
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 43 pages.

https://doi.org/10.62056/ay11fhbmo
Check for updates

PACIFIC
Privacy-preserving automated contact tracing featuring integrity against

cloning

Scott Griffy and Anna Lysyanskaya

Brown University, United States

Abstract. To be useful and widely accepted, automated contact tracing schemes
(also called exposure notification) need to solve two seemingly contradictory problems
at the same time: they need to protect the anonymity of honest users while also
preventing malicious users from creating false alarms. In this paper, we provide,
for the first time, an exposure notification construction that guarantees the same
levels of privacy and integrity as existing schemes but with a fully malicious database
(notably similar to [ACK+21]) without special restrictions on the adversary. We
construct a new definition so that we can formally prove our construction secure.
Our definition ensures the following integrity guarantees: no malicious user can
cause exposure warnings in two locations at the same time and that any uploaded
exposure notifications must be recent and not previously uploaded. Our construction
is efficient, requiring only a single message to be broadcast at contact time no matter
how many recipients are nearby. To notify contacts of potential infection, an infected
user uploads data with size linear in the number of notifications, similar to other
schemes. Linear upload complexity is not trivial with our assumptions and guarantees
(a naive scheme would be quadratic). This linear complexity is achieved with a new
primitive: zero knowledge subset proofs over commitments which is used by our “no
cloning” proof protocol. We also introduce another new primitive: set commitments
on equivalence classes, which makes each step of our construction more efficient. Both
of these new primitives are of independent interest.

1 Introduction
In 2020, the COVID-19 virus spread across the world claiming over 5 million lives in two
years [Org24]. Countries have responded with a number of measures such as: distributing
masks and vaccines, requiring testing, and restricting travel. One of these measures is
contact tracing. Contact tracing is the process of discovering who a person interacted with
while they were contagious with a virus. This can help inform others so that they can
quarantine themselves to stop the spread of the virus. Contact tracing can be performed
by interviewing patients who have been exposed to the virus and notifying those who the
patient claims to have come into contact with. Automated contact tracing (also known
as automated exposure notification) skips the need for an in-person interview, instead,
relying on devices to track users’ locations and then notify them if they’ve come into
contact with an infected person. This makes the contact tracing process more efficient
allowing contact tracing to scale to cover a nation’s population. Unfortunately, automated
contact tracing often requires officials to record the locations of users, thus opening up
the possibility for governments and organizations to use this data for malicious purposes.
Privacy concerns also affect adoption [HMM+21, TN21] and thus, schemes with strong
privacy guarantees also make contact tracing more effective. Since 2020, many schemes

E-mail: scott_griffy@brown.edu (Scott Griffy), anna_lysyanskaya@brown.edu (Anna Lysyanskaya)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-08 Accepted: 2024-06-03

https://doi.org/10.62056/ay11fhbmo
https://crossmark.crossref.org/dialog/?doi=10.62056/ay11fhbmo&domain=pdf&date_stamp=2024-07-03
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0000-0002-3567-3550
mailto:scott_griffy@brown.edu
mailto:anna_lysyanskaya@brown.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 PACIFIC

Chirper Listener

Public DB

1. c = Chirp() 2. Listen(c)

3. I tested
positive!4. c5. Check(c)6. I should

quarantine!

Figure 1: A basic contact tracing scheme

have been proposed [TPH+20, GA20, CKL+20, ACK+21, GKK20] to allow people to
use contact tracing schemes (notifing others and checking if they’ve been exposed) while
remaining anonymous. A problem emerges when anonymity is added to a contact tracing
scheme as malicious actors could use the anonymity provided by the scheme to create fake
outbreaks in targeted areas or at events [GKK20]. The fake contacts could cause users to
quarantine themselves when they have not actually been exposed to the virus. Automating
contact tracing allows such an attack to cause damage on a large scale. This leaves us
with the question: Can a contact tracing scheme provide anonymity while simultaneously
ensuring that malicious users cannot abuse the anonymity to create fake exposures?

1.1 Automated contact tracing
To give context to our discussion in the rest of this introduction, we first describe a basic
automated contact tracing scheme. This basic contact tracing scheme uses a person’s
phone to broadcast messages over bluetooth (we’ll call these messages “chirps”). Then,
if a user tests positive for COVID-19, they upload all of the chirps they heard (or some
function of the chirps) to a public database which others can check to see if they were
exposed to the virus. We show this process in Figure 1 which shows 6 steps. In steps 1
and 2, a user sends a chirp (c) to nearby listeners. A user later then realizes they’ve been
infected and uploads the chirps they heard (or a function of the chirps) to a database
(steps 3 and 4). Other users then check the database (step 5) and if they find that some
threshold of the chirps in the database belong to them, they should quarantine and take a
viral test to ensure they don’t spread the virus.

In a naive scheme, these chirps can simply be random strings and can be uploaded as-is
to the database. Because other users can check if their chirps are in the database, this will
correctly notify users who were in contact with others. This naive implementation suffers
from a multitude of problems, but gives the basic blueprint for a contact tracing scheme.
In this naive scheme, malicious users could upload chirps heard from multiple devices to
create a fake outbreak, or inspect the database to link the chirps to bluetooth messages
they heard, thus potentially learning who was infected or learning someone’s location. To
provide privacy and integrity in our construction, we need to ensure that chirps become
unlinkable to any user or interaction when uploaded to the database, while at the same
time requiring uploaders to prove that they haven’t acted maliciously.

Upload-what-you-heard Our naive scheme in Figure 1 follows the “upload-what-you-
heard” model used by each scheme in [CKL+20], where users upload chirps that they heard.
Some existing schemes instead use a “upload-what-you-sent” model where instead, users
upload chirps that they sent and users instead check the database for chirps they heard.
This model is used by DP-3T, Google and Apple’s contact tracing scheme (sometimes
referred to as “GAPPLE”), and ReBabbler [TPH+20, GA20, CKL+20]. Upload-what-
you-sent models can be more efficient (allowing for constant-sized uploads with respect

Scott Griffy, Anna Lysyanskaya 3

User 1
Eve

User 2

Public DB

1. c 1. c′

3. c

2. c

Figure 2: Upload privacy attack

to the number of chirps heard). These models necessarily sacrifice privacy [CKL+20]
(with a malicious database). Intuitively, this is because, if an upload is only dependent
on messages that the uploader sent, and chirps are broadcasted with no response, any
user that can check the database can try different subsets of chirps they heard against
the database and use the resulting number of exposures to link uploads to specific chirps.
Thus, any privacy-preserving contact tracing scheme (that keeps chirp complexity as a
single broadcast) must use the upload-what-you-heard model.

1.2 Attacks on contact tracing schemes
We’ll now discuss a few schemes and attacks that are related to contact tracing schemes.
There is a much larger body of work on contact tracing which we reference here: [RAC+20,
CFG+20, BRS20, BDH+21, PR21, ABIV23, Vau20b, RBS21, WL20, CBB+20, GVhP+22,
RBS20, TSS+20, Tra20]. To keep the discussion concise, we’ll only highlight a few schemes
and attacks in this section.

Privacy attacks There has been a lot of work attacking the privacy of contact tracing
schemes [Vau20a, ABIV23, CKL+20]. Some examples are the “chirp attack”, the “matrix
attack” (also known as the “upload privacy attack”), the “Sybill attack”, and the “Brutus
attack”. The chirp attack involve collecting chirps and linking them together to track users.
Our basic scheme in Figure 1 is secure against chirp attacks as each chirp is randomly
generated. The matrix attack considers a malicious database that uses data that users
uploaded to de-anonymize them (also known as the “upload privacy attack”). The Sybill
and Brutus attacks are more advanced and attack countermeasures of the upload privacy
attack and so we’ll explain them after an example upload privacy attack in the next
paragraph.

Example of an upload privacy attack In Figure 2, we show an example attack on
privacy. In this figure, the adversary broadcasts chirps to two different users (step 1).
Then, we see that user 1 finds they are infected and uploads to the database in step 2.
The adversary can then match what they see in the public database with the chirps they
broadcasted to learn that it is user 1 that was infected and not user 2. Ideally, we’d like to
avoid this type of attack to keep the uploader anonymous.

One way to mitigate upload privacy attacks is to ensure the database only indicates
whether a user should quarantine or not, having users learn nothing more, even when the
user is colluding with a malicious database. This countermeasure can be circumvented
with a Sybill attack where a malicious adversary creates many fake identities to chirp in
different locations and thus learns more fine-grained information by learning which of their
fake users is recommended to quarantine. Any countermeasure to the Sybill attack would
involve registering users to ensure they cannot create many fake identities. Registering

4 PACIFIC

users introduces a new attack which involves an authority using the mapping between
registrations and users to de-anonymize users (dubbed the Brutus attack).

In our paper, we’ll formalize definitions that address these attacks which we call “chirp
privacy” and “upload privacy”.

While not applicable to our paper, a common real-world attack [Vau20a] in the literature
is against the DP-3T scheme [TPH+20]. The DP-3T scheme diverges from our basic model
in Figure 1 and instead follows the upload-what-you-sent model (described in Section 1.1).
In DP-3T, a user uploads a single seed which generates all of their chirps they broadcasted
during the last week. This opens up an attack (to which all upload-what-you-sent schemes
are subject to) where a malicious database owner listens to chirps during that week in
different locations and reconstructs a users’ locations for the last week.

Integrity attacks Vaudenay [Vau20a] and Avitabile et al. [AFV21] consider the idea
that an automated contact tracing scheme could be used to launch a sort of “terrorist
attack” where a large area such as a city could be falsely notified of being in contact with
an infected person thus needlessly causing them to quarantine. The authors [Vau20a] also
propose a solution to this attack. Gennaro et al. [GKK20] explain how a more targeted
attack could create fake outbreaks in politically partisan neighborhoods during the weeks
leading up to an election to sway the outcome. By targeting a specific neighborhood known
to vote a certain way with fake exposures, a malicious attacker could cause those voters
to needlessly quarantine during the election, potentially preventing them from reaching
their voting location. We can see that our basic scheme in Figure 1 is susceptible to these
attacks as the server does not do any checking to ensure that uploaders are honest. Thus,
a malicious user could disperse listening devices in areas across a city and upload all chirps
they heard.

Another attack is where a malicious device replays and relays chirps to other users. This
is known as the “chirp replay/relay attack” [CKL+20]. A chirp replay/relay attacker can
listen to a chirp, then duplicate it at another time/place to fool honest users into believing
that the replayed chirp was honestly created and including it in their upload, thus falsely
exposing an honest user.

Another potential attack on existing schemes is the “upload replay/delay attack.” This
is partially described in [ACK+21]. In this attack, a malicious user listens to a chirp, then
uploads the chirp multiple times and/or waits to upload the chirp at a later time. Reusing
a single chirp for multiple exposures could falsely increase the severity of contacts, cause
needless quarantines months after the real exposure, or overwhelm the system with false
notifications to mask real notifications. This attack becomes more severe when uploaders
are anonymous and existing schemes are vulnerable to this attack [CKL+20].

The most novel attack on integrity that we solve in this paper is the “clone attack”
which we discuss in the next paragraph.

Clone attacks The mitigation to any integrity attack involves registering users so that
the server can verify that the user is acting honestly during chirping and uploading. In
this paper, we’ll refer to the authority registering users as the “registration party”. Many
schemes [CKL+20, BCK+20] leverage a registration party in order to provide privacy
guarantees, such as imposing “upload limits”, ensuring no user uploads too many times
per week. Even with upload limits, an adversary could falsely expose attendees at single
event. While upload limits stop a user from uploading a massive number of notifications,
it does not stop an adversary from using a single device to concentrate a week’s worth
of notifications into a few hours. This type of attack could be used to target a rally or a
political convention which takes place in a shorter time (hours) rather than the period
where an honest user would normally upload data for (days). This attack could be more
appealing for an adversary to suppress votes as they would only need to attend a single

Scott Griffy, Anna Lysyanskaya 5

User 1
Eve

User 2

Public DB

1. c 1. c′

2. c, c′

3. c 3. c′�
Home

Bank

/
9:00 am

/
9:00 am

Figure 3: Clone attack

event where they know all attendees will be voting for one candidate, rather than patrolling
a neighborhood for weeks to find enough contacts to upload. In order to blanket an event
with notifications, an attacker would need to clone their registered device in order to use
the contact tracing scheme in multiple locations simultaneously, thus we call it the “clone
attack”. We describe the clone attack in Figure 3 where Eve (the adversary) is able to
clone her device to listen in two locations and upload chirps heard by both devices to
notify users in different locations at the same time. This is the most novel attack that our
construction aims to prevent. In step 1 of this figure, the adversary listens for chirps c and
c′ in two different locations at the same time (user 1 is at home and user 2 is at the bank).
In step 2 the adversary uploads these chirps, which then expose users in step 3. To our
knowledge, the only other scheme that solves this attack while also providing privacy is
[ACK+21]. To achieve this notion, [ACK+21] assumes that adversarial devices cannot
communicate with each other, which is a strong assumption that our construction avoids.

1.3 Contributions
In this work, we define the requirements for a system that provides the functionality of
a contact tracing scheme while simultaneously providing privacy for users and integrity
for notifications. We call such a system a privacy-preserving automated contact tracing
scheme featuring integrity against cloning (shortened to “PACIFIC”). We also introduce a
new construction, “ProvenParrot,” which satisfies this definition. Our definition addresses
all the privacy attacks mentioned in this introduction. To make our scheme efficient, we
introduce two primitives: set commitments on equivalence classes and zero knowledge
subset proofs over commitments. We use zero knowledge subset proofs over commitments
to construct a no-cloning proof protocol. By “cloning” we mean the malicious cloning of
keys to multiple devices. Preventing the cloning of devices has been studied in previous
work [CHK+06].

Threat model and assumptions We operate in a model where we assume an honest
registration party. Our integrity definitions are impossible if the adversary has unrestricted
access to the registration secret key as then they can register any number of users, so an
honest registration party is a necessary assumption for the security we provide. We assume
a fully malicious database owner who can corrupt users to learn more information or
broadcast malicious chirps. We also assume a semi-honest health authority who verifies that
uploaders are infected. By “semi-honest” we mean the adversary can passively attempt
to use any messages they see to de-anonymize users, but otherwise acts honestly (i.e.
follows our protocol). We note that this is a strong threat model as many schemes leak
information when there is collusion between devices and the database [RBS21, ACK+21,
GA20, TPH+20].

6 PACIFIC

Out of scope problems Our security definition does not capture attacks where the
database deletes uploaded data. Preventing this attack would require a semi-honest
database. Our security definition also does not capture an attack where the database
owner creates snapshots to learn batches of information uploaded from a single user.
Preventing this attack would require users to mix their data with others’ data before
uploading it to the server. This could potentially be added on top of our scheme in
future work using a mix net [Cha81, HM20]. Like many other contact tracing schemes
[ABIV23, CKL+20], we do not consider privacy attacks on the BLE protocol itself, e.g.,
using power analysis or linking a bluetooth identifier. Bluetooth protocols (like BLE) often
include metadata which is prohibitive to any privacy-preserving scheme performed over
bluetooth [BLS19]. Unless phone makers add an option to remove this metadata, any
scheme’s chirp privacy will be broken [ABIV23], but we note that even with this limitation,
our scheme still retains upload privacy, since uploading does not rely on bluetooth. It is
a separate problem to verify that users really have COVID, which we trust the health
authority to do. Any data uploaded by users to the database is implicitly signed by the
health authority and the uploader.

Time and location We rely on location data to determine if users have been in contact
with one another. Like in [CKL+20], our scheme can utilize location-specific “measurements”
like GPS data, background noise, nearby wifi networks, or application-specific beacons. In
this case, the measurements are hashed to one value which represents the location of the
chirper. These measurements are used in addition to GPS data since GPS isn’t always
reliable and using unpredictable data in the area also provides some integrity against users
who might try to broadcast chirps to an area without being present there.

Tying attacks to resources It’s impossible to prevent a user from infecting themselves
and going to an event to expose many people there. A real world adversary could also
bribe those with COVID to include extra chirps in their upload [AFV21]. Thus, instead
of entirely stopping these attacks, we need to instead limit the amount of damage that
cheating adversaries can do by tying the effectiveness of their attacks to real-world costs
such as paying for a phone or bribing “COVID mules” to upload maliciously crafted batches.
This is why we must have an honest registration party, to enforce that registration is costly.

Comparison to other works In Table 1 we compare our work with similar schemes.
Because in DP-3T, the database learns all chirps that uploaders broadcasted, the database
must be honest to achieve privacy. We can see that our scheme achieves clone protection
without any non-standard assumption about the adversary. Instead, our construction
requires bilinear pairings (BP) in order to provide this privacy guarantee. Specifically, our
construction uses mercurial signatures [CL19] and subset commitments [FHS19] which
both use BP (reviewed in Section 2). By “non-coordination” in the “special assumptions”
column, we mean that the scheme assumes that an adversary can’t communicate quickly
between their devices. By “DH KEX” in the “chirp efficiency” column, we mean the scheme
uses a Diffie-Hellman key exchange. Each scheme achieves chirp privacy (i.e. that an
adversary seeing two chirps cannot tell if they’re from the same user) but we contrast these
schemes in the “upload privacy” column by determining if they require an honest database
to provide upload privacy. In the “integrity” column, “clone protection” means the scheme
ensures that users cannot upload chirps that were collected in two locations at the same
time. “Registration” means that only authorized users can upload, thus preventing some
integrity attacks. A scheme with clone protection implies that it also has registration.
Linear/constant upload complexity is in respect to the number of notifications uploaded.

Scott Griffy, Anna Lysyanskaya 7

Table 1: Comparison of contact tracing schemes.

Scheme Special
assumptions

Upload
privacy Integrity Chirp

efficiency
Upload
complexity

Pronto-C2
[ACK+21]

Non-
coordination

Malicious
DB

Clone
protection

DH
KEX

Linear

CertifiedClever-
Parrot [CKL+20] None Malicious

DB
Registration BP Linear

DP-3T
[TPH+20] None Honest

DB
Registration PRF Constant

PACIFIC
(This paper) None Malicious

DB
Clone
protection BP Linear

Paper roadmap The paper is structured with preliminaries in Section 2, new definitions
in Section 3, and new constructions in Section 4. We prove our construction secure in
Appendix C. We define our scheme, PACIFIC, in Section 3.1, defining the protocol and our
definition of integrity and privacy including security games. We then introduce the definition
of set commitments on equivalence classes (CoECs) in Section 3.2 which we construct
in Section 4.2. We then present our construction, named “ProvenParrot”, in Section 4.1
which meets our PACIFIC security definitions from Section 3.1. Our construction relies on
CoECs as well as a “no-cloning” relation which is described alongside the ProvenParrot
construction. A proof system for this relation is constructed in Section 4.3.1. Our no-
cloning proof system relies on zero knowledge subset proofs over commitments, which
we construct in Section 4.3.2. We give more details on preliminaries in Appendix A. A
proof of security for our construction is given in Appendix C.1. We also prove our other
constructions (CoECs, the no-cloning protocol, and zero knowledge subset proofs over
commitments) in Appendices C.2, C.3, and C.4 respectively.

2 Notation and preliminaries

By (m, ∗) ∈ S we mean there is a tuple in set S such that the first element of the tuple is
m and the second element is another value which could be anything. {(m, ∗) ∈ S : A(m)}
is the set of all tuples in S with m as their first element meeting condition A. Applying a
function, f , onto a set of inputs results in a set of outputs. I.e. if f : X → Y , then for
S ⊆ X, f(S) = {f(s) : s ∈ S}. If a set is given to an adversary, it gives the adversary no
information about the ordering of the elements in the set (one can imagine a set as a vector
that is shuffled whenever a challenger gives it to an adversary). We use r ←$ S to denote
a random choice from a set. For a set (or vector), S, the operation: k ∗ S or Sk defines a
new set (or vector) with with k multiplied or exponentiated over each element of the set.
By “PPT A” we mean that A is a probabilistic polynomial-time algorithm. If we have
a vector of values, M (which we denote with bold font), we’ll reference the i-th element
of that vector with: M[i]. We denote the size of a set as #S. We use (a, b) ∼ (a′, b′) to
indicate that these two distributions are indistinguishable to any PPT A where a, b, a′, b′

are random variables. We use λ to denote the security parameter and use negl to denote a
negligible function.

8 PACIFIC

2.1 Cryptographic bilinear pairings
A bilinear pairing [GPS08] is a set of groups, G1,G2,GT , along with a pairing function,
e where e : G1 × G2 → GT . We call GT the “target group” and call G1 and G2 the
“source groups”. In this work, we use Type III pairings, which means that there is no
efficient, non-trivial homomorphism between G1 and G2. The pairing function is efficiently
computable and has a bilinearity property such that if ⟨P ⟩ = G1 and ⟨P̂ ⟩ = G2, then for
a, b ∈ Z∗

p, e(P a, P̂ b) = e(P, P̂)ab. Our groups satisfy |G1| = |G2| = |GT | = p for some
prime p. In our pairing groups, the Diffie-Hellman assumptions hold in the related groups,
such that for a, b←$ Zp, (P a, P b, P ab) ∼ (P a, P b, P c). and given (P a, P b) it is difficult to
compute P ab.

2.2 Commitments
A commitment scheme is composed of three functions, Setup, Commit, and Open where
Setup takes in a security parameter λ and outputs some public parameters pp, Commit takes
in some mesage m and outputs a commitment c along with some opening information o,
and Open takes in a commitment, a message, and the opening information and determines
if the commitment opens to the given message. We require both the hiding and binding
properties for our commitments. A hiding commitment scheme implies that no adversary
can distinguish between commitments to different messages. A binding commitment
scheme means that no adversary can open a single commitment to two different messages.
For brevity, we omit the formal definitions of foundational primitives like commitments
and instead refer the reader to [KL14].

2.3 FHS Commitments [FHS19]
A set-commitment scheme from [FHS19] has the functions: Setup(1k, 1s)→ pp, Commit(pp,
S) → (C, O), Open(pp, C, S, O) → {0, 1}, OpenSubset(pp, C, S, O, T) → W , VerifySubset(
pp, C, T, W) → {0, 1} where S is a set of attributes (of size s), C is a commitment, O
is an opening, T is a set of attributes such that T ⊂ S, and W is a witness. FHS
commitments have the properties: binding, hiding, and subset soundness. Binding and
hiding function exactly as regular commitments described above, except that hiding
challenges the adversary to distinguish commitments to two sets S1 and S2 and allows
the adversary to see witnesses for subsets which wouldn’t trivially distinguish the sets
i.e. seeing a witness that the challenge commitment (C = Com(Sb)) contains some value
that is not in the other set (S1−b). Subset soundness ensures that an adversary cannot
produce a witness that a commitment is committed to a subset, T , while also opening the
commitment to a set, S, that does not contain T . We formally define these properties in
Appendix A.3.

2.4 Non-interactive zero knowledge proofs of knowledge (NIZKs)
A NIZK scheme (Φ = (S, P, V)) allows a prover to prove knowledge of a witness that satisfies
a verifiable relationship R without revealing any further information. We use the following
notation to describe relations where A is some condition: R((witness), (statement)) = 1 iff
A(witness, statement) = 1. If a NIZK is extractable, a witness can be extracted using some
secret information or extra power (e.g. in the random oracle model and/or with some
black-box access to the prover). To define NIZKs, we use a definition of correctness, zero
knowledge and extractability. These definitions assume the scheme uses a hash function as
a random oracle.

Definition 1 (NIZK completeness). A NIZK scheme, Φ = (S, P, V), is complete if, given
a random oracle, H, the following holds: For all λ, (w, x) ∈ R, pp ∈ S(1λ), Pr[VH(x, π) =

Scott Griffy, Anna Lysyanskaya 9

1] ≥ 1− negl(λ) where π ← PH(w, x).

Definition 2 (NIZK zero-knowledge). A NIZK scheme, Φ = (S, P, V), is zero-knowledge
under the random oracle model if, for all PPT A, pp ← S(1λ), ∃ simulators SimS, SimP,
and SimH with shared state such that if ppS ← SimS(1λ), then

|Pr[AOSimP,OSimH
(ppS) = 1]− Pr[AP,H(pp) = 1]| ≤ negl(λ)

where OSimP ensures that the adversary has given a valid statement and witness, then gives
the statement to SimP and returns the simulated proof to the adversary. These oracles
also ensure that both SimP and SimH can receive and update the simulator’s state.

Definition 3 (NIZK simulation-extractability). A NIZK scheme, Φ = (S, P, V), is
simulation-extractable if, for all PPT A, ∃ a simulator SimP, random oracle SimH, and
extractor, E with black-box access to A (labeled as BB(A)) such that, when pp ← SimS(1λ),
then:

Pr
[

V(x, π) = 1 ∧ (w, x) ̸∈ R :
(x, π)← AOSimP,OSimH

(pp);
w ← EBB(A)(pp);

]
≤ negl(λ)

In Appendix A.1, we define and describe a protocol to prove arbitrary relations between
discrete logs of elements in a cyclic prime order group. We then use this protocol implicitly
with Camenisch-Shoup notation, e.g., NIZK [a : h = ga].

2.5 Mercurial Signatures
The first three functions of a mercurial signature scheme (Setup, KeyGen, Verify) act as a
regular digital signature scheme [GMR88]. But a mercurial signature scheme has addi-
tional functions (ConvertSK, ConvertSig, ConvertPK, ChangeRep) which allow for signatures,
messages, and public keys to be randomized. Randomized signatures remain verifiable for
their randomized messages under randomized public key. Signatures and public keys can
be randomized independently of each other (e.g. a signature can be randomized while
remaning verifiable under the original public key). This allows for the creation of privacy-
preserving schemes e.g. if a signature is converted using ConvertSig, no PPT adversary can
determine which signature it was randomized from, known as “origin-hiding”. A similar
property holds for randomized public keys and messages with ConvertPK and ChangeRep)
(known as “public key class-hiding” and “message class-hiding”. The ConvertSK function
allows a signer to compute a new signature under a randomized public key.

The unforgeabiliy definition for mercurial signatures is similar to traditional digital
signatures, but holds over equivalence classes. This means that forgeries only count in the
unforgeability game if the adversary outputs a message outside of any equivalence class
which they have already queried signatures for. Equivalence classes allow for messages
to be randomized while still retaining their underlying message. Mercurial signatures
define equivalence classes using a relation RM . An equivalence class is denoted as [M]RM

so that the equivalence classes of two messages M and M ′ are in the same equivalence
class (noted as: [M]RM

= [M ′]RM
) if (M, M ′) ∈ RM . We call a message such as M a

representative of the equivalence class [M]RM
, which is the set of all representatives of

that equivalence class. Public keys similarly have equivalence classes denoted by [pk]Rpk .
The construction of mercurial signatures in [CL19] defines a message as any ℓ-sized vector
of group elements M = {M1, ..., Mℓ} ∈ Gℓ

1 (where ℓ is a parameter that can be tuned
and G1 is a source group of a bilinear pairing described in Section 2.1). Two messages
M, M ′ are in the same equivalence class if ∃ρ such that Mρ = M ′ for some ρ ∈ Z (each
group element in the vector is exponentiated by ρ). We see that in this case, the discrete
logs between messages remains the same (i.e., for M, M ′ such that [M]RM

= [M ′]RM
,

logMi
(Mi+1) = logM ′

i
(M ′

i+1). Public keys are identical to messages except in the second

10 PACIFIC

source group of the bilinear pairing that [CL19] uses: pk = {X̂1, ..., X̂ℓ} ∈ Gℓ
2. We formally

define mercurial signatures in Appendix A.2.
We also need a special function, Recognize(sk, pk), which operates on public keys from

a mercurial signature scheme, determining if they are in the corresponding equivalence
class for a given secret key. This function does not exist in the literature, but is clear to
construct after realizing that the holder of a secret key knows the discrete log between
elements for any representation of their public key.

We discuss mercurial signatures further, providing formalizations, in Appendix A.2.

2.6 Verifiable random functions
Verifiable random functions (introduced by [MRV99]) produce a pseudorandom output on a
public input, while verifiably using the secret part of an asymmetric key pair as the key for
the PRF. For example, given the output of a PRF, Y = PRFsk(x), and a Schnorr public key,
pk = P sk , one can be efficiently convinced by a proof, π (created by the holder of the secret
key, sk), that Y was computed on sk and x (without knowing sk). There are many well
established constructions of VRFs [DY05, CHK+06]. We will label the computation of these
proofs using Camenisch-Stadler notation, e.g. πY ← NIZK [sk : Y = PRFsk(x) ∧ pk = P sk]
and b← VerifyVRF(pk, x, Y, πY). This x can be hidden inside a commitment as well, while
maintaining the proof, e.g. NIZK [sk, x, O : Open(C, x, O) = 1∧Y = PRFsk(x)∧pk = P sk].
We also describe VRFs using the keys from mercurial signatures in Appendix A.2.1.

3 Definitions
3.1 PACIFIC Definitions
In this section, we provide our definition of PACIFIC. The functions that make up a
PACIFIC scheme are described in Definition 4.

Usage At a high-level, our PACIFIC scheme functions similar to Figure 1 where users
repeatedly chirp and listen and then upload when they test positive. Users broadcast
chrips at a set interval on the order of seconds or minutes. This interval could coincide with
the interval in which a device maintains the same bluetooth MAC address before sampling
a new random MAC address. In order to ensure that users cannot violate integrity, users
must register their devices to receive a certificate which they use in the chirp function.
Some trusted party such as a government agency acts as the registration party. This party
creates a registration key pair using RegPartyKeyGen and users trust this public key to
verify certificates. Users generate a key pair via UserKeyGen and give their public key
to the registration party for registration. Users who test positive for the virus would be
verified to upload by a health authority. We model this process by assuming that any
uploaders truely have been infected. The infected user would then proceed to compute a
“batch” of “notifications” generated by computing Notify on the chirps that they heard
while they were possibly infectious. They then upload this batch to a public database so
that other users can check if they were exposed using: VerifyBatch and CountExposures.
If a user counts a number of exposures higher than some threshold (e.g. indicating they
were in contact with infected users long enough to possibly be infected) then they are
recommended to quarantine. Users are only meant to upload at most once per “epoch.”
This epoch should model the length of time that users are infectious before they test
positive, so it should be much larger than the interval between chirps, spanning days or
weeks, whereas a chirp “interval” (the time between chirps) is measured in seconds or
minutes. In our scheme, a database, labeled DB, is simply a set of batches. A database
owner receives batches and appends them to the database.

Scott Griffy, Anna Lysyanskaya 11

Definition 4 (A PACIFIC scheme).
A privacy-preserving automated contact tracing featuring integrity against cloning scheme

consists of a set of algorithms: Setup, RegPartyKeyGen, UserKeyGen, RegisterUser, Chirp,
Listen, Notify, VerifyBatch, and CountExposures.
• Setup(1λ, e) → (pp): The parameter generation function takes as input: a security

parameter, 1λ, and an epoch length, e, and outputs public parameters: pp which
includes an epoch function, Epoch, which is t 7→ ⌊t/e⌋.

• RegPartyKeyGen(pp) → (skrp, pkrp): The registration party key generation function
takes the public parameters as input and outputs a public/private key for the
registration party that users trust to ensure integrity of the scheme. The registration
party’s key will be used to sign users’ public keys.

• UserKeyGen(pp, pkrp) → (skU , pkU): The user key generation function generates a
user’s public/private keys, which they use to register as well as sign chirps and
uploads.

• RegisterUser(pp, skrp, pkU)→ (cert): This function takes the registration party’s keys
and registers a user’s public key resulting in a certificate which allows the user to
chirp and upload.

• Chirp(pp, skU , pkrp, cert, t, l)→ (c): The chirp function outputs a chirp using a user’s
secret key and certificate. This chirp corresponds to the given time and location:
(t, l).
• Listen(pp, skÛ , pkrp, t, l, c) → (0 or 1): The listen function verifies that a chirp is

fresh (matches the given t, l and is not a replay) and valid (signed by the registration
party pkrp). After verifying, the user stores the chirp (and metadata) for a potential
upload later.

• Notify(pp, skU , S, d) → (B): The Notify function creates a batch of notifications
which indicate to other users that they should quarantine. The function accepts a
set of chirps, S. These notifications are related to chirps that were heard within the
epoch, d.

• VerifyBatch(pp, pkrp, DB, B, d) → (0 or 1): This ensures that the batch of notifica-
tions includes interactions in a single epoch, d, and was uploaded by a registered
user that hasn’t already uploaded for epoch d. This function also ensures that clone
protection was not violated.

• CountExposures(pp, skU , pkrp, DB, d) → (⊥ or λ): This function allows any user to
check a database to determine how many contacts they’ve had with infected users.

PACIFIC security definitions In the rest of this section, we’ll describe clone integrity,
chirp privacy, and upload privacy in Defs. 6, 7, and 8 respectively. Our clone integrity
definition also serves as our correctness definition as it ensures that the correct number of
exposures is counted. In these definitions, the adversary will interact with a challenger
through a number of oracles which we describe in Def. 5. These oracles allow the adversary
to create honest users (RegisterHonest), create corrupted users (RegisterCorrupt), send their
own chirps to honest users (SendChirp), request chirps from honest users (RecvChirp and
HonestInteraction), have honest users upload batches (HonestUpload), upload malicious
batches (Upload), and control the time (IncrementTime). We describe these oracles in Def.
5. These oracles share some global state. This global state consists of a map from handles
to honest secret keys (HUsk(·)), a map from handles to certificates (Hcert(·)), a current
time tnow, and lists of chirps sent by the adversary (SC) or received by the adversary (RC)
which contain tuples of the form: (chirper secret key, listener secret key, time, location).
The handles for the maps HUsk(·) and Hcertsk(·) can be thought of as integers. We use
the notation HUsk (without an input) to represent the entire set of honest secret keys and
use similar notation for Hcert.

12 PACIFIC

Summary of integrity game In the integrity game (Game 1), we give the adversary
access to the oracles defined in the set Oint. After the adversary exits, we are left with a
resulting global state that records all the chirps sent and batches uploaded. The challenger
then uses this global state to create a set of possible interactions (PI) that we expect to
be in the database due to correctness, assuming the adversary uploads every interaction
they could’ve been a part of. The integrity definition requires that after the game, the
interactions extracted from the database (EI) satisfy three properties: (1) that users
must count no more exposures from the database than what the extracted set indicates
(Equation 1), (2) that the extracted interactions are a subset of those possible interactions
(in Equation 2), and (3) that the extracted interactions do not violate clone protection
(in Equation 3) (i.e. no uploader was in different places at the same time). Using the
extractors in this way ensures that the truth (that defines what the users draw their counted
exposures from) maps to some subset of the possible interactions that doesn’t violate clone
protection. Thus, there exists an adversary that could produce this exact set of counted
exposures simply by acting as a number of honest users equal to the number of registrations
the adversary makes. This ensures that no user can do more damage than if they were
to purchase devices and use those devices like an honest user would. This is a strong
guarantee and gives us upload replay/delay protection as well as clone protection since
any attacks would require the adversary to act dishonestly.

Summary of privacy games To prove the privacy of a PACIFIC scheme, we need two
simulators: Sc for simulating chirps, and SB for simulating batches. We describe the
functions that call these simulators in Def. 5. In both chirp privacy and upload privacy,
we simulate chirps in the same way, using RecvChirpsim.

In the chirp privacy game (but not upload privacy), we allow the adversary to cre-
ate a corrupted registration party, ensuring that even a malicious registration party
cannot de-anonymize using only their chirps. This means the challenger needs to call
RegisterHonestmal instead of having the challenger register honest users itself. The chal-
lenger also extracts the adversary’s secret registration key to be used in the RecvChirpsim

oracle. In our chirp privacy game (Game 2), we challenge the adversary to distinguish
between a simulator and a real chirp. We allow the chirp simulator (Sc) to know the real
time and location, but critically not the identity of the honest user. Instead, the simulator
is given a freshly generated key and certificate, independent of the user that the adversary
has selected to chirp. We allow the time and location to leak since this chirp is broadcasted
locally, so any nearby adversary would know this information.

To define upload privacy we present Game 8, where (in addition to using a simulator
for chirps) the upload privacy game uses a simulator for batches uploaded by honest
users, HonestUploadsim. Intuitively, an adversary will learn the size of the batch, along
with the result of calling CountExposures using each of their registered keys. Thus, the
simulator, SB , accepts a freshly generated uploader key and certificate along with a set of
adversarial keys (with the associated number of times the user accepted a chirp from this
adversarial key), as well as a number of random keys and certificates to pad the batch
to the correct size. The batch simulator returns a batch, B. The simulated batches are
created independent of the uploader’s identity, as well as with random times and locations.
Thus the returned batches are unlinkable to any time, user, or location. Passing the
adversarial keys to the simulator is necessary to ensure the adversary counts the correct
number of exposures. But we omit all honest keys, times and locations. The adversary
can learn this data on an honest batch by computing CountExposures with each of his or
her corrupted identities. This is because of correctness: the batch must reveal the number
of exposures corresponding to each of the corrupted users. But, critically, the amount of
information that the adversary gets through the simulated honest upload oracle scales with
the number of corrupted users that the adversary creates. This ensures that the adversary

Scott Griffy, Anna Lysyanskaya 13

must expend resources by registering devices to get any advantage in the privacy game,
thus limiting attacks. We also ensure cloned devices can be detected and excluded from
the database.

Definition 5 (Oracles for PACIFIC security games).
• RegisterHonest(1λ) → (i, pkU): Register a new honest user. Generate a user

key pair: (skU , pkU) ← UserKeyGen(pp, pkrp). and the user’s certificate: cert ←
RegisterUser(pp, skrp, pkU). Return a handle for this honest user, i and the public
key, pkU .

• RegisterCorrupt(pkU) → (cert): Register a corrupted user. Return a certificate
on pkU : cert ← RegisterUser(pp, skrp, pkU).

• IncrementTime(1λ) → (⊥): Increment the current time. Set the global time
variable, tnow = tnow + 1. If, after the increment, we enter a new epoch, reset the
database by forgetting all previous batches.

• RecvChirp(i, l)→ (c): Receive a chirp from an honest user. Takes a user handle,
i (received by the adversary from RegisterHonest), and a location, l. If this user
already chirped at the time, tnow (the current time), abort. Otherwise, compute the
chirp: c ← Chirp(pp, HUsk(i), pkrp, Hcert(i), tnow, l) where HUsk(i) is honest user i’s
secret key, and Hcert(i) is the honset user i’s certificate. Add this chirp to the list of
received chirps, RC. Return c.

• SendChirp(i, l, c) → (⊥): Send a chirp to an honest user. If user i already
listened to a chirp at a different location at this same time, abort. Compute:
Listen(pp, HUsk(i), pkrp, tnow, l, c) and, if this succeeds, add this chirp to the list of
sent chirps, SC.

• HonestInteraction(i, j, l) → (⊥): Have two honest users interact. Run c ←
RecvChirp(i, l) and SendChirp(j, l, c).

• HonestUpload(i)→ (B): Have an honest user compute and upload a batch.
Compute a batch computed by the honest user: B = Notify(pp, pkrp, HUsk(i), S, dnow)
where S is the set of all chirps they heard and verified during the game and dnow =
Epoch(tnow). Add this batch to the database, DB, and return B to the adversary.

• Upload(B) → (⊥): A batch is uploaded to the database.
Run VerifyBatch(pp, pkrp, DB, B, Epoch(tnow)) where DB is the current set of batches.
If this outputs 1, add B to the database, DB.

• RecvChirpsim(i, l)→ (c): First generate a new key pair: (skU , pkU)← UserKeyGen(pp,
pkrp). Then register this user: cert ← RegisterUser(skrp, pkU). Then call the chirp
simulator (Sc) with this new user’s keys, certification, the current time, tnow, and
given location, l, returning the simulated chirp.

• RegisterHonestmal(1λ)→ (i, pkU): Generate a key pair, (skU , pkU)← UserKeyGen(pp,
pkrp). Call the adversary with pkU to receive cert. skU , cert now constitute a new
honest user i. Return the handle for this honest user (i) and the public key, pkU .

• HonestUploadsim(i)→ (B): First, the challenger computes a new uploader keypair,
(skU , pkU)← UserKeyGen(pp, pkrp) and registers this user: certU ← RegisterUser(pp,
skrp, pkU). Next, the challenger extracts a set of secret keys of corrupted users (CUsk)
with an extractor: CUsk = Esk(CU) where CU is the corrupted public keys provided
by the adversary to RegisterCorrupt. Next, the challenger constructs a set containing
the secret keys of corrupted users along with the number of times that user chirped
to each honest user: KA = {(sk, k) : (sk ∈ CUsk) ∧ (k = #{(sk, HUsk(i), ∗, ∗) ∈
SC}) ∧ (k > 0)} where SC is the “sent chirps” during the game and has tuples
of the form: (sender , listener , time, location). Next, the challenger generates and
registers a random secret key for each chirp that user i accepted from another
honest user, yielding a set KH = {(skj , certj)}j∈[h] where ∀j ∈ [h], (skj , pkj) ←
KeyGen(pp), certj ← RegisterUser(pp, skrp, pkj) and h is the number of interactions
between this user and other honest users: h = #{(sk, HUsk(i), ∗, ∗) ∈ SC s.t. sk ∈

14 PACIFIC

HUsk}. The challenger then passes skU , certU , KA, and KH , to the simulator, SB,
and returns the simulated batch to the adversary.

Game 1 (Clone integrity game). The challenger runs (skrp, pkrp)← RegPartyKeyGen(1λ)
and AOint(pp, pkrp, 1λ), where Oint = {RegisterHonest, RegisterCorrupt, RecvChirp, SendChirp,
HonestInteraction, IncrementTime, HonestUpload, Upload}. When A exits, the challenger
uses the resulting global state (including the chirps sent by honest users, SC) from the
game to determine if the adversary won, described below:
• The challenger computes the set of possible interactions (PI) which contains each

chirp emitted by honest users (in the final epoch) paired with each corrupted secret
key registered as well as any interactions between honest users. The size of this set is:
(# honestly emitted chirps) × (# corrupted users) + (# honest interactions).
This set also includes every possible interaction between two malicious users. The
tuples in this set include a chirper secret key, a listener secret key, a time, and
location in that order. The times and locations are read from the chirps accumulated
during the game in the set, SC. The secret keys are extracted from public keys during
registration using an extractor, Esk.
• The challenger computes the set of extracted interactions (EI) from the database

(using the extractor EDB) which would notify an honest user. The tuples of this set
have the same form as PI.

We now check conditions and output 1 if any fail, indicating that the adversary wins.
Otherwise, output 0.

1. Correct exposure count. Ensure the extracted interactions match the exposures
counted by honest users:
∀i ∈ HU,

CountExposures(pp, HUsk(i), pkrp, DB, tnow) = #{(∗, HUsk(i), ∗, ∗) ∈ EI}
(1)

Where HU is the set of honest users and HUsk(i) is the secret key of the honest user,
i.

2. Database contains a subset of possible interactions. Ensure these extractions
are within the set of possible interactions: EI ⊆ PI (2)

3. Clone protection. Ensure that no uploader was in two locations at the same time:
̸ ∃

(
(∗, skU , t, l), (∗, skU

′, t′, l′)
)
∈ EI s.t.

(
(skU = skU

′) ∧ (t = t′) ∧ (l ̸= l′)
)

(3)

Game 2 (Chirp privacy game). Run (pkrp, st) ← A(pp, 1λ) and use the pkrp for or-
acles in the game. Extract skrp = Epkrp(pkrp) for registering new users in the sim-
ulator. Sample a random bit, b ←$ {0, 1}. If b = 0, run b′ ← AOreal (pp, 1λ, st),
otherwise, if b = 1, run b′ ← AOsim (pp, 1λ, st), where: Oreal = {RegisterHonestmal,
RecvChirp, SendChirp, HonestInteraction, IncrementTime} and Osim = {RegisterHonestmal,
RecvChirpsim, SendChirp, HonestInteraction, IncrementTime}. The adversary wins if b = b′.
The HonestInteraction function uses RecvChirpsim instead of RecvChirp if b = 1.

Game 3 (Upload-privacy game).
Run (skrp, pkrp)← RegPartyKeyGen(1λ). Sample a random bit, b

$←− {0, 1}. If b = 0, run
b′ ← AOreal (pp, pkrp, 1λ), otherwise, if b = 1, run b′ ← AOsim (pp, pkrp, 1λ), where: Oreal =
{RegisterHonest, RegisterCorrupt, RecvChirp, SendChirp, HonestInteraction, IncrementTime,
HonestUpload} and Osim = {RegisterHonest, RegisterCorrupt, RecvChirpsim, SendChirp,
HonestInteraction, IncrementTime, HonestUploadsim}. The adversary wins if b = b′.

Definition 6 (Clone integrity). A PACIFIC scheme, Π, has clone integrity if there exists
a set of extractors, E = {Esk , EDB}, such that no PPT adversary can win Game 1 with
probability greater than negligible for all valid epoch values.

Definition 7 (Chirp privacy). A PACIFIC scheme, Π, is privacy-preserving with respect
to chirps if there exists a set of extractors, E = {Esk , EDB}, and a simulator, Sc, such that

Scott Griffy, Anna Lysyanskaya 15

no PPT adversary has greater than 1
2 + negl(λ) advantage in Game 2 for all valid epoch

values.

Definition 8 (Upload privacy). A PACIFIC scheme, Π, is privacy-preserving if there exists
a set of extractors, E = {Esk , EDB} and a set of simulators, S = {Sc,SB}, such that no
PPT adversary has greater than 1

2 + negl(λ) advantage in Game 3 for all valid epoch
values.

3.2 Set Commitments on equivalence classes (CoECs)
We can already see how mercurial signatures (described in Section 2.5) could be useful
to construct a PACIFIC scheme as public key class-hiding allows for keys to be signed
and later randomized so that a verifier can only tell that a user is authenticated and not
who the user is. Unfortunately, mercurial signatures give no notion of hiding randomized
messages if an adversary is allowed to construct the initial message. We define CoECs
in this section to remedy this. CoECs are commitments that are hiding and binding
across equivalence classes. Traditional commitments ensure that an adversary cannot
produce a commitment with openings to distinct messages. CoECs provide a stronger
binding property, class-binding (in Def. 11), which prevents adversaries from opening
two commitments to distinct sets of messages as long as the commitments are in the
same equivalence class (i.e. one commitment is a randomization the other). This ensures
that even if the adversary randomizes the commitment, it is still binding to the original
value. This notion of class-binding for CoECs allows them to compose well with mercurial
signatures (discussed in Section 2). Mercurial signatures are unforgeable with respect to
an equivalence class. This means that, using a CoEC committed to attributes, a mercurial
signature enforces unforgeability of those attributes, while still allowing the commitment
to be randomized. We also include a property: class-hiding (in Def. 12) which ensures
that even if an adversary creates the commitment, it is still hiding after it has been
randomized. This allows our PACIFIC construction to be efficient by allowing uploaders
to reveal randomized commitments which other users and authorities can verify directly
without learning the attributes that the commitments are committed to. Uploaders can
then compute proofs over these commitments to enforce clone protection. This scheme uses
a relation to describe equivalence classes, which we’ll label as RC . We label the equivalence
class of commitments as [C]RC

for some representative, C. This equivalence class is the
set of all representatives which are in the same class as C. In our construction, we ensure
that these commitments are compatible with the construction of mercurial signatures in
[CL19]. This means that commitments from our CoEC scheme are within the message
space of mercurial signatures and the equivalence classes are the same. We define a CoEC
scheme in Def. 9. We define class-binding and class-hiding in Definitions 12 and 11. These
class-* definitions imply their traditional counterparts (which are defined in Section 2.2).
In Section 4.2, we construct a CoEC scheme in Definition 13.

Definition 9 (CoECs scheme).

• Setupcom(1λ, s,G)→ pp: Initialize the commitment scheme for a number of attributes,
s, outputting public parameters, pp.

• Commit(pp, M = {m0, m1, ...})→ (C, O): Commit to a set of attributes, M , where
|M | = s. Output the commitment, C (which is also a representation of the equivalence
class, [C]RC

. Also output the opening information O.
• RandomizeCom(pp, C, O; µ) → (C ′, O′): Randomizes the commitment using ran-

domizer, µ, so that C and C ′ are unlinkable but still a commitment to the same
set.

• Open(pp, C, M, O)→ (0 or 1): Use opening O to verify that C is committed to M .

16 PACIFIC

Definition 10 (CoEC correctness). A commitment scheme is correct if ∀ s, λ and attributes
M where |M | = s, then given pp ← InitializeCoEC(1λ, s), (C, O) ← Commit(pp, M), and
(C ′, O′) = RandomizeCom(C, O), the following holds:
Pr[Open(pp, C, M, O) = 1] = 1
And:
Pr[Open(pp, C ′, M, O′) = 1] = 1

Definition 11 (CoEC class-binding). A commitment scheme is binding if for all s, λ and
for any PPT adversary, A, then given pp ← InitializeCoEC(1λ, s), the following probability
is negligible:
Pr[(C, C ′, M, M ′, O, O′) ← A(pp); Open(pp, C, M, O) = 1 ∧ Open(pp, C ′, M ′, O′) = 1 ∧
M ̸= M ′ ∧ [C]RC

= [C ′]RC
] ≤ negl(λ)

Definition 12 (CoEC class-hiding). A commitment scheme is class-hiding if for all s, λ
and for any PPT adversary, A, pp ← InitializeCoEC(1λ, s,G), (C, M, O, , C ′, M ′, O′) ←
A(pp, 1λ) where Open(C, M, O) = 1 and Open(C ′, M ′, O′) = 1, then C0 ← RandomizeCom(C)
is indistinguishable from C1 ← RandomizeCom(C ′).

We construct CoECs in Section 4.2 and prove them secure in Appendix C.2.

4 Constructions
4.1 PACIFIC construction
We name our construction: “ProvenParrot” as it is similar to CertifiedCleverParrot
from [CKL+20] but requires the uploader to prove properties of their upload (that their
notifications do not violate clone protection, are from the latest epoch, and contain
no duplicates). We’ve split our scheme into 3 figures (Figures 4, 5, and 6) that group
similar functions together, specficially describing initialization, interactions, and uploading
respectively. We prove that this construction meets Definitions 6, 7, and 8 (which are
integrity, chirp privacy, and upload privacy, respectively) in Appendix C.1.

We describe the efficiency of this construction in Appendix B, but to summarize here,
we find that our uploads size is 15|G|+ 48n|G|+ 4|Zp|+ 30n|Zp|+ 4n|range proof| where
n is the number of interactions. This ends up being about five kilobytes per interaction.
Our chirps total ten group elements and one element of Zp which is less than 400 bytes.
Checking the database only requires recognizing a public key in the database, which only
requires one multiplication for each entry in the database. Verifying chirps requires two
mercurial signature verifications but can be delayed until an upload is required. Computing
a chirp requires only elliptic curve multiplication and exponentiation.

Overview of the scheme In Fig. 4, we describe the initialization of the protocol,
with the registration party calling RegPartyKeyGen to generate their keys and users calling
UserKeyGen to generate keys. The users then interact with the registration party through
RegisterUser to receive their certificate. In Fig. 5, we describe both halves of an interaction
(Chirp and Listen). Note that chirps do not depend on the listener, so they can be
broadcasted. We continue with the Notify, VerifyBatch, and CountExposures functions in
Fig. 6 which allow for a user to notify other users they previously interacted with that
they should quarantine. This notification is facilitated through the database. In order to
register users without allowing the registration party or database to de-anonymize users
(as in the Brutus and matrix attacks in Section 1.2) we will use mercurial signatures. We
reviewed mercurial signatures in Section 2. Specifically, we use the mercurial signature
construction from [CL19] because it uses the same equivalence class for messages as our

Scott Griffy, Anna Lysyanskaya 17

Setup(1λ)→ pp

Initialize three schemes:
the mercurial signature scheme:

ppMS ← SetupMS(1λ)
the commitment scheme:

ppcom ← Setupcom(1λ)
and the no-cloning scheme:

ppclone ← SetupNoCloning(1λ, 0, 1)
Output pp = (ppMS, ppcom, ppclone)

UserKeyGen(pp, pkrp) → (skU , pkU)

Generate a mercurial keypair for the
user: (skU , pkU)← KeyGen(ppMS).

RegPartyKeyGen(pp) → (skrp, pkrp)

Generate a mercurial keypair for the
registration party: (skrp, pkrp)← KeyGen(ppMS).
Construct a NIZK proving that skrp is known: πrp.
Output (skrp, pkrp) where πrp is implicitly
part of the public key.

RegisterUser(pp, skrp, pkU)→ (cert)

Sign pkU with skrp: σ ← Sign(skrp, pkU) and
return σ as the certificate, cert.
The user also proves that they know skU

Figure 4: ProvenParrot construction - Initialization

commitments (discussed in Section 4.2). We will use the chains of mercurial signatures
(similar to the anonymous credential construction in [CL19]) to allow registered users to
sign commitments to the current time and location for chirping, thus preventing Sybil
and relay/replay attacks, while also randomizing users’ signatures so that they cannot be
de-anonymized. We implicitly use mirrored mercurial signature schemes like in [CL19] to
allow the registration party to sign user keys while at the same time allowing those user keys
to sign further messages. In RegisterUser (Fig. 4), the registration party will use their key
(skrp, pkrp) to sign the user’s key (skU , pkU), yielding a certificate (cert) with the function
Sign. To chirp (function Chirp in Fig. 5) a user will randomize their key and certificate
with ChangeRep and ConvertSK, yielding skU

′, pkU
′, cert′. We use Zp as the randomization

space from which ρ (and other randomizers) are drawn from as this is the randomization
space used in [CL19]. The user then creates a CoEC to the current time (t), location (l),
and epoch (d) along with a random nonce (r) yielding commitment C and opening O.
The user then signs this commitment with their randomized mercurial secret key skU

′

using Sign, yielding signature σc. The user then combines all of this information into a
“chirp” (c) which they can then broadcast. This creates a chain of keys and signatures
(pkrp, pkU

′, cert′, σc) such that a listener can use cert′ to ensure that the chirper (known
to listener by pkU

′) is registered and then use σc to verify that this registered chirper
signed the commitment C. The listener can then use the opening information O to verify
that this commitment opens to the current time, location, and epoch. The listener then
remembers the commitment C, opening O, signature σc, chirper key pkU

′, and attributes
t, l, d, r for possibly notifying them later in an upload. If a user determines they were
infected, they iterate over the keys, commitments, and attributes they heard in the last
epoch (week) and randomize them to ensure they cannot be used to de-anonymize the
uploader. They also compute a proof over the commitments to prove to the other users
that their batch does not include any attacks on integrity such as replay or clone attacks.
Other users will then download the database, verify the proofs, and count their number of
exposures in the database. This process is described in Fig. 6.

Preventing multiple batches from the same user We want to prevent uploaders
from uploading multiple times. Naively, with mercurial signatures, this poses a problem as

18 PACIFIC

Chirp(skU , t, l)→ c

Compute the current epoch:
d← Epoch(t)
Randomize credentials and keys:
ρ←$ Z∗

p

(pkU
′, cert′)
← ChangeRep(pkrp, pkU , cert, ρ)

skU
′ ← ConvertSK(skU , ρ)

Commit to time, location, epoch,
and a nonce:
r ←$ Z∗

p

C,O = Commit(ppCom, (t, l, d, r))
Sign the commitment:
σc ← Sign(skU

′, C)
c = (pkU

′, cert′, C,O, σc, r)

Listen(pkrp, t, l, c, S)→ S

Parse c as (pkU
′, cert′, C,O, σc, r)

d = Epoch(t)
Verify commitment and chirper’s key
if Open(ppCom, C, (t, l, d, r), O) = 1
∧ Verify(pkrp, pkU

′, cert′) = 1
∧ Verify(pkU

′, C, σc) = 1 then
S = S ∪ {(t, l, d, r, C,O, pkU

′, σc)}

Figure 5: ProvenParrot construction - Interaction

uploaders can simply randomize their pseudonym, potentially allowing them to upload
multiple batches in the same epoch. We solve this problem using verifiable random
functions (VRFs) [MRV99] (reviewed in Section 2). This allows an uploader to compute a
pseudorandom function of the current epoch (d = Epoch(tnow)) using a VRF key derived
from the user’s secret key which remains constant across all pseudonyms, Y = PRFskU (d).
We ensure that the key used for the VRF across all representations of a user’s public
key is constant using a technique described in Appendix A.2. This ensures that even if a
malicious uploader randomizes their public key to upload another batch in the same epoch,
then if the proof πY verifies, then Y will match the existing Y for the previously uploaded
batch. Thus, if a user only uploads at most once per epoch (as honest users do) the output
will look random as this is only time they will never recompute the VRF on this epoch.

Randomizing uploads An honest uploader will randomize their key and certificate in
a batch. They will also randomize every chirp they heard to create the list of notifications.
This is where we use CoECs which we describe in Section 3.2. CoECs (or set commitments
on equivalence classes) are designed to be randomized over the same equivalence classes
as mercurial signatures. This ensures that their hiding and binding properties hold when
randomized to verify with a similarly randomized signature and public key. Randomizing
in this way allows for a checker of the database to recognize their own public key using
the function Recognize and verify their own signature but prevents them from linking the
commitment to any time, location, or specific chirp. If we use the mercurial signature
construction from [CL19], the message equivalence class will match the equivalence class
for our commitments, ensuring that calling ChangeRep on C has the same effect as calling
RandomizeCom on C.

Preventing integrity attacks The uploader will also create a proof that they did not
violate clone protection. Naively, in quadratic size relative to the number of chirps, proving
the batch does not contain a clone can be done with a NIZK for each pair of commitments
proving that the uploader knows the opening and that each pair of attributes does not
have the same time at different locations. We introduce zero knowledge subset proofs over

Scott Griffy, Anna Lysyanskaya 19

Notify(pkrp, skÛ , S, d)→ B

Randomize the uploader key:
ψ ←$ Zp

(pk′
Û , cert′)← ChangeRep(pkrp, pkÛ , cert;ψ)

(sk′
Û)← ConvertSK(skÛ ;ψ)

Compute a VRF for this epoch:
Y = PRFsk′

Û
(d)

Compute a proof for this VRF:
πY = NIZK [sk′

Û : Y = PRFsk′
Û

(d)

∧ (pk′
Û , sk

′
Û) ∈ KeyGen(pp)]

Iterate over heard chirps:
∀((t, l, d, r), C,O, pkU , σc) ∈ S :

Randomize the chirp and key:
µ←$ Zp

O∗ = O ∗ µ
(C∗, σ′

c)← ChangeRep(pkU , C, σc;µ)
ρ←$ Zp

σ∗
c = ConvertSig(pkU , C

∗, σ′
c, ρ)

pkU
∗ = ConvertPK(pkU

′, ρ)
Prove properties of the batch:
πclone = ProveNoCloning(ppclone,

{C∗
i , O

∗
i , (ti, li, di, ri}i∈[|S|]))

S∗ = {C∗
i , pkU

∗
i , σ

∗
c,i}i∈[|S|]

B = (Y, πY , pk′
Û , cert′, πclone, S

∗)

VerifyBatch(pkrp, DB, B, dnow)→ e

Parse B as (Y, πY , pkU
′, cert′, πclone, S

∗)
if Verify(pkrp, pkU

′, cert′) = 0
∨ VerifyNoCloning(pp, B, dnow, πclone) = 0
then return ⊥

∀B† ∈ DB

Parse B† as (Y †, π†
Y , pkU

†, cert†, π†
clone, S

†)

if Y = Y † then return ⊥

CountExposures(pkrp, skU , DB, dnow)→ e

Iterate through each batch (B)
in the database (DB)

e = 0
∀B ∈ DB

Parse B as (Y, πY , pkU
′, cert′, πclone, S

∗)
∀(C∗, pkU

∗, σ∗
c) ∈ S∗

if Recognize(ppMS, skU , pkU
∗)

∧ Verify(ppMS, pkU
∗, C∗, σ∗

c)
then e = e+ 1

return e

Figure 6: ProvenParrot construction - Upload

commitments (zk-SPoCs) in Section 4.3.2 to reduce this to a linear complexity. These
subset proofs are used in our “no cloning” proof scheme in Section 4.3.1. The uploader
then combines all proofs, signatures, commitments (discarding the openings) and public
keys in a batch to send to the database.

While checking the database (in functions VerifyBatch and CountExposures), a user will
first verify that the uploader was registered using Verify(pkrp, pk ′

Û , cert′). They will then
verify each VRF output, Y to ensure that this matches pk ′

Û and that no identical Y
appears in any other batch in the database. They will then verify the proof of clone
protection in each batch and count the number of public keys they recognize as their own
in the database with verifying signatures on a commitment. This number is exactly the
number of times that the user was exposed and will indicate the user’s risk factor, possibly
suggesting that they quarantine.

As part of our construction, we need a NIZK to prove that a batch is correct. This
requires us to prove relations over all of the attributes to which the commitments in the
batch are committed to. Specifically, we need to prove that this batch doesn’t include two
commitments whose attributes indicate the uploader was in different places at the same
time. We also need to prove that each nonce is unique and that each time is in the correct
epoch. Formally, this relation is defined as:

20 PACIFIC

R(({ti, li, di, ri, oi}i∈[n]), (d, B = {Ci}i∈[n])) = 1
iff (∀i ∈ [n], Open(Ci, {ti, li, di, ri}, oi) = 1 ∧ di = d)
∧ (∀i, j ∈ [n], (li = lj ∨ ti ̸= tj) ∧ (ri ̸= rj))

(4)

where d is the current epoch and size of the batch is n = |B| (the notation for R is
described in Section 2.4). This proof system contains a setup function, prove function, and
verify function, {SetupNoCloning, ProveNoCloning, VerifyNoCloning}. We construct this
proof system in Section 4.3.

We present the following theorems and prove them in Appendix C.1 along with the sets
of simulators and extractors needed for the proofs.

Theorem 1. The ProvenParrot scheme described in Fig. 4 has clone integrity (meeting
Definition 6) assuming that the underlying schemes are secure. Specifically, we assume
that the mercurial signature scheme is unforgeable, the NIZKs are simulation-extractable,
and the CoECs are binding.

Theorem 2. The ProvenParrot scheme described in Fig. 4 is chirp-private (meeting
Definition 7) assuming that the underlying schemes are secure. Specifically, we assume that
the mercurial signature scheme is class and origin hiding, the NIZKs are zero knowledge,
and the CoECs are hiding.

Theorem 3. The ProvenParrot scheme described in Fig. 4 is upload-private (meeting
Definition 8) assuming that the underlying schemes are secure. Specifically, we assume that
the mercurial signature scheme is class and origin hiding, the NIZKs are zero knowledge,
and the CoECs are hiding.

4.2 Set commitments on equivalence classes (CoEC) construction
Here we construct a scheme which satisfies the definitions in Section 3.2.

CoEC scheme intuition In InitializeCoEC, we generate a number of random points
(we’ll call them “bases”). Then, given a vector of messages, M , a committer will construct
a commitment (C) composed of two group elements such that the discrete log between the
group elements is dependent on the messages as well as the discrete log of the random
points. Because the discrete log between the elements of the commitment is dependent
on the discrete log of the bases generated in setup, we will see that an attempt to forge
or distinguish commitments reduces to the computational and decisional Diffie-Hellman
problems in the proofs in Appendix C.2. Because mercurial signatures use type III bilinear
pairings, a hash function exists for at least one of the bilinear groups [GPS08, Cos12].
Thus, in practice, we can create these random bases verifiably using the hash function.
Though we can also use a CRS to generate these.

Definition 13 (CoEC construction). A commitment scheme on equivalence classes has
the following functions:
• InitializeCoEC(1λ, 1s)→ pp: Compute pairs of random points: (A, B0, B1, ..., Bs−1) $←−

(G1)s+1. Output these points as pp.
• Commit(pp, M)→ (C, O): Let M = {m0, m1, ..., ms−1}. Generate a random µ← Z∗

p.

Compute a vector of size 2: C = (C0, C1), C0 = Aµ and C1 =
s−1∏
i=0

Bi,1
µmi and O = µ.

• RandomizeCom(pp, C, O; µ): C ′ = Cµ, O′ = µ ∗ O. If µ is omitted, it is sampled
randomly from Zp.

• Open(pp, C, M, O): Compute C ′ = Commit(pp, M ; O). Ensure that C ′ = C.

We prove Theorem 4 in Appendix C.2.

Scott Griffy, Anna Lysyanskaya 21

Theorem 4. The CoEC scheme in Definition 13 is correct, origin-hiding, binding, and
hiding as defined in Definitions 10, 11, 12, and Section 2.2 as long as the DDH and CDH
assumptions (from Section 2) holds in the underlying bilinear pairing.

There may be other constructions of CoECs for other equivalence classes or that provide
other functionalities or efficiencies. Messages from [FHS19, CL19] could theoretically
be considered a CoEC for high-entropy attributes (similar to how public keys can be
considered "commitments" to secret keys). In our PACIFIC construction, our attributes
are high-entropy, so we cannot simply use the messages classes from [FHS19, CL19] and
instead need this more secure construction.

4.3 ZKP for batch uploads
4.3.1 Clone protection for a set of commitments to vectors of attributes

To construct our scheme such that we can detect clones, we’ll need to prove certain
properties of the user’s uploaded batch, i.e. we need to prove the relation in Eq. 4
in Section 4.1. A batch will include signed commitments to attributes of transactions.
These attributes are time, location, epoch, and a random nonce unique to each contact.
Labeling these values, a batch will contain commitments to vectors of messages {Mi} such
that Mi[idxt] is the time of the contact, Mi[idxl] is the location, Mi[idxd] is the epoch,
and Mi[idxr] is the nonce (this notation is described in Section 2). These indices can
be aribtrary integers as long as they are consistent across the scheme. Thus, to prevent
cloning, we need to prove that, across a batch, no two attribute vectors in the set have the
same time value at a different location value. Proving this ensures that the device was
not cloned to be used in two different locations. We also need to prove that the epoch is
correct with respect to the current epoch (remember, the epoch is a longer period of time
than an interval length and no honest user would upload twice in one epoch). Because the
commitments of chirps include the epoch, we do not need to prove computation of the
epoch function, Epoch(t), in zero knowledge, thus avoiding costly range proofs. And lastly,
we need to prove that each nonce is distinct (thus, proving that the user did not duplicate
any contacts).

Thus, in this section, we construct a proof of the relation in Eq 4.
Proving this relation trivially, we can see that it would take communication quadratic

in n as we need to compare each possible pair of attribute vectors. To prove this in
linear time, we find that a NIZK scheme of the following relation is useful: R⊂ =
(({Ai, Oi, Li}i∈[n], {Bi, Pi, Mi}i∈[m]), (Ai, Bi)) = 1 iff ∀i ∈ [n], Open(Ai, Li, Oi) = 1 and
∀i ∈ [m], Open(Bi, Pi, Mi) = 1 and ∀i ∈ [n],∃j ∈ [m] s.t. Li = Mj . The last condition
(∀i ∈ [n],∃j ∈ [m] s.t. Li = Mj) represents a subset condition with the set {Li}i∈[n] being
a subset of {Mi}i∈[m]. We write this explicitly without the ⊂ operator for clarity as
{Ai, Oi, Li}i∈[n] may contain duplicate Li’s which still need to be proven to be openable.
We construct this NIZK in Section 4.3.2, calling the scheme a zero knowledge subset
proof over commitments (zk-SPoC). We label the functions of the proof scheme for R⊂ as
{InitZKSPoC, ProveSubset, VerifySubset}.

With our description of R⊂, we are ready to construct our NIZK for relation R in Fig.
7.

Theorem 5. The construction in Fig. 7 is complete with respect to definition 1 and
relation R.

Theorem 6. The construction in Fig. 7 is zero knowledge with respect to definition 2 and
relation R as long as eqrep and zk-SPoCs are zero knowledge.

Theorem 7. The construction in Fig. 7 is simulation-extractable with respect to definition
3 and relation R as long as eqrep and zk-SPoCs are simulation extractable.

22 PACIFIC

We prove Theorems 5, 6, and 7 in Appendix C.3.

4.3.2 Zero knowledge subset proofs over commitments (zk-SPoCs) construc-
tion

In this section we construct a scheme to prove the relation: R⊂ = (({Ai, Li, Oi}i∈[n],
{Bi, Mi, Pi}i∈[m]), (Ai, Bi)) = 1 iff ∀i ∈ [n], Open(Ai, Li, Oi) = 1 and ∀i ∈ [m], Open(Bi,
Mi, Pi) = 1 and ∀i ∈ [n],∃j ∈ [m] s.t. Li = Mj . This is easily accomplished in n ∗ m
communication using a generic NIZK OR proof: for every commitment in A, prove that it
is equivalent to (committed to the same values as) one of the commitments in B. Because
quadratic complexity would be considered inefficient, instead, we construct proofs in time
linear to n. To do this, we’ll use the FHS commitment scheme from [FHS19] for this
scheme as well as the concatenation function (c) from [CHK+06]. This concatenation
function maps vectors of attributes to a single message for the FHS commitment. Thus,
each “message” in the FHS commitment scheme will represent a vector of attributes.
This allows us to construct an FHS commitment to a set of attribute vectors. Following
[CHK+06], this concatenation function works by partitioning the message space of the
FHS commitment scheme into bits and assigning sets of these bits to the spaces of different
attributes. This requires that the bit-length of the FHS message space is the sum of the
bit-lengths of all attributes in the vector. We describe this further in Appendix A.3. The
proof consists of creating FHS commitments, C and D to our two sets {c(Li)}i∈[n] and
{c(Mi)}i∈[n] and then doing an efficient subset proof (πC⊂D) that the set committed to
by C is a subset of the set committed to by D. The proof, πC⊂D, requires only a single
group element. But, we still need O(n) proofs to prove that our FHS commitments C and
D are correct with respect to {Ai}i∈[n] and {Bi}i∈[n]. We show this scheme in Fig. 8.

We prove Theorems 8, 9, and 10 in Appendix C.4.

Theorem 8. The construction in Fig. 8 is complete with respect to definition 1.

Theorem 9. The construction in Fig. 8 is zero knowledge with respect to definition 2 as
long as FHS set commitments are perfectly hiding and eqrep (from Section A.1) is zero
knowledge.

Theorem 10. The construction in Fig. 8 is simulation-extractable with respect to definition
3 as long as eqrep is simulation-extractable and FHS set commitments are subset sound.

5 Acknowledgments
We are very appreciative of the anonymous reviewers for their time and effort in reading
and commenting on this work. We would also like to acknowledge Octavio Pérez Kempner
for his helpful comments on this paper. Anna Lysyanskaya and Scott Griffy are supported
by NSF Awards 2247305, 2154941 and 2154170, as well as funding from the Peter G.
Peterson Foundation and Meta.

Scott Griffy, Anna Lysyanskaya 23

• SetupNoCloning(1λ, ppcom, t, l) → pp: Initialize a zk-SPoC scheme for relation
R⊂: ppSPoC = InitZKSPoC(1λ). Initialize a VRF scheme: ppVRF. Output
pp = (ppVRF, ppSPoC, ppcom, t, l).

• ProveNoCloning(pp, {Ci, Oi, Mi}i∈[n])→ π: We split the computation of this proof
up into three separate relations:

1. To prove the (∀i ∈ [n], Open(Ci, {ti, li, di, ri}, Oi) = 1 ∧ di = d) part of the
relation, R, the prover first proves that they can open all Ci and then proves
that each di = d in zero knowledge, yielding NIZK proof, πd.

2. To prove that ∀i, j ∈ [n], (ri ̸= rj), the prover computes a random VRF
key pair, k ←$ Zp, K = P k and then computes VRF outputs and proofs:
∀i ∈ [n], Yr,i = PRFk(ri) and πr,i = NIZK [ri, Oi : Open(Ci, {ti, li, di, ri}, Oi) =
1 ∧ Yr,i = PRFk(ri)].

3. To prove the relation: ∀i, j ∈ [n], (li = lj ∨ ti ̸= tj), the prover needs to
use zk-SPoCs (described earlier in this section and constructed in Section
4.3.2). The prover first computes commitments to the time and location
attributes of vectors in {Mi}, yielding {C ′

i, O′
i, M′

i}i∈[n] such that ∀i ∈ [n],
M′

i = (ti, li) ∧Mi = (ti, li, di, ri). They then prove this relation correct where
{Mi, M′

i}i∈[n] are the messages to which the commitments {C ′
i, Ci}i∈[n] are

committed to. This yields the proof πt,l which can be constructed using eqrep
described in Appendix A.1. The prover then computes a set of vectors, {Li}i∈[m],
containing all distinct vectors in {M′

i}i∈[n]. The prover then pads {Li}i∈[m]
with vectors of random values† so that its length is the same as {M′}i∈[n], re-
sulting in a set of vectors, {L′

i}i∈[n]. Commit to {L′}i∈[n], yielding, {(B′
i, P ′

i) =
ComCoEC(L′

i)}i∈[n]. Compute π⊂ = ProveSubset({C ′
i, O′

i, M′
i, B′

i, P ′
i , L′

i}i∈[n])
using the zk-SPoC scheme described in Section 4.3.2. Next, the prover computes
a second key pair for the VRF scheme (k′, K ′) and iterates through the commit-
ments, {B′

i, L′
i, P ′

i}i∈[n], and computes a VRF on each of the time values in each
vector Li: {Yt,i = PRFk′(Li[idxt])}i∈[n] along with a proof that the VRF is cor-
rect with respect to Bi and K ′: {πt,i = NIZK [Li, Pi, k′ : Open(Bi, Li, Pi) = 1
∧ Yt,i = PRFk′(Li[idxt]) ∧K ′ = P k′}i∈[n].

Finally, the prover outputs all of their proofs along with new commitments, VRF
outputs, and public keys: π = (πd, K, {Yr,i, πr,i}i∈[n], πt,l, {C ′

i, B′
i}i∈[n], π⊂, K ′,

{Yt,i, πt,i}i∈[n]).
• VerifyNoCloning(pp, {Ci}i∈[n], π) → {0, 1}: Parse π as π = (πd, K, {Yr,i, πr,i}i∈[n],

πt,l, {C ′
i, B′

i}i∈[n], π⊂, K ′, {Yt,i, πt,i}i∈[n]). Ensure that VerifSubset(pp, {C ′
i}i∈[n],

{B′
i}i∈[n], π⊂) = 1. Verify all other proofs in π. Iterate through {Yr,i, Yt,i}i∈[n]

and verify that ∀i, j ∈ [n], (i = j ∨ (Yr,i ̸= Yr,j ∧ Yt,i ̸= Yt,j)).
† Sampling these random values from an exponential space ensures that there is a negligible probability of
collisions with existing values in vectors.

Figure 7: Clone protection scheme

24 PACIFIC

• InitZKSPoC(1λ)→ (pp): Initialize a commitment scheme with efficient subset open-
ings, ppcom. Output pp = ppcom.

• ProveSubset(pp, {(Ai, Oi, Li), (Bi, Pi, Mi)}i∈[n])→ (π):
1. First, create new FHS commitments, A′

i, B′
i, to L′

i = c(Li) and M ′
i =

c(Mi) respectively with openings O′
i, P ′

i (where c from [CHK+06] is a
function that concatenates a vector of messages into a single message).
Compute NIZKs to prove equivalence of these commitments i.e. π′ =
NIZK [{Li, L′

i, Mi, M ′
i , Oi, O′

i, Pi, P ′
i}i∈[n] : ∀i ∈ [n], Open(Ai, Li, Oi) = 1 ∧

Open(Bi, Mi, Pi) = 1 ∧ Open(A′
i, L′

i, O′
i) = 1 ∧ Open(B′

i, M ′
i , P ′

i) = 1 ∧ L′
i =

c(Li) ∧ M ′
i = c(Mi)]. We describe the computation of this concatenation

function along with its proof in Appendix A.3.
2. Compute FHS set commitments, C, D, to each set {L′

i}i∈[n] and {M ′
i}i∈[n],

(C, OC) = Commit({Li}i∈[n]), (D, OD) = Commit({Mi}i∈[n]). Duplicates
should be removed in this set to ensure that we can prove that C is com-
mitted to a subset of the values that D is committed to.

3. Prove that each A′
i is a commitment to a subset of the set committed to by

C. This can be done using the ProveSubsetFHS function described in Appendix
A.3, yielding proofs {πAi⊂C}i∈[n]. Specifically, for a commitment, A′

i, this
proof involves constructing a witness for the OpenSubset function, πW,i =
(
∏

m∈{M ′
j
}j∈[n]\{M ′

i
} P̂ (α−m))OC/O′

i using the public parameters for the FHS set

commitment scheme, {P̂ αi}i∈[n]. Computing πW,i in this way ensures πW,i is a
valid witness for proving that Ai is committed to a subset of the set committed
to by C, i.e. that e(A′

i, πW,i) = e(C, P̂). The prover then proves knowledge
of opening of C. Then, the prover randomizes this witness with a µ ←$ Zp,
yielding π′

W such that e(A′
i, (π′

W)µ) = e(C, P̂). Then, the prover produces a
proof that µ is known, πµ,j and outputs πAi⊂C = (πµ,i, πW,i).

4. Prove that C is committed to a subset of the messages committed to by D using
ProveSubsetFHS (described in Appendix A.3), yielding a proof: πC⊂D, which
can be included in the proof.

5. Prove the relation NIZK [OD, {OB′
i
}i∈[n] : Open(D, {M ′

i}i∈[n], OD) = 1 ∧ ∀i ∈
[n], Open(B′

i, M ′
i , P ′

i) = 1]. This can be done using the eqrep protocol described
in Appendix A.1. Label this proof as π{Bi}≈D.

6. Output all commitments along with their proofs as the subset proof: π⊂ =
(C, D, π{Bi}≈D, π′, {A′

i, B′
i, πAi⊂C}i∈[n], πC⊂D).

• VerifSubset(pp, {Ai, Bi}i∈[n], π)→ (1 or 0): Verify the zero knowledge proofs in π to
ensure that the messages committed to by the Ai values are a subset of the messages
committed to by Bi.

Figure 8: Our zk-SPoC construction

Scott Griffy, Anna Lysyanskaya 25

References
[ABIV23] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti.

Privacy and integrity threats in contact tracing systems and their mitigations.
IEEE Internet Computing, 27(2):13–19, 2023. Full version: https://eprint
.iacr.org/2020/493. doi:10.1109/MIC.2022.3213870.

[ACK+21] Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, Michael Walter, and Michelle Yeo. Inverse-sybil
attacks in automated contact tracing. In Kenneth G. Paterson, editor, CT-
RSA 2021, volume 12704 of LNCS, pages 399–421. Springer, Heidelberg, May
2021. doi:10.1007/978-3-030-75539-3_17.

[AFV21] Gennaro Avitabile, Daniele Friolo, and Ivan Visconti. Terrorist attacks for
fake exposure notifications in contact tracing systems. In Kazue Sako and
Nils Ole Tippenhauer, editors, Applied Cryptography and Network Security,
pages 220–247, Cham, 2021. Springer International Publishing. doi:10.100
7/978-3-030-78372-3_9.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy (SP), pages
315–334, 2018. doi:10.1109/SP.2018.00020.

[BCK+20] Jean-François Biasse, Sriram Chellappan, Sherzod Kariev, Noyem Khan,
Lynette Menezes, Efe Seyitoglu, Charurut Somboonwit, and Attila Yavuz.
Trace-Σ: a privacy-preserving contact tracing app. IACR ePrint, 2020. https:
//eprint.iacr.org/2020/792.

[BD19] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. Journal of Cryptology, 32(4):1298–1336, October 2019. doi:
10.1007/s00145-018-9280-5.

[BDH+21] Wasilij Beskorovajnov, Felix Dörre, Gunnar Hartung, Alexander Koch, Jörn
Müller-Quade, and Thorsten Strufe. Contra corona: Contact tracing against
the coronavirus by bridging the centralized–decentralized divide for stronger
privacy. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptol-
ogy – ASIACRYPT 2021, pages 665–695, Cham, 2021. Springer International
Publishing. doi:10.1007/978-3-030-92075-3_23.

[BLS19] Johannes K. Becker, David Li, and David Starobinski. Tracking anonymized
bluetooth devices. PoPETs, 2019(3):50–65, July 2019. doi:10.2478/popets
-2019-0036.

[BRS20] Samuel Brack, Leonie Reichert, and Björn Scheuermann. Caudht: Decen-
tralized contact tracing using a dht and blind signatures. In 2020 IEEE
45th Conference on Local Computer Networks (LCN), pages 337–340, 2020.
doi:10.1109/LCN48667.2020.9314850.

[CBB+20] Claude Castelluccia, Nataliia Bielova, Antoine Boutet, Mathieu Cunche,
Cédric Lauradoux, Daniel Le Métayer, and Vincent Roca. DESIRE: A
third way for a european exposure notification system leveraging the best of
centralized and decentralized systems. CoRR, abs/2008.01621, 2020. URL:
https://arxiv.org/abs/2008.01621, arXiv:2008.01621.

https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/493
https://doi.org/10.1109/MIC.2022.3213870
https://doi.org/10.1007/978-3-030-75539-3_17
https://doi.org/10.1007/978-3-030-78372-3_9
https://doi.org/10.1007/978-3-030-78372-3_9
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2020/792
https://eprint.iacr.org/2020/792
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/978-3-030-92075-3_23
https://doi.org/10.2478/popets-2019-0036
https://doi.org/10.2478/popets-2019-0036
https://doi.org/10.1109/LCN48667.2020.9314850
https://arxiv.org/abs/2008.01621
https://arxiv.org/abs/2008.01621

26 PACIFIC

[CBC+24] Miranda Christ, Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Deepak
Maram, Arnab Roy, and Joy Wang. SoK: Zero-knowledge range proofs.
Cryptology ePrint Archive, Paper 2024/430, 2024. https://eprint.iacr.
org/2024/430.

[CFG+20] Justin Chan, Dean Foster, Shyam Gollakota, Eric Horvitz, Joseph Jaeger,
Sham Kakade, Tadayoshi Kohno, John Langford, Jonathan Larson, Puneet
Sharma, Sudheesh Singanamalla, Jacob Sunshine, and Stefano Tessaro. Pact:
Privacy sensitive protocols and mechanisms for mobile contact tracing, 2020.
URL: https://arxiv.org/abs/2004.03544, arXiv:2004.03544.

[CGH+23] Sofía Celi, Scott Griffy, Lucjan Hanzlik, Octavio Perez Kempner, and Daniel
Slamanig. Sok: Signatures with randomizable keys. Cryptology ePrint Archive,
Paper 2023/1524, 2023. https://eprint.iacr.org/2023/1524.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, feb 1981. doi:10.1145/358549
.358563.

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya,
and Mira Meyerovich. How to win the clonewars: Efficient periodic n-times
anonymous authentication. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 201–210. ACM Press,
October / November 2006. doi:10.1145/1180405.1180431.

[CKL+20] Ran Canetti, Yael Tauman Kalai, Anna Lysyanskaya, Ronald L. Rivest,
Adi Shamir, Emily Shen, Ari Trachtenberg, Mayank Varia, and Daniel J.
Weitzner. Privacy-preserving automated exposure notification. Cryptology
ePrint Archive, Report 2020/863, 2020. https://eprint.iacr.org/2020/8
63.

[CL19] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous credentials
from mercurial signatures. In Mitsuru Matsui, editor, CT-RSA 2019, volume
11405 of LNCS, pages 535–555. Springer, Heidelberg, March 2019. doi:
10.1007/978-3-030-12612-4_27.

[Cos12] Craig Costello. Pairings for beginners. Online, 2012. https://www.craigc
ostello.com.au/s/PairingsForBeginners.pdf.

[CS97] Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Report, Zürich, 1997. Technical Reports D-INFK.
doi:10.3929/ethz-a-006651937.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Serge Vaudenay, editor, PKC 2005, volume
3386 of LNCS, pages 416–431. Springer, Heidelberg, January 2005. doi:
10.1007/978-3-540-30580-4_28.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498–546, April 2019. doi:10.1007/
s00145-018-9281-4.

[GA20] Google and Apple. Privacy-preserving contact tracing, 2020. https://covi
d19.apple.com/contacttracing.

https://eprint.iacr.org/2024/430
https://eprint.iacr.org/2024/430
https://arxiv.org/abs/2004.03544
https://arxiv.org/abs/2004.03544
https://eprint.iacr.org/2023/1524
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/1180405.1180431
https://eprint.iacr.org/2020/863
https://eprint.iacr.org/2020/863
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-12612-4_27
https://www.craigcostello.com.au/s/PairingsForBeginners.pdf
https://www.craigcostello.com.au/s/PairingsForBeginners.pdf
https://doi.org/10.3929/ethz-a-006651937
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing

Scott Griffy, Anna Lysyanskaya 27

[GKK20] Rosario Gennaro, Adam Krellenstein, and James Krellenstein. Exposure
notification system may allow for large-scale voter suppression. Real World
Crypto, 2020.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings
for cryptographers. Discrete Appl. Math., 156(16):3113–3121, sep 2008. doi:
10.1016/j.dam.2007.12.010.

[GVhP+22] Giuseppe Garofalo, Tim Van hamme, Davy Preuveneers, Wouter Joosen,
Aysajan Abidin, and Mustafa A. Mustafa. Pivot: Private and effective contact
tracing, 2022. doi:10.1109/JIOT.2021.3138694.

[HM20] Thomas Haines and Johannes Müller. SoK: Techniques for verifiable mix
nets. In Limin Jia and Ralf Küsters, editors, CSF 2020 Computer Security
Foundations Symposium, pages 49–64. IEEE Computer Society Press, 2020.
doi:10.1109/CSF49147.2020.00012.

[HMM+21] Katie Hogan, Briana Macedo, Venkata Macha, Arko Barman, and Xiaoqian
Jiang. Contact tracing apps: Lessons learned on privacy, autonomy, and
the need for detailed and thoughtful implementation. JMIR Med Inform,
9(7):e27449, July 2021. doi:10.2196/27449.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
CRC Press, second edition, 2014.

[KLN23] Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-preserving
blueprints. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part II, volume 14005 of LNCS, pages 594–625. Springer, Heidelberg, April
2023. doi:10.1007/978-3-031-30617-4_20.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In 40th FOCS, pages 120–130. IEEE Computer Society Press,
October 1999. doi:10.1109/SFFCS.1999.814584.

[MSBM23] Omid Mir, Daniel Slamanig, Balthazar Bauer, and Rene Mayrhofer. Prac-
tical delegatable anonymous credentials from equivalence class signatures.
Proceedings on Privacy Enhancing Technologies, 2023:488–513, 06 2023.
doi:10.56553/popets-2023-0093.

[Org24] World Health Organization. Who coronavirus (covid-19) dashboard, 2024.
https://covid19.who.int/.

[PR21] Benny Pinkas and Eyal Ronen. Hashomer – privacy-preserving bluetooth
based contact tracing scheme for hamagen. Proceedings 2021 Innovative
Secure IT Technologies against COVID-19 Workshop, 2021. URL: https:
//api.semanticscholar.org/CorpusID:232073728, doi:10.14722/coron
adef.2021.23011.

[RAC+20] Ronald L. Rivest, Hal Abelson, Jon Callas, Ran Canetti, Kevin Esvelt,
Daniel Kahn Gillmor, Louise Ivers, Yael Tauman Kalai, Anna Lysyanskaya,
Adam Norige, Bobby Pelletier, Ramesh Raskar, Adi Shamir, Emily Shen,
Israel Soibelman, Michael Specter, Vanessa Teague, Ari Trachtenberg, Mayank
Varia, Marc Viera, Daniel Weitzner, John Wilkinson, and Marc Zissman. The

https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1109/JIOT.2021.3138694
https://doi.org/10.1109/CSF49147.2020.00012
https://doi.org/10.2196/27449
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.56553/popets-2023-0093
https://covid19.who.int/
https://api.semanticscholar.org/CorpusID:232073728
https://api.semanticscholar.org/CorpusID:232073728
https://doi.org/10.14722/coronadef.2021.23011
https://doi.org/10.14722/coronadef.2021.23011

28 PACIFIC

pact protocol specification, 2020. https://pact.mit.edu/wp-content/upl
oads/2020/11/The-PACT-protocol-specification-2020.pdf.

[RBS20] Leonie Reichert, Samuel Brack, and Björn Scheuermann. Privacy-preserving
contact tracing of covid-19 patients. Poster session, IEEE Symposium on
Security and Privacy, 2020. https://www.ieee-security.org/TC/SP2020/
poster-abstracts/hotcrp_sp20posters-final10.pdf.

[RBS21] Leonie Reichert, Samuel Brack, and Björn Scheuermann. Ovid: Message-based
automatic contact tracing. CoronaDef Workshop, 2021. https://www.ndss
-symposium.org/wp-content/uploads/coronadef2021_23010_paper.pdf.

[TN21] Cong Duc Tran and Tin Trung Nguyen. Health vs. privacy? the risk-risk
tradeoff in using COVID-19 contact-tracing apps. Technol Soc, 67:101755,
September 2021. doi:10.1016/j.techsoc.2021.101755.

[TPH+20] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé,
James R. Larus, Edouard Bugnion, Wouter Lueks, Theresa Stadler, Apostolos
Pyrgelis, Daniele Antonioli, Ludovic Barman, Sylvain Chatel, Kenneth G.
Paterson, Srdjan Capkun, David A. Basin, Jan Beutel, Dennis Jackson, Marc
Roeschlin, Patrick Leu, Bart Preneel, Nigel P. Smart, Aysajan Abidin, Seda F.
Gürses, Michael Veale, Cas Cremers, Michael Backes, Nils Ole Tippenhauer,
Reuben Binns, Ciro Cattuto, Alain Barrat, Dario Fiore, Manuel Barbosa, Rui
Oliveira, and José Pereira. Decentralized privacy-preserving proximity tracing.
CoRR, abs/2005.12273, 2020. URL: https://arxiv.org/abs/2005.12273,
arXiv:2005.12273.

[Tra20] Tracetogether. Government of Singapore, 2020. https://www.tracetogethe
r.gov.sg/. URL: https://www.tracetogether.gov.sg/.

[TSS+20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song.
Epione: Lightweight contact tracing with strong privacy, 2020. URL: https:
//arxiv.org/abs/2004.13293, doi:10.48550/ARXIV.2004.13293.

[Vau20a] Serge Vaudenay. Analysis of dp3t. IACR ePrint, 2020. https://eprint.iac
r.org/2020/399.

[Vau20b] Serge Vaudenay. Centralized or decentralized? the contact tracing dilemma.
IACR ePrint, 2020. https://eprint.iacr.org/2020/531.

[WL20] Zhiguo Wan and Xiaotong Liu. Contactchaser: A simple yet effective contact
tracing scheme with strong privacy. IACR ePrint, 2020. https://eprint.i
acr.org/2020/630.

https://pact.mit.edu/wp-content/uploads/2020/11/The-PACT-protocol-specification-2020.pdf
https://pact.mit.edu/wp-content/uploads/2020/11/The-PACT-protocol-specification-2020.pdf
https://www.ieee-security.org/TC/SP2020/poster-abstracts/hotcrp_sp20posters-final10.pdf
https://www.ieee-security.org/TC/SP2020/poster-abstracts/hotcrp_sp20posters-final10.pdf
https://www.ndss-symposium.org/wp-content/uploads/coronadef2021_23010_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/coronadef2021_23010_paper.pdf
https://doi.org/10.1016/j.techsoc.2021.101755
https://arxiv.org/abs/2005.12273
https://arxiv.org/abs/2005.12273
https://www.tracetogether.gov.sg/
https://www.tracetogether.gov.sg/
https://www.tracetogether.gov.sg/
https://arxiv.org/abs/2004.13293
https://arxiv.org/abs/2004.13293
https://doi.org/10.48550/ARXIV.2004.13293
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/630
https://eprint.iacr.org/2020/630

Scott Griffy, Anna Lysyanskaya 29

A Additional Preliminaries
A.1 DL Representations Proof in Prime Order Groups
Using known techniques [CS97, KLN23], a Σ-protocol can be constructed that proves
the following relation in Def. 14 in prime order cyclic groups where the DDH and CDH
problems are hard. We describe a σ-protocol that satisfies Def. 15.
Definition 14 (Relation for proof of equality of discrete logarithm representations in
cyclic groups of prime order). Let Reqrep−p be the following relation: Reqrep−p(w, x) accepts
if x = (G, {xi, {gi,1, . . . , gi,m}}n

i=1) where G is the description of a group of order p, and
all the xis and gi,js are elements of G, and witness w = {wj}m

j=1 such that xi =
∏m

j=1 g
wj

i,j .
Definition 15 (σ-protocol for equality of DL representations). P→V On input the (w,

x) ∈ Reqrep−p, the Prover chooses ej ← Zp for 1 ≤ j ≤ m and computes di =
∏m

j=1 g
ej

i,j

for 1 ≤ i ≤ k. Finally, the Prover sends to the Verifier the values com = (d1, . . . , dn).
P←V On input x and com, the Verifier responds with a challenge chal = c for c← Zp.
P→V The Prover receives chal = c and computes si = ei + cwi mod p for 1 ≤ i ≤ m, and

sends res = (s1, . . . , sm) to the Verifier.
Verification The Verifier accepts if for all 1 ≤ i ≤ n, dix

c
i =

∏m
j=1 g

sj

i,j ; rejects otherwise.
Simulation On input x and chal = c, the simulator chooses sj ← Zp for 1 ≤ j ≤ m,

and sets di = (
∏m

j=1 g
sj

i,j)/xc
i for 1 ≤ i ≤ k. He then sets com = (d1, . . . , dn) and

res = (s1, . . . , sm).
Extraction On input two accepting transcripts for the same com = (d1, . . . , dn), namely

chal = c, res = (s1, . . . , sm), and chal′ = c′, res′ = (s′
1, . . . , s′

m), output wj =
(sj − s′

j)/(c− c′) mod p for 1 ≤ j ≤ m.
We can see from the construction in Def. 15, that each NIZK will contain a group

element for each element in the statement, as well as an element of Zp for each witness.

A.2 Mercurial signatures
We formally define the inputs and outputs for a mercurial signature scheme [CL19] in Def.
16. We then formally define unforgeability in Def. 17 and define privacy definitions in
Defs. 18, 19, 20, and 21. Mercurial signature schemes are defined over a set of equivalence
relations which we described in Section 2.5. The randomizers for keys as well as the
randomizers for messages (ρ and µ respectively in Def. 16) are drawn from Zp in the
construction in [CL19].
Definition 16 (A mercurial signature scheme).
• Setup(1λ)→ ppMS: Outputs public parameters for the scheme
• KeyGen(ppMS, ℓ)→ (pk, sk): Outputs a pair of keys for signing and verification.
• Sign(sk, M)→ σ: Signs the message M .
• Verify(pk, M, σ)→ 0/1: Verifies the signature on the message, M .
• ConvertSK(sk, ρ)→ sk ′: Transforms the secret key to work with a similarly random-

ized public key, i.e, if Sign(ConvertSK(sk, ρ), M) = σ, then Verify(ConvertPK(pk, ρ),
M, σ) = 1.

• ConvertPK(pk, ρ)→ pk ′: Transforms the public key to work with a similarly random-
ized secret key, or a similarly randomized signature.

• ConvertSig(pk, M, σ, ρ) → σ′ : Transforms a signature to work with a randomized
public key, i.e, if Verify(pk, M, σ) = 1, then
Verify(ConvertPK(pk, ρ), M, ConvertSig(pk, M, σ, ρ)) = 1
• ChangeRep(pk, M, σ, µ) → (M ′, σ′) : Transforms a message and signature into an

equivalent message and a randomized signature, i.e., if
Verify(pk, M, σ) = 1 and (M ′, σ′)← ChangeRep(pk, M, σ, µ), then Verify(pk, M ′, σ′) =
1 ∧ [M ′]RM

= [M]RM
.

30 PACIFIC

Definition 17 (Mercurial Signatures Unforgeability). A mercurial signature scheme
(Setup, KeyGen, Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parame-
terized equivalence relations RM , Rpk , and Rsk is unforgeable if for all polynomial-length
parameters (λ) and all probabilistic, polynomial-time (PPT) algorithms A having ac-
cess to a signing oracle Sign, then if pp ← Setup(1λ), (pk, sk) ← KeyGen(pp, ℓ(λ)), and
(pk∗, M∗, σ∗)← ASign(sk,·)(pp, pk), the following probability holds:

Pr
[

(∀M ∈ Q, [M∗]RM
̸= [M]RM

) ∧ [pk∗]Rpk = [pk]Rpk

∧ Verify(pk∗, M∗, σ∗) = 1

]
≤ negl(λ)

where Q is the set of all queries to the signing oracle that A made

Definition 18 (Origin-Hiding for ConvertSig [CL19]). A mercurial signature scheme
is origin-hiding for ConvertSig if, given any tuple (pk, σ, M) that verifies, and given a
random key randomizer ρ, ConvertSig(σ, pk, ρ) outputs a new signature σ′ such that σ′

is a uniform random signature in the set of all verifying signatures for M , i.e., σ′ ∈
{σ∗|Verify(ConvertPK(pk, ρ), M, σ∗) = 1}.

Definition 19 (Origin-Hiding for ChangeRep [CL19]). A mercurial signature scheme is
origin-hiding for ChangeRep if, given any tuple (pk, σ, M) that verifies, and given a random
message randomizer µ, ChangeRep(pk, M, σ, µ) outputs a new message and signature
M ′, σ′ such that (M ′, σ′) is a uniform random message/signature pair in (M ′, σ′) ∈
{(M∗, σ∗)|Verify(pk, M∗, σ∗) = 1 ∧ [M∗]RM

= [M]RM
}.

Definition 20 (Message Class-Hiding [CL19]). A mercurial signature scheme has
message class-hiding if the advantage of any PPT adversary A defined by AdvMCH

A (λ)
:= 2 · Pr

[
ExpMCH

A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpMCH

A (λ) is shown in Fig. 9a.

Definition 21 (Public Key Class-Hiding [CL19]). A mercurial signature scheme has
public key class-hiding if the advantage of any PPT adversary A defined by AdvPKCH

A (λ)
:= 2 · Pr

[
ExpPKCH

A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpPKCH

A (λ) is shown in Fig. 9b.

ExpMCH
A (λ)

pp ←$ Setup(1λ); b←$ {0, 1}; ρ←$ Zp

M1 ←$ M;M0
2 ←$ M

M1
2 ←$ [M1]RM ;

b′ ←$ A(M1,M
b
2); return b = b′

(a) Message class-hiding experiment
from [CL19, CGH+23].

ExpPKCH
A (λ)

pp ←$ Setup(1λ); b←$ {0, 1}; ρ←$ Zp

(sk1, pk1)←$ KeyGen(pp);
(sk0

2, pk0
2)←$ KeyGen(pp)

pk1
2 ← ConvertPK(pk1, ρ); sk1

2 ← ConvertSK(sk1, ρ)

b′ ←$ ASign(sk1,·),Sign(skb
2,·)(pk1, pkb

2);
return b = b′

(b) Public key class-hiding experiment
from [CL19, CGH+23].

Figure 9: Privacy games for mercurial signatures

A.2.1 Proof of VRF over a mercurial key

For mercurial keys in the construction from [CL19] where the length of the vector is ℓ = 2,
a single discrete log describes all representations of an equivalence class. To understand
why this is, we quickly have to review the construction in [CL19]. In this construction,
mercurial secret keys are sk = {x1, x2} ∈ (Zp)2 and the corresponding public keys are
pk = {X̂1, X̂2} = {P̂ x1 , P̂ x2} ∈ G2 where G2 is the second source group of a bilinear

Scott Griffy, Anna Lysyanskaya 31

Definition 22 (Correctness).
A FHS set-commitment scheme is
correct if for all S,T where T ⊂ S,
if (C, O) ← Commit(pp, S) and
(W) ← OpenSubset(pp, C, S, O, T),
then Open(pp, C, S, O) = 1 and
VerifySubset(pp, C, T, W) = 1.

Definition 23 (Hiding).
A FHS set-commitment scheme is hid-

ing if for all security parameters, λ ∈
Z>0, and any polynomial adversary, A,
if (S0, S1, st) ← Adv(pp), b ← {0, 1},
(C, O) ← Commit(pp, Sb), and (b′) ←
AdvOpenSubset(pp,C,Sb,·∩S0∩S1)(pp, C, st) the
probability that b = b′ is ≤ 1

2 + negl(λ).

Definition 24 (Binding).
A FHS set-commitment scheme is
binding if for all security parame-
ters, λ ∈ Z>0, and any polynomial
adversary, A, if (C, S, O, S′, O′) ←
Adv(pp), Open(pp, C, S, O) = 1,
Open(pp, C, S′, O′) = 1, then the
probability that S ̸= S′ is ≤ negl(λ).

Definition 25 (Subset soundness).
A FHS set-commitment scheme has

subset soundness if for all security pa-
rameters, λ ∈ Z>0 and any polyno-
mial adversary, A, if (C, S, O, T, W) ←
Adv(pp), Open(pp, C, S, O) = 1, and
VerifySubset(pp, C, T, W) = 1, then the
probability that T ̸⊆ S is ≤ negl(λ).

Figure 10: Properties of FHS commitments [FHS19]

• Setup(1λ, 1s)→ pp: Sample a bilinear pairing group, (e,G1,G2, P, P̂) of prime order,
p. Pick a trapdoor, α←$ Zp and output: pp = (P, P̂ , {P αi

, P̂ αi}i∈[s]). The message
space for this commitments scheme is sets of size s with elements in Zp.

• Commit(pp, S; O)→ (C, O): If O is omitted, sample an opening, O ←$ Zp. Compute
C = (

∏
i∈[s] P αi

/P mi)O where S = {mi}i∈[s]. Output (C, O).
• Open(pp, C, S, O) → {0, 1}: Recompute: C ′ = Commit(pp, C, S; O) and check that

C ′ = C.
• OpenSubset(pp, C, T, O)→W : Compute W = (

∏
m∈S\T P αi

/P m)O.
• VerifySubset(pp, C, T, W) → {0, 1}: Compute C ′ =

∏
m∈T P̂ αi

/P̂ m. Ensure that
e(W, C ′) = e(C, P̂).

Figure 11: FHS set commitment scheme [FHS19]

pairing. Thus, the discrete log between the two elements of the public key is logX̂1
(X̂2).

A public key from [CL19] is randomized by computing pk ′ = {X̂ρ
1 , X̂ρ

2} for ρ ∈ Zp. We
can see that no matter what the choice of ρ is, this discrete log remains constant. Using
this discrete log we can ensure that the same VRF key is used across all representations
of a mercurial public key. This can be done using the eqrep protocol from Appendix A.1.
A proof similar to [CHK+06] can be used to prove the correct output of a VRF. Like in
[CHK+06], the Dodis-Yampolskiy VRF [DY05] is efficient for bilinear pairings and can be
used for our constructions in Section 4.1. Similarly, we can use the protocol in Section A.1
to open CoECs and compute VRFs on their attributes in zero knowledge.

A.3 FHS signatures
The FHS set-commitment scheme has the properties, hiding, binding, and subset soundness
described in Fig. 10 along with correctness.

We review the construction of the FHS set commitment scheme from [FHS19] in Figure
11. We use the insight from [MSBM23] to simplify the construction, which allows us to
ignore the case when the trapdoor is committed to. In practice, no user will have knowledge
of this trapdoor and since it is drawn uniformly at random from an exponentially sized
set, no user can compute any sets that contain this.

32 PACIFIC

• ProveSubsetFHS(pp, C, C ′, S, S′, O, O′) → π: This proof computes πW =
(
∏

m∈S′\S P̂ αi

/P̂ m)µO′/O such that e(C, πW) = e(C ′, P̂)µ. It then produces a NIZK
such that a µ is known that satisfies this pairing equation and that the opening of C
and C ′ are known.

• VerifySubsetFHS(pp, C, C ′, π) → {0, 1}: Verify that A = e(C, πW) and B = e(C ′, P̂)
and verify the NIZK proving that dlogA(B) is known as well of the construction of
πW .

Figure 12: Additional functions for FHS set commitments

To create the FHS subset proofs in our proof system in Section 4.3.2, we need an
additional function, ProveSubsetFHS constructed in Figure 12. This proof verifies that
the set S committed to by a commitment C is a subset of the set S′ committed to
by another commitment, C ′. In Camenish-Stadler notation, this proves the relation:
NIZK [S, S′, O, O′ : Open(C, S, O) = 1 ∧ Open(C ′, S′, O′) = 1 ∧ S ⊂ S′]. In this case, we
can see that if the π output by ProveSubsetFHS verifies and C and C ′ are opened, then we
can extract a W which proves that C is a subset of C ′.

Proof of simulation-extractability and zero-knowledge of the proof system in
Fig. 12 To prove simulation-extractability, we can see that we can extract µ, O from
the NIZK and compute W = π

O/µ
W . Because we can also extract {m ∈ S′ \ S} such that

πW = (
∏

m∈S′\S P̂ αi

/P̂ m)µO′/O, we know that W = (
∏

m∈S′\S P̂ αi

/P̂ m)O′ . We can see
that this satisfies e(

∏
m∈S P αi−m, W) = e(C ′, P̂). This means that if an adversary can

open C ′ to some set, S′, such that S ̸⊂ S′, we can use this adversary to violate subset
soundness of the FHS commitment scheme.

To prove zero-knowledge, we can create a simulator that randomly samples πW and uses
the eqrep simulator to produce proofs for µ and m ∈ S′ \ S.

A.3.1 Concatenating attributes to fit into the FHS message space

While constructing our proof in Section 4.3.2, we need to be able to construct FHS
commitments to sets of vectors of the attributes committed to by our CoEC commitments.
To do this, we use a concatenation function similar to [CHK+06] which divides the message
space of the FHS commitment scheme into bits and assigns sets of those bits to the different
attribute spaces of the CoEC commitment. For example, in our construction we only
need to concatenate the time and location attributes. If our FHS commitment scheme
has 128 bits of message space (i.e. the order p that defines Zp is at least 128 bits) then
we can define our time attribute space as [0, ..., 264 − 1] and our location attribute space
as [264, 2 ∗ 264, 3 ∗ 264, ..., 2128 − 1]. Our concatenation function is then simply adding
the two attributes, which can be efficiently proven in zero knowledge. This ensures that
the concatenation function is bijective, meaning that vectors of attributes will collide
when concatenated into the FHS message space. We also need range proofs to ensure
that our commitments are in the correct ranges. This can be done using bulletproofs
[BBB+18, CBC+24].

B Concrete efficiency
To sumarize, our uploads size is 15|G|+ 48n|G|+ 4|Zp|+ 30n|Zp|+ 4n|range proof| where
n is the number of interactions in the upload. If we consider 256 bits for group elements
[BD19], 128 bits for elements of Zp and 700 bytes for range proofs as described in
[CBC+24, BBB+18], our uploads total: 592 + 4880n bytes. These values may change

Scott Griffy, Anna Lysyanskaya 33

depending on the implementation, but should be close enough for an estimate. With these
parameters, our chirps total ten group elements and one element of Zp, totaling 336 bytes.
After a batch has been verified, which only needs to be done a single time by any trusted
party as the database is public, then checking the database only requires recognizing a
public key in the database, which only requires one multiplication for each entry in the
database. Verifying chirps requires two mercurial signature verifications, of which the bulk
of the computation is the pairing operation of which there are three instances per signature
(one for each element in key/message vectors and one to verify Y and Ŷ). Thus, this
requires six pairing operations in total. Verifying chirps can be delayed until an upload is
required. Computing a chirp requires only elliptic curve multiplication and exponentiation
which is much more efficient than pairing operations. We describe the computation of
these totals below:

Chirps (described in Figure 5) consist of a public key, pkU , which takes up two group
elements. The chirp also contains two mercurial signatures, cert′ and σc, requiring three
group elements each, totaling six group elements. The chirp also contains a CoEC
commitment, C, requiring two more group elements, and a random roken, r, requring one
element of Zp. The opening can be defined canonically (e.g. as O = 1) to omit it from
the chirp. Thus, chirps contain 10 group elements and one element of Zp. While storing
chirps, the listener will store two more elements of Zp (to remember the time and location).
The epoch can be rederived from the stored time. For a batch in an upload, described in
Figure 6, the uploader will create pk ′

Û which consists of two group elements. They will also
compute cert′ which is three group elements, Y which is a single group element, and S∗

which will cost 7n group elements. These 7n group elements are: two group elements for
each C∗

i , two group elements for each pkU
∗
i , and three group elements for each σ∗

c,i. The πY

value includes a proof over which pertains to three group elements, Y and pkÛ (pk ′
Û takes

up two group elements). There are two secrets in this proof, (the elements of the secret
key, sk ′

Û). This proof is also computed on the current epoch, d, but this is public so it is
not included in the proof and is not a witness. Thus, a discrete log representation proof as
described in [CS97] (as well as in Appendix A.1) will require three group elements and two
elements of Zp. The batch also contains the proof, πclone (described in Figure 7), which
contains two Schnorr-style keys, K, and K ′, each consisting of one group element, as well
as 2n commitments, {C ′

i, B′
i}i∈[n], which can be represented with 4n group elements. The

values {Yr,i, Yt,i}i∈[n] can be represented as 2n group elements. The proof, πd, contains
n + 1 witnesses, as well as 2n elements (for each of the commitments). The proofs, πr,i,
each pertain to five group elements (which make up Yr,i, pk ′

Û , and Ci) as well as four
elements of Zp for witnesses, which include the token r, the secret key and randomization
of pk ′

Û , and the opening of Ci. Each πt,i has the same number of elements, five group
elements and four elements of Zp for the same reasons. All of these proofs can share the
same challenge, which can be computed as a hash of the statement. The proof πt,l requires
two group elements for each CoEC commitment, Ci and two group elements for each
time/location commitment, C ′

i. For πt,l we also need six elements of Zp for the witnesses,
one for each CoEC attribute one for each of the randomization of both Ci and C ′

i. For the
proof, πclone, descibed in Figure 8, we require one group element for each of C, D, A′

i, B′
i,

totaling 2 + 2n group elements. Further, we require n + 1 group elements and 2n + 1 Zp

elements for the proof, π{Bi}≈D, totaling 3 + 3n group elements and 2n + 1 Zp elements.
For π′, we require 12n elements of Zp for the witnesses, and 4n group elements for the
commitments. We then need 4n range proofs, for each of the concatenations of attributes.

34 PACIFIC

C Proofs
C.1 ProvenParrot proofs
C.1.1 Proof of Clone integrity (Theorem 1)

Let E be the following set of extractors. We define extra extractors that are not required
for the definition, EB , Epkrp , and Ec, but we’ll see that these are useful to simplify the proof.
Definition 26 (Extractors for security proofs).
• Epk(pp, pk): Use the trapdoor to compute sk such that P sk = pk (for ℓ = 2, this

is pk = (P sk0 , P sk1)). Normalize this so that sk0 = 1 (multiply sk1 by (sk0)−1 to
derive sk1). Output sk.

• Ec(pp, c): Use Epk for the given pkU in c.
• Epkrp(pp, c): Use Epk for the given pkrp.
• EB(pp, B): Take pk ′

Û from the batch and use Epk to extract a secret key, skÛ . Also
extract the attributes, t, l, from the NIZKs for each chirp. Extract sk from the public
key in each chirp. Output a set of each interaction with skÛ as the receiver.

• EDB(pp, DB): Iterate through each B ∈ DB and compute EB(B) and union the
result i.e. output:

⋃
B∈DB

EB(B).

The adversary in Game 1 can win if after the game, any of the 3 conditions (Equations 1,
2, and 3) in the integrity definition are false. We will go through each equation and prove
that the probability of any PPT adversary violating them is negligible. In each of these
three proofs, we create a reduction B that plays either the commitment binding game, the
NIZK simulation-extractability game, or the mercurial signature unforgeability game. B
acts as the challenger, setting up the clone integrity game (Game 1) and providing honest
or simulated responses to the oracle queries of A until they exit. The reduction, B, will
transform the adversary’s inputs to the oracles and the adversary’s state in a number of
ways dependent on how the integrity game fails. We’ll start by showing that Equation 3
holds as the proof of Equation 2 relies on this.

Proving Equation 3 - Clone protection To prove that this equation holds, we’ll
break the equation into two equations which each ensure a separate guarantee. The first
equation (Eq. 5) ensures that clone protection holds within a batch.
∀B ∈ DB, ̸ ∃ ((∗, ∗, t, l), (∗, ∗, t′, l′)) ∈ (EB(pp, B))2 s.t. t = t′ ∧ l ̸= l′ (5)
The second equation (Eq. 6) ensures that no two batches share a listener across their
extracted exposure tuples.
∀B ∈ DB, ̸ ∃B′ ∈ DB \ {B} s.t. ∃(∗, skU , ∗, ∗) ∈ B ∧ ∃(∗, skU , ∗, ∗) ∈ B′ (6)
We can see that, because EI = EDB(DB), if the Equations 5 and 6 hold, then Equation 3
holds. This is because for pair of tuples to exist in EI that violate Equation 3, they need to
have the same listener, thus, by Equation 6, they are in the same batch and by Equation
5, then they must have distinct time values or the same locations.

First we’ll prove Equation 6. Informally, we use the fact that the uploader must compute
PRFsk′

Û
(dnow) (where dnow = Epoch(tnow)), and prove that this is related to pk ′

Û , resulting
in Y, πY . Y is checked for uniqueness among batches in DB, during VerifyBatch. Because
DB is emptied when Epoch(dnow) changes, we know that each of these Y across batches are
computed on the same d. Because PRF(·)(·) normalizes the secret key before evaluation of
the PRF, then, even if the user randomizes their keys, this function will still be evaluated
on the same values, sk1

sk0
and dnow. Thus, if two batches are uploaded with equivalent public

keys, then the Y pk values in the batches will be the same. This will be detected and
rejected during VerifyBatch, thus ensuring Equation 6 can’t be violated.

More formally, because we can extract a canonical secret key from Y, πY (in the random
oracle model using the NIZK associated with Y) and because VRFs are deterministic, if

Scott Griffy, Anna Lysyanskaya 35

all the Y values are distinct, then we know that we can we must be able to extract distinct
skÛ , d from each Y ,πY pair in the database. Because d is public and each is fixed for each
proof in the database, πY , then each sk must be distinct. This formal proof is inspired by
the soundness proof in [CHK+06].

Our extractor, EB, uses this canonical skÛ extracted from πY to output the listener
value for each extracted tuple from the batch (in Def. 26). Thus, if none of these skÛ
values are shared across any batch, then none of the listener keys in the tuples of this
batch are shared with any other batch. Thus, Equation 6 cannot be violated.

We see that verifying πclone directly proves that Eq. 5 holds. For a more detailed analysis,
see the proof of simulation extractability for the no-cloning relation in Appendix C.3.
Because the πclone relation also opens the commitments, if the adversary computes a Yt,i for
a Mi[idxt] which the honest chirper did not sign, a reduction can use this extracted opening
from πt,i along with the honest adversary’s opening to double open the commitment, thus
breaking Definition 11 or a reduction can break the forgeability of mercurial signatures.

Proving Equation 1 - Correct exposure count This equation ensures that the count
of exposures by each user matches the extracted interactions from the database, fulfilling
the equality in Equation 1.

We first need to prove that there’s no duplicated tuples extracted in the batch that
indicate that a chirp from the same honest user at the same time and location was sent.
Because CountExposures would double count this, while extracting a duplicate into a set
would only count it once, we need to ensure this duplication doesn’t happen (a set contains
no duplicate tuples). Thus, we need to prove that a batch does not contain duplicates of
any interaction where the sender is honest. Let’s reduce an adversary that violates the
integrity in this way to an adversary that can open a commitment to two openings or a
mercurial signature forgery. An honest user will never chirp twice on one t and so they will
never sign two commitments that share a t and have difference nonces (r). An uploader
must compute a VRF on the nonce committed to by the chirp, PRFskÛ

(r). We can see
that simply rerandomizing another chirp honestly will not yield a new PRF output as it is
still committed to the same nonce and private key class. Thus, if the adversary is able
to produce a distinct Yr,i in πclone for this rerandomized proof, they must have been able
to open the commitment up to another r′

i, forged a signature on a new commitment, or
violated the soundness of the NIZK.

More formally, let’s say this adversary produced two commitments C, C ′ such that
we extract the same tuple from them using the extractor EB. If [C]R = [C]′R, because
the adversary creates a proof of knowledge of each attribute that the commitment is
committed to as well as the opening information, a reduction can extract this information
from both openings and output this as a double opening in the game for Definition 11
as ri ̸= r′

i. If these two commitments are not in the same equivalence class, and we have
t = t′, r ̸= r′, pkU = pkU

′, then we have another two cases: (1) this is a forgery in the
game in Definition 17, since honest users never sign two distinct nonces for a single t in
the PACIFIC game; or (2) one of these is a double opening from another commitment the
user made (to change the time value that the commitment is committed to). Even if the
adversary did not include this second commitment in the upload, we can look back on
chirps that honest users made to find the opening information and attributes.

Now that we’ve proven that duplicates in the extraction are prevented by our assumptions
on underlying schemes, we can see that Equation 1 holds from inspection of the extractor,
EB , the CountExposures function, and Recognize. CountExposures uses Recognize to count
exactly the number of chirper public keys in the batch where the discrete log is equivalent
to the normalized user’s secret key, HUsk(i). This is exactly what we’re counting in the
extracted tuples, the normalized secret key from the chirper.

36 PACIFIC

Proving Equation 2 - Batch reflects possible interactions This equation ensures
that the extracted interactions are a subset of a set of possible interactions. During
extraction, if we have B such that EB(pp, B) ̸⊂ PI, there must exist a tuple (sk, sk ′, t, l) ∈
EB(pp, B) such that (sk, sk ′, t, l) is not in PI (remember the format of tuples: (chirper,
listener, time, location)).

We will now prove that if Eq. 2 does not hold, a reduction can transformation the
adversary’s input to constitute a violation of either the commitment binding game or the
mercurial signature unforgeability game.

We’ll break down this violation of Eq. 2 into 4 different restrictions on the tuple
(sk, sk ′, t, l) to make the proof easier to follow. These restrictions only concern qualities of
the chirper and listener and together constitute all possible combinations, thus exhausting
possible pairs of uploader and listener. The first three restrictions are straightforward,
but the last restriction categorizes a false exposure and thus is the most important and
difficult to prove. Let U be the set of all registered users: U = CUsk ∪ HUsk where CUsk
are the secret keys of all corrupted users (extracted with Epk) and HUsk is the set of all
honest user secret keys.

1. sk or sk ′ ̸∈ U
2. sk, sk ′ ∈ (HUsk)2

3. sk, sk ′ ∈ (CUsk)2.
4. sk ∈ HUsk and sk ′ ∈ CUsk .

Restriction 1 If sk ′ ̸∈ U , then the certificate, cert′, for this batch holds a forgery, since
the secret keys are extracted from the public key pk ′

Û for this batch and cert′ is a signature
on this key. The secret key for the uploader, sk ′, is extracted from pk ′

Û . Also, because the
batch also includes randomized versions of each chirp’s certificate, if sk ̸∈ U , then there
exists a certificate with a forgery in the batch.

Restriction 2 Let us look at the case where sk, sk ′ ∈ (HUsk)2. We know from equation
6 that no two batches share an uploader. Because honest users upload their batches
before the adversary learns them, the adversary cannot upload a second batch by replaying
that user’s public key and signature. This is because the Y would be the same for the
second upload, and so the database would reject it in the VerifyBatch function. Thus this
interaction must have come from an honest user’s batch and is in PI due to the correctness
of the scheme.

Restriction 3 This instance is the adversary notifying themselves, which intuitively is
not something we care about for integriy. In this case, we know this is in PI because we
include in PI all possible interactions between malicious users.

Restriction 4 Our last, but most important case: sk ∈ HUsk and sk ′ ∈ CUsk , indicates
a fake exposure. Because, for every chirp that an honest user made, we add a tuple to
PI for each sk ′ ∈ CUsk , this means that no honest user signed a commitment with t, l.
Thus, the adversary must have either double opened a commitment to a distinct t′, l′ or
forged a signature. Our reduction, is assured that the adversary knows the opening of this
commitment because the uploader proves knowledge of these attribute witnesses in the
batch. Also, during chirping, honest users provide openings for the commitments in their
chirps. Similarly to our proof Equation 1, we’ll break this into the case where this violation
shares an equivalence class with another commitment and the case where it doesn’t. If this
violating commitment shares an equivalence class with a commitment in another chirp,
the adversary violated the commitment scheme to open the commitment in a second way.
Thus a reduction, can extract the opening information from the adversary and sumbit this
as a double opening along with the honest user’s original opening information in their

Scott Griffy, Anna Lysyanskaya 37

chirp. If this commitment doesn’t share an equivalence class with any other commitment
signed by the user, then it is a forgery in the mercurial signature scheme under the user’s
public key. This proves that Equation 2 cannot be violated given the security definitions
of our commitment scheme along with the unforgeability of mercurial signatures.

Note that to find these forgeries in the game, we can choose a commitment in the game
randomly to be signed by the mercurial signature unforgeability challenger. Because the
adversary can only call a polynomial number of functions, and because our construction
samples honest users’ keys in the same way that the mercurial signature unforgeability
challenger does, we have a non-negligible chance of having this forgery reduce to the
mercurial signature unforgeability game. A reduction can similarly use a probablistic
method for double opening if equivalence classes are undecidable.

We have now proven that Equations 1, 2, and 3 cannot be violated by a PPT adversary
given our construction and extractors, thus proving Thm. 1.

C.1.2 Proof of chirp privacy

Proof intuition We’re going to reduce this to the mercurial public key class-hiding
game from Fig. 9b. In the ideal function, RecvChirpsim, we’ve used a new random user
for each simulated chirp. The mercurial public key class-hiding game This means we
need to construct a hybrid argument where we iteratively replace calls of RecvChirp with
simulated values using the pkb

2 given to the reduction from the mercurial signature public
key class-hiding game in Fig. 9b. We do not need to hide the attributes since this is given
as input to ideal function.

Proof of Theorem 2 Assume an adversary can win in Game 2 with non negligible
probability. Using this adversary, we’ll create a reduction BMS that wins the mercurial
public key class-hiding game.

Let q be the maximum number of times that the adversary queries any oracle. Thus,
this q bounds the number of times the adversary queries RecvChirp for any user and the
number of honest users the adversary creates. Note that if the adversary is PPT, then
q is less than p(λ) for some polynomial, p. Let Hybridi,j be similar to Game 2 but for
the first j chirps computed by any of the first i honest users, the keys and certificate
(skU , pkU , cert) for the chirp are replaced by new, randomly generated keys (skU , pkU) and
a freshly issued certificate on those keys. These hybrids use the original location given
to RecvChirp, l, and the time stored in the global state, tnow. Note that Hybridi,q+1 and
Hybridi+1,0 are identical.

Let BMS be a reduction that chooses a random Hybridi,j to emulate, but acts differently
for the j-th chirp from user i. During the registration for user i, the reduction uses sk1, pk1
given by the class-hiding game. Then, for the j-th chirp for that user, the reduction uses
pkb

2 for that chirp. We can see that if q ≥ j ≥ 0, this reduction looks like Hybridi,j+b.
Thus, which hybrid this reduction emulates depends on the bit in the class-hiding scheme
and thus distinguishing the hybrids is equivalent to distinguishing the public keys in the
class-hiding game.

Because Hybrid0,0 is our real game and Hybridq,q is our simulated game, and we’ve
shown that distinguishing each step is negligible, we can see that these two games are
indistinguishable.

In order to complete this reduction, we need to show that skrp is accessible by a PPT
reduction. This is why we have the adversary include a NIZK that they know the secret
key of the registration party. In the random oracle model, this NIZK proves that skrp is
somewhere in the adversary’s state. If this extraction fails, the proof of the registration
party’s key must be incorrect and thus the adversary cannot create any honest users in
the game as they will all output ⊥, aborting the honest user creation.

38 PACIFIC

C.1.3 Proof of upload privacy

Proof intuition Similarly to the proof of chirp privacy, we will reduce this to the hiding
definitions of mercurial signatures. In contrast to the proof of chirp privacy, we also need
to simulate the time and locations of interactions. We will see that distinguishing the
simulator (which uses random times and locations instead of the real ones) will reduce to
the class-hiding or origin-hiding properties of our CoEC commitment scheme defined in
Section 3.2.

Proof of Theorem 3 Assume an adversary can win in Game 3 with non negligible
probability. We’ll create a reduction BMS that plays the mercurial public key class-hiding
game and a reduction BCom that plays the commitment hiding game for CoECs (described
in Section 2.2), both using this assumed adversary that can win Game 3.

Let q be defined as in the proof for Theorem 2. Let Hybridc
i,j use fresh, random users

and certificates for the first j chirps from the first i users just like the hybrids in the proof
of Theorem 2. We can use the reductions from the proof of Theorem 2 to ensure that
Hybridc

0,0 is indistinguishable from Hybridc
q,q. Let HybridB

i,j act like Hybridc
q,q but use the

simulator for the first j batches uploaded by user i 1. Observe that, similarly to the proof
of Theorem 2, Hybridc

q+1,q+1 = HybridB
0,0 and that HybridB

q+1,q+1 is the ideal game.

Claim 1. HybridB
i,j is indistinguishable from HybridB

i,j+1

Proof of Claim 1 To prove Claim 1, we construct additional hybrids and reductions.
We construct one hybrid for each chirp given to Notify and the simulator. We first create
hybrids that replace the honest chirps given to Notify, which we’ll label HybridB,HU

i,j,k . This
hybrid acts like HybridB

i,j but, for the first k hoenst chirps passed to Notify (for the j call
to Notify from user i), we generate each of these chirps using a freshly registered user:
skU , pkU ← UserKeyGen(1k), cert ← RegisterUser(pp, skrp, pkU) and random attributes
(t, l). Next, we’ll create hybrids for chirps from corrupted users, HybridB,CU

i,j,k . These
hybrids simulate all chirps for honest users like HybridB,HU

i,j,q+1 but instead replace the first
k corrupted chirps. The corrupted chirps are simulated in the same ways as the honest
chirps, but the secret keys are not regenerated. Instead the simulated chirps are created
using the secret keys of the adversaries that sent chirps to this user during this time period.

Claim 2. HybridB,CU
i,j,k is indistinguishable from HybridB,CU

i,j,k+1

Proof of Claim 2 In this proof, we are proving that (in the j-th batch from the i-th
honest user) replacing the k-th chirp from a corrupted user is indistinguishable from when
a fresh key and signature is generated and random attributes are used. If we replace
the public key and its certificate of this chirp by randomizing them, the origin-hiding of
ChangeRep proves that this new public key and signature looks entirely independent from
any freshly generated public key and signature in the same equivalence class. The simulator
generates a fresh key and certificate in the same equivalence class. Thus, replacing the
public key and certificate with freshly generated ones from the batch is indistinguishable.
Next, we can create a reduction that replaces the commitment and reduce this to our
hiding game for CoEC in Section 2.2 by creating a reduction BCom that computed C, C ′

to output in the game as commitments to M as the original attributes (t, l, d, r) for this
chirp and M ′ as random attributes respectively. Depending on what CoEC returned to
our reduction, this reduction would either be replacing the commitment with random

1A reader that just read the integrity definition might be confused as to why there are multiple batches
for a single user. This is because the adversary’s decision in the privacy game can be informed by older
batches from previous time periods. These batches are not considered in the integrity game.

Scott Griffy, Anna Lysyanskaya 39

attributes or not. We see that we can use the simulator for the no-cloning scheme as well
as the VRF scheme to ensure these proofs are indistinguishable as well.

Claim 3. HybridB,HU
i,j,k is indistinguishable from HybridB,HU

i,j,k+1

Proof of Claim 3 We’ll first consider a reduction to the public key class-hiding game.
For the k-th chirp from an honest user in this batch (the j-th batch from the i-th honest
user), the reduction replaces this honest user’s sk, pk with a new, randomly generated
one. We’ll call this user the “hybrid user” in this proof. Our reduction then simulates
any chirps from the hybrid user passed to the Notify function up to k − 1 using freshly
sampled keys, commitments and signatures. For chirp k from the hybrid user our reduction
uses the public key class-hiding oracle Sign(skb

2, ·). For chirps k + 1 and beyond from the
hybrid user, we use the public key class-hiding oracle Sign(sk1, ·). We can see that this
makes our reduction look like one of these two hybrids HybridB,HU

i,j,k+b depending on the bit
for the public key class-hiding challenger. We can also replace the attribute sets in the
commitment as we did for the proof of Claim 2, reducing to the hiding of the commitment
scheme.

Claim 4. HybridB,CU
i,j,q+1 is indistinguishable from HybridB

i,j+1

Proof of Claim 4 In this proof, we aren’t simulating any new chirps in the batch, but
rather the other elements such as pk ′

Û , cert′, Y pk , πpk , We can immediately use the
indistinguishability property of VRFs/PRFs to replace all Y values with random values.
This is because PRF(·)(·) is a PRF and each invocation by an honest user depends on
secrets not known to the adversaries (the user’s secret key). Since the user is honest, we
know that none of these Y values collide (they never listen for the same t at multiple
locations and they never upload twice for a given Epoch(t)2). We can then simulate all
proofs π using the simulator for the NIZK. This includes running the simulator for the
proof of subset. All C∗

i can then be randomly generated as shown by the simulator and
any PRFs computed on them can be simulated.

Claim 5. HybridB
i,q+1 is indistinguishable from HybridB

i+1,0

Proof of Claim 5 From Claims 4, 3, and 2, we can see that Claim 1 is true. Now from
Claim 1, the fact that Hybridc

0,0 = Hybridc
q+1,q+1 (shown in the proof of chirp privacy),

Hybridc
q+1,q+1 = HybridB

0,0 as well as the fact that HybridB
i,q+1 = HybridB

i+1,0, we find that
Hybridc

0,0 is indistinguishable from HybridB
q+1,q+1.

Noticing that Hybridc
0,0 is the real game and HybridB

q+1,q+1 is the ideal game as well as
using Claim 5 proves Theorem 2.

C.2 Proofs for CoECs
Proof of Thm. 4 To prove Thm. 4, we split it into 4 theorems for correctness (Thm.
11), binding (Thm. 12), hiding (Thm. 13), and class-hiding (Thm. 14).

Theorem 11. The commitment scheme in Definition 13 is correct as defined in Section
2.2.

Proof of Thm. 11 The commitment scheme in Definition 13 is correct by inspection.

Theorem 12. The commitment scheme in Definition 13 is binding as defined by Definition
11 under the discrete logarithm problem.

2To ensure that no t = Epoch(t), we simply need to make the output of Epoch distinct from its input.
Imagining the t values as a Unix timestamp, we can possibly make all outputs of Epoch negative or
multiply the output by 264 or similar.

40 PACIFIC

Proof of Theorem 12 We assume an adversary can output (C, C ′, M, O, M ′, O′) where
M ̸= M ′, [C]R = [C ′]R and both C, M, O and C ′, M ′, O′ are valid openings. We assume the
adversary outputs this double opening with non-negligible probability. To prove that this
adversary cannot exist by contradiction, we will reduce to thediscrete logarithm problem.
Let’s first look at the scenario where there’s only one pair of bases, A, B0 (s = 1). Because
these were valid openings, we know that: C = (Aα, B0

αm) C ′ = (Aβ , B0
βm′

) where O = α
and O′ = β. If [C]R = [C ′]R, then logC0(C1) = logC′

0
(C ′

1) = b0
a m = b0

a m′ where b0 is the
discrete log dlogP (B0) and a is the discrete log dlogP (A). Thus, m = m′ so we have a
contradiction. This implies that for one attribute, this scheme is perfectly binding. This
changes to a computational hardness when we increase s.

Now we will prove this holds for s > 1. Because M ̸= M ′, we know ∃j such that
mj ≠ m′

j where M = (m1, ..., m|M |) and M ′ = (m′
1, ..., m′

|M ′|). Because [C]R = [C ′]R, we
know that:
logC0(C1) = logC′

0
(C ′

1)

α(
∑

mibi)/αa = β(
∑

m′
ibi)/βa

α(
∑

mibi) ∗ βa = β(
∑

m′
ibi) ∗ αa

αβ(
∑

mibi) ∗ a = αβ(
∑

m′
ibi) ∗ a

(
∑

mibi) = (
∑

m′
ibi)

0 = (
∑

m′
ibi)− (

∑
mibi)

mjbj −m′
jbj = (

∑
i∈[s]\{j}

m′
ibi)− (

∑
i∈[s]\{j}

mibi)

(mj −m′
j)bj = (

∑
i∈[s]\{j}

m′
ibi)− (

∑
i∈[s]\{j}

mibi) (7)

Where bi is the discrete log dlogP (Bi) and a is the discrete log dlogP (A). Because we know
mj −m′

j is non-zero, the left side of Equation 7 must also be non-zero. Thus, the right
side must be non-zero.

Knowing that an adversary that can break the binding of our commitment scheme
produces a set with the property described in Equation 7, we’ll create a reduction that
solves the discrete log problem with this. Our reduction to discrete log receives P, P ′ = P d

and is tasked with recovering d. The reduction then creates a commitment scheme with a
number (s) of random bases where the reduction knows all the discrete logs over P , i.e.,
we know all bi such that: (bi = dlogP (Bi)). The reduction then replaces one base, Bj ,
at random where the reductions instead replaces put in our challenge from the discrete
logarithm game, Bj = P ′, for a random j ∈ [s]. The reduction now gives pp = {A, Bi}i∈[s]
to the adversary (sampling A randomly). Observing Equation 7, we can see that we
retrieve some C, C ′, M, M ′, O, O′ such that the adversary can compute:

(mk −m′
k)B0 =

∑
i∈[s]\{k}

(m′
i −mi)Bi

Where k is the index of the attribute that the adversary has changed (which must exist due
to this being a double opening). The reduction reruns this experiment until it happens to
pick j = k. This will happen with non-negligible probability since the j base is a randomly
sampled element just like the other bases: {P d : d

$←− Z∗
p} ≈ {Q : Q

$←− G}. So for the rest
of the proof, we’ll assume j = k. Because the reduction knows the discrete logs of all the
other bases, the reduction can find d′ such that:

Bj
mj−m′

j = P

∑
i∈[s]\{j}

(m′
i−mi)bi

Scott Griffy, Anna Lysyanskaya 41

Bj = P

∑
i∈[s]\{j}

bi(m′
i−mi)/(mj−m′

j)

Bj = P d′

We can divide by (mj −m′
j) if these values are distinct, which is true because we know

this is where the message sets, M and M ′ differ. Thus, because we set Bj = P ′, we can
recompute d′ =

∑
i∈[s]\{j}

bi(m′
i −mi)/(m0 −m′

0) since we know all the bi values aside from

bj . Thus, we find the discrete log: d′ = dlogP (P ′).

Theorem 13. The commitment scheme in Definition 13 is hiding as defined in Section
2.2 as long as the decisional Diffie-Hellman assumption holds.

Proof of 13 Our reduction takes in (X, Y, Z) = (P a, P b, P c) from the DDH challenger.
The reduction then computes parameters pp1 for the commitment scheme by first sampling
random values, d, ri for i ∈ [s] and computing A = Xd and Bi = Y ri and setting
pp1 = (A, {Bi}i∈[s]). Notice that logA(Bi) = ari/d. The reduction gives pp1 to the
adversary in the commitment hiding game and this adversary returns two vectors of
messages that they want the reduction to commit to: M0, M1. The reduction then flips a
coin, b′ ∈ {0, 1} and commits to Mb′ using a second set of parameters: pp2 = (A′, {B′

i}i∈[s])
where A′ = Y d and B′

i = Zri . We label this commitment C = (C0, C1). Notice that if
c = ab, then logA′(B′

i) = ari/d, which is the same discrete log as pp1. Thus, because the
equivalence class of commitments is defined by the discrete log between elements, any
commitments based on these parameters will look identical to commitments using pp1. If
c ≠ ab, then logA′(B′

i) = cri/(bd). Thus, the discrete log will be dependent on c. We can
see that the discrete log of C1 over C0 will be: logC0(C1) = (c/b)(

∑
i∈[s] Mb′,iri)/(

∑
i∈[s] d)

where Mb′,i is the i-th message in the vector, Mb′ . If c ≠ ab, then this discrete log will
be a random value that the adversary has never seen before. Because we pick a random
representation uniformly, and the equivalence class is defined by the discrete log, then only
the discrete log matters when the adversary is distinguishing this commitment. Because
the discrete log is a random value when c ̸= ab, then the adversary has no advantage.
Thus, if the adversary can guess the reduction’s bit, b′, then the reduction guesses that
c = ab and otherwise, guesses that c ̸= ab. We can see that if this assumed adversary
has non-negligible success at distinguishing in the commitment hiding game, then our
reduction has a non-negligible chance of winning the decisional Diffie-Hellman game.

Theorem 14. The commitment scheme in Definition 13 is class-hiding as defined by
Definition 12 as long as

Proof of Theorem 14 Our reduction takes in a Diffie-Hellman tuple, (X, Y, Z) =
(P a, P b, P c), and decides if c = ab. Similar to the proof of Theorem 13, the reduction
constructs two sets of parameters: (1) pp1 = {A, Bi}i∈[s] where A = Y d and Bi = Zri ; (2)
pp2 = {A′, B′

i}i∈[s] where A′ = Y d and B′
i = Zri . The reduction gives pp1 to the adversary

and retrieves C, O, M, C ′, O′, M ′. The reduction then generates a new commitment C0
and C1 to M and M ′ (respectively) using pp2 and gives one of these randomly to the
adversary. If M = M ′, then, because randomizing a commitment perfectly chooses a
random commitment in the same equivalence class, C and C ′ are indistinguishable. If
M ̸= M ′, then we can instead reduce using our previous reduction from the proof of
Theorem 13. This is done passing the adversary’s M, M ′ to that reduction to mercurial
message class-hiding and returning the given Cb′ to the class-hiding adversary and having
the reduction return b† dependent on whether the adversary guesses correctly just like
the proof of Theorem 13. Again, because randomizing a commitment perfectly chooses
another representative in the equivalence class, being able to specify the opening (O, O′)

42 PACIFIC

does not help the adversary distinguish this reduction since the commitments returns to
the adversary will always be entirely independent of O, O′.

C.3 Proofs for our no cloning construction in Section 4.3.1
Proof of Theorem 5 Our scheme is correct by inspection.

Proof of Theorem 7 Intuitively, since VerifSubset(pp, {C ′
i}i∈[m], {B′

i}i∈[m], π⊂) = 1, we
know that for each Mi committed to with C ′

i, there exists a Li committed to by a B′
i. If

this is not the case, we can create a reduction that breaks the soundness of the underlying
zk-SPoC scheme. Because we verify each πi and check that each Yi is distinct, this ensures
that no two Li[idxt] are the same. If ∃i, j : i ̸= j ∧Li[idxt] = Lj [idxt], then the Yi would be
the same since we’ve computed and proven each Yi using the same public VRF key, pkVRF.
Otherwise, the adversary has broken the soundness of the NIZK for the VRF scheme or
the binding of the commitment. Because the zero knowledge proofs in our no cloning
construction are simulation extractable, our no cloning proof is also simulation extractable.

More formally, we see that the adversary proves that the pairs of times and locations
committed to by the commitments, {C ′

i}i∈[n], are a subset of the pairs committed to
by {B′

i}i∈[n] in πclone. Thus, if any of the pairs in {C ′
i}i∈[n] collide such that Mi[idxt] =

Mj [idxt], Mi[idxl] ̸= Mj [idxl], then for {B′
i}i∈[n] to be a super set of the messages, it must

include two pairs where Li[idxt] = Lj [idxt] (as it must include both pairs, (Mi[idxt], Mi[idxl])
and (Mj [idxt], Mj [idxl])). We also see that Yt,i = PRFskÛ

(Li[idxt]) in πclone is computed
for each Li[idxt] committed to by {B′

i}i∈[n]. Thus, because each Yi,t is computed solely on
the time value, if these values are computed honestly, we’ll see that Yt,i = Yt,j (for i ̸= j)
and the VerifyNoCloning function will reject this proof. If an adversary were to include a
false Yt,i or Yt,j then a reduction would be able to extract a fake proof for at least one of
the VRFs, πt,i or πt,j . Because the verifier also verifies that the time and location values
comitted to by {C ′

i}i∈[n] are equivalent to the values time and location values in {Ci}i∈[n],
we know that this relation of no-cloning holds for the inputted commitments, {Ci}i∈[n].

Proof of Theorem 6 The commitments in the proof output in Figure 7 can be randomly
sampled elements. The NIZK proofs can be simulated so that a simulator can open these
commitments to any value. Thus, we can commit to random attribute vectors and simulate
all the proofs. If the adversary can distinguish, we can break either the zero knowledge of
the NIZK scheme or the hiding of the commitments. Because each VRF is distinct and
independent when replaced with a truely random function, our simulator can sample the
VRF keys and generate the VRF outputs on the randomly sampled attribute vectors.

C.4 Proofs for zk-SPoCs
Proof of Theorem 9. Let SProveSubset be a simulator as defined in Def. 27:

Definition 27 (zk-SPoC simulator - SProveSubset({Ai}i∈[m], {Bi}i∈[n])). Create random
commitments, messages, and openings: C, D, {A′

i, L′
i, O′

i}i∈[n], {B′
i, M ′

i , P ′
i}i∈[n] such that

the messages and opening satisfy the relationship. Next, simulate the other NIZK proofs
output by ProveSubsetFHS, π{Bi}≈D, π′, πAi⊂C , πC⊂D.

Because FHS commitments are perfectly hiding, randomly sampling commitments
implies that there exists a valid witness that satisfy the relations. Thus, we can use the
eqrep simulator to create simulated proofs while keeping our simulator indistinguishable
to any PPT adversary.

Specifically, we can first create hybrids to prove that the real proof function is indis-
tinguishable from when the proofs are simulated. This is done by replacing each proof

Scott Griffy, Anna Lysyanskaya 43

one-by-one and reducing to the respective zero knowledge challenger. Thus, we can replace
the proofs generated by ProveSubsetFHS as well as the NIZK, π{Bi}≈D, and the proofs
of correct concatenation, π′. After the proofs have been replaced, we can replace all
the commitments with random group elements. These are indistinguishable from correct
commitments as FHS set commitments are perfectly hiding. This last case is exactly our
simulator, which is independent of witnesses, and thus, we have zero knowledge.

Proof of Theorem 10. If an adversary can produce a π that satisfies R⊂ defined in
Section 4.3.2, we can extract a witness that proves the statement (i.e. that {Ai}i∈[n] is
a subset of {Bi}i∈[n]. We first note that because the concatenation function (described
in Section A.3.1) is bijective and maps input the space from which the Ai, Bi vectors
are drawn, and maps to the space from which the A′

i, B′
i values are drawn, proving the

relation for A′
i, B′

i will ensure the relation is true for Ai, Bi. π′ ensures the concatenation
relationship between Ai, Bi and A′

i, B′
i holds. We can see that using each πAi⊂C (generated

by ProveSubsetFHS), we can extract witnesses to prove that C is committed to all the
messages in {Ai}i∈[n]. We can then see that using πC⊂D, we prove that the set that C
is comitted to is a subset of the set that D is committed to. We then use π{Bi}≈D to
extract the witnesses that prove that D and {B′

i}i∈[n] are committed to the same set,
{M ′

i}i∈[n]. If an adversary were to attempt to use a fake witness in this proof, we can
create a reduction that violates the subset soundness of FHS set commitments (in Def.
25). Thus, we’ve proven that {L′

i}i∈[n] ⊂ {M ′
i}i∈[n] and because of the bijectivity of the

concatenation function described earlier, we see that {Li}i∈[n] ⊂ {Mi}i∈[n] (where these
are the messages that {Ai, Bi}i∈[n] are committed to).

	Introduction
	Automated contact tracing
	Attacks on contact tracing schemes
	Contributions

	Notation and preliminaries
	Cryptographic bilinear pairings
	Commitments
	FHS Commitments JC:FucHanSla19
	Non-interactive zero knowledge proofs of knowledge (NIZKs)
	Mercurial Signatures
	Verifiable random functions

	Definitions
	PACIFIC Definitions
	Set Commitments on equivalence classes (CoECs)

	Constructions
	PACIFIC construction
	Set commitments on equivalence classes (CoEC) construction
	ZKP for batch uploads

	Acknowledgments
	References
	Additional Preliminaries
	DL Representations Proof in Prime Order Groups
	Mercurial signatures
	FHS signatures

	Concrete efficiency
	Proofs
	ProvenParrot proofs
	Proofs for CoECs
	Proofs for our no cloning construction in Section 4.3.1
	Proofs for zk-SPoCs

