Communications in Cryptology IACR CiC
Search requires all terms to appear in the result
Search results for bit security
  1. Keewoo Lee
    Published 2024-04-09 PDFPDF

    We revisit the question of what the definition of bit security should be, previously answered by Micciancio-Walter (Eurocrypt 2018) and Watanabe-Yasunaga (Asiacrypt 2021). Our new definition is simple, but (i) captures both search and decision primitives in a single framework like Micciancio-Walter, and (ii) has a firm operational meaning like Watanabe-Yasunaga. It also matches intuitive expectations and can be well-formulated regarding Hellinger distance. To support and justify the new definition, we prove several classic security reductions with respect to our bit security. We also provide pathological examples that indicate the ill-definedness of bit security defined in Micciancio-Walter and Watanabe-Yasunaga.

  2. Jingwen Chen, Qun Liu, Yanhong Fan, Lixuan Wu, Boyun Li, Meiqin Wang
    Published 2024-04-09 PDFPDF

    In recent years, quantum technology has been rapidly developed. As security analyses for symmetric ciphers continue to emerge, many require an evaluation of the resources needed for the quantum circuit implementation of the encryption algorithm. In this regard, we propose the quantum circuit decision problem, which requires us to determine whether there exists a quantum circuit for a given permutation f using M ancilla qubits and no more than K quantum gates within the circuit depth D. Firstly, we investigate heuristic algorithms and classical SAT-based models in previous works, revealing their limitations in solving the problem. Hence, we innovatively propose an improved SAT-based model incorporating three metrics of quantum circuits. The model enables us to find the optimal quantum circuit of an arbitrary 3 or 4-bit S-box under a given optimization goal based on SAT solvers, which has proved the optimality of circuits constructed by the tool, LIGHTER-R. Then, by combining different criteria in the model, we find more compact quantum circuit implementations of S-boxes such as RECTANGLE and GIFT. For GIFT S-box, our model provides the optimal quantum circuit that only requires 8 gates with a depth of 31. Furthermore, our model can be generalized to linear layers and improve the previous SAT-based model proposed by Huang et al. in ASIACRYPT 2022 by adding the criteria on the number of qubits and the circuit depth.