alongside their
output value; this grade can be perceived as the “confidence” of the party in its output.
In the case of an honest sender, all honest parties will output a common value with the
highest grade. However, if the sender is Byzantine, honest parties might output different
values with different grades.

Following this approach, parties first perform secret sharing by using gradecast to
identify a set of at least n − t parties who correctly share their secrets, where t is the

4 Synchronous Distributed Key Generation without Broadcasts

fault tolerance. The challenge with this approach is that different honest parties may have
different views regarding the acceptance of shared secrets. Consequently, different honest
parties may obtain different sets of at least n− t parties (say AcceptListi for party Pi) who
they accept to have performed secret sharing correctly. However, for DKG, it is required
that all honest parties compute the final public key and secret keys from a common set of
parties. Therefore, consensus on a common set of parties is crucial.

Thus, parties use a Byzantine consensus primitive to agree on one common set where
the input is their individual AcceptList and the output is the input of one of the parties.
Given that each party may input a different AcceptList, the output of the Byzantine
consensus primitive could correspond to the input of any party, including a Byzantine
party that may input an arbitrary set. To safeguard against such malicious behavior, we
ensure that parties produce their AcceptList with verifiable proof confirming that all parties
in their set have correctly shared their secrets and these secrets are thus recoverable. This
assurance is provided through a novel protocol, termed “Recoverable-set-of-shares”.

It is important to note that the size of the set and its associated proof is linear in the
number of parties. Given this, we need a consensus primitive that takes long messages
as inputs, and outputs one of the “valid” input values. Such a primitive is called multi-
valued validated Byzantine agreement (MVBA) [CKPS01] in the literature. Typically,
deterministic consensus protocols are subject to Ω(t) rounds [DS83]. To circumvent this
limitation, randomization is often employed. In the context of MVBA protocols, we
employ a primitive known as oblivious leader election (OLE) to elect leaders uniformly at
random and output a common honest leader with some constant probability. The common
honest leader ensures that all honest parties agree on its proposed value and subsequently
terminate.

Our protocols rely on a combination of primitives, including gradecast, recoverable-set-
of-shares, MVBA, and oblivious leader election. However, using the current state-of-the-art
for these primitives does not suffice from the standpoint of improving the communication
complexity of our DKG protocol. Thus, our work contributes towards improving state-
of-the-art in each of these primitives to design the resulting DKG protocol. In the
following subsection, we provide a background on the state-of-the-art for these primitives.
In Section 1.1.2, we detail our key contributions and results towards improving these
primitives.

1.1.1 Background

1. Gradecast. As previously mentioned, our protocols utilize gradecast instead of the
traditional broadcast channel. To the best of our knowledge, existing gradecast protocols
with a resilience of at least t < n/2 incur a communication complexity of at least O(n3). For
instance, the gradecast protocol by Katz and Koo [KK06] requires O(κn3) communication
for a single bit input in the absence of threshold signatures. In a similar vein, the gradecast
protocol by Garay et al. [GKKO07] has a communication complexity of O(g∗(ℓ + κ)n2)
for an input of size ℓ, where g∗ is the maximum supported grade. When ℓ = Θ(n),
their protocol also incurs O(n3) communication. This highlights the need for a more
communication-efficient gradecast protocol, particularly when dealing with large inputs.
2. Multi-valued validated Byzantine agreement. MVBA was first formulated by
Cachin et al. [CKPS01] to allow honest parties to decide on any externally valid values.
Recent works [AMS19, LLTW20] have given communication efficient protocols for MVBA
in the asynchronous model tolerating t < n/3 Byzantine faults. For long messages of size
ℓ, the protocol due to Abraham et al. [AMS19] incurs O((ℓ + κ)n2) communication and
the protocol due to Lu et al. [LLTW20] incurs O(nℓ + κn2). Both of these works assume a
threshold setup. Without threshold setup assumptions, the communication blows up by a
factor of n in all of the above protocols.

To the best of our knowledge, no MVBA protocols have been formulated in the

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 5

Table 2: Comparison of related works on MVBA with ℓ-bit input

Network Res. Communication Round Setup

Cachin et al. [CKPS01] async. 1/3 O(n2ℓ + κn2 + n3) E(O(1)) Threshold setup
VABA [AMS19] async. 1/3 O(n2ℓ + κn2) E(O(1)) Threshold setup
DUMBO-MVBA [LLTW20] async. 1/3 O(nℓ + κn2) E(O(1)) Threshold setup

Our work sync. 1/2 O(n2ℓ + κn3) E(O(1)) PKI

Res. refers to resilience. E(.) implies “in expectation”.

synchronous model tolerating t < n/2 faults. Recently, Nayak et al. [NRS+20] provides an
efficient BA protocol for long messages. However, since it is a BA protocol, they output a
value only when all honest parties start with the same large input. This underscores the
necessity for a synchronous MVBA protocol for long messages.
3. Oblivious leader election. In the absence of an existing threshold (DKG) setup, the
OLE protocol was designed via n2 parallel invocations of weaker VSS primitives such as
graded VSS [FM88] or moderated VSS [KK06] which trivially incurs Ω(n4) communication.
While communication efficient OLE protocols tolerating t < n/3 Byzantine faults have
been designed using Aggregatable PVSS [GJM+21] for the asynchronous model, they
required stronger cryptographic assumptions such as SXDH to achieve O(κn3) communi-
cation [AJM+21, GLL+22]. Designing a communication-efficient OLE protocol with fewer
cryptographic assumption is of an independent interest.

1.1.2 Our Results

We address the above challenges and make the following contributions in the paper.
1. Optimal weak gradecast with O(nℓ + κn2) communication. We provide a commu-
nication optimal weak gradecast protocol satisfying the gradecast definition of Katz and
Koo [KK06]2 in Section 4. Our weak gradecast protocol incurs O(nℓ+κn2) communication
for ℓ bit input and does not require use of threshold signatures. The reduction in commu-
nication is obtained via the use of efficient erasure coding schemes [RS60], cryptographic
accumulators [Ngu05] and efficient detection of equivocation from the Byzantine sender.
With q-Strong Diffe Hellman (q-SDH) [BB08] setup assumption, we show the following
result:

Theorem 1. Assuming a public-key infrastructure and a universal structured reference
string under q-SDH assumption, there exists a gradecast protocol for an input of size ℓ bits
with O(nℓ + κn2) communication and 4 rounds tolerating t < n/2 Byzantine faults.

2. Recoverable-set-of-shares using weak gradecast. We use the gradecast primitive
to perform communication efficient secret sharing. In this protocol, each party Pi identifies
a set of at least n−t parties who Pi accepts to have shared secrets correctly. In this protocol,
we ensure that for any set output by any party (including Byzantine parties), there is
verifiable proof vouching that all parties in the set have correctly shared their secrets
and these secrets are thus recoverable. In this regard, we call this protocol “Recoverable-
set-of-shares”. Using our communication optimal gradecast, our recoverable-set-of-shares
protocol can be achieved in O(κn3) communication and constant rounds.

Theorem 2. Assuming a public-key infrastructure, random oracle and a universal struc-
tured reference string under q-SDH assumption, there exists an recoverable-set-of-shares
protocol tolerating t < n/2 Byzantine faults with O(κn3) communication and 10 rounds.

3. Oblivious leader election with O(κn3) communication. We design a commu-
nication efficient oblivious leader election (OLE) protocol with O(κn3) communication

2This definition is slightly weaker than the one presented by Feldman and Micali [FM88].

6 Synchronous Distributed Key Generation without Broadcasts

Figure 1: Overview of sub-protocols and their dependencies

and constant rounds in Section 6. Our OLE protocol uses only n weaker VSS instances
and a non-interactive threshold signature scheme [CKS00] to generate randomness. To
the best of our knowledge, we design the first OLE protocol that requires only n secret
sharings. We note that our OLE protocol does not require a prior threshold (DKG) setup
phase despite making use of threshold signatures. The security of our OLE protocol is
based on the computational Diffie-Hellman (CDH) problem in the random oracle model.
In particular, we show the following:

Theorem 3. Assuming a public-key infrastructure, a universal structured reference string
under q-SDH assumption, random oracle, and CDH, there exists an oblivious leader election
protocol with O(κn3) communication and O(1) rounds tolerating t < n/2 Byzantine faults.

4. Efficient multi-valued validated Byzantine agreement with O(n2ℓ + κn3)
communication. We construct the first MVBA protocol tolerating t < n/2 Byzantine
faults in the synchronous setting without threshold setup in Section 7. The MVBA protocol
relies on our OLE protocol to obtain expected constant number of rounds. Our MVBA
protocol incurs expected O(n2ℓ + κn3) communication for inputs of size ℓ bit and expected
36 rounds. Following our OLE protocol, the security of our MVBA protocol relies on the
CDH problem in the random oracle model. Specifically, we show the following result:

Theorem 4. Assuming a public-key infrastructure, random oracle, CDH, and a uni-
versal structured reference string under q-SDH assumption, there exists a multi-valued
validated Byzantine agreement protocol for an input of size ℓ with expected O(n2ℓ + κn3)
communication and expected 36 rounds tolerating t < n/2 Byzantine faults.

Secure DKG with two broadcast rounds. To provide the necessary background, we
first introduce a secure DKG protocol that assumes the use of a broadcast channel in Sec-
tion 3. This DKG protocol requires only 2 broadcast rounds, whereas prior work [GJKR07]
necessitates three or more broadcast rounds. This DKG protocol is derived by selectively
choosing components from existing literature [BSL+21, KHG12]. Subsequently, we demon-
strate how to replace broadcast channels to achieve our communication and round-efficient
DKG protocols.
Efficient distributed key generation. Using our recoverable-set-of-shares protocol
where parties output different sets of size at least n− t parties and our MVBA protocol,
honest parties can agree on a common set from which the final public key and secret
keys are computed. In particular, we obtain a DKG protocol with expected O(κn3)
communication and expected 47 rounds.

Theorem 5. Assuming public-key infrastructure, random oracle, CDH and a universal
structured reference string under q-SDH assumption, there exists a protocol that solves

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 7

secure synchronous distributed key generation tolerating t < n/2 Byzantine faults with
expected O(κn3) communication and expected 47 rounds.

Although the DKG protocol terminates in constant expected time, it can take linear
time in the worst case. In this case, the protocol incurs O(κn4) communication. As an
alternative, we provide a protocol that incurs O(κn3) communication in the worst-case.
RandPiper [BSL+21] provides a Byzantine fault tolerant state machine replication (BFT
SMR) protocol with O(κn2) communication per epoch even for O(n)-sized input. Here, an
epoch is a period that incurs 7 rounds. In this protocol, we execute the BFT SMR protocol
for t + 1 epochs with each epoch coordinated by a distinct leader. The leader proposes
his set AcceptList along with the proof. Honest parties output the first committed set to
compute the final public key and secret keys. In particular, we obtain the following result:

Theorem 6. Assuming a public-key infrastructure, discrete-log assumption, random oracle
and a universal structured reference string under q-SDH assumption there exists a protocol
that solves secure synchronous distributed key generation tolerating t < n/2 Byzantine
faults with O(κn3) communication and 11 + 7(t + 1) rounds.

Limitations. In this work, we assume that the adversary is static, similar to several
DKGs [KG09, GJKR07, Ped91, NBBR16, SJSW19, GJM+21] in the literature. Canetti
et al. [CGJ+99] show how to build adaptively secure DKG protocols and several of our
techniques could be applicable in realizing their protocol in the point-to-point network
setting. Bacho et al. [BL22] gave a relaxed definition of DKG and show that prior
DKG protocols such as Gennaro et al [GJKR07] are adaptively-secure under this relaxed
definition. It could be interesting to see if our protocols are adaptively-secure under
their relaxed definition. In addition, our protocols make the q-SDH assumption. This
assumption is only used for bilinear accumulators which could be replaced with Merkle tree
accumulators resulting in a log n multiplicative overhead in the communication complexity.

2 Model and Preliminaries
We consider a system consisting of n parties (P1, . . . , Pn) with pair-wise reliable, authenti-
cated point-to-point channels, where up to t < n/2 parties can be Byzantine faulty. The
model of corruption is static i.e., the adversary picks the corrupted parties before the start
of protocol execution. The Byzantine parties may behave arbitrarily. A non-faulty party
is said to be honest and executes the protocol as specified. We assume a synchronous
communication model. Thus, if an honest party sends a message at the beginning of some
round, the recipient receives the message by the end of that round.
Setup. Let p be a prime number that is poly(κ) bits long, and G be a group of order p
such that it is computationally infeasible except with negligible probability in κ to compute
discrete log. Let Zp denote its scalar field. Moreover, let g and h denote the generators of
G where a ∈ Zp such that ga = h is not known to any t subset of the parties.

We make the standard computational assumption on the infeasibility to compute
discrete logarithms called the discrete-log assumption [GJKR07]. In particular, we assume
that the adversary is unable to compute discrete logarithms modulo large (based on the
security parameter κ) primes.

We make use of digital signatures and PKI to prevent spoofing and replays and to
validate messages. Message x sent by a party Pi is digitally signed by Pi’s private key
and is denoted by ⟨x⟩i. We denote H(x) to represent invocation of the random oracle H
on input x. In addition, we use a hash function H ′ : G → {0, 1}κ in our leader election
protocol.
Equivocation. Two or more messages of the same type but with different payload sent by
a party is considered an equivocation. In order to facilitate efficient equivocation checks,

8 Synchronous Distributed Key Generation without Broadcasts

the sender sends the payload along with signed hash of the payload. When an equivocation
is detected, broadcasting the signed hash suffices to prove equivocation by the sender.

2.1 Definitions
Distributed key generation. A DKG protocol for n parties (P1, . . . , Pn) generates
private outputs (x1, . . . , xn) called the shares and a public output y.

Definition 1 (Secure DKG for Dlog based cryptosystems [GJKR07]). A dlog based DKG
protocol generates a uniformly random secret x, distributed among n parties through
shares (x1, . . . , xn) where xi is a share output to party Pi. The protocol is considered
t-secure if, in the presence of an adversary that corrupts up to t parties, the following
requirements for correctness and secrecy are satisfied.

Correctness.
C1. All subsets of t + 1 shares provided by honest parties define the same unique
secret key x ∈ Zp.
C2. All honest parties have same value of public key y = gx ∈ G, where x ∈ Zp is
secret guaranteed by (C1).
C3. x is uniformly distributed in Zp (and hence y is uniformly distributed in G).

Secrecy. No information on x can be learned by the adversary except for what is
implied by the value y = gx.

More formally, the secrecy condition is expressed in terms of simulatability: for every
(probabilistic polynomial-time) adversary A that corrupts up to t parties, there exists a
(probabilistic polynomial-time) simulator S, such that on input an element y ∈ G, produces
an output distribution which is polynomially indistinguishable from A’s view of a run of
the DKG protocol that ends with y as its public key output.

We acknowledge that our DKG definition is derived from Gennaro et al. [GJKR07],
which is suitable for discrete logarithm access structures. Recently, Komlo et al. [KGS23]
provided a generic definition for DKG that does not depend on any access structure.
Satisfying these definitions could be an interesting avenue for future work.
Weak Gradecast. Gradecast is a relaxed version of broadcast introduced by Feldman
and Micali [FM88] wherein parties output a value along with a grade; the grade serves as
the “confidence” the party has in its output. Our weak gradecast protocol satisfies the
weak gradecast definition of Katz and Koo [KK06].

Definition 2 (Weak Gradecast [KK06]). A protocol with a designated sender Pi holding
an initial input v is a weak gradecast protocol tolerating t < n/2 Byzantine parties if the
following conditions hold:

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, 2}.

2. If the sender is honest, the output of every honest party Pi satisfies vi = v and
gi = 2.

3. If an honest party Pi outputs a value vi with a grade of 2, then the output of every
honest party Pj satisfies vj = vi with a grade gj ≥ 1.

Observe that this definition allows honest parties to output different values with a
grade of 1 when no honest party outputs a value with a grade of 2. This is in contrast to
the definition of Feldman and Micali [FM88] that requires honest parties with a grade of 1
to output the same value. This weaker definition suffices for our purpose.
Oblivious leader election. An oblivious leader election protocol elects a common honest
leader with some constant probability.

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 9

Definition 3 (Oblivious Leader Election [KK06]). A protocol for parties P1, . . . , Pn is an
oblivious leader election protocol with fairness α tolerating t Byzantine failures if each
honest party Pi outputs a value vi ∈ [n] and the following conditions holds with probability
at least α:

There exists a value j ∈ [n] such that (i) each honest party Pi outputs vi = j, and (ii)
party Pj is honest.
Multi-valued validated Byzantine agreement. In an MVBA protocol, there is an
external validity function ex-validation that every party has access to. Every honest party
start with some externally valid input vi, and on termination must output a value. An
MVBA protocol has the following properties:
Definition 4 (Multi-valued Validated Byzantine Agreement [AMS19, LLTW20]). A
protocol solves multi-valued validated Byzantine agreement if it satisfies following properties
except with negligible probability in the security parameter κ:

• Validity. If an honest party decides a value v, then ex-validation(v) = true.

• Agreement. No two honest parties decide on different values.

• Termination. If all honest parties start with externally valid values, all honest
parties eventually decide.

In addition to these properties, the MVBA definition of [AMS19, LLTW20] also include
an additional property called “quality” where in the MVBA should decide a value proposed
by an honest party with some constant probability. Our MVBA construction in Section 7
also satisfies the quality property with probability at least 1

2 . However, this property is
not required for constructing our DKG protocol. Hence, we do not discuss the quality
property.

2.2 Primitives
In this section, we present several primitives used in our protocols.
Linear erasure and error correcting codes. We use standard (t + 1, n) Reed-Solomon
(RS) codes [RS60]. This code encodes t + 1 data symbols into code words of n symbols
using ENC function and can decode the t + 1 elements of code words to recover the original
data using DEC function as explained below.

• ENC. Given inputs m1, . . . , mt+1, an encoding function ENC computes (s1, . . . , sn) =
ENC(m1, . . . , mt+1), where (s1, . . . , sn) are code words of length n. A combination of
any t + 1 elements of n code words uniquely determines the input message and the
remaining of the code word.

• DEC. The function DEC computes (m1, . . . , mt+1) = DEC(s1, ..., sn), and is capable
of tolerating up to c errors and d erasures in code words (s1, . . . , sn), if and only if
t ≥ 2c + d.

Cryptographic accumulators. A cryptographic accumulator scheme constructs an
accumulation value for a set of values using Eval function and produces a witness for each
value in the set using CreateWit function. Given the accumulation value and a witness,
any party can verify if a value is indeed in the set using Verify function. Formally, given
a parameter k, and a set D of n values d1, . . . , dn, an accumulator has the following
components:

• Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k and
an accumulation threshold n (an upper bound on the number of values that can be
accumulated securely), returns an accumulator key ak. The accumulator key ak is part
of the q-SDH setup [BB08] and therefore is public to all parties.

10 Synchronous Distributed Key Generation without Broadcasts

• Eval(ak,D): This deterministic algorithm takes an accumulator key ak and a set D of
values to be accumulated, returns an accumulation value z for the value set D.

• CreateWit(ak, z, di,D): This algorithm takes an accumulator key ak, an accumulation
value z for D and a value di, returns ⊥ if di ̸∈ D, and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumulation value
z for D, a witness wi and a value di, returns true if wi is the witness for di ∈ D, and
false otherwise.

In this paper, we use collision resistant bilinear accumulators from Nguyen [Ngu05] as
cryptographic accumulators which generates constant sized witness, but requires q-SDH
assumption. Alternatively, we can use Merkle trees [Mer88] (and avoid q-SDH assumption)
at the expense of O(log n) multiplicative communication. The bilinear accumulator from
Nyugen [Ngu05] satisfies the following property:

Lemma 1 (Collision resistant accumulator [Ngu05]). The cryptographic accumulator
proposed in [Ngu05] (named collision-free bilinear accumulator) satisfies the following
property. For any set of size n and a probabilistic polynomial-time adversary A, the
following function is negligible in κ:

Pr

ak ← Gen(1κ, n),

({d1, . . . , dn}, d′, w′)←
A(1κ, n, ak),

z ← Eval(ak, {d1, . . . , dn})

∣∣∣∣∣∣∣∣
(d′ ̸∈ {d1, ..., dn})∧

(Verify(ak, z, w′, d′) = 1)

Non-interactive threshold signature scheme. We use (t, n) non-interactive threshold
signature scheme of Cachin et al. [CKS00] in one of our protocols. The threshold signature
scheme is secure against static adversary. The signature scheme consists of the following
efficient algorithms:

• The randomized key generation algorithm KeyGenTS that takes a security parameter
κ as input and outputs a tuple (sk1, . . . , skn) of secret keys, a tuple (pk1, . . . , pkn)
and a common public key pk.

• The deterministic signing algorithm SignTS that takes as input ski and a message m
and outputs a signature σi on m.

• The deterministic share verification algorithm ShareVerifyTS that takes as input public
key pki, a signature share σi and tuple (i, m). It outputs a bit b ∈ {0, 1} indicating
whether σi is a valid signature share on m under secret key ski.

• The deterministic combining CombineTS takes as input a tuple of public keys
(pk1, . . . , pkn), a message m, and a list of t + 1 pairs (i, σi). It outputs either a
signature σ on m or ⊥, if (i, σi) contains ill-formed signature shares.

• The deterministic verification algorithm VerifyTS takes as input a signature σ, a
message m and a common public key pk. It outputs a bit b ∈ {0, 1} indicating
whether σ is a valid signature on m.

The threshold signature scheme satisfies robustness (i.e., it is computationally infeasible
for an adversary to produce t + 1 valid signature shares such that the output of the share
combining algorithm is not a valid signature) and unforgeability (i.e., it is computationally
infeasible for the adversary to output a valid signature on a message m given t signature
shares on m).
Non-Interactive Proof-of-Equivalence of commitments [KHG12]. Given two
commitments C⟨g⟩(s) = gs and C⟨g,h⟩(s, r) = gshr to the same value s for generators

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 11

g, h ∈ G and s, r ∈ Zp, a prover proves that she knows s and r such that C⟨g⟩(s) = gs and
C⟨g,h⟩(s, r) = gshr. We denote it by NIZKPK≡Com(s, r, g, h, C⟨g⟩(s), C⟨g,h⟩(s, r)) = π≡Com ∈
Z3

p. A full construction of NIZKPK≡Com is as follows:
- Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .
- Compute hash c = H≡Com(g, h, C⟨g⟩(s), C⟨g,h⟩(s, r), t1, t2), where H≡Com : G6 → Zp is a

random oracle hash function.
- Let u1 = v1 − c · s and u2 = v2 − c · r.
- Send the proof π≡Com = (c, u1, u2) along with C⟨g⟩(s) and C⟨g,h⟩(s, r).
The verifier checks this proof (given π≡Com, g, h, C⟨g⟩(s), C⟨g,h⟩(s, r)) as follows:
- Let t′

1 = gu1C⟨g⟩(s)c and t′
2 = hu2(C⟨g,h⟩(s,r)

C⟨g⟩(s))c.
- Accept the proof as valid if c = H≡Com(g, h, C⟨g⟩(s), C⟨g,h⟩(s, r), t′

1, t′
2).

Normalizing the length of cryptographic building blocks. Let λ denote the
security parameter, κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of
the accumulation value and witness of the accumulator and κv = κv(λ) denote the size
of secret share and witness of a secret. Further, let κ = max(κh, κa, κv); we assume
κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout the paper, we can use the same
parameter κ to denote the hash size, signature size, accumulator size and secret share size
for convenience.

3 Secure DKG with Two Broadcast Rounds
We first present a secure DKG protocol assuming a broadcast channel motivated from
Gennaro et al. DKG [GJKR07]. The presented DKG reduces the number of required
rounds with broadcast to two, which is a significant improvement over [GJKR07] requiring
three broadcast rounds in the best case and five broadcast rounds otherwise.3 In later
sections, we replace the broadcast channel with a novel consensus primitives to design
communication-efficient DKG protocols.

Gennaro et al. [GJKR07] presented a secure DKG protocol that produces uniform
public keys based on Pedersen’s VSS [Ped92]. In their protocol, each party, as a dealer,
selects a secret uniformly at random and shares the secret using Pedersen’s VSS protocol.
Since Pedersen’s VSS provides information theoretic secrecy guarantees, the adversary
has no information about the public key and hence cannot bias it. At the end of the
secret sharing, a set of qualified parties QUAL who correctly shared their secret is defined.
Once the set QUAL is fixed, parties in set QUAL invoke an additional round of secret sharing
using Feldman’s VSS [Fel87] to generate the final public key. While this approach ensures
generation of uniform keys and maintains secrecy, it adds additional overhead as it incurs
more latency and communication to perform additional secret sharing. In addition to the
above overhead, Pedersen VSS requires three broadcast rounds. In particular, parties post
the commitment, complaints and secret shares corresponding to the complaints on to the
broadcast channel during the sharing phase.

The protocol in Figure 2 improves upon the DKG protocol of Gennaro et al. [GJKR07]
in the following ways.
Improving latency in the sharing phase. We improve latency by reducing information
posted on the broadcast channel by using improved eVSS (iVSS) protocol [BSL+21] which
requires only 2 broadcast rounds.4 Reducing the broadcast rounds greatly improves latency
as broadcast channels are generally instantiated using Byzantine broadcast or Byzantine
agreement protocols which have worst-case linear round complexity.

3Using NIZK similar to us, the number of rounds for Gennaro et al. DKG [GJKR07] can be reduced to
two in the best case and three otherwise in a rather straightforward manner; however, reducing to two
broadcast rounds in all situations is the key challenge here.

4Alternatively, we can use broadcast optimal VSS protocol of Backes et al. [BKP11] which has 2
broadcast rounds. We prefer iVSS protocol for its simplicity.

12 Synchronous Distributed Key Generation without Broadcasts

Sharing Phase

1. Deal. Each party (as a dealer) Pi selects two random polynomials fi(y), f ′
i(y) ∈ Zp[y] of degree t:

fi(y) = ai0 + ai1y + · · ·+ aityt, f ′
i(y) = bi0 + bi1y + · · ·+ bityt

Let si = ai0 = fi(0). Party Pi posts Cik = gfi(k)hf ′
i(k) ∀k ∈ {1, . . . , n} on the broadcast channel.

Party Pi computes the secret shares sij = fi(j), s′
ij = f ′

i(j) and sends sij , s′
ij privately to Pj ∀j ∈ [n].

2. Blame. Each party Pi verifies that the commitment vector contains a t degree polynomial (Equa-
tion (2)). For j ∈ [n], check if

gsji · hs′
ji = Cji (1)

n∏
k=1

CCodek
jk

= 1G, where {Code1, . . . , Coden} ∈ C⊥ using Equation (4) (2)

If the check fails for (dealer) party Pj , send ⟨blame, j⟩i to all parties and collect all the blames.
3. Forward blame. If more than t blame messages are collected for party Pj as the dealer in the

previous step, do not send anything for dealer Pj until the Decide step (Step 6).
Otherwise, for every ⟨blame, j⟩k received from party Pk, forward the blame messages to the dealer Pj .

4. Open. Each party Pi, who as a dealer, received ⟨blame, i⟩k from any party Pj , sends valid secret
shares sik, s′

ik (that verifies Equation (1)) to party Pj .
5. Vote. If in Step 2, a party Pi received ≤ t ⟨blame, j⟩k messages and party Pj sent valid secret shares

sjk, s′
jk for every ⟨blame, j⟩k it forwarded to party Pj , send a vote ⟨vote, j⟩i to party Pj . Forward

the secret shares sjk, s′
jk to party Pk.

6. Decide. If party Pi, as a dealer, receives t + 1 distinct ⟨vote, i⟩ messages (called the vote-certificate),
post the vote-certificate on the broadcast channel.
Each party Pi marks a party Pj qualified if it receives a vote-certificate for party Pj on the broadcast
channel; otherwise the party is disqualified. Party Pi builds a set of non-disqualified parties QUAL.

Generating public key

7. Party Pi sets its share of the secret as xi =
∑

j∈QUAL sji, and computes x′
i =

∑
j∈QUAL s′

ji, C⟨g⟩(xi) =

gxi , C⟨g,h⟩(xi, x′
i) = gxi hx′

i and π≡Comi = NIZKPK≡Com(xi, x′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x′

i)). Party
Pi sends (C⟨g⟩(xi), π≡Comi) to all parties.

8. Upon receiving a tuple (C⟨g⟩(xj), π≡Comj), compute C⟨g,h⟩(xj , x′
j) = gxj h

x′
j locally as follows:

gxj h
x′

j =
∏

m∈QUAL

Cmj (3)

Ensure π≡Comj verifies NIZKPK≡Com between C⟨g⟩(xj) and C⟨g,h⟩(xj , x′
j).

9. Upon receiving t + 1 valid gxj values, perform Lagrange interpolation in the exponent to obtain
y = gx. Output y as the public key and xi as the private key.

Figure 2: Secure distributed key generation in dlog-based cryptosystems

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 13

In iVSS, the dealer posts commitments on the broadcast channel and privately sends
the secret shares to each party. Instead of posting the complaints on the broadcast channel,
parties multicast blame message if they receive invalid secret shares or receive no secret
shares at all. Parties then forward all blame messages to the dealer5. The dealer is expected
to send secret shares corresponding to the blame messages (i.e., secret shares sij , s′

ij if a Pj

sent blame message against dealer Pi). If the dealer sends all secret shares corresponding
to the blame message it forwarded, a party sends a vote message to the dealer. Upon
receiving t + 1 vote messages, the dealer posts a vote-certificate containing t + 1 vote
messages. Honest parties consider the dealer to be honest if they see the vote-certificate
on the broadcast channel.

Observe that using iVSS scheme, the dealer posts only the commitment and vote-
certificate on the broadcast channel. This improves the sharing phase by one broadcast
round.
Using commitments to evaluations instead of commitments to coefficients. In
VSS such as Pedersen’s VSS and Feldman’s VSS and thus in [GJKR07], commitments to
the secret share are commitments to the coefficients of a t-degree polynomial, which imply
verifying a share requires O(t) computations. This results in O(nt) computations per VSS
instance in the complaint stage (where every party verifies opening of up to t complaints)
and during reconstruction. SCRAPE [CD17, Section 2.1] showed how to commit (using
discrete log commitments) to evaluations instead of coefficients of the polynomial and
verify that the committed evaluations are of a degree t polynomial by using the property
of coding schemes: if C is the code space for an (n, t) sharing, then the following vector

C⊥ := {Code1, . . . , Coden; Codei = poly(i)
n∏

j=1,j ̸=i

1/(i− j)

poly(x) is a random polynomial of degree n− t + 1} (4)

is orthogonal to C. We can check that the Pedersen’s commitments to the evaluations are
an (n, t) sharing (see Equation (1)). If λ is logg h, then commitments to evaluations form
a polynomial gf hf ′ = gf+λf ′ which is another (n, t) polynomial thereby allowing to use
the coding technique. This is an information-theoretic technique and therefore does not
affect the security of the underlying VSS.
Removing additional secret sharing while generating public key. We remove
the additional secret sharing performed using Feldman’s VSS by taking an alternate
approach [KHG12]. Instead of executing an additional secret sharing, assuming random
oracle, we make use of the NIZK proof of equivalence of commitments NIZKPK≡Com to
generate the public key. This approach does not require additional secret sharing via
Feldman’s VSS. Once the sharing phase is completed, a set of qualified parties QUAL is
finalized. Then, each party Pi computes its share of the shared secrets i.e., xi =

∑
Pj∈QUAL sji

and x′
i =

∑
Pj∈QUAL s′

ji along with commitments C⟨g⟩(xi), C⟨g,h⟩(xi, x′
i). It then multicasts

commitment of its share C⟨g⟩(xi) and the corresponding NIZKPK≡Com proof π≡Comi to
prove Pi knows xi and x′

i.
All parties can compute the commitment C⟨g,h⟩(xi, x′

i) locally as shown in Equation (3)
and verify the correctness of commitment C⟨g⟩(xi) using π≡Comi. The final public key Y is
computed via Lagrange interpolation in the exponent using t + 1 distinct commitments
C⟨g⟩(xi).

3.1 Analysis of Secure DKG
We rely on the following Lemma of [Ped92].

5In an implementation, we can only forward up to t blames instead of all the blames.

14 Synchronous Distributed Key Generation without Broadcasts

Lemma 2 ([Ped92]). Under the discrete-log assumption, Pedersen’s VSS satisfies the
following properties in the presence of a polynomially bounded adversary that corrupts up
to t parties.

(i) If the dealer is not disqualified during the sharing phase, then all honest parties hold
secret shares that interpolates to unique polynomial of degree t. In particular, any
t + 1 of these shares suffice to reconstruct the secret σ.

(ii) The protocol produces information (i.e., commitments Ck and secret shares σi) that
can be used at reconstruction time to test for the correctness of each secret share;
thus, reconstruction is possible, even in the presence of malicious parties, from any
subset of shares containing at least t + 1 correct secret shares.

(iii) The view of the adversary is independent of the value of the secret σ, and therefore
the secrecy of σ is unconditional.

Note that Lemma 2 also holds when using evaluations instead of coefficients as discussed
in Section 8. The coding check (see Equation (2)) ensures that the shared commitments to
evaluations are indeed a t degree polynomial except with 1/p probability in Zp. Since p is
sufficiently large (poly(κ)), the probability of the check failing is negligible in the security
parameter.

Fact 7. If a dealer Pi receives a vote-certificate, all honest parties must have received their
corresponding secret shares sij, s′

ij.

Proof. Suppose a dealer Pi receives a vote-certificate i.e, t + 1 vote messages. At least one
of the vote messages is sent by an honest party (say Pj). An honest party Pj sends a vote
message only when it receives no blame messages or receives up to t blame messages and
dealer Pi sent secret shares sik, s′

ik for every ⟨blame, i⟩k message it forwarded.
If party Pj received no blame messages, all honest parties must have received their

corresponding secret shares sij , s′
ij ; otherwise honest parties would have sent blame

messages. On the other hand, if party Pj received f ≤ t blame messages, n− t− f honest
parties must have received their corresponding secret shares; otherwise, these honest parties
would have sent blame messages and party Pj would have received more than f blame
messages. Since party Pj forwards secret shares sik, s′

ik to party Pk for every ⟨blame, i⟩k
message it received, all honest parties must have received corresponding secret shares.

Theorem 8. Under discrete-log assumption and random oracle, the protocol in Figure 2
is a secure protocol for distributed key generation in dlog-based cryptosystem tolerating
t < n/2 Byzantine faults.

Proof. We first prove correctness of the protocol. Observe that all honest parties build the
same set of non-disqualified parties QUAL in Step 6. This is true because the commitment
to the shared polynomials and vote-certificates are posted on the broadcast channel and
broadcast channel ensures all honest parties output a common value.

Note that if a party Pj ∈ QUAL, it must have posted its commitment and vote-certificate
on the broadcast channel. By Fact 7, all honest parties have received secret shares shared
by party Pj . This implies party Pj is not disqualified during the sharing phase. By part
(i) of Lemma 2, all honest parties hold correct secret shares and any t + 1 of these secret
shares suffices to reconstruct the secret sj . This is true for all parties Pj ∈ QUAL. Since,
the secret key x is sum of individual secret sj contributed by Pj ∈ QUAL and each secret sj

can be reconstructed using Lagrange interpolation via a combination of t + 1 secret shares
provided by honest parties, the secret key x can be reconstructed via t + 1 shares provided
by honest parties. This proves property C1 of a secure DKG protocol.

By part (ii) of Lemma 2, there exists information (i.e., commitments) that can be
used to verify correctness of each secret share. Observe that each honest party Pj sends

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 15

Let B be the set of parties controlled by the adversary, and G be the set of honest parties (run
by the simulator S). Without of loss of generality, let B = [P1, Pt′] and G = [Pt′+1, Pn], where
t′ ≤ t. Let Y ∈ G be the input public key and H≡Com : G6 → Zp is a random oracle hash table
for NIZKPK≡Com.

1. Perform Step 1 through Step 6 on the behalf of the uncorrupted parties Pt′+1, . . . , Pn exactly
as secure DKG protocol (refer Figure 2) until set QUAL is finalized. At the end of Step 6, the
following holds:

- Set QUAL is well-defined with at least one honest party in it.
- The adversary’s view consists of polynomials fi(y), f ′

i(y) for Pi ∈ B, the secret shares
sij , s′

ij for Pi ∈ QUAL ∩ G, Pj ∈ B, and the commitments Ci for Pi ∈ QUAL.
- S knows all fi(y) and f ′

i(y) for Pi ∈ QUAL as it knows n − t′ shares for each of those.

2. Perform the following computations for each i ∈ {t + 1, . . . , n} before Step 6 (refer Figure 2).

(a) Compute xj for party Pj ∈ B. Similarly, compute xj for party Pj ∈ [Pt′+1, Pt].
Interpolate in the exponent (0, Y) and (j, gxj) for j ∈ [1, t] to compute C⟨g⟩(x∗

i) = gx∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random challenges ci ∈ Zp

and responses ui,1, ui,2 ∈ Zp, computing the commitments ti,1 = (gx∗
i)ci gui,1 and

ti,2 = C⟨g,h⟩(xi,x′
i)ci

C⟨g⟩(x∗
i

) hui,2 and include entry ⟨(g, h, C⟨g⟩(x∗
i), C⟨g,h⟩(xi, x′

i), ti,1, ti,2), ci⟩ in
the hash table H≡Com so that π≡Com = (ci, ui,1, ui,2).

3. In the end, x =
∑

Pi∈QUAL si such that Y = gx.

Figure 3: Simulator for Secure DKG

gxj and NIZKPK≡Com proof π≡Comj at the end of sharing phase. Each party Pi can verify
correctness of C⟨g⟩(xj) by checking Equation (3). A valid NIZKPK≡Com proof π≡Comj proves
in zero knowledge that party Pj knows xj and x′

j thus proving the correctness of gxj . By
using t + 1 valid gxj , honest parties can compute the same gx via Lagrange interpolation in
the exponent which is the public key. This proves property C2 of a secure DKG protocol.

Observe that the secret key x is the sum of secrets shared by parties in QUAL which
contains at least one honest party and honest parties select their secret uniformly at
random. This suffices to prove property C3 of a secure DKG protocol.

We now prove secrecy. Our proof of secrecy is based on the proof of secrecy in earlier
works [GJKR07, KHG12]. We provide a simulator S for our secure DKG protocol in
Figure 3. Without loss of generality, we assume the adversary A compromises parties
P1, . . . , Pt′ , where t′ ≤ t, denoted by set B. The rest of the parties Pt′+1, . . . , Pn, denoted
by set G are controlled by the simulator.

Informally, the simulator S with input Y runs as follows. S will run on the behalf of
the honest parties G Step 1 until Step 6 following exactly the instructions. At this point,
the set QUAL is well-defined and S knows all fi(y) and f ′

i(y) for Pi ∈ QUAL as it knows
n− t′ shares for each of those. Observe that the view of adversary A that interacts with
S is identical to the view of A that interacts with honest parties in a regular run of the
protocol. In particular, A sees the following distribution of data:

- Polynomials fi(y), f ′
i(y) for Pi ∈ B

- Values fi(j), f ′
i(j) for i ∈ G, j ∈ B and values Ci for Pi ∈ QUAL

S will then change the secret shared by one honest party (say Pn) to “hit” the desired
public key Y such that the above data distribution observed by A remains identical. For
parties Pi ∈ (G \ {Pn}), the input polynomial fi(y) and f ′

i(y) remains identical. Thus,
their data distribution remains identical. For party Pn, the input polynomial is modified
such that gf∗

n(0) = gs∗
n = Y∏

Pj ∈QUAL\{Pn}
gsi

and f∗
n(j) = snj for j ∈ [1, t]. Define f ′∗(y)

16 Synchronous Distributed Key Generation without Broadcasts

such that f∗
n(y) + λf ′∗

n (y) = fn(y) + λf ′
n(y), where λ = logg(h). Observe that for these

polynomials, the evaluations and commitments seen by parties in B is identical to the real
run of the protocol.

Simulator S will then compute gxj for party Pj ∈ [P1, Pt] and interpolate in the
exponent (0, Y) and (j, gxj) for j ∈ [1, t] to compute C⟨g⟩(x∗

i) = gx∗
i and the corresponding

NIZKPK≡Com and publish these values. Observe that these values pass the verification in
the real run of protocol.

It remains to be shown that polynomials f∗
i (y) and f ′∗

i (y) belong to the right distribution.
For QUAL \ (G \ {Pn}), this is trivially true as they are defined identically to fi(y) and f ′

i(y)
which were chosen uniformly at random. For f∗

n, the polynomial evaluates to random
values fn(j) at j ∈ [1, t] and evaluates to logg(s∗

n) required to hit Y . Finally, f ′∗
n (y) is

defined as f∗
n(y) + λf ′∗

n (y) = fn(y) + λf ′
n(y), and since f ′

n(y) is chosen to be random, so is
f

′∗
n (y).

4 Communication Optimal Weak Gradecast
One of the main tools in the design of our communication efficient protocols is our
communication optimal weak gradecast protocol. Our weak gradecast protocol has a
communication complexity of O(nℓ+κn2) for ℓ bit input and incurs 4 rounds. In Section 10,
we show a quadratic lower bound on the communication complexity of weak gradecast for
completeness.

Deliver(mtype, m, ze, e) :

1. Partition input m into t+1 data symbols. Encode the t+1 data symbols into n code words (s1, . . . , sn)
using ENC function. Add an index j to each code word sj to obtain D = [(1, s1), . . . , (n, sn)]. Compute
accumulation value zi = Eval(ak,D). If ze ̸= zi abort. Otherwise, compute witness wj for each
element (j, sj) ∈ D using CreateWit function and send ⟨codeword, mtype, sj , wj , ze, e⟩i to party Pj

∀Pj ∈ P.
2. If party Pj receives the first valid code word ⟨codeword, mtype, sj , wj , ze, e⟩∗ for the accumulator ze,

forward the code word to all the parties.
3. Upon receiving t + 1 valid code words for the first accumulation value ze, decode m using DEC

function.
Figure 4: Deliver function

Deliver. As a building block, we first present a Deliver function (refer Figure 4) used
by an honest party to efficiently propagate long messages. This function is adapted from
RandPiper [BSL+21] where linear-sized messages are propagated among all honest parties
with O(κn2) communication cost. The Deliver function enables efficient propagation of
long messages using erasure coding techniques and cryptographic accumulators. The input
parameters to the function are a keyword mtype, long message m, accumulation value ze

corresponding to message m and epoch e in which Deliver function is invoked. The input
keyword mtype corresponds to message type containing long message m sent by its sender.
In order to facilitate efficient equivocation by the sender, the input keyword mtype, hash of
long message m, accumulation value ze, and epoch e are signed by the sender of message
m. We omit epoch parameter when the Deliver function is not invoked within an epoch.
The Deliver function incurs 2 rounds.

The gradecast protocol is presented in Figure 5. In round 1, the designated sender
Pj sends value v by multicasting ⟨gcast, v, z⟩j where z is the accumulation value for
value v. We note that the size of input value v can be large. To facilitate efficient
equivocation checks, the sender Pj signs ⟨gcast, H(v), z⟩ and sends v separately. Whenever
an equivocation by the sender is detected, multicasting signed hashes suffices to prove
equivocation by the sender. All-to-all multicasting of κ-sized signed hashes incurs only

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 17

Set oi = ⊥ and gi = ⊥. Each party Pi performs the following operations:
- Round 1: If party Pj is the designated sender, then it multicasts its input value v in the form of
⟨gcast, v, z⟩j where z is the accumulation value of v.

- Round 2: If party Pi receives pr := ⟨gcast, v, z⟩j for the first time, then invoke Deliver(gcast, pr, z).
- Round 4: If party Pi invoked Deliver in round 2 and no party Pj equivocation has been detected so

far, set oi = v and gi = 2. Let vi be the first value received. If vi = ⊥, set oi = ⊥ and gi = 0, else if
oi = ⊥, set oi = vi and gi = 1. Output (oi, gi).

- At any round: If equivocating hashes signed by party Pj are detected, multicast the equivocating
hashes.

Figure 5: Weak Gradecast with O(nℓ + (κ + w)n2) communication.

O(κn2) in communication. The reduction in communication is obtained via the use of
efficient erasure coding schemes [RS60], cryptographic accumulators [BP97] and multicast
of equivocating hashes (if any).

In round 2, if party Pi receives ⟨gcast, v, z⟩j , it invokes Deliver to propagate long message
v. Note that Deliver function requires 2 rounds. Round 3 accommodates steps of Deliver
function invoked in rounds 2. In round 4, each party Pi sets its output value and grade as
follows. If party Pi received ⟨gcast, v, z⟩j in round 2 and did not detect any equivocation
so far, it outputs value v with a grade of 2. Otherwise, party Pi outputs the first value it
received with a grade of 1. If no value has been received, Pi outputs ⊥ with a grade of
0. Note that if party Pi receives ⟨gcast, v, z⟩j in round 2, but detects an equivocation by
round 4, it outputs value v with a grade of 1.
The first value. If party Pi receives a valid code word corresponding to value v or
⟨gcast, v, z⟩j before receiving any other values (i.e, ⟨gcast, v′, z′⟩j or a valid code word for
any other value), then value v is the first value for Pi. Hereafter, party Pi only decodes
value v when it receives t + 1 valid code words for it.

4.1 Analysis of Gradecast
Lemma 3. Suppose party Pj is the designated sender. If an honest party invokes Deliver
in round r for a value m sent by party Pj and no honest party has detected a party Pj

equivocation by round r + 1, then all honest parties will receive value m by round r + 2.

Proof. Suppose an honest party Pi invokes Deliver at round r for a value m sent by party
Pj . Party Pi must have sent valid code words and witness ⟨codeword, mtype, sk, wk, ze, e⟩i
computed from value m to every party Pk ∀k ∈ [n] at round r. The code words and
witness arrive at all honest parties by round r + 1.

Since no honest party has detected a party Pj equivocation by round r + 1, it must
be that either honest parties will forward their code word ⟨codeword, mtype, sk, wk, ze, e⟩
when they receive the code words sent by party Pi or they already sent the corresponding
code word when they either invoked Deliver for value m or received the code word from
some other party. In any case, all honest parties will forward their code word corresponding
to value m by round r + 1. Thus, all honest parties will have received t + 1 valid code
words for a common accumulation value ze by round r + 2 sufficient to decode value m.

Theorem 9. The protocol in Figure 5 is a gradecast protocol satisfying Definition 2.

Proof. Suppose party Pj is the designated sender with its input value v.
We first consider the case when an honest party Pi outputs value v with a grade gi = 2.

Honest party Pi must have invoked Deliver for value v by round 2 and did not detect
a party Pj equivocation by round 4. This implies no honest party detected a party Pj

equivocation by round 3. By Lemma 3, all honest parties receive value v by round 4. In
addition, since party Pi invoked Deliver for value v by round 2, all honest parties receive a

18 Synchronous Distributed Key Generation without Broadcasts

code word for value v by round 3. Thus, value v is the first value received by all honest
parties. Since v ̸= ⊥, all honest parties will output value v with a grade ≥ 1.

Next, we consider the case when the designated sender is honest. Since, the sender is
honest, it sends its input value v to all honest parties such that all honest parties receive
value v in round 2. Thus, all honest parties invoke Deliver to propagate value v in round 2.
Moreover, the honest sender does not equivocate. Thus, all honest parties output value v
with a grade of 2 in round 4.

The case where each honest party outputs a value with a grade ∈ {0, 1, 2} is trivial by
design.

Lemma 4 (Communication Complexity). Let ℓ be the size of the input, κ be the size of
accumulator, and w be the size of witness. The communication complexity of the protocol
in Figure 5 is O(nℓ + (κ + w)n2).
Proof. At the start of the protocol, the sender multicasts its value of size ℓ to all party Pj

∀j ∈ [n] along with κ sized accumulator. This step incurs O(nℓ + κn). Invoking Deliver on
an object of size ℓ incurs O(nℓ + (κ + w)n2), since each party multicasts a code word of size
O(ℓ/n), a witness of size w and an accumulator of size κ. Thus, the overall communication
complexity is O(nℓ + (κ + w)n2).

5 Recoverable-Set-of-Shares
In Section 3, we presented a secure DKG protocol by assuming broadcast channels. In
this section, we present a slightly weaker sharing protocol by appropriately replacing the
broadcast channel with multicast and our weak gradecast. This protocol completes in
constant rounds and acts as a building block towards constructing the DKG. We call this
protocol Recoverable-set-of-shares.

In the sharing phase of our secure DKG protocol with broadcast channels (Figure 2),
each honest party outputs a common set QUAL consisting of size at least n− t parties such
that the secrets shared by parties in set QUAL can be reconstructed. In more detail, honest
parties have a common decision on which parties correctly shared their secret at the end of
the sharing phase. Requiring this agreement was free in the presence of broadcast channels;
however, under a point-to-point network, it blows up communication complexity.

In our protocol, we utilize gradecast for secret sharing. Given that gradecast does not
ensure a unanimous output, each honest party Pi may have a different view regarding the
acceptance of the shared secret. Thus, each honest party Pi outputs a possibly different set
AcceptListi of at least n− t parties which they accept to have shared the secret correctly;
i.e., Pi observes the secrets shared by parties in AcceptListi can be reconstructed. It is in
this regard, we call our protocol recoverable-set-of-shares as the secret shared by parties
in AcceptListi can be reconstructed. We stress that in recoverable-set-of-shares protocol,
honest parties need not agree on a common set and may output a different set of at least
n− t parties which they believe have shared the secret properly. To ensure that the final
keys for DKG are generated from a common set, parties need to agree on one such set. In
the following sections, we present a multi-valued validated Byzantine agreement protocol
to agree on a common set.

We call an AcceptList certified if it is accompanied by a set of signatures from at least
t + 1 parties. The set of t + 1 signatures on AcceptList forms the certificate for AcceptList
and denoted as AC(AcceptList).
Definition 5 (Recoverable-set-of-shares). Each party Pi, as a dealer, secret shares a
uniformly random input si. Each honest party outputs an n element certifed list AcceptListi

with an entry corresponding to each party as a dealer such that AcceptListi[j] ∈ {0, 1, 2}
∀j ∈ [n]. A recoverable-set-of-shares protocol tolerating t Byzantine failures satisfies the
following properties:

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 19

Each party Pi performs the following operations:

1. (Round 1) Distribute. Each party Pi selects two random polynomials fi(y), f ′
i(y) over Zp of

degree t:

fi(y) = ai0 + ai1y + · · ·+ aityt, f ′
i(y) = bi0 + bi1y + · · ·+ bityt

Let si = ai0 = fi(0). Party Pi generates the commitment Cik = gfi(k)hf ′
i(k) ∀k ∈ {1, . . . , n}. Let

VSS.C⃗i represent Cik ∀k ∈ {1, . . . n}. Party Pi multicasts its proposal ⟨propose, VSS.C⃗i, zpi⟩i. Party
Pi computes the shares sij = fi(j), s′

ij = f ′
i(j) and sends sij , s′

ij to Pj ∀j ∈ [n].

2. (Round 2) Blame/Forward. If party Pi receives commitment commj := ⟨propose, VSS.C⃗j , zpj⟩j
and valid secret share sji, s′

ji (i.e., satisfy Equation (1) with VSS.C⃗j and Equation (2)), then invoke
Deliver(propose, commj , zpj ,−). If no valid secret shares has been received from party Pj , multicast
⟨blame, j⟩i to all parties.

3. (Round 3) Request open. Collect all blames received so far. If up to t blame are received for party
Pj , forward the blame messages to party Pj . If more than t blame are received for party Pj , do not
send anything for dealer Pj until Round 6.

4. (Round 4) Open. Party Pi sends secret shares sik, s′
ik to party Pj , for every blame ⟨blame, i⟩k

received from party Pj .
5. (Round 5) Vote. Upon receiving valid secret shares sjk, s′

jk for every ⟨blame, j⟩k it forwarded and
no party Pj equivocation has been detected, send ⟨vote, H(commj)⟩i to party Pj . Forward secret
share sjk to party Pk for every ⟨blame, j⟩k it received. If no blames for party Pj has been received
by round 3 and no party Pj equivocation has been detected, send ⟨vote, H(commj)⟩i to party Pj .

6. (Round 6) Vote cert. Upon receiving t+1 distinct vote messages for commi (denoted by C(commi)),
invoke weak gradecast (refer Figure 5) to propagate C(commi).

7. (Round 9) Propose Grade Let (oj,i, gj,i) be the output of weak gradecast with party Pj as the
sender. Set AcceptListi[j] = gj,i. Multicast ⟨accept-list, AcceptListi⟩i.

8. (Round 10) Verify and Ack. Upon receiving ⟨accept-list, AcceptListj⟩j from party Pj , if the
following conditions hold send ⟨ack, H(AcceptListj)⟩i to party Pj .

(a) |{h |AcceptListj [h] = 2}| ≥ n− t

(b) If AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n].

9. (At any round) Equivocation. If equivocating hashes signed by party Pj are detected, multicast
the equivocating hashes.

Figure 6: Recoverable-set-of-shares protocol

1. If dealer Pj is honest, then each honest party Pi outputs AcceptListi[j] = 2.

2. A certified AcceptListi must have |{h |AcceptListi[h] = 2}| ≥ n− t.

3. If AcceptListi is certified and AcceptListi[j] = 2, then secret sj can be recovered from
the secret shares sji received by each honest party Pi.

Protocol details. At the start of the protocol (refer Figure 6), each honest party Pi

selects two random t degree polynomials fi(y) =
∑

k aikyk over Zp and f ′
i(y) =

∑
k bikyk

over Zp such that fi(0) = si and f ′
i(0) = s′

i. Party Pi generates the commitment
Cik = gfi(k)hf ′

i(k) ∀k ∈ {1, . . . , n}. Let VSS.C⃗i represent Cik ∀k ∈ {1, . . . n.}. Party Pi

multicasts the commitment in the form of a proposal ⟨propose, VSS.C⃗i, zpi⟩i where zpi is
the accumulation value of VSS.C⃗i. In order to facilitate efficient equivocation checks, party
Pi signs ⟨propose, H(VSS.C⃗i), zpi⟩ separately and sends VSS.C⃗i separately. Party Pi also
privately sends secret share sij , s′

ij to party Pj ∀j ∈ [n].
If a party Pj receives valid secret share sij , s′

ij along with the proposal commi :=
⟨propose, VSS.C⃗i, zpi⟩i by the start of round 2, it invokes Deliver(propose, commi, zpi,−)
to propagate the commitment VSS.C⃗i; otherwise party Pj multicasts ⟨blame, i⟩j . Observe
that we ignore the epoch e parameter in Deliver as the current protocol is not executed in
an epoch.

20 Synchronous Distributed Key Generation without Broadcasts

Party Pj waits to collect any blame messages sent by other parties. If up to t blame
messages are received for Pi, Pj forwards the blame messages to party Pi. Party Pi then
privately sends secret shares sik, s′

ik to party Pj , for every blame ⟨blame, i⟩k received from
party Pj . Upon receiving valid secret shares for all ⟨blame, i⟩k it forwarded, party Pj sends
a vote ⟨vote, H(commi)⟩ to party Pi and also forwards secret shares sik, s′

ik to party Pk if
no party Pi has been detected by round 5. Additionally, if no blame messages are received
for Pi by round 3, party Pj sends ⟨vote, H(commi)⟩ to party Pi at round 5.

Party Pi then waits to collect t + 1 vote messages for H(commi), denoted by C(commi).
A certificate on the commi implies that secret si shared by party Pi can be reconstructed
later. Party Pi then gradecasts C(commi). Invocation of gradecast on C(commi) ensures
that if the party Pi is honest, all honest parties output a common C(commi) with a grade
of 2 and if an honest party Pk output C(commi) with a grade of 2, all other honest parties
output the certificate with a grade ≥ 1.

Note that all parties (at least all honest parties) are executing the secret sharing phase.
Thus, at the end of gradecast step, each honest party outputs at least n− t certificates
with a grade of 2 and outputs at most t values with a grade ≤ 2. We call the list of
grades for party Pj as AcceptListj . This list is a set of parties which party Pj observes
to have shared their secret properly and each secret can be reconstructed. Party Pj

then multicasts its AcceptListj to all other parties. Party Pk then checks the validity of
AcceptListj by checking if (i) |{h |AcceptListj [h] = 2}| ≥ n− t, and (ii) if AcceptListj [h] = 2
then AcceptListk[h] ≥ 1 ∀h ∈ [n]. The first check ensures that AcceptListj contains at
least n − t entries with AcceptListj [h] = 2. This check trivially satisfies for AcceptList
sent by an honest party as each honest party receives at least n − t certificates with a
grade of 2. Later, the DKG protocols use secrets from parties in AcceptListj such that
AcceptListj [h] = 2 to compute the final keys. This is required to ensure security of DKG
protocol. The second check ensures that all the secrets corresponding to AcceptListj [h] = 2
are recoverable; observe that if AcceptListj [h] = 2 then AcceptListk[h] ≥ 1 due to weak
gradecast properties. This implies party Pk has received a C(commh) from party Ph and
C(commh) implies the secret shared by party Ph can be reconstructed. If the checks pass,
party Pk sends ⟨ack, H(AcceptListj)⟩k to party Pj . A set of t + 1 ack (ack-cert) messages
for AcceptListj (denoted by AC(AcceptListj)) implies at least one honest party has verified
that all the secrets corresponding to AcceptListj [h] = 2 can be recovered.

The idea of using gradecast to perform secret sharing has been explored before in the
works of Feldman and Micali [FM88, FM97] to generate common source of randomness.
Compared to their work, our protocols work in authenticated model with t < n/2 resilience
and invoke a single gradecast per secret sharing. Their protocols work in unauthenticated
model without PKI with t < n/4 [FM88] and t < n/3 [FM97] resilience and involved
multiple invocation of gradecast per secret sharing.

5.1 Analysis of Recoverable-set-of-shares protocol
Lemma 5. If an honest party sends vote for a commitment comm, then (i) all honest
parties receive comm, (ii) all honest parties receive their valid secret shares corresponding
to commitment comm.

Proof. Suppose an honest party Pi sends a vote for commitment commk := ⟨propose, VSS.C⃗k,
zpk⟩k at round 5. Party Pi must have received up to t blame messages for party Pk. This
implies at least one honest party Pj received valid secret shares sk,j , s′

k,j and commitment
commk and invoked Deliver(propose, commk, zpk,−) at round 2. Moreover, party Pi did
not detect party Pk equivocation by round 5. This implies no honest party detected party
Pk equivocation by round 3. By Lemma 3, all honest parties receive the commitment
commk by round 4. This proves part (i) of the Lemma.

For part (ii), party Pi can send vote message on two occasions: (a) when it does not

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 21

detect a ⟨blame, k⟩ by round 3 and party k equivocation by round 5, and (b) when party k
sent valid secret shares for every ⟨blame, k⟩ message it forwarded and does not detect any
party k equivocation by round 5.

In case (a), party Pi did not detect a party k equivocation by round 5 and ⟨blame, k⟩
by round 3. Observe that all honest parties must have received valid secret shares
corresponding to the commitment commk; otherwise party Pi must have received ⟨blame, k⟩
by round 3 (since honest parties send ⟨blame, k⟩ if no valid secret shares are received at
round 2). Thus, all honest parties receive valid secret shares corresponding to commitment
commk.

In case (b), party Pi receives valid secret shares from party Pk for every ⟨blame, k⟩
(up to t blame) messages it forwarded and detected no party k equivocation by round 5.
Observe that party Pi received f ≤ t ⟨blame, k⟩ messages and received valid secret shares
for every ⟨blame, k⟩ message it forwarded. This implies at least n− t− f honest parties
have received valid shares for commitment commk from party Pk; otherwise, party Pi

would have received more than f ⟨blame, k⟩ message by round 3. Since, party Pi forwards
f received secret shares corresponding to f received ⟨blame, k⟩, all honest parties receive
valid secret shares corresponding to commitment commk.

Lemma 6. If an honest party sends an ack for a grade list AcceptListj, then all honest
parties have valid secret shares corresponding to commh for all h such that AcceptListj [h] =
2.

Proof. Suppose an honest party Pi sends an ack for a grade list AcceptListj . Then, it
must be that if AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n]. Party Pi sets
AcceptListi[h] ≥ 1 when it receives a vote certificate C(commh). If there is a vote certificate
C(commh) for value commh, then at least one honest party (say party Pk) must have voted
for commh. By Lemma 5 part (ii), all honest parties have valid secret shares corresponding
to commitment commh. Thus, all honest parties have valid secret shares corresponding to
commh for all h such that AcceptListj [h] = 2.

Lemma 7 (Liveness). Each honest party Pi will receive an ack-cert for its grade list
AcceptListi.

Proof. Consider an honest party Pi. Party Pi will send valid commitment VSS.C⃗i and
secret shares sij , s′

ij to party Pj ∀j ∈ [n] in round 1. All honest parties will receive their
valid secret shares sij , s′

ij and commitment commi in round 2. Thus, no honest party will
send ⟨blame, i⟩ for party Pi.

Observe that up to t Byzantine parties can always send ⟨blame, i⟩. Honest parties wait
until round 3 to collect blame messages for any party. Honest parties forward ⟨blame, i⟩
to party Pi which party Pi receives by round 4. Party Pi forwards valid secret shares to
party Pj for every ⟨blame, i⟩ message it received from party Pj which party Pj receives by
round 5. Thus, party Pj will send vote for party Pi which party Pi receives by round 6.
This implies party Pi collects t + 1 distinct vote messages by round 6.

Party Pi invokes weak gradecast to propagate C(commi) which completes by round
9. Due to the properties of weak gradecast, for an honest party Pi, all honest parties set
AcceptList[i] to 2. Thus, for any honest party Pj , all honest parties set AcceptList[j] to 2.
This implies all honest parties will have |{h |AcceptListj [h] = 2}| ≥ n− t.

Next, we consider the case when an honest party sets AcceptListi[l] = 2 for a Byzantine
party Pl and receive C(comml). Due to the properties of weak gradecast, all honest
parties receive C(comml) and set AcceptList[l] ≥ 1. Thus, for every AcceptListi[h] = 2 then
AcceptList[h] ≥ 1 for all honest parties.

Party Pi multicasts its AcceptListi in round 9. Since, AcceptListi satisfies both the
conditions |{h |AcceptListi[h] = 2}| ≥ n− t and AcceptListi[h] = 2 then AcceptList[h] ≥ 1,

22 Synchronous Distributed Key Generation without Broadcasts

all honest parties will send ack for AcceptListi proposed by party Pi and party Pi will
receive ack-cert for AcceptListi the end of round 10.

Theorem 10. The protocol in Figure 6 is a recoverable-set-of-shares protocol satisfy-
ing Definition 5.

Proof. Straight forward from Lemma 5, Lemma 6 and Lemma 7

Lemma 8 (Communication Complexity). Let ℓ be the size of commitment comm, κ be
the size of secret share and accumulator, and w be the size of witness. The communication
complexity of the protocol is O(n2ℓ + (κ + w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi multicasts commi of size ℓ to all party
Pj ∀j ∈ [n] and sends secret share si,j to party Pj ∀j ∈ [n]. This step incurs O(n2ℓ + κn3).
In the Forward step, parties invoke Deliver for the first commj from party Pj for j ∈ [n].
Invoking Deliver on an object of size ℓ incurs O(nℓ+(κ+w)n2), since each party multicasts
a code word of size O(ℓ/n), a witness of size w and an accumulator of size κ. Thus,
invoking Deliver on n commitments incurs O(n2ℓ + (κ + w)n3).

In the Blame step, honest parties may blame up to t Byzantine parties if they do not
receive valid secret shares. Multicast of t blame from each party incurs O(κtn2) communi-
cation. In addition, t Byzantine parties always can blame honest parties. Honest parties
forward up to t ⟨blame, j⟩ messages to party Pj . This incurs O(κtn2) communication.

In the Private open step each party can send up to t secret shares to all other parties.
This incurs O(κtn2) for all parties. In the Vote cert step, each party multicasts O(n)-sized
vote-cert to all other parties which incurs O(κn3) in communication. Invoking Deliver on
an O(n)-sized certificate incurs O(n2 + (κ + w)n2). For n certificate, this step incurs
O(n3 + (κ + w)n3).

In the Propose grade step, each party multicast their grade list of size O(n). Multicast
of O(n)-sized grade list by n parties incurs O(n3) communication. Thus, the total
communication complexity is O(n2ℓ + (κ + w)n3) bits.

6 Oblivious Leader Election
In this section, we construct a communication efficient oblivious leader election (OLE)
protocol that outputs a common honest leader with some constant probability called the
fairness. Our OLE protocol uses only n parallel invocations of weaker VSS primitives and
a non-interactive threshold signature scheme [CKS00]. Importantly, our OLE protocol does
not require a prior threshold (DKG) setup phase despite making use of threshold signatures.
The security of our OLE protocol is based on the computational Diffie-Hellman (CDH)
problem in the random oracle model. The resulting protocol incurs a communication
complexity of O(κn3) and constant rounds.
Construction. The starting point of our construction is the threshold coin-tossing scheme
of Cachin et al. [CKS00] which makes use of non-interactive threshold signature scheme.
The threshold signature scheme requires a prior threshold setup which is essentially a DKG.
The threshold setup establishes a tuple (sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn)
of verification keys. After the threshold setup phase, each party signs a common message
(e.g., an epoch number) with its threshold secret key to obtain a threshold share. A
combination of any t + 1 valid threshold shares is then used to obtain a unique and random
threshold signature σ. A random oracle H ′′ : G → {0, 1} is then used to generate an
unbiased and unpredictable random bit from the threshold signature σ.

Note that the threshold signature scheme requires a prior threshold setup to establish
a tuple (sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn) of verification keys. We fulfill

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 23

Each party Pi performs the following operations:

1. Round 1: Each party Pi invokes recoverable-set-of-shares protocol (refer Figure 6). Each party Pi

outputs (AcceptList2i AC(AcceptList2i)).
2. Round 11: Each party Pi invokes weak gradecast to propagate (AcceptList2i,AC(AcceptList2i)).
3. Round 15: Let (oj,i, gradei[j]) be the output with party Pj as dealer. Let oj,i contains AcceptList2j .

If gradei[j] ≥ 1, set local-dkgi[j] = AcceptList2j , local-dkg-gradei[j] = gradei[j].

- Set skj,i =
∑

m∈AcceptList2j |AcceptList2j [m]=2 smi, vkj,i = gskj,i , and sk′
j,i =∑

m∈AcceptList2j |AcceptList2j [m]=2 s′
mi.

- Compute C⟨g⟩(skj,i), C⟨g,h⟩(skj,i, sk′
j,i)) and π≡Comj,i =

NIZKPK≡Com(skj,i, sk′
j,i, g, h, C⟨g⟩(skj,i), C⟨g,h⟩(skj,i, sk′

j,i)). Multicast (vkj,i, π≡Comj,i)
to all parties.

Figure 7: Threshold setup protocol

this requirement by using the output of recoverable-set-of-shares protocol (from Section 5)
to establish a local threshold setup corresponding to each party. In the recoverable-
set-of-shares protocol, each party Pi outputs an AcceptListi along with AC(AcceptListi).
An AcceptListi (accompanied by AC(AcceptListi)) consists of at least n − t entries with
grades of 2 and all honest parties must have received secret shares shared by parties in
AcceptListi whose grades are 2. Thus, each party Pj uses secret shares shared by parties
in an AcceptListi with grades of 2 to compute its secret key ski,j and verification key
vki,j = gski,j to establish local DKG setup local-dkg[i] corresponding to party Pi.

In order to setup local-dkg[i], party Pi first invokes weak gradecast to propagate its
AcceptListi (along withAC(AcceptListi)). If party Pj outputs (AcceptListi, AC(AcceptListi))
with a grade of ≥ 1, it uses AcceptListi to compute its secret key ski,j and verification key
vki,j = gski,j to establish local DKG setup local-dkg[i] corresponding to party Pi. Note
that this establishes a separate threshold setup for each party Pi. With local DKG setup
local-dkg[i] as the threshold setup for party Pi, parties then sign a common message to
generate a unique and random threshold signature σi. Parties then use a random oracle
H ′ : G→ {0, 1}κ to generate κ bit random coin value assigned to party Pi. Each party Pj

uses the random coin value assigned to party Pi if it outputs (AcceptListi, AC(AcceptListi))
with a grade of 2. From the set of parties for which party Pj outputs (AcceptListk,
AC(AcceptListk)) with a grade of 2, it selects the party with highest (or lowest) coin value
as its leader. With probability at least 1

2 , all honest parties select a common honest leader
using this approach.

Note that threshold coin-tossing scheme of Cachin et al. [CKS00] produces a single
bit output. However, it can also be used to generate κ bit strings using κ-bit hash
function [CKPS01]. Looking ahead, the final DKG is also computed from one of the valid
AcceptList output from the recoverable-set-of-shares protocol. Making use of the secret
shares in an AcceptList output from the recoverable-set-of-shares protocol during this local
DKG setup phase will leak the final public key before the final DKG is decided. Note that
the final public key can be computed from t + 1 verification keys. This allows the adversary
ability to force the final DKG to have certain final public key. To circumvent this issue,
we execute two separate instances of recoverable-set-of-shares protocol in parallel; one
instance to setup local DKG instances and the other to setup the final DKG instance. To
remove this ambiguity, we call the accept list output from the recoverable-set-of-shares
protocol executed for local DKG as AcceptList2 i.e. each party Pi outputs an AcceptList2i

along with AC(AcceptList2i).
Protocol details. The setup phase of the protocol is presented in Figure 7. Each
party Pi invokes recoverable-set-of-shares protocol and outputs AcceptList2i (along with
AC(AcceptList2i)). Each party Pi then invokes weak gradecast to propagate (AcceptList2i,
AC(AcceptList2i)). At the end of the setup phase, each party Pi sets up the local DKG

24 Synchronous Distributed Key Generation without Broadcasts

instance for each party Pj (i.e., local-dkgi[j]) as AcceptList2j if local-dkg-gradei[j] ≥ 1. If
local-dkg-gradei[j] = 2, due to weak gradecast properties, all honest parties have a common
local DKG instance for party Pj (i.e., local-dkg[j]). In addition, for an honest party Pj ,
all honest parties will have a common local DKG instance local-dkg[j]. Each party Pi

also computes required secret keys skj,i, verification keys vkj,i for local DKG instance
local-dkgi[j] computed from local-dkgi[j] as shown in Figure 7.

Let sid be the input of party Pi.
Set Xi ← ∅. Each party Pi performs following operations:
1. Perform σj,i = SignTS(skj,i, (j, sid)) and multicast σj,i if local-dkg-gradei[j] ≥ 1 ∀j ∈ [n].
2. Upon receiving a set S of t+1 valid signature shares for party Pj , compute σj = CombineTS(pk, sid, S)

and Xi[j]← H′(σj).
3. Perform ℓ← argmaxh{Xi[h]|local-dkg-gradei[h] = 2}. Output Pℓ.

Figure 8: Oblivious Leader Election

The OLE protocol is presented in Figure 8. The input to the protocol is a sequence
id sid. Once the local DKG instances are setup, each party Pi uses its secret key skj,i to
sign a common message i.e., (j, sid) (for party Pj) if local-dkg-gradei[j] ≥ 1 to obtain a
threshold share σj,i. A set of t + 1 valid signature shares corresponding to local-dkg[j] is
combined to form a single threshold signature σj and a hash H ′(σj) generates κ bit coin
value for party Pj . We note that two or more parties could output the same grade list (i.e,
AcceptList2) in the recoverable-set-of-shares protocol; hence their local DKG might be same.
However, parties sign a distinct message e.g. (j, sid) for party Pj . Such generated threshold
signatures are unique and random regardless of their local DKG instance being common;
hence the coin value assigned to each party is also random. Honest parties consider coin
values for party Pj only if local-dkg-gradei[j] = 2. Note that if local-dkg-gradei[j] = 2, a
threshold signature σj will exist for party Pj . This is because all honest parties will have
local-dkg-grade[j] ≥ 1 and a common local-dkg[j] due to weak gradecast properties and
each honest party Pi will send their signature share σj,i. A coin value is then computed as
H ′(σj). The party Pℓ with highest coin value is elected as leader.
Round complexity and communication complexity. The threshold setup phase has
a latency of 15 rounds to invoke recoverable-set-of-shares protocol, n parallel instances
of weak-gradecast and distribute verification keys. The OLE protocol requires only 1
round to generate threshold signatures. The threshold setup phase invokes recoverable-set-
of-shares protocol, n parallel weak-gradecasts with an input of size O(κn) and sharing
verification keys. This incurs O(κn3) communication. The threshold signature generation
incurs O(κn3) communication.
Remark. While OLE protocols without threshold setup have been formulated for the
asynchronous model in the literature [AJM+21, GLL+22, AJM+23] with a communication
complexity of O(κn3), these protocols require stronger cryptographic assumptions such as
SXDH and OMDL. Compared to these constructions, our OLE protocol tolerates t < n/2
Byzantine faults and relies on CDH assumption. It is an interesting direction to explore
asynchronous OLE protocols with lesser cryptographic assumptions. Such an OLE protocol
can be used to obtain threshold setup-free asynchronous consensus protocols with lesser
cryptographic assumptions.

6.1 Analysis of OLE protocol
Our coin generation protocol is similar to the threshold coin-tossing scheme of [CKS00].
In Cachin et al. [CKS00], the coin value is a single bit computed from the threshold
signature using H ′′ : G→ {0, 1}. In our scheme, the coin value is a κ bit string computed
from the threshold signature using a κ bit hash function H ′ : G→ {0, 1}κ which is also
secure [CKPS01]. We rely on the following Lemma of [CKS00].

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 25

Lemma 9 ([CKS00]). In the random oracle model, the coin-tossing scheme of Cachin et
al. [CKS00] is secure i.e., satisfies robustness and unpredictability under CDH assumption.

Theorem 11. Assuming public-key infrastructure, random oracle and CDH assumption,
the protocol in Figure 8 is an oblivious leader election protocol with fairness at least 1

2 .

Proof. We first show termination i.e., honest party Pi will obtain a threshold signature
σj (and coin value for party Pj) if local-dkg-gradei[j] = 2. This is because all honest
parties will have local-dkg-grade[j] ≥ 1 and a common local-dkg[j] due to weak gradecast
properties. Thus, each honest party Pk will send their signature share σj,k i.e., a set of
t + 1 valid signature shares will be available sufficient to obtain threshold signature σj

(and coin value H ′(σj)).
By Lemma 9 the threshold signature generation protocol satisfies robustness and

unpredictability. Thus, the coin value generated from threshold signature is robust and
unpredictable.

Observe that each party Pi signs a distinct message (i.e, (j, sid)) for each part Pj . Thus,
the threshold signature σj for each party Pj is unique and random even if two or more
parties have the same local DKG instance; hence each party Pj will be assigned random
coin value (H ′(σj)). Since, the coin value assigned to a party is random, the coin value
assigned to an honest party will be a global maximum with probability at least n−t

n . The
probability that coin values of any two parties can be maximum is bounded by 1

2κ . Thus,
all honest parties select the coin value corresponding to a common honest leader with
probability n−t

n − 1
2κ ≥ 1

2 when κ = 2 log n.

7 Multi-valued Validated Byzantine Agreement
In this section, we present a synchronous MVBA protocol tolerating t < n/2 Byzantine
faults with O(n2ℓ + κn3) communication for inputs of size ℓ bits and expected con-
stant rounds. We extend the Binary Byzantine agreement (BBA) protocol of Katz and
Koo [KK06] to obtain MVBA for large (ℓ = Θ(n)) input. The BBA protocol of Katz
and Koo [KK06] tolerates t < n/2 Byzantine faults and terminates in expected 4 epochs.
Their protocol involves invoking n parallel gradecasts; with each gradecast propagating
small sized input. As mentioned before, their gradecast protocol incurs O(κn3) communi-
cation for a single bit input; thus, their protocol trivially incurs O(κn4) communication.
We replace their gradecast protocol with our communication optimal gradecast protocol
from Section 4. Our gradecast protocol incurs only O(nℓ + κn2) communication while
propagating ℓ-bit input. Using our gradecast protocol allows BBA protocol of Katz and
Koo [KZG10] to handle large input while simultaneously reducing the communication to
O(n2ℓ + κn3).

To circumvent the linear round lower bound for a deterministic BA protocol [DS83], BA
protocols use a common source of randomness called common coin to achieve agreement in
constant expected rounds. The common coin is weak if all honest parties obtain a common
honest leader with some constant probability (and with the remaining probability either
the common leader is Byzantine or honest parties may disagree on the leader). In Katz and
Koo BBA, the weak common coin was obtained by invoking n2 moderated VSS instances
which incurs Ω(κn4) communication and blows up the communication complexity. In this
work, we replace their weak common coin protocol with our communication efficient leader
election protocol from Section 6 which outputs a common honest leader with probability
at least 1

2 . Our OLE protocol incurs O(κn3) communication and a single round after an
initial setup phase (refer Figure 7) which incurs 15 rounds.
Protocol details. Our MVBA protocol in presented in Figure 9. The underlying
consensus mechanism is identical to the BBA protocol of Katz and Koo [KK06]. The
protocol progresses through a sequence of numbered epochs, with all parties starting in

26 Synchronous Distributed Key Generation without Broadcasts

Let vi be party Pi’s input and e be the current epoch. Each party Pi sets locki ← ⊥. Each party Pi

performs following operations.

1. (Round 1) Propose. Each party Pi invokes weak gradecast to propagate vi.
2. (Round 4) Update. Let (vj,i, gradei[j]) be the output with party Pj as the dealer. Let Sv

i := {j :
vj,i = v ∧ gradei[j] = 2} and S̃v

i := {j : vj,i = v ∧ gradei[j] ≥ 1}. If locki = ⊥, then:

(a) If |S̃v
i | > t, update vi ← v.

(b) If |Sv
i | > t, set locki ← 1.

Invoke weak gradecast (refer Figure 5) to propagate vi.
3. (Round 7) Update2. Again, let (vj,i, gradei[j]) be the output with party Pj as the dealer. Define
Sv

i and S̃v
i as above. If locki = ⊥ and |S̃v

i | > t, set vi ← v. Multicast vi.
4. (Round 8) Leader election. Invoke OLE protocol with input e.
5. (Round 9) Terminate/Advance Epoch. Let Pℓ be the output of leader election protocol.

(a) If locki = 0, output vi and terminate.
(b) If locki = 1, set locki = 0. If locki = ⊥ and |Sv

i | ≤ t, vℓ,i ̸= ⊥ and ex-validation(vℓ,i) = true,
update vi ← vℓ,i. Advance to epoch e + 1.

6. (At any round) Equivocation. If equivocating hashes signed by party Pj are detected, multicast
the equivocating hashes.

Figure 9: MVBA with O(n2ℓ + κn3) communication and expected 4 epochs.

epoch 1 and progressing to higher epochs as the protocol continues. At the start of the
protocol execution, each party sets its locki to ⊥. We explain the protocol steps for an
epoch e.

In round 1, each party Pi invokes weak gradecast protocol to propagate its input vi.
Our weak gradecast protocol incurs 4 rounds. Rounds 2 and 3 accommodates the steps
of the weak gradecast protocol. In round 4, each party Pi outputs (vj,i, gradei[j]) for the
weak gradecast corresponding to party Pj as the dealer. If party Pi observes a common
value v with a grade of at least 1 from at least t + 1 parties (i.e., S̃v

i ≥ t), party Pi adopts
value v (i.e., sets its input vi to value v). In addition, if Pi observes a common value v
with a grade of 2 from at least t + 1 parties (i.e., Sv

i ≥ t), it updates locki to 1 (i.e., locks
to value v). In this case, due to weak gradecast properties, all other honest parties will
have S̃v

i ≥ t and update their inputs to value v.
Again in round 4, each party Pi invokes weak gradecast protocol to propagate its

updated input vi. Rounds 5 and 6 accommodates the steps of the weak gradecast protocol.
In round 7, each party Pi outputs (vj,i, gradei[j]) for the weak gradecast corresponding
with party Pj as the dealer. Sv

i and S̃v
i are defined similar to round 4. In round 7, Pi

updates its input vi to v if locki = ⊥ and S̃v
i ≥ t (we explain the intuition behind this

update step later in round 9). At the end of round 7, each party Pi multicasts its input vi.
In round 8, parties invoke the OLE protocol to elect a leader. The OLE protocol

outputs a common honest leader with probability at least 1
2 . Let Pℓ be the output of leader

election protocol for party Pi. In round 9, if locki = 0, party Pi outputs vi and terminates
the protocol. On the other hand, if locki = 0, party Pi sets locki = 1 and continues to
the next epoch. This ensures party Pi participates in the next epoch e + 1 and all honest
parties receive input from Pi in the next epoch e + 1. If an honest party Pi updates its
locki to 1 in epoch e, our protocol ensures that all honest parties terminate the protocol
in epoch e + 2.

If locki = ⊥ and Sv
i ≤ t, Pi updates vi to the externally valid vℓ,i when vℓ,i ̸= ⊥.

When the OLE outputs different leaders or when the common elected leader is Byzantine,
different honest parties can update their input to different values and continue to epoch
e + 1. However, when the OLE outputs a common honest leader Pℓ (which happens with
probability at least 1

2), all honest parties will adopt a common value which is the value

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 27

sent by Pℓ in round 7. This property holds even when some honest party adopts the
leader Pℓ’s value and while some honest party do not adopt the leader Pℓ’s value. Observe
that an honest party Pj does not adopt the leader’s value when Sv

j ≥ t. Due to weak
gradecast properties, all other honest parties must have S̃v

i ≥ t in round 7. Thus, all honest
parties (including the common and honest elected leader) will adopt value v in round 7
and multicast value v. Thus, each honest party with Sv

j ≤ t will pick value v and advance
to epoch e + 1. This ensures all honest parties will update their input to a common value
v and advance to epoch e + 1 when the elected leader is common and honest.
Round complexity. By Theorem 11, a common honest leader is selected with probability
at least 1

2 and all honest parties terminate in the next 2 epochs. Thus, the expected
number of epochs required is 4 epochs.
Remark on quality property. By Theorem 11, a common honest leader is selected
with probability at least 1

2 . When a common honest leader is elected, all honest parties
decide on the leader’s proposed value. Thus, our MVBA protocol also satisfies the quality
property with probability at least 1

2 .

7.1 Analysis of MVBA
Lemma 10. If an honest party sets lock to 1 with a value v in epoch e, then all honest
parties adopt value v in epoch e.

Proof. Suppose an honest party Pi sets locki to 1 in epoch e. Party Pi must have received
value v from a set Q of at least t + 1 parties such that |Sv

i | > t. By the properties of weak
gradecast, all other honest parties receive value v corresponding to parties in Q with a
grade ≥ 1 (i.e., all other honest parties have grade[j] ≥ 1 ∀j ∈ Q) and |S̃v| > t for all other
honest parties and all honest parties adopt value v in the Update step.

Once all honest parties adopt value v in the Update step, they invoke weak-gradecast
to propagate value v at the end of the Update step. Since, honest parties do not equivocate
and send value v in a timely manner, all honest parties output value v such that grade[j]
to 2. Thus, |S̃v

i | > t and |Sv
i | > t in the Update2 step. Since, |Sv

i | > t, no honest party
will adopt value vℓ selected from the proposal election protocol. Thus, all honest parties
adopt value v in epoch e.

Lemma 11. If all honest parties start an epoch e with same input v, then all honest
parties decide value v and terminate by the end of epoch e + 1.

Proof. Suppose all honest parties start an epoch e with the same input v. All honest
parties invoke weak-gradecast with value v in the Propose step. By the properties of weak
gradecast, for an honest dealer, all honest parties output a grade of 2. Thus, all honest
parties will set grade[j] = 2 for all other honest parties. Thus, for value v, all honest
parties have |Sv

i | > t and |S̃v
i | > t If lock = ⊥, honest parties set lock to 1.

Similarly, all honest parties invoke weak-gradecast with value v in the Update2 step.
By similar argument, all honest parties will set grade[j] = 2 for all other honest parties i.e.,
|Sv

i | > t and |S̃v
i | > t for all honest parties at the of Update 2 step. Moreover, no honest

party will adopt the value output from the proposal election protocol.
Honest parties with lock = 0, output v and terminate in epoch e. All the remaining

honest parties with lock = 1, set lock = 0 and advances to epoch e + 1. In the next epoch,
all the remaining honest parties have lock = 1 and will not update its value and stick
to value v. At the end of epoch e + 1, they set their lock lock = 0, output value v and
terminate. Thus, all honest parties output v and terminate by the end of epoch e + 1.

Theorem 12. The protocol in Figure 9 solves MVBA.

28 Synchronous Distributed Key Generation without Broadcasts

Proof. We first consider external validity i.e., if an honest party decides a value v, then
ex-validation(v) = true. Observe that an honest party Pi decides a value v only when its
sets locki = true. An honest party sets locki = true only when it observes |Sv

i | > t. Thus,
at least one honest party Pj must have sent value v in Propose step. Honest party Pj

sends value v either when its input at the start of the protocol execution is v in which
case ex-validation(v) = true, or when its updates its value vj to v at the end of an epoch.
In the latter case, party Pj checks if ex-validation(v) = true.

Next, we consider agreement. Consider an epoch e and let Pℓ be the common leader in
epoch e elected via OLE protocol. There are two cases to consider.
Case I. locki = 1 for at least one honest party Pi with a value v in epoch e. By Lemma 10,
all honest party adopt value v in epoch e and enter epoch e + 1 with same value v.
By Lemma 11, all honest parties output value v and terminate by epoch e + 2.
Case II. locki = ⊥ for all honest parties in epoch e. If leader Pℓ is honest, leader Pℓ

sends the same value vℓ to all parties. If |Sv
i | ≤ t for all honest parties, then all honest

parties adopt the value vℓ in epoch e. By Lemma 11, all honest parties output value vℓ

and terminate in epoch e + 2.
If |Sv

i | > t for at least one honest party Pi in the Update2 step, by the properties of
weak-gradecast, |S̃v| > t for all honest parties. Thus, all honest parties including leader Pℓ

adopt value v in the Update2 step. If the leader Pℓ is honest, it sends the same value v to
all parties. Honest parties with |Sv

i | ≤ t adopt value vℓ which is the same value adopted
by party Pi with |Sv

i | > t. Thus, all honest parties have value v at the end of epoch e.
By Lemma 11, all honest parties output value v and terminate by epoch e + 2.

Lemma 12 (Communication Complexity). Let ℓ be the size of input v for each party, κ
be the size of accumulator and w be the size of witness. The communication complexity of
the protocol is O(n2ℓ + (κ + w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi invokes weak gradecast with O(ℓ)-sized
proposal. By Lemma 4, this step incurs O(n2ℓ+(κ+w)n3). Similarly, in the Update2 step,
each party invokes weak gradecast with O(ℓ)-sized proposal. By Lemma 4, this step also
incurs O(n2ℓ+(κ+w)n3). The proposal election protocol has a communication complexity
of O(κn3). Thus, the total communication complexity of the protocol is O(n2ℓ+(κ+w)n3)
bits per epoch.

8 Distributed Key Generation
Finally, we present two communication efficient DKG protocols with O(κn3) communication.
The first protocol incurs expected O(κn3) communication and terminates in expected
constant rounds while the second protocol incurs O(κn3) communication in the worst case
and terminates in t + 1 epochs. The DKG protocols in this section differs from the secure
DKG protocol of Section 3 in the following ways. First, we replace the broadcast channel
with weaker consensus primitives and use a single invocation of consensus instance. Second,
in the secure DKG protocol, the final public key and secret keys are computed from the
secret shares of all honest parties. In particular, all honest parties belong to set QUAL and
the public key and secret keys are computed from parties in QUAL. In contrast, the DKG
protocols in this section compute the final public key and secret keys from a common set
of at least n− t parties where at least n− 2t parties are honest (i.e., at least one honest
party when n = 2t + 1). This suffices to ensure construction of a secure DKG protocol.

8.1 DKG with O(κn3) communication and expected O(1) rounds
The DKG protocol uses recoverable-set-of-shares protocol (refer Figure 6) to perform secret
sharing. The threshold setup protocol (refer Figure 7) is also executed at the start of

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 29

1. Deal/Setup. Each party Pi invokes recoverable-set-of-shares protocol (refer Figure 6). Each party
Pi outputs a set AcceptListi with an ack-cert for AcceptListi (i.e., AC(AcceptListi)). Each party Pi

also invokes threshold setup phase (refer Figure 7) in parallel.
2. MVBA. Each party Pi invokes MVBA (Figure 9) with input (AcceptListi, AC(AcceptListi)). Let

AcceptListk be the output of all honest parties.
3. Generating keys. Let xi =

∑
j∈AcceptListk|AcceptListk[j]=2 sji and x′

i =∑
j∈AcceptListk|AcceptListk[j]=2 s′

ji be the sum of secret shares in AcceptListk. Compute C⟨g⟩(xi),
C⟨g,h⟩(xi, x′

i) and π≡Comi = NIZKPK≡Com(xi, x′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x′

i)).

- Multicast (C⟨g⟩(xi), π≡Comi) to all parties.
- Verify the received (C⟨g⟩(xi), π≡Comj) as shown in Equation (3).
- Upon receiving t + 1 valid C⟨g⟩(xi), interpolate them to obtain y = gx. Set y as the public key

and xi as the private key.

Figure 10: DKG with expected O(κn3) communication and expected O(1) rounds

the execution. At the end of the recoverable-set-of-shares protocol, each honest party Pi

outputs a (possibly different) set of at least n−t parties (AcceptListi) which they observe to
have correctly shared their secret along with an ack-cert for AcceptListi (AC(AcceptListi)).
The ack-cert for AcceptListi serves an external validity function to the MVBA protocol
i.e., if there is an AC(AcceptListi) for AcceptListi, then ex-validation(AcceptListi) = true.
Note that both AcceptListi and AC(AcceptListi) are linear sized. Each honest party Pi

then invokes MVBA protocol with (AcceptListi, AC(AcceptListi)) as input. At the end of
MVBA protocol, each honest party outputs a common set AcceptListk. The final secret
key and public key is then computed using secret shares shared by parties h such that
AcceptListk[h] = 2 using the reconstruction protocol in Figure 2.
Latency and communication complexity. The recoverable-set-of-shares protocol has
a round complexity of 10 rounds and O((κ + w)n3) communication. The threshold setup
protocol incurs a communication of O((κ+w)n3) and 15 rounds; but is executed in parallel
and completes before the OLE protocol is invoked in the MVBA protocol. Thus, it does
not increase overall round complexity of the protocol. The MVBA protocol incurs expected
4 epochs (with each epoch being 9 rounds) and O((κ + w)n3) communication where the
size of input is O(κn). The reconstruction phase requires O(κn2) communication and a
single round. Thus, the protocol incurs O((κ + w)n3) communication and expected 47
rounds.

Theorem 13. Assuming public-key infrastructure, random oracle, CDH and a universal
structured reference string under q-SDH assumption, the protocol in Figure 10 is a secure
protocol for distributed key generation in dlog-based cryptosystem tolerating t < n/2
Byzantine faults.

Proof. The MVBA protocol ensures that all honest parties agree on the same set of
accepted parties AcceptListk at the end of Step 2 in Figure 10.

Given the common set of accepted parties AcceptListk, the proof of correctness and
secrecy properties of a secure DKG protocol remains identical to the proof of Theorem 8.

8.2 DKG with worst-case O(κn3) communication and O(t) rounds
While the above protocol terminates in expected 4 epochs in the best case, it has prob-
abilistic termination and may require a linear number of epochs in the worst case with
a communication of O(κn4). As an alternate solution, we present a DKG protocol with
guaranteed termination in t + 1 epochs with O(κn3) communication in the worst case. The
protocol is presented in Figure 11. In the protocol, honest parties execute the recoverable-
set-of-shares protocol and each honest party Pi outputs a (possibly different) set of at least
n− t parties (AcceptListi) which they observe to have correctly shared their secret along

30 Synchronous Distributed Key Generation without Broadcasts

with an ack-cert for AcceptListi (AC(AcceptListi)). The tuple (AcceptListi, AC(AcceptListi))
is input into a leader-based Byzantine fault tolerant state machine replication (BFT SMR)
protocol of RandPiper [BSL+21] to agree on a common set. We present a brief overview
of the BFT SMR.

1. Deal. Each party Pi invokes recoverable-set-of-shares protocol (refer Figure 6). Each party Pi output
a set AcceptListi with an ack-cert for AcceptListi.

2. BFT SMR. Each party Pi participates in BFT SMR [BSL+21] with input AcceptListi and
AC(AcceptListi). The BFT SMR protocol is executed in round-robin manner with first t + 1 leaders.
Let AcceptListk be the first committed value of all honest parties.

3. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and x′
i =∑

j∈AcceptListk|AcceptListk[j]=2 s′
ji be the sum of secret shares in AcceptListk. Compute C⟨g⟩(xi),

C⟨g,h⟩(xi, x′
i)) and π≡Comi = NIZKPK≡Com(xi, x′

i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x′
i).

- Multicast (C⟨g⟩(xi), π≡Comi) to all parties.
- Verify the received (C⟨g⟩(xi), π≡Comj) as shown in Equation (3).
- Upon receiving t + 1 valid C⟨g⟩(xi), interpolate them to obtain y = gx. Set y as the public key

and xi as the private key.

Figure 11: DKG with worst-case O(κn3) communication and t + 1 epochs

BFT SMR of RandPiper [BSL+21]. The BFT SMR protocol of RandPiper [BSL+21]
is a communication efficient rotating-leader SMR protocol with O(κn2) communication
per epoch even for O(n)-sized input. The BFT SMR protocol has optimal resilience i.e.,
tolerates t < n/2 Byzantine faults. The leaders are rotated in each epoch; in their protocol,
an epoch is a duration of 7 rounds. When the leader of an epoch is honest, all honest
parties commit the proposed value in the same epoch, whereas, when the leader of the
epoch is Byzantine, some honest parties may require linear number of epochs to commit the
proposed value. The BFT SMR utilizes the “block-chaining” paradigm i.e., each proposal
is represented in the form of a block which explicitly extends a block B proposed earlier
by including hash of previous block B. In this paradigm, when a block B is committed,
all its ancestors are also committed. We refer the readers to the RandPiper [BSL+21] for
more details.

In this DKG protocol, we execute the BFT SMR protocol for t + 1 epochs. In each
epoch, the epoch leader is expected to propose its (AcceptList, AC(AcceptList)). If the
epoch leader is honest, all honest parties commit the proposed set in the same epoch;
otherwise honest parties may require linear number of epochs when the leader is Byzantine
to commit the proposed value or commit no value at all if the Byzantine leader does not
propose. Since the BFT SMR protocol is executed for t + 1 epochs, there will be at least
one honest leader; thus all honest parties commit at least one set. Honest parties output
the first committed set and perform reconstruction using this set to generate the final
secret key and public key.
Latency and communication complexity. The recoverable-set-of-shares protocol
incurs a latency of 10 rounds and O(κn3) communication. The BFT SMR protocol incurs
O(κn2) communication per epoch; O(κn3) communication for t + 1 epochs. The length of
each epoch is 7 rounds. The reconstruction phase requires O(κn2) communication and
a single round . Thus, the protocol incurs O(κn3) communication in the worst-case and
11 + 7 ∗ (t + 1) rounds.
Theorem 14. Assuming public-key infrastructure, discrete-log assumption, random oracle,
a universal structured reference string under q-SDH assumption, the protocol in Figure 11
is a secure protocol for distributed key generation in dlog-based cryptosystem tolerating
t < n/2 Byzantine faults.
Proof. The underlying BFT SMR protocol [BSL+21] ensures that all honest parties agree
on a common set of accepted parties AcceptListk at the end of Step 2 in Figure 11.

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 31

Given the common set of accepted parties AcceptListk, the proof of correctness and
secrecy properties of a secure DKG protocol remains identical to the proof of Theorem 8.

9 Related Work

9.1 Related Works in Distributed Key Generation Literature
We review the most recent and closely related DKG protocols. An overview of the
closely related work is provided in Table 1. While a myriad of DKG protocols [Ped91,
GJKR07, CGJ+99, NBBR16, GJM+21, SJSW19, EFR21, Gro21, CDSV23, Kat23] have
been proposed in the synchronous model, all of these protocols assume a broadcast channel.
All of these protocols invoke Ω(n) parallel broadcasts over two or more rounds. A natural
choice to instantiate the broadcast channels is via Byzantine consensus primitives such as
Byzantine Broadcast [DS83, ADD+19] or Byzantine agreement [KK06]. To the best of our
knowledge, all optimally resilient deterministic Byzantine consensus protocols incur O(κn3)
communication without threshold signatures and t + 1 rounds [DS83]. For randomized
consensus protocols, the best known protocol with optimal resilience in this setting is Katz
and Koo [KK06] which incurs O(κn4) communication. Although, randomized consensus
protocols terminate in expected constant rounds, n parallel instances of randomized
consensus requires expected O(log n) rounds to terminate [BOEY03]. While there are
known techniques [BOEY03, KK06] to obtain expected constant round protocols via
parallel composition of the BA protocol that terminate in constant expected rounds,
the communication complexity of the resulting protocol is high (Ω(κn4)). Compared to
all prior DKG protocols, our protocols do not use broadcast channel and use a single
instance of Byzantine consensus protocols. Our protocols incur either expected O(κn3)
communication and expected O(1) rounds or worst-case O(κn3) communication and O(t)
rounds. Our protocols are secure against static failures and generate uniform keys for
discrete logarithm based cryptosystems.

We also argue that the protocols by Momose and Ren [MR21] and Tsimos et al. [TLP22]
are relevant but not sufficient to achieve our goals. Momose and Ren [MR21] gave a
deterministic BA protocol with O(κn2) communication with sub-optimal resilience of t <
(1− ϵ)n/2 for a small constant ϵ. Using their BA protocol to instantiate broadcast channels
will result in DKG protocols with O(κn3) communication but with sub-optimal resilience
and linear round complexity. Similarly, Tsimos et al. [TLP22] present a communication-
efficient broadcast protocol RandomBroadcast in the bulletin PKI setting. It works with
t < (1− ϵ)n resilience, O(κ2n2) communication, linear round complexity, and negligible
error probability. Using RandomBroadcast to instantiate broadcast channels will result in
DKG protocols with optimal resilience, O(κ2n3) communication, linear round complexity
and negligible error probability. In contrast, our protocols have optimal resilience, O(κn3)
communication and expected constant rounds (or O(t) rounds).

Pedersen [Ped91] introduced the first efficient DKG protocol for discrete log cryptosys-
tems in the synchronous setting. Their protocol is based on n parallel invocations of
Feldman VSS [Fel87]. Gennaro et al. [GJKR07] showed that Pedersen’s DKG protocol
can be biased by an adversary to generate non-uniform keys. To remove the bias, they
proposed a new DKG protocol that requires additional secret sharing rounds; hence, is
less efficient. Canneti et al. [CGJ+99] extended Gennaro et al.’s DKG to handle adaptive
corruptions.

Neji et al. [NBBR16] presented an efficient DKG protocol to remove the bias without
the additional secret sharing round. However, in their protocol, honest parties still need to
agree on whether to perform reconstruction for a secret shared by a party which requires
additional consensus invocation.

Gurkhan et al. [GJM+21] presented DKG protocol without a complaint phase by using

32 Synchronous Distributed Key Generation without Broadcasts

publicly verifiable secret sharing (PVSS) [CD17] scheme. However, they tolerate only log n
Byzantine faults and do not generate keys for discrete-logarithms based cryptosystems;
reducing its usefulness.

Groth [Gro21] presents a non-interactive DKG protocol with a refresh procedure that
allows refreshing the secret key shares to a new committee. Erwig et al. [EFR21] considers
large scale non-interactive DKG protocol and handles mobile Byzantine faults. Cascudo et
al. [CDSV23] presented a DKG protocol using PVSS [CD17] scheme which generates field
elements as the secret keys. All of the above protocols assume broadcast channels.

Several other works tackle the DKG problem from different angles. Kate et al. [KHG12]
reduced the size of input to the broadcast channel from O(n) to O(1) by using polynomial
commitments [KZG10]. Tomescu et al. [TCZ+20] reduce the computational cost of
dealings in Kate et al. [KHG12] at the cost of a logarithmic increase in communication cost.
Schindler et al. [SJSW19] instantiate the broadcast channel with the Ethereum blockchain.
In Table 1, we replaced the Ethereum blockchain with Byzantine consensus primitives for
fair comparison.

Kate et al. [KHG12] gave the first practical DKG protocol in the partially synchronous
communication model which requires 3t + 2f + 1 parties to tolerate t Byzantine faults and
f crash faults. Kokoris-Kogias et al. [KMS20] gave the first DKG protocol in asynchronous
communication model with optimal resilience (t < n/3). Their protocol has O(κn4)
communication and O(t) rounds overhead. Abraham et al. [AJM+21] gave an improved
DKG protocol with O(κn3) communication and expected O(1) round complexity. However,
their protocol does not generate keys for dlog-based cryptosystems and requires stronger
cryptographic assumptions such as SXDH. Das et al. [DYX+22] gave the dlog-based DKG
protocol with O(κn3) communication and optimal resilience in the asynchronous model.
However, their protocol incurs expected O(log n) round complexity and requires stronger
Decisional Composite Residuosity (DCR) assumption. Recently, Das et al. [DXKKR23]
gave the dlog-based DKG protocol with expected O(κn3) communication and optimal
resilience in the asynchronous model with CDH assumption. However, their construction
still incurs expected O(log n) round complexity. More recently, Abraham et al. [AJM+23]
gave an adaptively-secure dlog-based DKG protocol with expected O(κn3) communication
and expected O(1) constant rounds. However, the security of their protocol relies on
stronger cryptographic assumptions such as one-more discrete logarithm (OMDL) and
non-standard AGM model.
Subsequent work. We note some recent works that achieves DKG protocols with linear
round complexity. Bacho et al. [BCLZL23] presented a DKG protocol with O(κn3) commu-
nication and O(t) rounds matching our DKG protocol with linear round complexity. Very
recently, Bacho et al. [BLL+23] presented a DKG protocol with sub-cubic communication
and linear round complexity. However, their protocol generates group elements as secret
keys, uses heavier cryptographic primitives such as SNARKs and relies on idealized and
non-standard algebraic group model(AGM) [FKL18]. Additionally, Feng et al. [FLT24]
have also designed a DKG protocol with sub-cubic communication and linear round com-
plexity, where the secret keys are field elements. Nevertheless, their protocol also relies on
heavier cryptographic primitives such as SNARKs.
Concrete round complexity. All prior synchronous DKG protocols invoke Ω(n) broad-
casts over two or more rounds. Invoking broadcast channels with the state-of-the art
Byzantine consensus protocols would require at least 2t + 2 rounds. Our expected constant
round DKG protocol requires only 47 rounds in expectation. When t > 23, the concrete
round complexity of our protocol is better than prior work.
Concrete communication complexity. The concrete communication complexity of
our expected constant round DKG protocol is 46κn3 + 5κn2. Similarly, the concrete
communication complexity for our protocol with linear round complexity is 14κn3 + 5κn2.
For protocols that assume a broadcast channel, their concrete communication complexity

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 33

depends on how the broadcast channel is instantiated. If the state-of-the-art optimally
resilient Byzantine broadcast or Byzantine agreement is used, a single instance of it incurs
O(κn3) communication resulting in a total communication cost of O(κn4) since they invoke
broadcast channels Ω(n) times. Even when using the RandomBroadcast of Tsimos et
al. [TLP22], it would incur O(κ2n3) which is higher than our constructions when κ > 46.
Moreover, these DKG protocols would have linear round complexity when Tsimos et
al. [TLP22] is used.

9.2 Related Works in Byzantine Agreement Literature
There has been a long line of work in improving communication and round complexity
of consensus protocols [KK06, FM97, ADD+19, YMR+19, AMS19, MR21, SARN20]. We
review the most recent and closely related works.

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [CKPS01]
to allow honest parties to agree on any externally valid values. Their protocol works in asyn-
chronous communication model and has optimal resilience (t < n/3) with O(n2ℓ+κn2 +n3)
communication for input of size ℓ. Later, Abraham et al. [AMS19] gave an MVBA protocol
with optimal resilience and O((ℓ + κ)n2) communication in the same asynchronous setting.
Lu et al. [LLTW20] extended the work of Abraham et al. [AMS19] to handle long messages
of size ℓ with a communication complexity of O(nℓ + κn2). All of these protocols assumed
threshold setup. In the absence of threshold setup, the communication complexity blows
up by a factor of n in all of these protocols.

Recently, Gao et al. [GLL+22] designed an asynchronous validated BA protocol without
threshold setup. Their construction incurs expected O(κn3) communication and expected
O(1) rounds. Their techniques can be used to obtain threshold setup-free asynchronous
MVBA protocols. However, their construction relies on aggregatable PVSS [GJM+21]
which requires stronger cryptographic assumptions (such as SXDH).

To the best of our knowledge, no MVBA protocol has been formulated in the syn-
chronous setting tolerating t < n/2 Byzantine faults. Our MVBA protocol incurs
O(n2ℓ + κn3) for inputs of size ℓ and does not assume threshold setup and terminates in
expected constant rounds. The security of our MVBA protocol relies on CDH problem in
the random oracle model.

Our MVBA protocol can also be used for binary inputs as a Binary Byzantine Agreement
(BBA) protocol tolerating t < n/2 Byzantine faults and terminating in expected O(1)
rounds. Feldman and Micali [FM97] gave a BBA protocol that terminates in constant
expected rounds. Their protocol works in plain authenticated model without PKI and
tolerates t < n/3 Byzantine faults (which is optimal). In the authenticated setting, Fitzi
an Garay [FG03] gave the first BBA protocol with optimal resilience t < n/2 and expected
constant round complexity that does not require any trusted dealer. However, their
protocol requires specific number-theoretic assumptions (essentially, some appropriately-
homomorphic public-key encryption scheme). Katz and Koo [KK06] gave a BBA protocol
tolerating t < n/2 Byzantine faults terminating in expected constant rounds. Their
protocol incurs O(κn4) communication and terminates in expected 4 epochs. We extend
the BBA protocol of Katz and Koo [KK06] and reduce its communication by linear factor
while handling multi-valued input by designing a communication optimal gradecast protocol
and an OLE protocol with O(κn3) communication, but requires CDH assumptions. A
simple and efficient BBA tolerating t < n/3 Byzantine faults in the authenticated model
was given by Micali [Mic16]. Abraham et al. [ADD+19] reduced the round complexity of
BBA protocol to expected 10 rounds. However, their protocol requires a threshold setup to
generate a perfect common coin; a perfect common coin ensures all honest parties output
the same random value. Compared to their work, our work does not require a threshold
setup and executes with a weak common coin.

Recently, Abraham et al. [AAPP22] gave a BBA protocol in the plain authenticated

34 Synchronous Distributed Key Generation without Broadcasts

model without PKI and digital signatures tolerating t < n/3 Byzantine faults. Their
protocol has an expected communication complexity of O(n4 log n) and expected constant
rounds.

9.3 Related Work in the Gradecast Literature
Gradecast was originally introduced by Feldman and Micali [FM88] in plain authenticated
model without PKI and digital signatures. They gave a protocol tolerating t < n/3
Byzantine faults. Katz and Koo [KK06] gave a slightly relaxed definition of gradecast
which allows honest parties to output any value with a grade of 1 when no honest party
outputs a value with grade of 2. They gave a gradecast protocol tolerating t < n/2
Byzantine faults in the authenticated model with PKI and digital signatures. Without
threshold signature setup, their gradecast protocol incurs O(κn3) communication even
for a single bit. We also recall the gradecast protocol with multiple grades introduced
by Garay et al. [GKKO07] and later improved by [FLZL21]. Their gradecast protocol
supports arbitrary number of grades. Their protocol works in the authenticated model
with PKI and digital signatures and has a communication complexity of O(g∗(ℓ + κ)n2)
for input of size ℓ bit where g∗ is the maximum grade supported. Compared to all these
works, our gradecast protocol satisfies the definition of Katz and Koo [KK06] and tolerates
t < n/2 Byzantine faults and incurs O(nℓ + κn2) communication for inputs of size ℓ in
authenticated model with PKI and digital signatures.

10 A Lower Bound on the Communication Complexity
of Weak Gradecast

In this section, we show a quadratic communication lower bound for the weak gradecast
protocol. The proof of this lower bound is a trivial extension of the communication lower
bound for Byzantine broadcast by Dolev and Reischuk [DR82].

Lemma 13. There does not exist a protocol for weak gradecast tolerating t Byzantine
parties with a communication complexity of at most t2/4 messages.

Proof. Suppose for the sake of contradiction, there exists such a protocol. Consider the
parties being partitioned into the following two sets: A: a set of ⌈t/2⌉ parties, and B: all
remaining parties which includes the designated sender r.

We consider two executions W1 and W2 where the third property of weak gradecast
(i.e., if an honest party outputs a value v with a grade of 2, all other honest parties output
value v with a grade ≥ 1) is violated in the W2. In the first execution (W1), all parties in
A are Byzantine. Parties in A do not communicate with each other. Towards B, parties
in A execute honestly except they ignore the first ⌈t/2⌉ messages from parties in B. The
designated sender r ∈ A sends value v to all parties. Since, the maximum faults in W1 is
⌈t/2⌉ and the designated sender is honest, all honest parties decide value v with a grade of
2.

Since the communication complexity of the protocol is at most t2/4, there must exist
a party (say s) in A that receives at most t/2 messages from parties in B; otherwise the
communication complexity will be more than t2/4. Let Bs be the set of all parties that
send messages to party s in W1.

In the second execution (W2), all parties in A \ {s} are Byzantine and all parties in
Bs are Byzantine which includes the designated sender r. The total number of Byzantine
parties is (⌈t/2⌉ − 1) + ⌈t/2⌉ ≤ t which is within allowed fault threshold t. The designated
sender r sends value v. The parties in Bs execute the protocol in the same way as in W1
except they do not send any messages to party s. Parties in A \ {s} execute the protocol
in the same way as in W1. Party s in W1 behave as an honest party which did not receive

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 35

the first ⌈t/2⌉ messages which is similar to party s in W2 which receives no messages.
Thus, parties in B \Bs cannot distinguish W1 and W2. Thus, they decide value v with a
grade of 2. Since, party s does not receive any messages in W2, it does not decide v with a
grade of ≥ 1. This violates the third property of weak gradecast where if an honest party
outputs a value v with a grade of 2, then all honest parties need to output a value v with
a grade ≥ 1. A contradiction.

Theorem 15. Let CC(ℓ) be the communication complexity of weak gradecast for ℓ bit input.
Then CC(ℓ) = Ω(nℓ + n2)

Proof. Since each party must learn ℓ bit input, the protocol needs Ω(nℓ) bits (The argument
follows from [FH06]). From Lemma 13, weak gradecast requires Ω(n2) even for a single
bit input. Thus, CC(ℓ) = Ω(nℓ + n2) for ℓ bit input.

Acknowledgements
We thank Ittai Abraham and the anonymous reviewers for their valuable feedback on this
paper. This work was supported in part by NIFA award number 2021-67021-34252 and
the National Science Foundation (NSF) under grant CNS1846316.

References
[AAPP22] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymptoti-

cally free broadcast in constant expected time via packed VSS. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022: 20th Theory of Cryptography
Conference, Part I, volume 13747 of Lecture Notes in Computer Science,
pages 384–414, Chicago, IL, USA, November 7–10, 2022. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-22318-1_14.

[ADD+19] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
Synchronous byzantine agreement with expected O(1) rounds, expected O(n2)
communication, and optimal resilience. In Ian Goldberg and Tyler Moore,
editors, FC 2019: 23rd International Conference on Financial Cryptography
and Data Security, volume 11598 of Lecture Notes in Computer Science, pages
320–334, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-32101-7_20.

[AJM+21] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Reaching consensus for asynchronous distributed
key generation. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, page 363–373, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3465084.3467914.

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad
Stern. Bingo: Adaptivity and asynchrony in verifiable secret sharing and
distributed key generation. In Advances in Cryptology – CRYPTO 2023: 43rd
Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20–24, 2023, Proceedings, Part I, page 39–70, Berlin,
Heidelberg, 2023. Springer-Verlag. doi:10.1007/978-3-031-38557-5_2.

[AMS19] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically
optimal validated asynchronous byzantine agreement. In Peter Robinson
and Faith Ellen, editors, 38th ACM Symposium Annual on Principles of

https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1145/3465084.3467914
https://doi.org/10.1007/978-3-031-38557-5_2

36 Synchronous Distributed Key Generation without Broadcasts

Distributed Computing, pages 337–346, Toronto, ON, Canada, July 29 –
August 2, 2019. Association for Computing Machinery. doi:10.1145/3293
611.3331612.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177,
April 2008. doi:10.1007/s00145-007-9005-7.

[BCLZL23] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-
agnostic security comes (almost) for free in dkg and mpc. In Advances in
Cryptology – CRYPTO 2023: 43rd Annual International Cryptology Con-
ference, CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023,
Proceedings, Part I, page 71–106, Berlin, Heidelberg, 2023. Springer-Verlag.
doi:10.1007/978-3-031-38557-5_3.

[BKP11] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable
secret sharing revisited. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes
in Computer Science, pages 590–609, Seoul, South Korea, December 4–8, 2011.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-25385-0_32.

[BL22] Renas Bacho and Julian Loss. On the adaptive security of the threshold bls
signature scheme. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’22, page 193–207, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3548
606.3560656.

[BLL+23] Renas Bacho, Christoph Lenzen, Julian Loss, Simon Ochsenreither, and
Dimitrios Papachristoudis. GRandLine: Adaptively secure DKG and ran-
domness beacon with (almost) quadratic communication complexity. IACR
Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/2023/1887. URL:
https://eprint.iacr.org/2023/1887.

[BOEY03] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency
in constant time. Distributed Computing, 16(4):249–262, 2003. doi:10.100
7/s00446-002-0083-3.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In Yvo
Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Com-
puter Science, pages 31–46, Miami, FL, USA, January 6–8, 2003. Springer,
Heidelberg, Germany. doi:10.1007/3-540-36288-6_3.

[BP97] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In Walter Fumy, editor, Advances in
Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pages 480–494, Konstanz, Germany, May 11–15, 1997. Springer,
Heidelberg, Germany. doi:10.1007/3-540-69053-0_33.

[BSL+21] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik
Nayak. RandPiper - reconfiguration-friendly random beacons with quadratic
communication. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021:
28th Conference on Computer and Communications Security, pages 3502–
3524, Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.
doi:10.1145/3460120.3484574.

https://doi.org/10.1145/3293611.3331612
https://doi.org/10.1145/3293611.3331612
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1145/3548606.3560656
https://doi.org/10.1145/3548606.3560656
https://eprint.iacr.org/2023/1887
https://eprint.iacr.org/2023/1887
https://doi.org/10.1007/s00446-002-0083-3
https://doi.org/10.1007/s00446-002-0083-3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1145/3460120.3484574

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 37

[CD17] Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness at-
tested by public entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryp-
tography and Network Security, volume 10355 of Lecture Notes in Computer
Science, pages 537–556, Kanazawa, Japan, July 10–12, 2017. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-319-61204-1_27.

[CDSV23] Ignacio Cascudo, Bernardo David, Omer Shlomovits, and Denis Varlakov.
Mt. random: Multi-tiered randomness beacons. In Applied Cryptography and
Network Security: 21st International Conference, ACNS 2023, Kyoto, Japan,
June 19–22, 2023, Proceedings, Part II, page 645–674, Berlin, Heidelberg,
2023. Springer-Verlag. doi:10.1007/978-3-031-33491-7_24.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal
Rabin. Adaptive security for threshold cryptosystems. In Michael J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes
in Computer Science, pages 98–115, Santa Barbara, CA, USA, August 15–19,
1999. Springer, Heidelberg, Germany. doi:10.1007/3-540-48405-1_7.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure
and efficient asynchronous broadcast protocols. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 524–541, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany. doi:10.1007/3-540-44647-8_31.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles
in constantipole: practical asynchronous byzantine agreement using cryp-
tography (extended abstract). In Gil Neiger, editor, 19th ACM Sympo-
sium Annual on Principles of Distributed Computing, pages 123–132, Port-
land, OR, USA, July 16–19, 2000. Association for Computing Machinery.
doi:10.1145/343477.343531.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 307–315, Santa Barbara, CA, USA, August 20–24,
1990. Springer, Heidelberg, Germany. doi:10.1007/0-387-34805-0_28.

[DR82] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for
byzantine agreement. In Robert L. Probert, Michael J. Fischer, and Nicola
Santoro, editors, 1st ACM Symposium Annual on Principles of Distributed
Computing, pages 132–140, Ottawa, Canada, August 18–20, 1982. Association
for Computing Machinery. doi:10.1145/800220.806690.

[Dra] Drand. Drand - a distributed randomness beacon daemon. URL: https:
//github.com/drand/drand.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine
agreement. In SIAM Journal on Computing, volume 12, pages 656–666. SIAM,
1983. doi:10.1137/0212045.

[DS02] Paolo D’Arco and Douglas R. Stinson. On unconditionally secure robust
distributed key distribution centers. In Yuliang Zheng, editor, Advances in
Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer
Science, pages 346–363, Queenstown, New Zealand, December 1–5, 2002.
Springer, Heidelberg, Germany. doi:10.1007/3-540-36178-2_22.

https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-031-33491-7_24
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1145/343477.343531
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1145/800220.806690
https://github.com/drand/drand
https://github.com/drand/drand
https://doi.org/10.1137/0212045
https://doi.org/10.1007/3-540-36178-2_22

38 Synchronous Distributed Key Generation without Broadcasts

[DXKKR23] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. Practical
asynchronous high-threshold distributed key generation and distributed poly-
nomial sampling. In 32nd USENIX Security Symposium (USENIX Security
23), pages 5359–5376, Anaheim, CA, August 2023. USENIX Association.
URL: https://www.usenix.org/conference/usenixsecurity23/prese
ntation/das.

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris
Kokoris-Kogias, and Ling Ren. Practical asynchronous distributed key gener-
ation. In 2022 IEEE Symposium on Security and Privacy, pages 2518–2534,
San Francisco, CA, USA, May 22–26, 2022. IEEE Computer Society Press.
doi:10.1109/SP46214.2022.9833584.

[EFR21] Andreas Erwig, Sebastian Faust, and Siavash Riahi. Large-scale non-
interactive threshold cryptosystems in the YOSO model. IACR Cryp-
tol. ePrint Arch., 2021. https://eprint.iacr.org/2021/1290. URL:
https://eprint.iacr.org/2021/1290.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science, pages 427–
437, Los Angeles, CA, USA, October 12–14, 1987. IEEE Computer Society
Press. doi:10.1109/SFCS.1987.4.

[FG03] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for
strong and differential consensus. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing (PODC’03), pages 211–220,
2003. doi:10.1145/872035.872066.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued Byzantine
agreement. In Eric Ruppert and Dahlia Malkhi, editors, 25th ACM Symposium
Annual on Principles of Distributed Computing, pages 163–168, Denver,
CO, USA, July 23–26, 2006. Association for Computing Machinery. doi:
10.1145/1146381.1146407.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Advances in Cryptology (CRYPTO’18): 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19–
23, 2018, Proceedings, Part II 38, pages 33–62. Springer, 2018. doi:10.100
7/978-3-319-96881-0_2.

[FLT24] Hanwen Feng, Zhenliang Lu, and Qiang Tang. Breaking the cubic barrier:
Distributed key and randomness generation through deterministic sharding.
Cryptology ePrint Archive, 2024. https://eprint.iacr.org/2024/168.
URL: https://eprint.iacr.org/2024/168.

[FLZL21] Matthias Fitzi, Chen-Da Liu-Zhang, and Julian Loss. A new way to
achieve round-efficient byzantine agreement. In Proceedings of the 2021
ACM Symposium on Principles of Distributed Computing, PODC’21, page
355–362, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3465084.3467907.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement.
In 20th Annual ACM Symposium on Theory of Computing, pages 148–161,
Chicago, IL, USA, May 2–4, 1988. ACM Press. doi:10.1145/62212.62225.

https://www.usenix.org/conference/usenixsecurity23/presentation/das
https://www.usenix.org/conference/usenixsecurity23/presentation/das
https://doi.org/10.1109/SP46214.2022.9833584
https://eprint.iacr.org/2021/1290
https://eprint.iacr.org/2021/1290
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1145/872035.872066
https://doi.org/10.1145/1146381.1146407
https://doi.org/10.1145/1146381.1146407
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2024/168
https://eprint.iacr.org/2024/168
https://doi.org/10.1145/3465084.3467907
https://doi.org/10.1145/62212.62225

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 39

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for
synchronous byzantine agreement. SIAM Journal on Computing, 26(4):873–
933, 1997. doi:10.1137/S0097539790187084.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, pages 51–83, 2007. doi:10.1007/s00145-006-0347-3.

[GJM+21] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. Aggregatable distributed key generation. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’21), pages 147–176. Springer, 2021. doi:10.100
7/978-3-030-77870-5_6.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round
complexity of authenticated broadcast with a dishonest majority. In 48th
Annual Symposium on Foundations of Computer Science, pages 658–668,
Providence, RI, USA, October 20–23, 2007. IEEE Computer Society Press.
doi:10.1109/FOCS.2007.61.

[GLL+22] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Efficient asynchronous byzantine agreement without private setups. In
2022 IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS’22), pages 246–257. IEEE, 2022. doi:10.1109/ICDCS54860.2022.
00032.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35, pages 305–326.
Springer, 2016. doi:10.1007/978-3-662-49896-5_11.

[Gro21] Jens Groth. Non-interactive distributed key generation and key resharing.
IACR Cryptol. ePrint Arch., 2021:339, 2021. https://eprint.iacr.org/
2021/339. URL: https://eprint.iacr.org/2021/339.

[HMQ04] Dennis Hofheinz and Joern Mueller-Quade. A synchronous model for multi-
party computation and the incompleteness of oblivious transfer. IACR
Cryptol. ePrint Arch., 2004. https://eprint.iacr.org/2004/016. URL:
https://eprint.iacr.org/2004/016.

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic
asynchronous multi-party computation with optimal resilience (extended
abstract). In Ronald Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
322–340, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.
doi:10.1007/11426639_19.

[Kat23] Jonathan Katz. Round optimal fully secure distributed key generation. IACR
Cryptol. ePrint Arch., 2023. https://eprint.iacr.org/2023/1094. URL:
https://eprint.iacr.org/2023/1094.

[KG09] Aniket Kate and Ian Goldberg. Distributed key generation for the internet.
In 29th IEEE International Conference on Distributed Computing Systems–
ICDCS’09, pages 119–128, 2009. doi:10.1109/ICDCS.2009.21.

https://doi.org/10.1137/S0097539790187084
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-030-77870-5_6
https://doi.org/10.1007/978-3-030-77870-5_6
https://doi.org/10.1109/FOCS.2007.61
https://doi.org/10.1109/ICDCS54860.2022.00032
https://doi.org/10.1109/ICDCS54860.2022.00032
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2004/016
https://eprint.iacr.org/2004/016
https://doi.org/10.1007/11426639_19
https://eprint.iacr.org/2023/1094
https://eprint.iacr.org/2023/1094
https://doi.org/10.1109/ICDCS.2009.21

40 Synchronous Distributed Key Generation without Broadcasts

[KGS23] Chelsea Komlo, Ian Goldberg, and Douglas Stebila. A formal treatment of
distributed key generation, and new constructions. IACR Cryptol. ePrint
Arch., 2023. https://eprint.iacr.org/2023/292. URL: https://eprint
.iacr.org/2023/292.

[KHG12] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation
in the wild. IACR Cryptol. ePrint Arch., 2012:377, 2012. https://eprint
.iacr.org/2012/377. URL: https://eprint.iacr.org/2012/377.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols
for byzantine agreement. In Cynthia Dwork, editor, Advances in Cryptology –
CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages
445–462, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Heidelberg,
Germany. doi:10.1007/11818175_27.

[KMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asyn-
chronous distributed key generation for computationally-secure randomness,
consensus, and threshold signatures. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on
Computer and Communications Security, pages 1751–1767, Virtual Event,
USA, November 9–13, 2020. ACM Press. doi:10.1145/3372297.3423364.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe, editor,
Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in
Computer Science, pages 177–194, Singapore, December 5–9, 2010. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-17373-8_11.

[Lab21] Torus Lab. Torus: Globally accessible public key infrastructure for everyone.
https://tor.us/, 2021.

[LLTW20] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA:
Optimal multi-valued validated asynchronous byzantine agreement, revisited.
In Yuval Emek and Christian Cachin, editors, 39th ACM Symposium Annual
on Principles of Distributed Computing, pages 129–138, Virtual Event, Italy,
August 3–7, 2020. Association for Computing Machinery. doi:10.1145/33
82734.3405707.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87,
volume 293 of Lecture Notes in Computer Science, pages 369–378, Santa
Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.
doi:10.1007/3-540-48184-2_32.

[Mic16] Silvio Micali. Byzantine agreement, made trivial, 2016. URL: https:
//api.semanticscholar.org/CorpusID:10040011.

[MR21] Atsuki Momose and Ling Ren. Optimal communication complexity of authen-
ticated byzantine agreement. In 35th International Symposium on Distributed
Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.DISC.2021.32.

[NBBR16] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. Distributed key gen-
eration protocol with a new complaint management strategy. Security and
communication networks, 9(17):4585–4595, 2016. doi:10.1002/sec.1651.

https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2012/377
https://eprint.iacr.org/2012/377
https://eprint.iacr.org/2012/377
https://doi.org/10.1007/11818175_27
https://doi.org/10.1145/3372297.3423364
https://doi.org/10.1007/978-3-642-17373-8_11
https://tor.us/
https://doi.org/10.1145/3382734.3405707
https://doi.org/10.1145/3382734.3405707
https://doi.org/10.1007/3-540-48184-2_32
https://api.semanticscholar.org/CorpusID:10040011
https://api.semanticscholar.org/CorpusID:10040011
https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.1002/sec.1651

Nibesh Shrestha, Adithya Bhat, Aniket Kate, Kartik Nayak 41

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of Lecture Notes in Computer Science, pages 275–292, San Francisco, CA,
USA, February 14–18, 2005. Springer, Heidelberg, Germany. doi:10.1007/
978-3-540-30574-3_19.

[NRS+20] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang.
Improved extension protocols for byzantine broadcast and agreement. In
Hagit Attiya, editor, 34th International Symposium on Distributed Computing
(DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.DISC.2020.28.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party.
In Donald W. Davies, editor, Advances in Cryptology – EUROCRYPT’91,
volume 547 of Lecture Notes in Computer Science, pages 522–526, Brighton,
UK, April 8–11, 1991. Springer, Heidelberg, Germany. doi:10.1007/3-540
-46416-6_47.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure veri-
fiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology
– CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
129–140, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg,
Germany. doi:10.1007/3-540-46766-1_9.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics, 8(2):300–
304, 1960. doi:10.1137/0108018.

[SARN20] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the
optimality of optimistic responsiveness. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on
Computer and Communications Security, pages 839–857, Virtual Event, USA,
November 9–13, 2020. ACM Press. doi:10.1145/3372297.3417284.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Ad-
vances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 207–220, Bruges, Belgium, May 14–18, 2000.
Springer, Heidelberg, Germany. doi:10.1007/3-540-45539-6_15.

[SJSW19] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
ETHDKG: Distributed key generation with Ethereum smart contracts. IACR
Cryptol. ePrint Arch., 2019. https://eprint.iacr.org/2019/985. URL:
https://eprint.iacr.org/2019/985.

[TCZ+20] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,
Guy Golan-Gueta, and Srinivas Devadas. Towards scalable threshold cryp-
tosystems. In 2020 IEEE Symposium on Security and Privacy, pages 877–893,
San Francisco, CA, USA, May 18–21, 2020. IEEE Computer Society Press.
doi:10.1109/SP40000.2020.00059.

[TLP22] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping
for communication-efficient broadcast. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part III,
volume 13509 of Lecture Notes in Computer Science, pages 439–469, Santa
Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-15982-4_15.

https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1137/0108018
https://doi.org/10.1145/3372297.3417284
https://doi.org/10.1007/3-540-45539-6_15
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2019/985
https://doi.org/10.1109/SP40000.2020.00059
https://doi.org/10.1007/978-3-031-15982-4_15

42 Synchronous Distributed Key Generation without Broadcasts

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai
Abraham. HotStuff: BFT consensus with linearity and responsiveness. In
Peter Robinson and Faith Ellen, editors, 38th ACM Symposium Annual on
Principles of Distributed Computing, pages 347–356, Toronto, ON, Canada,
July 29 – August 2, 2019. Association for Computing Machinery. doi:
10.1145/3293611.3331591.

https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591

	Introduction
	Key Technical Ideas and Contributions

	Model and Preliminaries
	Definitions
	Primitives

	Secure DKG with Two Broadcast Rounds
	Analysis of Secure DKG

	Communication Optimal Weak Gradecast
	Analysis of Gradecast

	Recoverable-Set-of-Shares
	Analysis of Recoverable-set-of-shares protocol

	Oblivious Leader Election
	Analysis of OLE protocol

	Multi-valued Validated Byzantine Agreement
	Analysis of MVBA

	Distributed Key Generation
	DKG with O(n3) communication and expected O(1) rounds
	DKG with worst-case O(n3) communication and O(t) rounds

	Related Work
	Related Works in Distributed Key Generation Literature
	Related Works in Byzantine Agreement Literature
	Related Work in the Gradecast Literature

	A Lower Bound on the Communication Complexity of Weak Gradecast
	References

