
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 2, 44 pages.

https://doi.org/10.62056/a3n59qgxq
Check for updates

Twinkle: A family of Low-latency Schemes for
Authenticated Encryption and Pointer

Authentication
Jianhua Wang1 , Tao Huang2, Shuang Wu2 and Zilong Liu3

1 Shield Lab, Huawei Technologies Co., Ltd., China
2 Shield Lab, Huawei International Pte. Ltd., Singapore

3 HiSilicon Technologies Co. Ltd., China

Abstract. In this paper, we aim to explore the design of low-latency authenticated
encryption schemes particularly for memory encryption, with a focus on the temporal
uniqueness property. To achieve this, we present the low-latency Pseudo-Random
Function (PRF) called Twinkle with an output up to 1152 bits. Leveraging only one
block of Twinkle, we developed Twinkle-AE, a specialized authenticated encryption
scheme with six variants covering different cache line sizes and security requirements.
We also propose Twinkle-PA, a pointer authentication algorithm, which takes a 64-bit
pointer and 64-bit context as input and outputs a tag of 1 to 32 bits.
We conducted thorough security evaluations of both the PRFs and these schemes,
examining their robustness against various common attacks. The results of our
cryptanalysis indicate that these designs successfully achieve their targeted security
objectives.
Hardware implementations using the FreePDK45nm library show that Twinkle-AE
achieves an encryption and authentication latency of 3.83 ns for a cache line. In
comparison, AES-CTR with WC-MAC scheme and Ascon-128a achieve latencies of
9.78 ns and 27.30 ns, respectively. Moreover, Twinkle-AE is also most area-effective
for the 1024-bit cache line. For the pointer authentication scheme Twinkle-PA, the
latency is 2.04 ns, while QARMA-64-σ0 has a latency of 5.57 ns.
Keywords: Low-latency · Authenticated Encryption · Pointer Authentication

1 Introduction
The landscape of symmetric-key cryptography has witnessed a notable evolution in recent
years, moving from general-purpose designs to domain-specific solutions tailored to meet
the unique demands of specific applications. The National Institute of Standards and
Technology (NIST) has been a pioneer in this evolving landscape, with its efforts to
standardize lightweight cryptography, aiming to provide cryptographic primitives optimized
for resource-constrained scenarios. An earlier instance of this transition is evident in the
previous CAESAR competition [com], where the final portfolio encompassed three distinct
use cases: lightweight applications, high-performance applications, and defense in depth,
each requiring a nuanced cryptographic design approach.

One domain-specific aspect that has received significant attention in recent years is
low-latency cryptography, particularly in the areas of memory protection and system
security enhancement.

E-mail: wangjianhua@amss.ac.cn (Jianhua Wang), huangtao80@huawei.com (Tao Huang), Wu.Shuan
g@huawei.com (Shuang Wu), liuzilong5@hisilicon.com (Zilong Liu)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-09 Accepted: 2024-06-03

https://doi.org/10.62056/a3n59qgxq
https://crossmark.crossref.org/dialog/?doi=10.62056/a3n59qgxq&domain=pdf&date_stamp=2024-07-01
https://orcid.org/0009-0003-8895-676X
mailto:wangjianhua@amss.ac.cn
mailto:huangtao80@huawei.com
mailto:Wu.Shuang@huawei.com
mailto:Wu.Shuang@huawei.com
mailto:liuzilong5@hisilicon.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Twinkle: A family of Low-latency Schemes

Memory protection. In the context of cloud computing, memory is a vulnerable target,
susceptible to physical and privileged software attacks, including threats posed by cloud
providers [HSH+09, BPH15, YADA17, WCJ+21]. To address these vulnerabilities, it is
essential for Central Processing Units (CPUs) to incorporate cryptographic mechanisms to
safeguard the data stored in memory. A natural approach involves the implementation of
a hardware memory encryption engine, strategically positioned between the system cache
and Random Access Memory (RAM). The cipher is intended to be implemented as the
Memory Encryption Engine (MEE) on the SoC, situated between the DRAM Controller
and the Caches, as shown in Figure 1. When data is loaded from DRAM, the MEE will
decrypt and verify its integrity. Conversely, when data is written to the DRAM, the MEE
will perform encryption and generate a tag, which may be stored in the DRAM (either in
the memory itself or by repurposing the ECC bits in DRAM).

Figure 1: Schematic diagram of memory encryption engine.

Various memory protection solutions have been proposed, such as Intel Software
Guard Extensions (SGX) [Gue16], Intel Trust Domain Extension (TDX) [Int20], AMD
SEV[AMD19], and ARM Confidential Compute Architecture (CCA) [ARM21]. These
solutions differ in their security properties, and Avanzi [Ava22] has classified them into
three levels, from basic memory encryption to memory encryption, authentication and
replay protection.

• Level 1: Memory encryption. This level provides memory confidentiality using
a tweakable block cipher with the address as tweak. AMD’s SEV is an example of
Level 1 solutions.

• Level 2: Encryption and integrity verification. This level adds integrity
protection against memory corruption to Level 1. It does not protect against replay
attacks. Intel’s TDX is an example of Level 2 solutions.

• Level 3: Encryption, integrity and replay protection. This level provides
stronger protection against replay attacks. Note that while the nonce based encryption
can provide temporal uniqueness, it is still vulnerable to replay attacks. To prevent
replay attacks, normally an integrity tree is needed and the root of the integrity tree
is stored inside the SoC. Intel’s SGX is an example of Level 3 solutions.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 3

The temporal uniqueness of ciphertext is a critical factor in mitigating side-channel
attacks, as emphasized in previous research [LWW+22, DLT+23]. These studies have
revealed vulnerabilities in Trusted Execution Environments (TEEs) that use deterministic
memory encryption, highlighting the necessity of nonce-based authenticated encryption
schemes to address these attacks. Due to the importance of Level 3, this paper will introduce
an authenticated encryption primitive designed for this level. Besides, throughout this
paper, we assume a strong attacker can perform active attacks with physical access to
DRAM, allowing them to read and modify data. Cryptographically speaking, the adversary
can modify the ciphertext and tags.
System security enhancement. Cryptographic primitives are now being used to
enhance system security, with Pointer Authentication (PA) being one such primitive. PA
effectively prevents software attacks that rely on modifying pointers, such as Return-
Oriented-Programming (ROP) attacks, Data-Oriented-Programming (DOP) attacks, Out
Of Bound read/write (OOB) and Used-After-Free (UAF) attacks. Additionally, low-latency
small block ciphers have the potential to be useful in performing cache randomization,
which helps prevent side-channel attacks.

There are two different approaches to protect the integrity of a pointer. One approach
is to use a MAC algorithm to compute a tag for the pointer and its context. This approach
is particularly useful for 64-bit pointers that have unused bits which can be used to store
the MAC tag. It provides a deterministic probability to detect attacks on integrity. ARM
has adopted this idea and provides the pointer authentication code (PAC) after ARMv8.3.

Another approach is to use encryption with redundant information in the plaintext
such as the pointer address. Since the addresses of valid pointers are only a subset of the
entire space, when a pointer is encrypted with a block cipher, the probability of a modified
ciphertext decrypting to a valid address is undeterministic. However, it should be smaller
than using the redundant bits as MAC tag, as it captures those invalid addresses with
correct redundant values. In the Cryptographic Capability Computing (C3) [LRD+21]
proposed by LeMay et al., a 24-bit tweakable block cipher is needed to encrypt a segment
of a pointer.

The design of low-latency cryptographic primitives is a relatively new research field.
One of the earliest low-latency block ciphers is PRINCE [BCG+12], which was published in
2012 and optimized for hardware latency. In 2020, an updated version called PRINCEv2
[BEK+20] was proposed with improved security. MANTIS [BJK+16] is another low-latency
tweakable block cipher with a 64-bit block size that combines the TWEAKEY framework
and low-latency properties. QARMA [Ava17] is a family of low-latency tweakable block
ciphers inspired by PRINCE and MANTIS, offering both 64-bit and 128-bit block sizes. A
recent version called QARMAv2 [ABD+23] was introduced, which supports larger tweaks and
includes a version for pointer authentication and memory integrity. K-Cipher [KDGD20]
is a proposed cipher that supports a range of block sizes from 24-bit to 1024-bit, but recent
cryptanalysis work by Mahzoun et al. [MKPA22] suggests that its security margin may
not be sufficient. SPEEDY [LMMR21] is a family of low-latency block ciphers that prioritize
latency optimization at the cost of area and energy. The design uses a newly proposed
low-latency 6-bit S-box and 192-bit block size. Orthros [BIL+21] is a low-latency PRF
that can be used as building blocks for low-latency schemes. Followed the design strategy of
Orthros which utilizes branches of permutation to form a PRF, another low-latency PRF
Gleeok [ABC+24] was proposed recently to support a 256-bit key size. SCARF [CGL+23]
is a low-latency block cipher designed specifically for cache randomization, using a 240-bit
key size and 10-bit block size to achieve extremely low latency. Recently, Inoue et al.
proposed a new memory encryption scheme, ELM[IMO+22], which includes a low latency
MAC and Authenticated Encryption (AE) based on AES/AES round function. For pointer
authentication, a new low-latency tweakable block cipher called BipBip [BDD+23] has
been proposed, which is suitable for use in Intel’s C3. BipBip incorporates novel ideas

4 Twinkle: A family of Low-latency Schemes

such as a non-linear tweakey schedule, heterogeneous rounds, and a large masterkey size.
Despite the numerous low-latency schemes proposed in recent years, there still exists a

gap between academic research and industrial solutions for memory protection. One of
the issues contributing to this gap is the lack of standardization for low-latency ciphers.
Industrial products typically require standardized cryptographic schemes, which means
that even if a low-latency scheme performs better, it cannot be adopted in real products.
This issue was prominently addressed by researchers from Intel and Google during the
recent NIST workshop on lightweight cryptography[Gho22, Yal22]. They highlighted
the critical need for standardized low-latency cryptography to bridge the gap between
theoretical research and industrial application. We believe that the pressing demand for
these applications will serve as a catalyst for establishing future low-latency standards
within standard organizations such as NIST or ISO, ensuring broader adoption and
technological integration.

Another issue is that existing low-latency designs primarily focus on encryption rather
than authentication. As previously discussed, for memory protection of Level 2 or higher,
it is important to implement both encryption and authentication mechanisms. Currently,
most solutions combine encryption with authentication schemes, such as Intel SGX using
AES-CTR for encryption and WC-MAC for authentication, and Intel TDX using AES-XTS
for encryption and SHA-3 MAC for authentication. While replacing AES in these schemes
with a low-latency block cipher is an option, careful design of the authentication algorithm
remains critical. For instance, a narrow-block cipher might fall short of fulfilling the
security criteria for the WC-MAC within the SGX scheme, and the latency associated
with SHA-3 in the TDX scheme may not align with performance expectations. Besides,
given the unique demands of memory encryption scenarios, the adoption of a dedicated
authenticated encryption algorithm is anticipated to markedly reduce latency.

1.1 Our Contributions

In this research, we aim to address the question of how to design a low-latency authenticated
encryption scheme specifically for memory encryption with temporal uniqueness. This
feature is essential for mitigating ciphertext side-channel attacks and attaining Level 3
protection, as outlined by Avanzi [Ava22].

Departing from the ELM scheme by Inoue et al.[IMO+22], which leverages AES as
its foundation to establish a tweakable block cipher, our approach is innovative. We
have developed a novel AE scheme, Twinkle-AE, from the ground up. This includes
the introduction of a new PRF with an expanded state, which we have adapted into a
nonce-based AE scheme. In addition, we have proposed Twinkle-PA, a new low-latency
MAC designed for pointer integrity, utilizing the PRF.

Furthermore, we recognize the significance of the recently introduced authenticated
encryption schemes based on Gleeok, notable for their low-latency characteristics. Gleeok
stands out by supporting a 256-bit key length and exhibiting flexibility for efficiently
processing short message inputs. Our design primarily focuses on cache line encryption
with a relatively fixed input size. When encrypting 1024-bit cache lines, our message to
state size ratio approximates 0.9, in contrast to Gleeok’s 0.33. This distinction renders
our design a more area-efficient option for the specified application.

We summarize the main contributions in our designs of Twinkle-AE as follows:

• A novel AE construction with single PRF call. At a high level, Twinkle-AE
can be considered as a stream cipher with a Wegman Carter MAC (WC-MAC).
The innovative concept involves using a single low-latency PRF to produce both
the keystream for encryption and the random mask for authentication. As a result,
the encryption and authentication only require the latency of one XOR operation

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 5

in addition to the latency of the PRF. Despite its apparent simplicity, this idea
incorporates several key insights specific to this scenario.

- Time-aligned plaintext encryption/ciphertext decryption. In the mem-
ory encryption scenario, the plaintext length is deterministic, which is the cache
line size. With this in mind, we process all plaintext/ciphertext simultaneously
for low latency goal.

- Parallelizable authentication algorithms. We utilized the WC-MAC, which
combines a nonce-based random mask with a universal hash function (UHF).
This choice offers low latency and parallelizability compared to integrated
solutions like Ascon.

- Plaintext/ciphertext-free computation. The nonce-based design enables
us to create encryption schemes as stream ciphers, which generate the keystream
without relying on plaintext/ciphertext. In WC-MAC, the mask generation
dominates the delay of MAC generation and is also plaintext-independent.
These designs bring two advantages in latency.

∗ When the nonce is available in advance, the keystream and mask can be
pre-calculated without waiting for the plaintext/ciphertext to be loaded,
resulting in the fastest authenticated encryption/verified decryption.

∗ During the decryption verification process, the mask can also be calculated
along with the keystream before the plaintext is restored. This minimizes
the delay gap between decryption and encryption to only a low-delay UHF
level, almost 0 if the nonce is always available in advance.

– Single PRF for both encryption and authentication. We have created a
low-latency wide-size PRF that can generate both the keystream for encryption
and random mask for authentication in a single call. This approach aligns the
generation latency of keystream and mask, while maintaining the same level of
security for both. Besides, using a single PRF simplifies designs and analysis
compared to using multiple PRFs.

With all the above considerations, we believe that this design structure is close to
being optimal, if it is not already the best.

• A new PRF optimized for latency. We summarize our efforts to optimize the
design of PRF as follows:

- Tailored state size. The state size of Twinkle-AE is 1280 bits. This choice
offers several benefits. First, it can generate up to 1152-bit keystream for
encryption and random mask for authentication by a single PRF call. This
facilitates processing the entire cache line through one PRF call, streamlining
both the design and cryptanalysis processes. Secondly, the relatively large state
size enhances the differential/linear properties by allowing a greater number of
active S-boxes in each round, thereby improving security. Additionally, with
at least 128 bits concealed, the PRF’s resilience against differential and linear
analysis, impossible differential attacks, and guess-and-determine attacks is
significantly enhanced. Lastly, the ratio of the output size to the state size is
up to 0.9, closely optimizing area effectiveness.

- Enhanced diffusion of input data. To expedite the mixing of input data,
we employ diffusion functions to process the input data, allowing the input
data to initially influence more bits of the internal state. We use n (where
n > 1) permutation matrices with minimal latency overhead in hardware
implementation to form the diffusion function. This operation also enhances

6 Twinkle: A family of Low-latency Schemes

resistance against differential attacks, increasing the differential branch number
to n + 1 from 2.

- Hardware-efficient Round function. We have developed a hardware-efficient
round function, denoted asR, that operates on the state of a cube structure. Our
design optimizations focus on enhancing security while minimizing forward delay.
We have chosen an asymmetric-latency diffusion matrix to boost resistance
against differential and linear attacks. To further enhance this resistance, we
have paired this matrix with a relatively low-latency S-box which has good
cryptographic properties. Additionally, we have selected double bit-level lane
rotation operations with minimal latency to accelerate diffusion and bolster
security.

• A new low-latency MAC scheme. The Twinkle-PA is designed using the PRF
Twinkle with the context and pointer as input. The Twinkle permutation can handle
large amounts of data simultaneously with very efficient diffusion, resulting in the
low-latency feature of the Twinkle-PA. Moreover, when implemented on a chip that
already has the circuit of Twinkle-AE, the additional area needed for Twinkle-PA is
very small.

Twinkle-AE family has six variants, which are listed in Table 1. Twinkle-AE-512
family supports memory encryption with a 512-bit cache line, and the versions of which
provide 128-bit, 128-bit, and 256-bit confidentiality security and 64-bit, 128-bit, and 128-bit
authentication security, respectively. Twinkle-AE-1024 family has versions with the same
level of security as the Twinkle-AE-512 family, but is designed for CPUs with a cache line
size of 1024. Twinkle-PA reuses part of structure of Twinkle-AE and has inherited some
good security properties. Furthermore, there will be little overhead for Twinkle-PA if the
Twinkle-AE has been equipped in the chip.

Table 1: Security claim of Twinkle-AE versions
Versions Confidentiality (bits) Integrity (bits)

Twinkle-AE-512
Twinkle-AE-512a 128 64
Twinkle-AE-512b 128 128
Twinkle-AE-512c 256 128

Twinkle-AE-1024
Twinkle-AE-1024a 128 64
Twinkle-AE-1024b 128 128
Twinkle-AE-1024c 256 128

As a result, both Twinkle-AE-512a and Twinkle-AE-1024a achieve the low-latency
goal, whose delay are only about 39.1% of that of the authentication encryption scheme
in Intel’s SGX scheme (AES and WC-MAC) for the same security. And the latency of
Twinkle-AE-512b and Twinkle-AE-1024b is only about 14.0% of that of lightweight
authentication encryption algorithm Ascon-128a.

Besides, the latency of Twinkle-PA is about only at most 36.6% of that of QARMA-64
family which is used in the ARMv8.3-A ISA extensions for pointer authentication.

1.2 Organization
We have organized our paper as follows. First, in Section 2, we introduce preliminaries
and notations used in this paper. Section 3 specifies the low-latency PRF Twinkle. Then,
we apply the Twinkle PRF to memory encryption and pointer authentication scenario in
Section 4. Next we discuss the design rationales in Section 5. In Section 6, we state the
security claim and provide the security evaluation for all versions of Twinkle, Twinkle-AE
and Twinkle-PA. We present the results of hardware implementation for Twinkle and

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 7

corresponding authentication encryption schemes and compare them with other low-latency
ciphers in Section 7. Finally, we conclude our paper in Section 8.

2 Preliminaries
2.1 Operations
The following operations are used in this paper.
⊕: bitwise exclusive OR.
&: bitwise AND.
∼: bitwise NOT.
∥: concatenation. For Example, 110||01 = 11001
≪: rotation to the left. For Example, (01110011 ≪ 2) = 11001101.
≫: rotation to the right. For Example, (01110011 ≫ 2) = 11011100.
n (mod m): For integers n and m, n (mod m) is the integer r ∈ {0, · · · , m− 1} so that
n− r is divided by m.

2.2 Notations
For a natural number m, N<m denotes the set {0, 1, · · · , m− 1}.

If the length of a bit string S is m, then its bits are indexed from 0 to m − 1, i.e.
S = S[m− 1]|| · · · ||S[1]||S[0]. The least significant bit of the bit string S is S[0]. The bit
string S of length 16× l could be described as a 4× 4× l three-dimensional array. The
expression S[x][y][z] with x, y ∈ N<4, and z ∈ N<l, denotes the bit in position (x, y, z)
of state S. Besides, the expression S[x][y][z] in the three-dimensional array is equivalent
to the expression S[x + 4y + 16z] in the one-dimensional array for the bit string S. The
expression S[•][y][z], S[x][•][z] and S[x][y][•], respectively, denotes the row indexed by
(y, z), the column indexed by (x, z) and the lane indexed by (x, y) of state S. For details,
see Figure 2. The expression S[•][•][z], S[•][y][•] and S[x][•][•], respectively, denotes the
slice indexed by (z), the plane indexed by (y) and the sheet indexed by (x) of state S.
The bit string S of length 16 × l also could be denoted as Sd−1

d || · · · ||S1
d ||S0

d , where d
divides l and Sd

i of length 16 × l/d is the i-th substring of S, i.e. Si
d[j] = S[16il/d + j]

for i ∈ {0, · · · , d − 1} and j ∈ {0, · · · , 16l/d − 1}. Moreover, Si
d could be reshaped to a

4× 4× l/d three-dimensional array like S.
For a permutation σ of N<m, Pσ is represented as a permutation matrix corresponding

to σ so that Pσ[i, j] = 1 if and only if i = σ(j), otherwise Pσ[i, j] = 0, where Pσ[i, j]
is the element in the i-th row and j-th column of Pσ. For the sake of simplicity of
notations, the bit string S of length m also could be viewed as the vector in Fm

2 , i.e.
S = [S[0], S[1], · · · , S[m− 1]]T . Then P · S = P [S[0], S[1], · · · , S[m− 1]]T . The result of
P ·S which is a vector in Fm

2 also could be viewed as a bit string (PS)[m−1]|| · · · ||(PS)[0].

2.3 Wegman-Carter MACs
Wegman-Carter (WC) type MACs [WC81, Ber05, CS16] use a UHF-then-PRF design,
the message is hashed by a universal hash function (UHF), and then the hash value is
encrypted by a nonce-based mask fk2(N) to generate a tag. The formula is:

T = hk1(M) + fk2(N), (1)

where k1 is the key for the UHF h, k2 is the key for the PRF f , M is the message, and N
is the Nonce.

The security of WC-MACs is guaranteed only when nonce is respected. Assuming that
fk2 is a perfect uniformly random function, the adversary honestly queries the oracle at most

8 Twinkle: A family of Low-latency Schemes

state

x

y z

plane

x

z slice

x

y sheety z

row

x

columny lanez

bit

Figure 2: Schematic diagram of each component of 128-bit 3D array

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 9

IV FI

k0

R1 R2 · · · RR

k1

FO O

Figure 3: The overview of Twinkle

q times with messages and distinct nonces, and the oracle will return the corresponding
tags. In this case, the success probability of the adversary’s at most p forgery attempts is
at most pε [CS16], where ε is the maximal differential probability of hk1 , namely,

ε = max
M ̸=M ′,X

{hk1(M) + hk1(M ′) = X}.

If f is not perfect, the adversary will gain the advantage in distinguishing f from a
uniformly random function within p + q queries.

3 Specification of PRFs
This section introduces Twinkle, a wide-size low-latency PRF, the overview of which is
illustrated in Figure 3. The structure of Twinkle is an Even-Mansour scheme in addition
to an input expansion operation FI and an output compression operation FO. The central
permutation is formed by the round function R, and the number of rounds is determined
by security requirements.

The sizes of internal states for Twinkle is 1280, denoted by ρ. The state S is a
three-dimensional array of elements of F2, with dimensions 4× 4× l, where 4× 4× l = ρ.

3.1 Key Scheduling Function
The whitening keys k0 and k1 are both derived from the same key K, and have a length equal
to the internal state size ρ. k0 is set to K, while k1 is calculated as (K ≫ 1)⊕(K ≫ ρ−1).

3.2 Round Function
The round function R is designed using the SPN structure. The permutation R is a
sequence of operations performed on the state S, specifically,

R = AC ◦ LaneRotation1 ◦MixSlice ◦ LaneRotation0 ◦ S-box.

Each component updates the state S as follows:
S-box: A 4-bit S-box Sb is applied to every row of the state S in parallel. Namely,

S[0][y][z]|| · · · ||S[3][y][z]← Sb(S[0][y][z]|| · · · ||S[3][y][z]),

where y ∈ N<4 and z ∈ N<l. The specification in hexadecimal is shown in the following
table.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
Sb(x) 0 3 5 d 6 f a 8 b 4 e 2 9 c 7 1

LaneRotation0: A rotation operator is applied to every lane of the state S in parallel.
Namely,

S[x][y][•]← S[x][y][•] ≫ (O0[x + 4y] mod l) ,

where x, y ∈ N<4.

10 Twinkle: A family of Low-latency Schemes

MixSlice: A linear diffusion operation is applied to every slice of the state S in parallel.
Namely,

S[•][•][z]← S[•][•][z]⊕ (S[•][•][z] ≪ 5)⊕ (S[•][•][z] ≪ 12),

where z ∈ N<l.
LaneRotation1: Another rotation operator is applied to every lane of the state S in
parallel. Namely,

S[x][y][•]← S[x][y][•] ≫ (O1[x + 4y] mod l) ,

where x, y ∈ N<4.

Table 2: The offsets of LaneRotation
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O0 20 24 38 77 49 66 30 40 76 15 46 50 17 18 61 62
O1 63 45 34 39 32 43 60 66 54 26 55 36 61 12 15 35

AC: The state will be XORed with the round constant. The specification of the i-th
round constant RCi can be found in Appendix B.

3.3 Input Expansion Operation
The expansion operation takes a 128-bit input and expands it to 1280 bits using 10
bit-permutations denoted by σi (where i = 0, · · · , 9). Specifically, the expansion operation
FI maps IV to S as follows:

S ← Pσ9 · IV || · · · ||Pσ0 · IV, (2)

where Pσ0 · IV is padded to the least significant 128 bits of S, and so on. Each bit-
permutation maps the set of natural numbers less than 128 (N<128) as follows:

j 7→ (aj + b) (mod 128), for j ∈ N<128.

The parameters a and b for each σ are listed in Table 3.

Table 3: The parameters of σi

i 0 1 2 3 4 5 6 7 8 9
a 1 3 5 7 11 13 17 19 23 29
b 0 1 2 3 4 5 6 7 8 9

3.4 Output Compression Operation
The output length of Twinkle is variable, varying from 1 to ρ − 128. The compression
operation FO is represented as

O ← Trunn (S ⊕ (S ≫ 128)) , (3)

where Trunn represents the least significant n bits of a bit string.

3.5 The Number of Rounds
According to various security goals, we have established different rounds as outlined in
Table 4. The 0.5-round R, specified by LaneRotation0 ◦ S-box, is equipped at the
end. Note that there is an extra condition for achieving 64-bit security, which limits the

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 11

Table 4: The number of rounds corresponding to different security levels
Security Level 256 bits 128 bits 64 bits†

Rounds 18.5 9.5 5
† The output length is limited to 64 bits.

output length to at most 64 bits. In Section 6, we will explain how these variants offer
corresponding security level within these parameters.

We use the notation Twinklem
n to distinguish different variants based on their security

and output size, where m represents the security level in bits and n represents the output
size in bits.

4 Application of Twinkle

In this section, we apply Twinkle to memory encryption and pointer authentication
solution, i.e., Twinkle-AE and Twinkle-PA.

4.1 Specification of the Twinkle-AE

For L3 level protection, a unique nonce is required for time freshness. This means that a
block cipher is not necessary, and a PRF such as our Twinkle can be used. Our Twinkle
can generate output up to 1152 bits wide, which is enough for the cache line sizes of
Mainstream CPUs (512 or 1024 bits). It can serve as a keystream generator to produce a
keystream, which can then be XORed with plaintext to produce ciphertext. To prevent
the adversary from forging the ciphertext, the authentication process is necessary, and we
have chosen the Carter-Wegman MAC as the authentication algorithm.

The Twinkle-AE family consists of six versions, as listed in Table 1, designed for two
different cache line sizes and offering varying levels of security for both the confidentiality
and integrity of plaintext. For simplicity, let c denote the cache line size. Let m be the
confidentiality security level in bits. Let t represent the tag size, which is also equivalent
to the integrity security level in bits in this case.

4.1.1 Encryption and Authentication

We instantiate WC-MAC with PRF as Twinkle and UHF as finite field multiplication in
F t

2 . Since c + t is less than 1152, it is sufficient to use one Twinkle function to output c + t
bits, within c bits for encryption and t bits for authentication. Specifically, the cipher C
and the tag T is generated as follows:

Ot||Oc = Twinklem
c+t(IV, K)

H =
c/d−1∑

i=0
Mi ⊗K ′

i

C = Oc ⊕M

T = Ot ⊕H

(4)

where M = Mc/t−1|| · · · ||M0 is the message, K is 1280-bit master key for Twinkle,
K ′ = K ′

c/t−1|| · · · ||K
′
0 is another c-bit key, using for UHF in WC-MAC, Oc is the least

significant c-bit of the Twinkle’s output, ⊗ represents the multiplication in F d
2 , and the

length of tag, t is equal to d in this case.

12 Twinkle: A family of Low-latency Schemes

4.1.2 Decryption and Verification

In the decryption process, first compute the message M by XORing the ciphertext C with
the keystream Oc.

Ot||Oc = Twinklem
c+t(IV, K)

M = Oc ⊕ C

After that the tag T ′ could be computed using the new message M .

H =
c/t−1∑

i=0
Mi ⊗K ′

i

T ′ = Ot ⊕H

If the tag T ′ is equal to T , the verification will succeed and the message M will be output.
Otherwise, the verification will fail and the newly generated message M and authentication
tag T ′ should not be output.

4.2 Specification of Twinkle-PA

Twinkle-PA is a pointer authentication algorithm that takes a 64-bit pointer PT , a 64-bit
context CT , and a 1280-bit secret key K as inputs to produce an authentication tag
ranging from 1 to 32 bits. The tag T is generated using Twinkle64

t as follows:

T = Twinkle64
t (CT ||PT, K).

Twinkle-PA aims to provide 64-bit security against offline attacks and t-bit security against
online attacks, where t is the length of the tag.

5 Design Rationale
The Twinkle-AE family is designed for Level 3 scenarios, requiring memory confidentiality,
integrity, and temporal uniqueness as described in Section 1. Twinkle-PA is a pointer
authentication algorithm for system security enhancement. This section will explain the
design strategy used by the Twinkle family to meet these requirements, including decisions
regarding the overall structure and individual components.

5.1 Construction of Twinkle-AE

In memory encryption scenarios, the length of the message is the same as the cache
line size and does not exceed 1024 bits, which is different from typical authentication
encryption scenarios. When using an integrated encryption and authentication structure
like Keccak [BDPA13] and Ascon [DEMS21], the proportion of the delay in generating
the authentication code to the overall delay will be very significant. (When the message is
longer, this ratio becomes almost negligible.) Therefore, when designing the Twinkle-AE
structure, we opted for a parallel encryption and authentication scheme instead of the
integrated structure.

5.1.1 The Way of Encryption and Authentication

Encryption. To ensure temporal uniqueness in encryption, adopting a nonce-based
approach is essential, which positions stream ciphers as a good choice. Stream ciphers,
capable of generating a keystream independent of the plaintext or ciphertext, are ideal for

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 13

IV, K

M, K ′

Twinkle

UHF

M

C

T

IV, K Twinkle

C

M

UHF

K ′

T ′ = T ?

Yes

Figure 4: The critical path in encryption and authentication process(left) and decryption
and verification process(right)

pre-computing keystream to accelerate the encryption and decryption processes. These
ciphers can be constructed using either PRPs or PRFs. Only the forward functions will be
utilized for both encryption and decryption. This approach simplifies delay considerations
by eliminating the need to consider for delays in the inverse operations of S-boxes or
matrices within PRPs/PRFs, thereby offering greater flexibility in the selection of S-boxes
and matrices.

In comparison to PRPs, PRFs’ irreversible nature provides additional analytical benefits,
such as resistance to chosen ciphertext attacks and the increased complexity of meet-in-
the-middle and linear attacks. Intuitively, PRFs are capable of achieving comparable levels
of security with lower delays than PRPs, making them a preferred option for encryption
design.

As plaintext/ciphertext length does not exceed 1024 bits, designing a PRF whose
output covers the requirement of entire keystream allows for parallel processing of all
plaintext or ciphertext, optimizing delay.

Authentication. The Wegman-Carter MAC (WC-MAC) [WC81] offers better paral-
lelism and lower latency compared to standard hash functions, making it a strong choice.
The WC-MAC involves XOR operations on the hash value of plaintext and a Nonce-based
random mask, with mask generation being a key factor in latency. Pre-computing the
mask when the nonce is known in advance can speed up authentication process.

We use a linear combination of finite field multiplication as the UHF and have developed
a wide-output PRF to support the WC-MAC mask as well as the keystream for encryption.
This design offers strong security beyond the birthday bound [BKR98, HWKS98] with
minimal overhead compared to block cipher constructions for PRFs. It maintains low
latency and simplifies security analysis by relying on the same PRF proof.

Critical Path. The critical path in the encryption and authentication process, as well as
the decryption and verification process, is illustrated in Figure 4. Benefiting from parallel
designs, the delay in the authentication and encryption (AE) process is determined by
Twinkle’s delay plus an XOR’s delay. On the other hand, the verification and decryption
(VD) process has the delay a UHF’s delay plus an XOR’s delay longer than that of the AE
process. Thus, the UHF’s delay is also crucial for the VD process, which is also another
reason for choosing WC-MAC. As for the critical path for the case where the nonce is
available in advance, please refer to the Appendix C.

5.1.2 The Long Key

In our design, a secret key (K and K ′) with large length (equal to the state size 1280 plus
the cache line size) is used, which is not a common choice. In most of the symmetric-key
designs, the key size is minimized in terms of the security level (i.e. the same as the

14 Twinkle: A family of Low-latency Schemes

security level). This brings the advantage on the cost of key generation, key transmission
and key storage over the ciphers with large key sizes (e.g. RSA).

In our targeted application scenario, the situations are different. There is no key
transmission. For key storage, it requires a few thousand more gates to store the key,
which is not a significant amount for a mainstream CPU. For key generation, it can be
more efficient to generate large keys directly with the built-in hardware RNGs (such as
RDRAND and RDSEED for Intel CPU, and RNDR and RNDRRS for ARM CPU) than
using a complicated key expansion function. Meanwhile, it saves the circuits to implement
the key expansion function.

We also noted the following benefits for a large key used in our design:

• Reduced computation for initialization phase.

• Simplified analysis. Doing key expansion during the initialization phase would lead
to more consideration of the dependency.

5.1.3 The Tag Length.

We believe that the 64-bit authentication security is adequate for the majority of our
targeted applications. In the case of forgery attacks, the adversary’s ability to successfully
forge is not increased by collecting the tuple of plaintexts, ciphertexts, and tags (assuming
the number of collections is insufficient to recover the key). As a result, the adversary
can only rely on a "blind guessing" strategy with a success probability of 2−64, and the
expected time for a successful forgery is approximately 2240 years (calculated as 264× 3.83
ns) for the computation time of Twinkle-AE, without considering the time for machine
interrupts and restarts. This time frame is considered sufficient for most applications. For
comparison, Intel SGX uses 56-bit tags for authentication.

Additionally, we offer 128-bit authentication security variants for specific use cases that
require a higher level of security on the authentication.

5.2 Construction of Twinkle-PA
There are two main approaches to protecting pointer integrity: encryption and MAC.
Encryption does not require extra storage space for the tag and can use redundant
information to authenticate pointer addresses. However, the MAC method can be more
efficient due to its large state size and one-way functions.

In this paper, we have chosen the MAC approach for its high effectiveness. We have
developed Twinkle-PA by incorporating 5 rounds of Twinkle, which offers robust security
and low latency. If the design of Twinkle-AE is already embedded in the chip, there
is minimal overhead to embed the circuit of Twinkle-PA, only requiring the circuit for
XORing whitening keys and tag generation.

5.3 Design of Twinkle Function
The Twinkle function uses a wide-size Even-Mansour construction as its main structure,
employs diffusion mapping FI to absorb 128 bits of input, and utilizes a compression
function FO to extract variable-length output ranging from 1 to 1152 bits.

5.3.1 Reason for 1-round Even-Mansour Construction

The Even-Mansour structure is a block cipher scheme proposed by Even and Mansour
[EM93, EM97]. The ciphertext C is computed as follows:

C = k1 ⊕ P (M ⊕ k0), (5)

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 15

where P is a PRP. For a multi-round Even-Mansour structure like AES, a key scheduling
algorithm is required to generate a round key for each round. In our case, the round key
length is 1280 bits, which results in a significant cost in chip area for implementing the key
scheduling algorithm. In the next section, we will demonstrate that the provable security
of single round of Even-Mansour structures have met our security requirements.

5.3.2 State size

The state size of Twinkle-AE is set to 1280 bits for several reasons. The output must
accommodate both the keystream and random mask, totaling 1152 bits. To bolster
resistance against attacks like differential analysis, linear analysis, impossible differential
attacks and guess-and-determine attacks, additional non-output redundancy is necessary.
However, the redundancy size must be balanced to maintain area efficiency. Therefore, the
state size is chosen as 1280 bits.

5.3.3 Processing Input Data

For the large internal state of Twinkle, it is crucial for the input IV to diffuse quickly.
To achieve this, we employ a technique of pre-diffusing low-dimensional input data into
high-dimensional space.

While replicating multiple copies appear to be the most straightforward and low-
overhead method, our analysis shows that it can lead to a correlation between the output,
potentially compromising the security of the algorithm. This issue is explained in Example
1.

To address this, we introduce bit permutations to disrupt the order of the copies.
This operation has negligible latency in hardware evaluation. Therefore, we propose the
expansion operation FI as shown in Equation 2. In this case, each bit of input data will
influence 10 bits of the internal state. This enhances resistance to differential attacks, with
the first 2-round differential path including at least 43 active S-boxes, compared to only 4
without diffusion. This little-latency diffusion has significantly improved security.

Example 1. Assuming that v is an element in F128
2 , let’s denote two copies of v as w,

i.e. w = v||v. Consider the operation at the beginning of the Twinkle, which involves
XORing and S-box operation. Each S-box operation S acts on the nibble with indices
ranging from 4j to 4j + 3, where j ∈ Nj<64. Specifically, we have s4j , · · · , s4j+3 =
S(w4j ⊕ k4j , · · · , w4j+3 ⊕ k4j+3).

Note that the adversary does not know the value of the fixed k, but he can control the
value of v. Since the difference between the input of the j-th S-box and the (j + 32)-th
S-box is always equal to ∆j = (k4j ⊕ k4j+128, · · · , k4j+3 ⊕ k4j+3+128), the difference of
outputs always lies in the set {S(x)⊕ S(x⊕∆j) : x ∈ F4

2}.

5.3.4 Output Generation

The Twinkle has a maximum output of 1152 bits and does not support the full-state
1280-bit output. This is because the authentication encryption scheme only requires a
specific length, not exceeding 1152 bits. Besides, the remaining secret 128 bits can enhance
resistance to attacks such as meet-in-the-middle attacks, differential attacks, and linear
attacks and guess and determine attacks.

5.4 Design of R
The security and latency of the R have a direct impact on the overall performance of the
Twinkle. In designing the R, we prioritize both low latency and meeting the security
boundary principle by minimizing the number of rounds. Since the Feistel structure only

16 Twinkle: A family of Low-latency Schemes

updates a portion of the state in each round, we prefer to use the fully updated SPN
structure in the R.

Recall that the function R is defined as:

R = AC ◦ LaneRotation1 ◦MixSlice ◦ LaneRotation0 ◦ S-box.

Here we designed R using an unaligned approach [BDKV21], similar to Keccak, and
treat the entire state as a three-dimensional cube. Specifically, non-linear S-box confusion
and matrix diffusion operations act on each slice, while rotation acts on each lane, these
components work together to achieve full state mixing. Next, we will introduce the criteria
for selecting parameters for each component.

5.4.1 Choice of the MixSlice

The delay of the XOR operation for N bits, x0⊕ x1 · · ·xN−1, is equal to log2 N multiplied
by the delay of an XOR gate. It is most cost-effective to choose N as a power of 2. In this
case, we choose N = 4. We maximize efficiency by combining all XOR operations, including
MixSlice and AC operations. This can be achieved by commuting LaneRotation1 and
AC since they are linear functions.

To design the MixSlice, we require a 16-by-16 invertible matrix with each row having a
Hamming weight of 3. However, testing all about 2146 candidates is not feasible. Therefore,
we decided to search for a matrix with desirable properties from the circulant matrices.

The diffusion of the MixSlice plays a crucial role in enhancing the resistance of R
against differential and linear attacks. While the branch number is typically used to
measure diffusion, all candidates in our case have a branch number of 4. However, it is
important to note that the resistance against attacks can still vary, even with the same
branch number. In order to identify a matrix such that R exhibit better properties, we
calculated the outputs of each candidate for all possible inputs. Then we recorded the
number of input-output pairs with specific Hamming weights and utilized the mapping
C(wi, wo) to represent the count of pairs with input/output Hamming weights wi and wo

respectively. Our objective is to select a matrix that can efficiently map a small number of
active bits to multiple active bits, both for the matrix itself and its inverse. The matrix
we have chosen possesses the following properties:

• If the input of the inverse of this matrix has a Hamming weight of 1, the output will
have the highest possible Hamming weight among all matrices. In our specific case,
the maximum Hamming weight is 9.

• For any other matrices, if the corresponding mapping C ′ differs from the mapping C
of this matrix, there must exist values i and j such that

C(wi, wo) = C′(wi, wo),∀wi < i and wo

C(wi, wo) = C′(wi, wo),∀wi = i and wo < j

C(wi, wo) < C′(wi, wo), wi = i and wo = j.

The first property ensures that the input difference is 9 when the output difference has
only one active bit. The minimum number of active S-boxes for three-round differential
trails can be increased to 13, resulting in the trail 9→ 1→ 3. However, for other certain
matrices, the minimum can only be 7, leading to the trail 3→ 1→ 3. The second property
states that when the input difference has fewer significant bits, this matrix has the lowest
probability of producing an output difference with fewer significant bits compared to other
matrices.

The linear properties depend on the transposition of the matrix. Since the matrix
is a circulant matrix, its transposition also possesses the same properties as the matrix.
Therefore, the linear resistance is similar to the differential resistance.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 17

5.4.2 Choice of the S-boxes

Let us begin by examining some indicators related to the S-box. Given an S-box S, we
define CarD1S as the number of trails in which a 1-bit input difference results in a 1-bit
output difference. Similarly, CarL1S represents the number of trails in which a 1-bit
input active linear mask leads to a 1-bit active output linear mask. If a 1-bit active input
difference (or mask) cannot propagate to a 1-bit active output, it is considered a good
input. Conversely, if it can propagate, it is referred to as a bad input. Similarly, if a
1-bit active output difference (or mask) cannot originate from a 1-bit active input, it is
considered a good output. Otherwise, it is called a bad output.

In the case of differential (or linear) analysis, we denote GID (or GIL), GOD (or GOL),
BID (or BIL), and BOD (or BOL) as the sets of positions for the nonzero bits in the
good inputs, good outputs, bad inputs, and bad outputs, respectively. Let GI, GO, BI,
and BO represent the intersection of GID and GIL, GOD and GOL, BID and BIL, and
BOD and BOL, respectively.

In recent years, there has been increasing concern about the impact of these indicators
on the resistance of ciphers that solely rely on S-box and permutation operations in their
round functions, such as PRESENT [BKL+07], RECTANGLE [ZBL+14], and GIFT [BPP+17],
to differential and linear attacks.

It is worth noting that these indicators of the S-boxes also impact the resistance of the
R against differential and linear attacks. This is because the active bits spread caused
by the S-boxes on the slice can be further propagated throughout the cube through lane
rotation operations.

To enhance the resistance of R, we will utilize the properties of the chosen S-box Sb,
which is B9 from the "Optimal BOGI-applicable" PXE classes as defined in Def.1. For
more details, please refer to [KHSH20].

Definition 1 ([KHSH20]). A 4-bit S-box S is called an optimal BOGI-applicable S-box if
it fulfills these four conditions: (a) S is bijective; (b) S is BOGI-applicable, i.e. the size
sum of GI and GO is not less than 4; (c) the differential uniformity of S is 6; (d) the
linearity of S is 8.

Regarding Sb, it can be easily confirmed that GI = BO = {0, 2} and GO = BI = {1, 3}.
This means that any bits in an even position of the slice are good inputs (resp. bad outputs),
while any bits in an odd position of the slice are bad inputs (resp. good outputs). Since
the matrix used in MixSlice is circulant, the analysis of the differential attack is similar to
that of the linear attack. In this discussion, we will focus solely on the differential analysis.

It is straightforward to verify that MixSlice can map 1 bad output to 2 good inputs
and 1 bad input, and map 1 good output to 1 good input and 2 bad inputs. Note that
LaneRotation does not change the position in the slice. Therefore, even if a 1-bit bad
input of the first round propagates to a 1-bit bad output after the S-box operation, the
output of the S-box operation in the second round will have a minimum of 5 active bits.
On the other hand, if the input is a 1-bit good input, the output of the S-box operation in
the second round can also achieve at least 5 active bits.

Benefiting from the aforementioned properties, the minimum number of active S-boxes
for R3 from a 1-bit active input can reach 19, and the trail of the number of active S-boxes
is as follows: 1→ 3→ 15. This leads to the possibility of achieving a minimum of 28 for
4-round trails. However, if we replace Sb with 4-bit low-latency S-boxes such as those
used in Orthros or Midori, the lower bound reduces to 22. This suggests that in order to
maintain the same level of security, there will exist at least one round gap between using
Sb and these low-latency S-box.

We also used the Peigen platform [BGLS19] to assess the depth (Please referring
to Definition 2) of 20 optimal PXE classes for BOGI applications. We followed the
assumption of [BBI+15] that the depths of AND/OR, NAND/NOR, XOR/NXOR, and

18 Twinkle: A family of Low-latency Schemes

NOT are estimated to be 1.5, 1, 2, and 0.5, respectively. We found that there is no S-box
with depth less than 4. It is important to note that the minimum depth for 4-bit optimal
S-boxes is 3.5 [BIL+21]. Finally, we chose B9 with depth 4 based on the fact that the
probability of each differential (resp. linear) transactions from a bad input to a bad output
for B9 is minimal.

We evaluated the latency of different 4-bit S-boxes, as shown in the Appendix Table 13.
The variation in latency among the S-boxes is relatively minor, and the latency difference
between Sb (B9) and lowest-latency S-boxes is only 0.04 ns. While the latency of a single
round is approximately 0.4 ns. Besides, the 4-round trails of the cipher using B9 has more
active S-boxes, at least 28, we consider it to be latency efficient.

Definition 2 (Depth [BBI+15, BIL+21]). The depth is defined as the sum of the sequential
path delays of basic operations, namely AND, OR, NAND, NOR, XOR, NXOR and NOT.

5.4.3 Choice of the Offsets of LaneRotation

Due to the negligible delay of LaneRotation in hardware implementation, our focus
should be on efficiently spreading the active bits across multiple S-boxes when determining
the offsets. However, it is computationally unfeasible to test all possible LaneRotation.
Therefore, we opt to randomly select the LaneRotation that fulfills the following condi-
tions.

1. The offsets of LaneRotation0 and LaneRotation1 are mutually exclusive modulo
l, where l is the length of the lane, and l = 80.

2. If an output linear mask has only two active bits located in different slices, the input
linear mask of MixSlice ◦ LaneRotation0 must be located at least 5 rows.

3. If an input difference has only two active bits located in different slices, the output
difference of LaneRotation1 ◦MixSlice must be located at least 5 rows.

4. In the three-round differential path, if there are 1 and 3 active S-boxes in the first
round and second round respectively, then the offsets should guarantee that the
minimum number of active S-boxes in the third round is at least 15.

5. In the three-round linear path, if there are 3 and 1 active S-boxes in the second
and third round respectively, then the offsets should guarantee that the minimum
number of active S-boxes in the first round is at least 15.

6. The offsets should guarantee that the IV attains 3-round full diffusion and the key
achieves 4-round full diffusion.

It is challenging to search the combination of LaneRotation0 and LaneRotation1
that fulfills all these conditions. As a result, we adopt a three-step approach. Initially, we
search for LaneRotation0 solutions that satisfy condition 1 and condition 2. Simulta-
neously, we search for LaneRotation1 solutions that fulfill condition 1 and condition 3.
Subsequently, we merge the LaneRotation0 candidates and LaneRotation1 candidates,
selecting combinations that meet condition 4 and condition 5. Finally, we choose the
combination that satisfies condition 6 as the LaneRotation0 and LaneRotation1 from
the candidate combinations.

As a result, the minimum number of active S-boxes for 4-round differential and linear
trails is 28, which is the largest possible. See Table 14 and Table 15 for details.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 19

5.4.4 Choice of the Round Constants

The round constants RCi (i ∈ {1, · · · , 19}) are derived from the fractional part of π =
3.14159 · · · , similar to PRINCE [BCG+12]. Initially, we selected the first 10,000 digits of
the fractional part and then converted them from decimal to binary. Finally, we chose the
first 2,880 bytes as RC1|| · · · ||RC19, which can be found in Appendix B.

6 Security Analysis
We will first analyze the security of Twinkle through various cryptanalysis methods. Then,
we will discuss the security of the WC-MAC. Furthermore, the security of the Twinkle-AE
family depends on the security of the Twinkle and the WC-MAC. The security of the
Twinkle-PA is also determined by the security of the PRF Twinkle.1

6.1 The Security of Twinkle

We will analyze Twinkle using various common cryptographic methods. In the memory
encryption and pointer authentication scenario, the key is generated and securely stored
within the processor. It is assumed that a typical adversary cannot access or modify the
key. Therefore, the security of Twinkle against related-key attacks is not considered.

6.1.1 The Security of Even-Mansour

If the central permutation P in Even-Mansour construction (referring to Equation 5) is
thoroughly random, the security bound is O(2ρ), where ρ is the block size. If k0 = k1,
the bound will be reduced to O(2ρ/2) [EM97, Dae91, CLL+14]. In Twinkle, both k0

and k1 are derived from the ρ-bit key K, but k0 is not equal to k1. It implies that the
Twinkle’s construction is bounded by O(2ρ/2), i.e., O(2640), which is far beyond security
requirements of Twinkle.

6.1.2 Differential Attack

Differential attack [BS91] is one of the most powerful cryptanalysis methods. To search
the differential trails effectively, it is often advantageous to transform it into a MILP
problem [MWGP12, SHW+14] or Boolean satisfiability problem (SAT) and satisfiability
modulo theories (SMT)[MP13]. By doing so, one can leverage a general-purpose solver
to automatically determine the bound on the differential probability (DP) of the trails.
Recently, Sun et al. [SWW21] explored the impact of the encoding method on the efficiency
of the search and proposed a strategy to accelerate the search for the differential and linear
characteristics based on SAT. Another way to searching for differential characteristics is
through dedicated tools [DVA12, MDA17, MMGD22], which performs better on round
functions involving bit shifts. Here, we employed both SAT method and dedicated tools
for the differential analysis, and the results are listed in Table 5.

After the input expansion operation, the internal state contains 10 IV s. It implies
when the IV difference has k active bits, the initial state difference will have 10k active
bits. This property significantly increases in the minimum number of active S-boxes during
the first few rounds. However, due to the large size of the state and the involvement of
lane rotation operations in R, it becomes challenging to compute compact bounds for
additional rounds. Using the SAT method, we only obtained the bound of active S-boxes
for the first 2-round differential trail as 43 with a weight greater than 80. The more precise
weight bound of Rn is computed by the dedicated tool.

1The source code for the analysis is detailed in GitHub repository.

https://github.com/wangjianhuaAMSS/Twinkle_analysis.git

20 Twinkle: A family of Low-latency Schemes

While we may not achieve superior results, the weights of the first 2-/6-/16-round trail
are greater than 80, 80+58 = 138 and 80+58×3+9.4 = 263.4, respectively, demonstrating
that Twinkle could resist the differential attack within the security requirements. Moreover,
the total bounds are calculated from the bounds of the segmented trails, which could not
be naturally spliced together. We believe they possess ample security redundancy.

Table 5: The lower bounds of weight for Twinkle
Attacks Construction 1 2 3 4

differential first n rounds 25 >80 - -
Rn 1.4 9.4 28.7 >58

linear Rn 2 8 28 60
last (n− 0.5) rounds 4 14 - -

6.1.3 Linear Attack

Computing the tight bounds for the weight of squared correlation (C2) is also not a
straightforward task due to the presence of a large internal state and bitwise permutation
in the linear layer, and we were only able to obtain a four-round lower bound using
dedicated tools, which is listed in Table 5.

According to Table 5, the weights of 9.5-/18.5-round linear trails are not less than
14 + 60× 2 = 134, 60× 4 + 28 = 268, respectively. For Twinkle64, the lower bound of the
number of active S-boxes in the last three-round trails is greater than 52 due to the limited
output length of at most 64 bits. Therefore, we can conclude that Twinkle64, Twinkle128

and Twinkle256 are sufficiently secure against linear attacks. Similar to differential analysis,
the trails can not be naturally spliced together, and we are confident that it would be
challenging to find a linear characteristic whose squared correlation is near the security
bounds.

6.1.4 Integral Attack and Cube Attack

In [Tod15], Todo introduced the division property which is a generalization of the integral
property. Following that, the bit-based division property [TM16] was proposed for refined
integral construction. To search the integral distinguishers by off-the-shelf solvers, Xiang
et al. [XZBL16] and Sun et al. [SWW17] modeled the propagation of the division property
into mixed integer linear programming (MILP) and SAT (SMT), respectively. To analyze
the division property of Twinkle, we described it into SAT models and solved the models
using the open source solver CaDiCaL [Bie19].

From the results, we discovered that when all IV bits are active, the division trails
could be found from initial state to any 5-round output. This implies that the algebraic
degree of each output bit after 5 rounds, with respect to IV , almost reaches the maximum
value of 128. This is because it is difficult to eliminate all terms that are divisible by∏127

i=0 IV [i] through XOR operations. Additionally, each bit of the initial state is in the
form of IV [i]⊕ k0[j]. Assuming that the cube set is {IV [i]}i∈I , the algebraic degree with
respect to key K of the cube sum after 5 rounds is expected to be at least 128− |I|, where
|I| is the size of the set I. Therefore, we think that both integral attacks and cube attacks
do not threaten the security of Twinkle.

6.1.5 Impossible Differential Cryptanalysis

The impossible difference analysis [BBS99] is a commonly used method for cryptanalysis.
The number of rounds for full diffusion can be used to estimate the number of rounds
for impossible difference distinguishers with a probability of 1. For Twinkle, any IV bits

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 21

requires 3 rounds R for full diffusion, any internal bits require 4 rounds R for full diffusion,
and 3 rounds R−1 for full diffusion, referring to Table 6. Therefore, it’s expected that
Twinkle does not have a 6 round distinguisher with a probability of 1 including the initial
round, and a usual 7 round distinguisher.

Furthermore, it is challenging to extend more rounds due to the low probability of
differential trails from the initial round, as indicated in Table 5. Additionally, since at
least 128 bits (1216 bits for Twinkle64) before the operation FO are unknown, and need
to be guessed to determine the difference, we believe that the impossible differential attack
does not pose a threat to all versions of Twinkle.

Table 6: Upper bounds for the number of influenced bits

Rounds internal bits IV bits
R R−1 R

0 1 1 1
1 12 36 12
2 144 888 101
3 1004 1280 128
4 1280 1280 128

6.1.6 Truncated Differential Attack

It is crucial to analyze the resistance of Twinkle against truncated differential attacks
[Knu95]. These attacks can be executed by collecting differential trails with the same
truncated input and output difference or by directly searching for high-probability truncated
differential trails.

Based on the results of the differential cryptanalysis in Table 5, the weights of the
5-/9.5-/18.5- round differential trails are greater than 80 + 28.7 = 108.7, 80 + 58× 2 = 196,
and 80 + 58× 4 + 1.4 = 313.4, respectively. This implies that the adversary would need
to identify at least 244.7, 268, and 257.4 high-probability trails with the same truncated
input and output difference to attack Twinkle64, Twinkle128, and Twinkle256, respectively.
Moreover, more trails would be required due to the overestimated probability of differential
trails.

To search for a high-probability "long" truncated differential trail, we construct it by
combining a normal differential trail with a "short" truncated trail. (The terms "long" and
"short" are used here for distinction and do not imply any specific length.) We assume,
without loss of generality, that the first round of the "short" truncated trail exhibits
truncated differential propagation. The linear structure (referring to Definition 3) can
describe the truncated differential propagation of an S-box. Using the PEIGEN platform,
we computed the linear structure of the S-box Sb, which is listed in Table 7.

Definition 3 (Linear structures of an S-box [Eve88, Lai95, Dub01, BGLS19]). A linear
structure of an S-box S: Fn

2 → Fn
2 is a triple (λ, a, c) ∈ Fn

2 × Fn
2 × F2 such that

λ · S(x)⊕ λ · S(x⊕ a) = c for ∀x ∈ Fn
2 .

The process of the attack is as follows.

1. Identify the "short" truncated trail.
The uncertainty in active S-box differential propagation, whether probabilistic normal
or truncated, complicates the search for the optimal path. It is established that
if a bit in the input difference is unknown, the related output differential bit will
also be unknown. Under the assumption of the "short" truncated trail, at least
one unknown bit exists in the first S-layer output difference. By setting the output

22 Twinkle: A family of Low-latency Schemes

Table 7: The linear structures of Sb
λ a c

0001 0101 1
0001 1000 1
0001 1101 0
0100 0010 1
0100 0101 1
0100 0111 0
0101 0101 0
0101 1010 1
0101 1111 1

difference of the 1st-round S-layer to have only one unknown bit, denoted by U , we
can determine the maximum possible unaffected bits for the last i/i + 0.5-round
output difference in different versions of Twinkle. The details are provided in Table
8, where the last i-round for Twinkle64 and the last i + 0.5-round for Twinkle128

and Twinkle256 (both containing FO operation, see Section 3.5). The cost of fixing
the bits affected by U is typically higher than fixing U itself. Therefore, a good
"short" truncated difference path should not exceed 4 rounds for Twinkle64, and 3.5
rounds for Twinkle128 and Twinkle256 heuristically.

As a result, we have identified a 3.5-round truncated differential trail with a probability
of 1, where four bits in the output differential are fixed at 0. However, there is
no 4-round truncated difference trail with a probability of 1. This is because in
the case where the unknown bit of the 1st-round S-layer’s output difference is only
located at (2, 0, ∗) or (2, 1, ∗) or (1, 2, ∗), the output difference for a last 4-round trail
has only 1 known bit located at (3, 1, ∗), (2, 1, ∗), (0, 0, ∗), respectively. And any
truncated differential propagation of Sb with a probability of 1 results in at least
2 unknown bits in the output. This also implies that the first round of a 4-round
"short" truncated trail can have only one S-box involved in truncated differential
propagation. Instead, we have found a truncated difference trail with a probability
of 2−7.4, where one bit in the output difference is fixed at 0. Refer to Table 16 and
Table 17 for more details.

2. Combine with normal differential trail.

For Twinkle64, the probability weight of any normal first 2-round differential trail
is already over 80, making it impractical to combine with a "short" truncated trail
within 3 rounds. Expanding a 4-round "short" trail to a full-round "long" trail is
challenging due to the presence of FI . However, the complexity of an attack against
Twinkle64 remains greater than O(264) due to the reduction in probability weight of
the first 2-round trail by at most 3 (only 1 S-box’s differential propagation transforms
to truncated differential propagation when considering the 2nd round as the 1st
round of a 4-round "short" truncated trail). This suggests that Twinkle64 is resistant
to truncated differential attacks.

For Twinkle128 and Twinkle256, the probability weight of any initial 6-round, 15-
round differential trails with known input and output exceeds 138/255.4. This makes
it impossible for an adversary to distinguish any "long" truncated differential trail of
Twinkle128/Twinkle256 within a computational complexity of O(2128)/O(2256).

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 23

Table 8: The maximum unaffected bits of last i + 0.5-/i-round output difference when only
1 unknown bit in the output difference of 1st-round S-layer

#rounds #unaffected output difference
over 1152 bits #rounds #unaffected output difference

over 64 bits
1.5 1011 1 64
2.5 833 2 64
3.5 106 3 44
4.5 0 4 1
- - 5 0

6.1.7 Invariant Attacks

In [BCLR17], Beierle et al. propose a method of proving resistance against invariant
attacks according to the linear layer and the round constants, which covers the invariant
subspace attack [LAAZ11, LMR15, GJN+16] and nonlinear invariant attack [TLS16]. Let
D be a set of known differences between round constants, i.e., a subset of all (RCi ⊕RCj).
The smallest linear subspace invariant under L is defined as follows:

WL(D) :=
∑
c∈D

⟨Li(c), i ≥ 0⟩ =
∑
c∈D

WL(c),

where L is the linear layer, and L = LaneRotation1 ◦MixSlice ◦ LaneRotation0 in
our case. Then WL(D) could be computed as in Algorithm 1. Suppose that the dimension
of WL(D) is at least ρ− 1, where ρ is the block size. Then there is no non-trivial invariant
of the S-box layer to cover WL(D), unless the S-box layer has a component of degree 1.

Algorithm 1 Computing WL(D)
Require: list of differences D, linear layer L as a matrix
Ensure: the subspace WL(D)

1: R← an empty list
2: k ← the multiplicative order of L
3: for all c in D do
4: for all j from 0 to k − 1 do
5: Add Lj(c) into R
6: end for
7: end for
8:
9: return the span of R

For the difference of two consecutive round constants c = RCi ⊕ RCi+1 of Twinkle,
we found that the dimension of WL(c) will be at least 1279 for most c (see Table 9 for
details), attributed to the strong diffusion and unaligned property of L. It implies that for
any c = RCi ⊕RCi+1 resulting in dim(WL(c)) ≥ 1279, there is no non-trivial invariant for
both S-Box layer and linear layer of Ri+1 ◦ Ri. Therefore, the invariant attacks do not
threaten Twinkle.

Table 9: The dimensions of WL(RCi ⊕RCi+1)

i WL(RCi ⊕RCi+1) i WL(RCi ⊕RCi+1)
1 1280 10 1279
2 1280 11 1279
3 1280 12 1280

24 Twinkle: A family of Low-latency Schemes

4 1280 13 1278
5 1280 14 1278
6 1280 15 1276
7 1278 16 1280
8 1280 17 1280
9 1280 18 1279

6.1.8 Meet-in-the-Middle Attack

For Twinkle128 and Twinkle256, performing a meet-in-the-middle (MITM) attack with
more than 7 rounds is challenging due to the key being fully mixed in 4 rounds forward
and 3 rounds reverse. Moreover, up to 21280 key space and 128-bit hidden output also
enhance resistance against MITM attacks.

For Twinkle64, the key size involved after 2 rounds already exceeds 128 bits, referring
to Table 6. And the 64-bit output represents only a fraction of the 1280-bit state, requiring
an attacker to guess an impractically large number of bits for a successful MITM attack.
Therefore, Twinkle64 is secure against MITM attacks with a security requirement of 64
bits.

6.1.9 Guess and Determine Attack

We recall Twinkle = FO(P (FI(IV) ⊕ k0) ⊕ k1), where P = RR ◦ · · · ◦ R1 as shown in
Figure 3. First, we explore the possibility that an adversary could attempt to determine
the input of FO to recover the key. An adversary would need to guess at least 128 bits to
determine the 1280-bit input of FO, due to the leak of FO at most 1152 bits. The guess
results in a complexity of O(2128) or higher, exceeding the security bounds of Twinkle128

and Twinkle64. For Twinkle256, the XOR operation with k1 complicates key recovery,
transforming it into a problem of recovering the key of a 1-round Even-Mansour structure.
When P is a pseudo-random permutation function, the Even-Mansour structure can
provide 640-bit security ([EM97, Dut20]). Moreover, distinguishing P = R18.5 from a PRP
with complexity less than O(2128) is challenging, making key recovery infeasible using this
method.

Alternatively, the adversary also could potentially guess some bits of k0 and k1, and
perform forward and backward calculations with the IV , output and guessed key to
establish equations on the unguessed key bits in the middle rounds. However, each bit
of the state after three rounds involves approximately a 1000-bit key and has a degree of
about 27. Besides, for only 5-round Twinkle64, it is difficult to compute backward due to
only 64-bit output . Therefore, we believe this approach does not pose a significant threat
to the security of Twinkle.

6.2 The Security of Twinkle-AE

Twinkle-AE family could provide 128-, 128-, 256-bit confidentiality security and 64-, 128-,
128-bit integrity security for the plaintext. Each pair of the IV and key should only be
used for processing one plaintext to ensure that the Twinkle-AE family meets the security
goals. Additionally, the decrypted plaintext should only be released if the tag verification
is successful.

The confidentiality of Twinkle-AE relies on the security of Twinkle, while the integrity
of Twinkle-AE is dependent on the WC-MAC. As the security of Twinkle has already
been discussed, our attention will now shift to the security of WC-MAC.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 25

6.2.1 The Security of the WC-MAC

Because Twinkle128 and Twinkle256 have at least 128 bits of security level, so the at most
128-bit output for authentication is uniformly random. Therefore, for 64-/128-bit tag, the
success probability of 1 forgery by the adversary is at most 2−64/2−128, which is equivalent
to "blind guess".

6.3 The Security of Twinkle-PA

Twinkle-PA offers 64-bit security against offline attacks, and provides t-bit security against
online attacks, where t represents the length of the tag. In the offline attack, we assume
that the adversary can gather the tuples of the pointer, context, and corresponding tag,
and utilize this information to recover the MAC key offline. In the online attack, as for
each key, the adversary has only one opportunity to manipulate the context and pointer in
order to deceive the authentication process. Once failed, the system will force a reset with
new keys.

6.3.1 Offline Attacks

To recover the MAC key, potential offline attacks include differential attack, linear attack,
cube attack, integral attack and so on. The security against these attacks is guaranteed by
the security of Twinkle64.

6.3.2 Online Attacks

Differential Forge Attack. By the differential analysis of Twinkle64, it is unfeasible
to forge a pair of pointers and context that can successfully pass the verification process
by studying the differential trail.

7 Hardware Evaluation
Settings. Our goal is to develop low latency schemes, so we will be using the fully
unrolled circuit in the hardware implementation for performance evaluation. Due to
limitations in the experimental environment, we will be using the FreePDK45 kit, an
open-source generic process design kit, for our tests.

To ensure a fair comparison, we first obtained the delays of all ciphers at a low clock
frequency. Next, we constrained the total signal delay for each design to 85%, 80%, and
75% of its delay obtained at the low clock frequency. Finally, we calculated the minimum
latency for each design.

Categories of candidate designs. We conducted experiments to assess the hardware
performance of our designs, and categorized the candidates for comparison into three
groups:

• PRFs/PRPs. We compared the performance of the Twinkle PRF with various
low-latency designs, including block ciphers (PRPs) such as PRINCE [BCG+12]
QARMA [Ava17], QARMAv2 [ABD+23] family, AES [DR98] and a PRF Orthros [BIL+21].
Notably, the recently introduced PRF Gleeok [ABC+24] has garnered attention;
however, due to time constraints, we were unable to implement and assess its
performance firsthand. Nevertheless, we offer our estimation for consideration.
Concerning latency, the 12-round Gleeok PRF shares a similar architectural foun-
dation with Orthros, and the latency metrics reported in the Gleeok paper are
comparable to those of Orthros—358.52 ps for Gleeok-128 versus 351.55 ps for

26 Twinkle: A family of Low-latency Schemes

Orthros. In terms of area, Gleeok is anticipated to demand approximately 1.5
times the area of Orthros, attributable to Gleeok’s utilization of three branches as
opposed to Orthros’s two.

• AE schemes. We compared the performance of the Twinkle-AE scheme with Ascon
[DEMS21] and the authentication encryption scheme that embeds the above PRPs
and PRFs. It is important to note that the security bounds provided by these PRPs
and PRFs are different. For a fair comparison, we only considered the authenticated
encryption schemes for these functions with same security (including trade-off security
bound), where integrity level is not less than 64 bits. Based on the goal of minimizing
delay, the combination of CTR mode and WC-MAC [Gue16] is suitable for block
ciphers, while the Flat-ΘCB scheme [IMO+22] is suitable for tweakable block cipher.
Both schemes have authentication security bounded by O(2b/2), where b is the block
size. This means that for a 64-/128-bit block cipher with these schemes, 64-/128-bit
authentication security cannot be provided, respectively. To achieve 64-/128-bit
authentication security, only beyond-birthday-bound MAC could be used, but this
would worsen latency performance and make it uncompetitive. Therefore, we did not
evaluate the performance of authentication encryption scheme for the 64-/128-bit
block ciphers when more than 64-/128-bit integrity required, respectively.

• Pointer authentication schemes. We also evaluated current pointer authentica-
tion schemes, including our Twinkle-PA, QARMA-64 [Ava17], QARMAv2-64 [ABD+23]
family and BipBip [BDD+23].

7.1 Results
The evaluation of PRPs and PRFs. Table 10 shows the performance of PRPs and
PRFs, highlighting the exceptional latency of our Twinkle64, Twinkle128, and Twinkle256,
with delays of 2.04 ns, 3.83 ns, and 7.34 ns, respectively.

Twinkle64 is used in Twinkle-PA which has a lower security level with reduce round
number. Hence the minimal latency is expected.

At the 128-bit security level, Twinkle128’s has the lowest latency, 3.83 ns followed by
Orthros, another PRF, which achieves 4.34 ns.

Overall, we observe that the designs with asymmetric delay components potentially
show better delay at the same security level.

Additionally, PRINCE has the lowest delay among the 64-bit block ciphers, but the
tweakable block cipher QARMA is more flexible for use in memory encryption applications.

The evaluation of AE schemes. The results of each authentication and encryption
scheme are shown in Table 11. We categorize the schemes based on their security levels.
The majority of the candidates fall into the first category, offering 128-bit security for
confidentiality and 64-bit security for integrity. Experimental data reveal that Twinkle128

exhibits the lowest latency. When compared to the AES-CTR with WC-MAC, employed in
the Intel SGX solution, Twinkle-AE achieves a 60.8% improvement in encryption latency
and a 53.1% reduction in decryption latency. In terms of area efficiency, QARMA is the most
area-efficient in the 512-bit cache line configuration, closely followed by Twinkle128. For
the 1024-bit cache line, Twinkle128 has the highest area utilization due to its compact
design requiring only one block for authenticated encryption. In comparison, QARMA, AES,
and Orthros need up to nine blocks for the same output. Additionally, as a PRF, Orthros
has a low output-to-state ratio of 0.5, while Twinkle has a higher ratio of 0.9, making it
more area-efficient. This suggests that a dedicated design with a tailored-size state could
be more advantageous compared to PRFs with XORing multiple blocks.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 27

Table 10: Results for PRPs and PRFs
PRPs/PRFs Max Output

Size (bits)
Security

Level
Delay
(ns)

Area
(µm2)

Throughput
(Gbps)

PRINCE 64 D ≤ (2n), T ≥ (2127−n) 4.73 9096.4 13.5
QARMA-64-σ0 64 D ≤ (2n), T ≥ (2128−n−ϵ) 5.57 14543.5 11.5
QARMA-64-σ1 64 D ≤ (2n), T ≥ (2128−n−ϵ) 5.85 15544.2 10.9
QARMA-64-σ2 64 D ≤ (2n), T ≥ (2128−n−ϵ) 6.11 16673.9 10.5
QARMAv27-64 64 D ≤ (256), T ≥ (2128−ϵ) 5.65 15498.2 11.3

QARMA-128-σ0 128 D ≤ (2n), T ≥ (2256−n−ϵ) 8.75 37315.0 14.6
QARMA-128-σ1 128 D ≤ (2n), T ≥ (2256−n−ϵ) 9.19 42914.6 13.9
QARMA-128-σ2 128 D ≤ (2n), T ≥ (2256−n−ϵ) 9.63 43199.2 13.3
QARMAv29-128 128 D ≤ (280), T ≥ (2128−ϵ) 7.10 38550.8 18.0
QARMAv211-128 128 D ≤ (280), T ≥ (2192−ϵ) 8.86 43820.6 14.4
QARMAv213-128 128 D ≤ (280), T ≥ (2256−ϵ) 10.27 51624.2 12.5

AES 128 128 bits 9.78 115935.6 13.1
Orthros 128 128 bits 4.34 34346.2 29.5

Twinkle64 64 64 bits 2.04 62990.9 31.4
Twinkle128 1152 128 bits 3.83 120004.8 300.8
Twinkle256 1152 256 bits 7.34 219445.7 156.9

Ascon’s higher latency can primarily be attributed to its serial structure, necessitating
multiple primitive calls for processing 512/1024-bit messages. Nonetheless, the area
footprint of Ascon remains relatively small, aligning with expectations.

Table 11: Results for authentication and encryption/verification and decryption process
confidentiality/

integrity Schemes AE Delay
(ns)

VD Delay
(ns)

Area (µm2)
512-bit CL 1024-bit CL

128-bit/64-bit

QARMAv29-128* 7.10 7.10 192754.0 346957.2
AES† 9.78 11.2 667879.6 1219824.0

Orthros‡ 4.34 5.76 259932.6 485519.0
Twinkle128‡ 3.83 5.25 208206.4 296408.0

128-bit/128-bit
Orthros‡ 4.34 6.42 338068.2 641790.2
Ascon 27.3 27.3 163237.5 -

Twinkle128‡ 3.83 5.91 286342.0 452679.2
256-bit/128-bit Twinkle256‡ 7.34 9.42 385782.9 552120.1
* Flat-ΘCB Scheme: AE Delay = 1 TBC; VD Delay = 1 TBC; Area = (c/o + 1) TBC.
† CTR + WC-MAC: AE Delay = 1 BC; VD Delay = 1 BC + 1 multi.; Area = (c/o + 1) TBC + c/t

multi..
‡ Stream + WC-MAC: AE Delay = 1 PRF; VD Delay = 1 PRF + 1 multi.; Area: (⌈c/o⌉ + 1) PRF +

c/t multi..
t: the integrity level in bits; c: cache line size; o: max output size; multi.: multiply in Ft

2. The latency
and area of few XORs are ignored here.

The evaluation of pointer authentication. Table 12 shows that Twinkle-PA achieves
a low latency of only 2.04 ns, while occupying an area of 62990.9 µm2. It is important to
note that in chips using the Twinkle-AE family, by reutilizing the existing partial circuitry,
the incremental area needed for Twinkle-PA is confined to just a few additional XOR gates.
This efficient reuse significantly minimizes the extra layout space required for Twinkle-PA.

Upon comparison, Twinkle-PA’s latency is found to be only 36.6% of that of the
QARMA-64 family, which is utilized in the ARMv8.3-A ISA extensions for pointer authen-
tication. Furthermore, Twinkle-PA’s latency is at most 57.9% of the latency observed
in the newer QARMAv2-64 family variants. In the case of BipBip, the decryption latency
stands at 4.17 ns, which is double that of Twinkle-PA. This supports the expectation

28 Twinkle: A family of Low-latency Schemes

that a dedicated MAC with a large state and a one-way function would offer a significant
performance advantage in terms of latency.

Table 12: Hardware performances for pointer authentication
Cipher Delay (ns) Area (µm2)

QARMA-64-σ0 5.57 14543.5
QARMA-64-σ1 5.85 15544.2
QARMA-64-σ2 6.11 16673.9

QARMAv24-64-σ0 3.52 8898.2
QARMAv26-64-σ0 4.88 12845.1

QARMAv24-64 3.59 9377.8
QARMAv26-64 4.99 13475.8
BipBip (Dec) 4.17 6721.3
Twinkle-PA 2.04 62990.9

Discussion. Although the evaluation results of different cell libraries may vary, we
believe that Twinkle can achieve low-latency performance due to its circuit depth of only
8r + 6 for the r-round Twinkle. We will open-source the hardware implementation for
researchers to test under different cell libraries.

7.2 Discussion on protected implementations
In scenarios where protected implementations are essential, our design can readily incor-
porate common side-channel attack (SCA) protection methods, such as masking. This
integration is feasible due to our use of a bit-sliced S-Box implementation with minimal
logic complexity.

Nevertheless, we argue that protected implementations may not be necessary in this
context for several reasons. Firstly, low-latency ciphers, which are inherently sensitive to
performance degradation, may find it challenging to manage the extra burden that such
protected implementations impose in real-world scenarios. Secondly, memory encryption
engines, when integrated into high-end chips for the purpose of safeguarding sensitive data,
are typically fortified with comprehensive countermeasures to thwart physical attacks.
Additionally, the complexity of executing invasive attacks at the chip level is substantial. It
demands a high level of expertise, considerable resources, and a significant time investment
to execute successfully. This complexity often acts as a deterrent, further reducing the
necessity for such protected implementations in these situations.

8 Conclusion
In this study, we have introduced the low-latency PRFs known as Twinkle. Building upon
these PRFs, we have developed the dedicated low-latency authenticated encryption scheme
Twinkle-AE and the pointer authentication algorithm Twinkle-PA. A comprehensive
security evaluation was carried out for both the PRFs and the aforementioned schemes,
assessing their resilience against a range of common attacks. Our cryptanalysis to date
suggests that these designs meet their intended security levels.

The development of Twinkle involved the implementation of novel design strategies,
specifically aimed at achieving low latency. These strategies were particularly focused
on scenarios where the plaintext size is equivalent to the cache line size. Subsequent
hardware evaluations confirmed that all variants within the Twinkle family effectively met
our low-latency objectives, thereby endorsing the efficacy of our design approaches.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 29

Looking forward, it presents an interesting avenue for future research to delve into
additional low-latency design strategies, especially those tailored for specific use cases
and scenarios. This exploration could further enhance the efficiency and applicability of
low-latency cryptographic solutions in various real applications.

References
[ABC+24] Ravi Anand, Subhadeep Banik, Andrea Caforio, Tatsuya Ishikawa, Takanori

Isobe, Fukang Liu, Kazuhiko Minematsu, Mostafizar Rahman, and Kosei
Sakamoto. Gleeok: A family of low-latency prfs and its applications to
authenticated encryption. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2024(2):545–587, Mar. 2024. URL: https://tches.iacr
.org/index.php/TCHES/article/view/11439, doi:10.46586/tches.v20
24.i2.545-587.

[ABD+23] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam
Ghosh, Marcel Nageler, and Francesco Regazzoni. The qarmav2 family
of tweakable block ciphers. IACR Transactions on Symmetric Cryptology,
2023(3):25–73, Sep. 2023. URL: https://tosc.iacr.org/index.php/ToSC
/article/view/11184, doi:10.46586/tosc.v2023.i3.25-73.

[AMD19] AMD. Secure encrypted virtualization (sev), 2019. URL: https://develope
r.amd.com/sev/.

[ARM21] ARM. Arm CCA Security Model, August 2021. Rev 1.0, Document Number
DEN0096.

[Ava17] Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm.
Cryptol., 2017(1):4–44, 2017. doi:10.13154/tosc.v2017.i1.4-44.

[Ava22] Roberto Maria Avanzi. Cryptographic protection of random access memory:
How inconspicuous can hardening against the most powerful adversaries be?
Proceedings of the 2022 on Cloud Computing Security Workshop, 2022. URL:
https://api.semanticscholar.org/CorpusID:253187590.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part II, volume 9453 of LNCS, pages 411–436. Springer, Hei-
delberg, November / December 2015. doi:10.1007/978-3-662-48800-3_17.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 12–23. Springer, Heidelberg, May
1999. doi:10.1007/3-540-48910-X_2.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications - ex-
tended abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 208–225. Springer, Heidelberg, December 2012.
doi:10.1007/978-3-642-34961-4_14.

https://tches.iacr.org/index.php/TCHES/article/view/11439
https://tches.iacr.org/index.php/TCHES/article/view/11439
https://doi.org/10.46586/tches.v2024.i2.545-587
https://doi.org/10.46586/tches.v2024.i2.545-587
https://tosc.iacr.org/index.php/ToSC/article/view/11184
https://tosc.iacr.org/index.php/ToSC/article/view/11184
https://doi.org/10.46586/tosc.v2023.i3.25-73
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://api.semanticscholar.org/CorpusID:253187590
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-642-34961-4_14

30 Twinkle: A family of Low-latency Schemes

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving
resistance against invariant attacks: How to choose the round constants.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II,
volume 10402 of LNCS, pages 647–678. Springer, Heidelberg, August 2017.
doi:10.1007/978-3-319-63715-0_22.

[BDD+23] Yanis Belkheyar, Joan Daemen, Christoph Dobraunig, Santosh Ghosh, and
Shahram Rasoolzadeh. Bipbip: A low-latency tweakable block cipher with
small dimensions. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):326–
368, 2023. doi:10.46586/tches.v2023.i1.326-368.

[BDKV21] Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche.
Thinking outside the superbox. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 337–367, Virtual Event,
August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-84252-9_12.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 313–314. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_19.

[BEK+20] Dusan Bozilov, Maria Eichlseder, Miroslav Knezevic, Baptiste Lambin, Gregor
Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh, Yosuke
Todo, and Friedrich Wiemer. PRINCEv2 - more security for (almost) no
overhead. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn,
editors, Selected Areas in Cryptography - SAC 2020 - 27th International
Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised
Selected Papers, volume 12804 of Lecture Notes in Computer Science, pages
483–511. Springer, 2020. doi:10.1007/978-3-030-81652-0_19.

[Ber05] Daniel J. Bernstein. Stronger security bounds for Wegman-Carter-Shoup
authenticators. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 164–180. Springer, Heidelberg, May 2005. doi:10.1007/11
426639_10.

[BGLS19] Zhenzhen Bao, Jian Guo, San Ling, and Yu Sasaki. Peigen – a platform for
evaluation, implementation, and generation of S-boxes. IACR Trans. Symm.
Cryptol., 2019(1):330–394, 2019. doi:10.13154/tosc.v2019.i1.330-394.

[Bie19] Armin Biere. Cadical at the sat race 2019, 2019.

[BIL+21] Subhadeep Banik, Takanori Isobe, Fukang Liu, Kazuhiko Minematsu, and
Kosei Sakamoto. Orthros: A low-latency PRF. IACR Trans. Symm. Cryptol.,
2021(1):37–77, 2021. doi:10.46586/tosc.v2021.i1.37-77.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.
doi:10.1007/978-3-662-53008-5_5.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block
cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2007, pages 450–466, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74735-2_31,.

https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.1007/978-3-030-84252-9_12
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/11426639_10
https://doi.org/10.1007/11426639_10
https://doi.org/10.13154/tosc.v2019.i1.330-394
https://doi.org/10.46586/tosc.v2021.i1.37-77
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31,

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 31

[BKR98] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff backwards:
Increasing security by making block ciphers non-invertible. In Kaisa Nyberg,
editor, EUROCRYPT’98, volume 1403 of LNCS, pages 266–280. Springer,
Heidelberg, May / June 1998. doi:10.1007/BFb0054132.

[BPH15] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. Shielding applications
from an untrusted cloud with haven. ACM Trans. Comput. Syst., 33(3):8:1–
8:26, 2015. doi:10.1145/2799647.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reach-
ing the limit of lightweight encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 321–345. Springer,
Heidelberg, September 2017. doi:10.1007/978-3-319-66787-4_16.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90,
volume 537 of LNCS, pages 2–21. Springer, Heidelberg, August 1991. doi:
10.1007/3-540-38424-3_1.

[CGL+23] Federico Canale, Tim Güneysu, Gregor Leander, Jan Philipp Thoma, Yosuke
Todo, and Rei Ueno. SCARF – a Low-Latency block cipher for secure Cache-
Randomization. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 1937–1954, Anaheim, CA, August 2023. USENIX Association. URL:
https://www.usenix.org/conference/usenixsecurity23/presentation/
canale.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round Even-Mansour cipher. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 39–56. Springer, Heidelberg, August 2014. doi:10.1007/978-3
-662-44371-2_3.

[com] The CAESAR committee. Caesar: competition for authenticated encryption:
security, applicability, and robustness. https://competitions.cr.yp.to/ca
esar-submissions.html. 2014.

[CS16] Benoît Cogliati and Yannick Seurin. EWCDM: An efficient, beyond-birthday
secure, nonce-misuse resistant MAC. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 121–149.
Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53018-4_5.

[Dae91] Joan Daemen. Limitations of the even-mansour construction. In Advances
in Cryptology - ASIACRYPT ’91, International Conference on the Theory
and Applications of Cryptology, Fujiyoshida, Japan, November 11-14, 1991,
Proceedings, volume 739 of Lecture Notes in Computer Science, pages 495–498.
Springer, 1991. doi:10.1007/3-540-57332-1_46.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. Journal of
Cryptology, 34(3):33, July 2021. doi:10.1007/s00145-021-09398-9.

[DLT+23] Sen Deng, Mengyuan Li, Yining Tang, Shuai Wang, Shoumeng Yan, and
Yinqian Zhang. Cipherh: Automated detection of ciphertext side-channel
vulnerabilities in cryptographic implementations. In Joseph A. Calandrino
and Carmela Troncoso, editors, 32nd USENIX Security Symposium, USENIX

https://doi.org/10.1007/BFb0054132
https://doi.org/10.1145/2799647
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://doi.org/10.1007/978-3-662-44371-2_3
https://doi.org/10.1007/978-3-662-44371-2_3
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/s00145-021-09398-9

32 Twinkle: A family of Low-latency Schemes

Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX Association,
2023. URL: https://www.usenix.org/conference/usenixsecurity23/p
resentation/deng-sen.

[DR98] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In Jean-Jacques
Quisquater and Bruce Schneier, editors, Smart Card Research and Applications,
This International Conference, CARDIS ’98, Louvain-la-Neuve, Belgium,
September 14-16, 1998, Proceedings, volume 1820 of Lecture Notes in Computer
Science, pages 277–284. Springer, 1998. doi:10.1007/10721064_26.

[Dub01] Sylvie Dubuc. Characterization of linear structures. Des. Codes Cryptography,
22:33–45, 01 2001. doi:10.1023/A:1008399109102.

[Dut20] Avijit Dutta. Minimizing the two-round tweakable Even-Mansour cipher.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I,
volume 12491 of LNCS, pages 601–629. Springer, Heidelberg, December 2020.
doi:10.1007/978-3-030-64837-4_20.

[DVA12] Joan Daemen and Gilles Van Assche. Differential propagation analysis of
keccak. In Anne Canteaut, editor, Fast Software Encryption, pages 422–441,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/978-3-6
42-34047-5_24.

[EM93] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS, pages 210–224.
Springer, Heidelberg, November 1993. doi:10.1007/3-540-57332-1_17.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. Journal of Cryptology, 10(3):151–162, June 1997.
doi:10.1007/s001459900025.

[Eve88] Jan-Hendrik Evertse. Linear structures in blockciphers. In David Chaum and
Wyn L. Price, editors, EUROCRYPT’87, volume 304 of LNCS, pages 249–266.
Springer, Heidelberg, April 1988. doi:10.1007/3-540-39118-5_23.

[Gho22] Santosh Ghosh. Low-latency crypto: An emerging paradigm of lightweight
cryptography. Presented in Lightweight Cryptography Workshop 2022, 2022.
URL: https://csrc.nist.gov/Presentations/2022/low-latency-crypt
o-an-emerging-paradigm-of-lightwe.

[GJN+16] Jian Guo, Jérémy Jean, Ivica Nikolic, Kexin Qiao, Yu Sasaki, and Siang Meng
Sim. Invariant subspace attack against Midori64 and the resistance criteria
for S-box designs. IACR Trans. Symm. Cryptol., 2016(1):33–56, 2016. https:
//tosc.iacr.org/index.php/ToSC/article/view/534. doi:10.13154/t
osc.v2016.i1.33-56.

[Gue16] Shay Gueron. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, Paper 2016/204, 2016. https://epri
nt.iacr.org/2016/204. URL: https://eprint.iacr.org/2016/204.

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98, 2009. doi:10.1145/1506409.1506429.

https://www.usenix.org/conference/usenixsecurity23/presentation/deng-sen
https://www.usenix.org/conference/usenixsecurity23/presentation/deng-sen
https://doi.org/10.1007/10721064_26
https://doi.org/10.1023/A:1008399109102
https://doi.org/10.1007/978-3-030-64837-4_20
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/3-540-39118-5_23
https://csrc.nist.gov/Presentations/2022/low-latency-crypto-an-emerging-paradigm-of-lightwe
https://csrc.nist.gov/Presentations/2022/low-latency-crypto-an-emerging-paradigm-of-lightwe
https://tosc.iacr.org/index.php/ToSC/article/view/534
https://tosc.iacr.org/index.php/ToSC/article/view/534
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://doi.org/10.1145/1506409.1506429

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 33

[HWKS98] Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. Building PRFs
from PRPs. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 370–389. Springer, Heidelberg, August 1998. doi:10.1007/BFb0055742.

[IMO+22] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei Ueno, and Naofumi
Homma. ELM: A Low-Latency and Scalable Memory Encryption Scheme.
IEEE Transactions on Information Forensics and Security, 17:2628–2643, 2022.
doi:10.1109/TIFS.2022.3188146.

[Int20] Intel. Intel trust domain extensions. Whitepaper, 2020.

[KDGD20] Michael Kounavis, Sergej Deutsch, Santosh Ghosh, and David Durham. K-
cipher: A low latency, bit length parameterizable cipher. Cryptology ePrint
Archive, Paper 2020/030, 2020. https://eprint.iacr.org/2020/030. URL:
https://eprint.iacr.org/2020/030.

[KHSH20] Seonggyeom Kim, Deukjo Hong, Jaechul Sung, and Seokhie Hong. Classifi-
cation of 4-bit s-boxes for bogi permutation. IEEE Access, 8:210935–210949,
2020. doi:10.1109/ACCESS.2020.3039273.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Heidelberg,
December 1995. doi:10.1007/3-540-60590-8_16.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A cryptanalysis of PRINTcipher: The invariant subspace attack. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 206–221.
Springer, Heidelberg, August 2011. doi:10.1007/978-3-642-22792-9_12.

[Lai95] Xuejia Lai. Additive and linear structures of cryptographic functions. In
Bart Preneel, editor, FSE’94, volume 1008 of LNCS, pages 75–85. Springer,
Heidelberg, December 1995. doi:10.1007/3-540-60590-8_6.

[LMMR21] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh. The
SPEEDY family of block ciphers engineering an ultra low-latency cipher from
gate level for secure processor architectures. IACR TCHES, 2021(4):510–545,
2021. https://tches.iacr.org/index.php/TCHES/article/view/9074.
doi:10.46586/tches.v2021.i4.510-545.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach to
invariant subspace attacks: Cryptanalysis of robin, iSCREAM and Zorro. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 254–283. Springer, Heidelberg, April 2015. doi:
10.1007/978-3-662-46800-5_11.

[LRD+21] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir
Grewal, and Sreenivas Subramoney. Cryptographic capability computing. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’21, page 253–267, New York, NY, USA, 2021. Association
for Computing Machinery. doi:10.1145/3466752.3480076.

[LWW+22] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu
Teodorescu, and Yinqian Zhang. A systematic look at ciphertext side channels
on AMD SEV-SNP. In 43rd IEEE Symposium on Security and Privacy, SP
2022, San Francisco, CA, USA, May 22-26, 2022, pages 337–351. IEEE, 2022.
doi:10.1109/SP46214.2022.9833768.

https://doi.org/10.1007/BFb0055742
https://doi.org/10.1109/TIFS.2022.3188146
https://eprint.iacr.org/2020/030
https://eprint.iacr.org/2020/030
https://doi.org/10.1109/ACCESS.2020.3039273
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/3-540-60590-8_6
https://tches.iacr.org/index.php/TCHES/article/view/9074
https://doi.org/10.46586/tches.v2021.i4.510-545
https://doi.org/10.1007/978-3-662-46800-5_11
https://doi.org/10.1007/978-3-662-46800-5_11
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1109/SP46214.2022.9833768

34 Twinkle: A family of Low-latency Schemes

[MDA17] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for trail
bounds and application to differential trails in Keccak. IACR Trans. Symm.
Cryptol., 2017(1):329–357, 2017. doi:10.13154/tosc.v2017.i1.329-357.

[MKPA22] Mohammad Mahzoun, Liliya Kraleva, Raluca Posteuca, and Tomer Ashur.
Differential cryptanalysis of K-cipher. In IEEE Symposium on Computers and
Communications, ISCC 2022, Rhodes, Greece, June 30 - July 3, 2022, pages
1–7. IEEE, 2022. doi:10.1109/ISCC55528.2022.9912926.

[MMGD22] Alireza Mehrdad, Silvia Mella, Lorenzo Grassi, and Joan Daemen. Differential
trail search in cryptographic primitives with big-circle chi:: Application to
subterranean. IACR Transactions on Symmetric Cryptology, 2022(2):253–288,
Jun. 2022. URL: https://tosc.iacr.org/index.php/ToSC/article/vie
w/9721, doi:10.46586/tosc.v2022.i2.253-288.

[MP13] Nicky Mouha and Bart Preneel. Towards finding optimal differential charac-
teristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report
2013/328, 2013. https://eprint.iacr.org/2013/328.

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuan-Kun
Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology,
pages 57–76, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-34704-7_5.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Au-
tomatic security evaluation and (related-key) differential characteristic search:
Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented
block ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 158–178. Springer, Heidelberg, December
2014. doi:10.1007/978-3-662-45611-8_9.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based
division property for ARX ciphers and word-based division property. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 128–157. Springer, Heidelberg, December 2017.
doi:10.1007/978-3-319-70694-8_5.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the SAT method. IACR Trans. Symm. Cryptol.,
2021(1):269–315, 2021. doi:10.46586/tosc.v2021.i1.269-315.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack -
practical attack on full SCREAM, iSCREAM, and Midori64. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 3–33. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_1.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS,
pages 357–377. Springer, Heidelberg, March 2016. doi:10.1007/978-3-662
-52993-5_18.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 287–314. Springer, Heidelberg, April 2015. doi:
10.1007/978-3-662-46800-5_12.

https://doi.org/10.13154/tosc.v2017.i1.329-357
https://doi.org/10.1109/ISCC55528.2022.9912926
https://tosc.iacr.org/index.php/ToSC/article/view/9721
https://tosc.iacr.org/index.php/ToSC/article/view/9721
https://doi.org/10.46586/tosc.v2022.i2.253-288
https://eprint.iacr.org/2013/328
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 35

[WC81] Mark N. Wegman and J.Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and System Sciences,
22(3):265–279, 1981. URL: https://www.sciencedirect.com/science/ar
ticle/pii/0022000081900337, doi:10.1016/0022-0000(81)90033-7.

[WCJ+21] Yoo-Seung Won, Soham Chatterjee, Dirmanto Jap, Arindam Basu, and Shivam
Bhasin. Deepfreeze: Cold boot attacks and high fidelity model recovery
on commercial edgeml device. In IEEE/ACM International Conference On
Computer Aided Design, ICCAD 2021, Munich, Germany, November 1-4,
2021, pages 1–9. IEEE, 2021. doi:10.1109/ICCAD51958.2021.9643512.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678. Springer,
Heidelberg, December 2016. doi:10.1007/978-3-662-53887-6_24.

[YADA17] Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Reetuparna Das, and
Todd M. Austin. Cold boot attacks are still hot: Security analysis of mem-
ory scramblers in modern processors. In 2017 IEEE International Sympo-
sium on High Performance Computer Architecture, HPCA 2017, Austin, TX,
USA, February 4-8, 2017, pages 313–324. IEEE Computer Society, 2017.
doi:10.1109/HPCA.2017.10.

[Yal22] Tolga Yalcin. Need for low-latency ciphers - a comparative study of nist lwc
finalists. Presented in Lightweight Cryptography Workshop 2022, 2022. URL:
https://csrc.nist.gov/Presentations/2022/need-for-low-latency-c
iphers-a-comparative-study-o.

[ZBL+14] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: A bit-slice lightweight block cipher
suitable for multiple platforms. Cryptology ePrint Archive, Report 2014/084,
2014. https://eprint.iacr.org/2014/084.

A Latency Comparison of Different 4-bit S-boxes

Table 13: Latency comparison of different 4-bit S-boxes

Cipher Delay (ns)
Midori Sb0 0.26
Midori Sb1 0.22

Orthors 0.22
QARMA σ0 0.23
QARMA σ1 0.23
QARMA σ2 0.25

QARMA σ−1
2 0.26

PRINCE 0.24
B0 0.26
B1 0.26
B2 0.27
B3 0.31
B4 0.3
B5 0.27

https://www.sciencedirect.com/science/article/pii/0022000081900337
https://www.sciencedirect.com/science/article/pii/0022000081900337
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1109/ICCAD51958.2021.9643512
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1109/HPCA.2017.10
https://csrc.nist.gov/Presentations/2022/need-for-low-latency-ciphers-a-comparative-study-o
https://csrc.nist.gov/Presentations/2022/need-for-low-latency-ciphers-a-comparative-study-o
https://eprint.iacr.org/2014/084

36 Twinkle: A family of Low-latency Schemes

B6 0.3
B7 0.28
B8 0.28
B9 0.26
B10 0.26
B11 0.26
B12 0.31
B13 0.25
B14 0.27
B15 0.27
B16 0.26

(0, 4)-Num1-DL-0 0.28
(0, 4)-Num1-DL-1 0.31
(1, 3)-Num1-DL-0 0.25
(1, 3)-Num1-DL-1 0.29
(1, 3)-Num1-DL-2 0.27
(1, 3)-Num1-DL-3 0.28
(2, 2)-Num1-DL-0 0.27
(2, 2)-Num1-DL-1 0.27
(2, 2)-Num1-DL-2 0.3
(2, 2)-Num1-DL-3 0.26

B The Specification of RCi

RC1 = 0x243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89

452821e638d01377be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b5470917

9216d5d98979fb1bd1310ba698dfb5ac2ffd72dbd01adfb7b8e1afed6a267e96

ba7c9045f12c7f9924a19947b3916cf70801f2e2858efc16636920d871574e69

a458fea3f4933d7e0d95748f728eb658718bcd5882154aee7b54a41dc25a59b5.

RC2 = 0x9c30d5392af26013c5d1b023286085f0ca417918b8db38ef8e79dcb0603a180e

6c9e0e8bb01e8a3ed71577c1bd314b2778af2fda55605c60e65525f3aa55ab94

5748986263e8144055ca396a2aab10b6b4cc5c341141e8cea15486af7c72e993

b3ee1411636fbc2a2ba9c55d741831f6ce5c3e169b87931eafd6ba336c24cf5c

7a325381289586773b8f48986b4bb9afc4bfe81b6628219361d809ccfb21a991.

RC3 = 0x487cac605dec8032ef845d5de98575b1dc262302eb651b8823893e81d396acc5

0f6d6ff383f442392e0b4482a484200469c8f04a9e1f9b5e21c66842f6e96c9a

670c9c61abd388f06a51a0d2d8542f68960fa728ab5133a36eef0b6c137a3be4

ba3bf0507efb2a98a1f1651d39af017666ca593e82430e888cee8619456f9fb4

7d84a5c33b8b5ebee06f75d885c12073401a449f56c16aa64ed3aa62363f7706.

RC4 = 0x1bfedf72429b023d37d0d724d00a1248db0fead349f1c09b075372c980991b7b

25d479d8f6e8def7e3fe501ab6794c3b976ce0bd04c006bac1a94fb6409f60c4

5e5c9ec2196a246368fb6faf3e6c53b51339b2eb3b52ec6f6dfc511f9b30952c

cc814544af5ebd09bee3d004de334afd660f2807192e4bb3c0cba85745c8740f

d20b5f39b9d3fbdb5579c0bd1a60320ad6a100c6402c7279679f25fefb1fa3cc.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 37

RC5 = 0x8ea5e9f8db3222f83c7516dffd616b152f501ec8ad0552ab323db5fafd238760

53317b483e00df829e5c57bbca6f8ca01a87562edf1769dbd542a8f6287effc3

ac6732c68c4f5573695b27b0bbca58c8e1ffa35db8f011a010fa3d98fd2183b8

4afcb56c2dd1d35b9a53e479b6f84565d28e49bc4bfb9790e1ddf2daa4cb7e33

62fb1341cee4c6e8ef20cada36774c01d07e9efe2bf11fb495dbda4dae909198.

RC6 = 0xeaad8e716b93d5a0d08ed1d0afc725e08e3c5b2f8e7594b78ff6e2fbf2122b64

8888b812900df01c4fad5ea0688fc31cd1cff191b3a8c1ad2f2f2218be0e1777

ea752dfe8b021fa1e5a0cc0fb56f74e818acf3d6ce89e299b4a84fe0fd13e0b7

7cc43b81d2ada8d9165fa2668095770593cc7314211a1477e6ad206577b5fa86

c75442f5fb9d35cfebcdaf0c7b3e89a0d6411bd3ae1e7e4900250e2d2071b35e.

RC7 = 0x226800bb57b8e0af2464369bf009b91e5563911d59dfa6aa78c14389d95a537f

207d5ba202e5b9c5832603766295cfa911c819684e734a41b3472dca7b14a94a

1b5100529a532915d60f573fbc9bc6e42b60a47681e6740008ba6fb5571be91f

f296ec6b2a0dd915b6636521e7b9f9b6ff34052ec585566453b02d5da99f8fa1

08ba47996e85076a4b7a70e9b5b32944db75092ec4192623ad6ea6b049a7df7d.

RC8 = 0x9cee60b88fedb266ecaa8c71699a17ff5664526cc2b19ee1193602a575094c29

a0591340e4183a3e3f54989a5b429d656b8fe4d699f73fd6a1d29c07efe830f5

4d2d38e6f0255dc14cdd20868470eb266382e9c6021ecc5e09686b3f3ebaefc9

3c9718146b6a70a1687f358452a0e286b79c5305aa5007373e07841c7fdeae5c

8e7d44ec5716f2b8b03ada37f0500c0df01c1f040200b3ffae0cf51a3cb574b2.

RC9 = 0x25837a58dc0921bdd19113f97ca92ff69432477322f547013ae5e58137c2dadc

c8b576349af3dda7a94461460fd0030eecc8c73ea4751e41e238cd993bea0e2f

3280bba1183eb3314e548b384f6db9086f420d03f60a04bf2cb8129024977c79

5679b072bcaf89afde9a771fd9930810b38bae12dccf3f2e5512721f2e6b7124

501adde69f84cd877a5847187408da17bc9f9abce94b7d8cec7aec3adb851dfa.

RC10 = 0x63094366c464c3d2ef1c18473215d908dd433b3724c2ba1612a14d432a65c451

50940002133ae4dd71dff89e10314e5581ac77d65f11199b043556f1d7a3c76b

3c11183b5924a509f28fe6ed97f1fbfa9ebabf2c1e153c6e86e34570eae96fb1

860e5e0a5a3e2ab3771fe71c4e3d06fa2965dcb999e71d0f803e89d65266c825

2e4cc9789c10b36ac6150eba94e2ea78a5fc3c531e0a2df4f2f74ea7361d2b3d.

RC11 = 0x1939260f19c279605223a708f71312b6ebadfe6eeac31f66e3bc4595a67bc883

b17f37d1018cff28c332ddefbe6c5aa56558218568ab9802eecea50fdb2f953b

2aef7dad5b6e2f841521b62829076170ecdd4775619f151013cca830eb61bd96

0334fe1eaa0363cfb5735c904c70a239d59e9e0bcbaade14eecc86bc60622ca7

9cab5cabb2f3846e648b1eaf19bdf0caa02369b9655abb5040685a323c2ab4b3.

38 Twinkle: A family of Low-latency Schemes

RC12 = 0x319ee9d5c021b8f79b540b19875fa09995f7997e623d7da8f837889a97e32d77

11ed935f166812810e358829c7e61fd696dedfa17858ba9957f584a51b227263

9b83c3ff1ac24696cdb30aeb532e30548fd948e46dbc312858ebf2ef34c6ffea

fe28ed61ee7c3c735d4a14d9e864b7e342105d14203e13e045eee2b6a3aaabea

db6c4f15facb4fd0c742f442ef6abbb5654f3b1d41cd2105d81e799e86854dc7.

RC13 = 0xe44b476a3d816250cf62a1f25b8d2646fc8883a0c1c7b6a37f1524c369cb7492

47848a0b5692b285095bbf00ad19489d1462b17423820e0058428d2a0c55f5ea

1dadf43e233f70613372f0928d937e41d65fecf16c223bdb7cde3759cbee7460

4085f2a7ce77326ea607808419f8509ee8efd85561d99735a969a7aac50c06c2

5a04abfc800bcadc9e447a2ec3453484fdd567050e1e9ec9db73dbd3105588cd.

RC14 = 0x675fda79e3674340c5c43465713e38d83d28f89ef16dff20153e21e78fb03d4a

e6e39f2bdb83adf7e93d5a68948140f7f64c261c94692934411520f77602d4f7

bcf46b2ed4a20068d40824713320f46a43b7d4b7500061af1e39f62e97244546

14214f74bf8b88404d95fc1d96b591af70f4ddd366a02f45bfbc09ec03bd9785

7fac6dd031cb850496eb27b355fd3941da2547e6abca0a9a28507825530429f4.

RC15 = 0x0a2c86dae9b66dfb68dc1462d7486900680ec0a427a18dee4f3ffea2e887ad8c

b58ce0067af4d6b6aace1e7cd3375fecce78a399406b2a4220fe9e35d9f385b9

ee39d7ab3b124e8b1dc9faf74b6d185626a36631eae397b23a6efa74dd5b4332

6841e7f7ca7820fbfb0af54ed8feb397454056acba48952755533a3a20838d87

fe6ba9b7d096954b55a867bca1159a58cca9296399e1db33a62a4a563f3125f9.

RC16 = 0x5ef47e1c9029317cfdf8e80204272f7080bb155c05282ce395c11548e4c66d22

48c1133fc70f86dc07f9c9ee41041f0f404779a45d886e17325f51ebd59bc0d1

f2bcc18f41113564257b7834602a9c60dff8e8a31f636c1b0e12b4c202e1329e

af664fd1cad181156b2395e0333e92e13b240b62eebeb92285b2a20ee6ba0d99

de720c8c2da2f728d012784595b794fd647d0862e7ccf5f05449a36f877d48fa.

RC17 = 0xc39dfd27f33e8d1e0a476341992eff743a6f6eabf4f8fd37a812dc60a1ebddf8

991be14cdb6e6b0dc67b55106d672c372765d43bdcd0e804f1290dc7cc00ffa3

b5390f92690fed0b667b9ffbcedb7d9ca091cf0bd9155ea3bb132f88515bad24

7b9479bf763bd6eb37392eb3cc1159798026e297f42e312d6842ada7c66a2b3b

12754ccc782ef11c6a124237b79251e706a1bbe64bfb63501a6b101811caedfa.

RC18 = 0x3d25bdd8e2e1c3c9444216590a121386d90cec6ed5abea2a64af674eda86a85f

bebfe98864e4c3fe9dbc8057f0f7c08660787bf86003604dd1fd8346f6381fb0

7745ae04d736fccc83426b33f01eab71b08041873c005e5f77a057bebde8ae24

55464299bf582e614e58f48ff2ddfda2f474ef388789bdc25366f9c3c8b38e74

b475f25546fcd9b97aeb26618b1ddf84846a0e79915f95e2466e598e20b45770.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 39

C The Critical Path in AE/VD Process with Nonce
Pre-Generated

In cases where there is a significant gap between the availability of the nonce and the
plaintext, the keystream and mask may be generated before the plaintext arrives. The
critical path of this scenario is illustrated in Figure 5. The latency of the AE process in
this case is limited to a UHF delay plus an XOR delay. The VD process, on the other
hand, incurs an additional XOR delay compared to the AE process. The UHF delay is
deterministic for both the AE and VD processes. However, the latency of Twinkle is still
crucial as it needs to be less than the latency gap between the availability of the nonce
and the plaintext for this case to occur.

Pre-computation acceleration is not applicable for tweakable block ciphers or operation
modes that involve inputting plaintext into a block cipher. Pre-computation may not
always be an option, so it was not included in the hardware evaluation. But it is crucial to
factor it into the design considerations.

IV, K Twinkle

M, K ′ UHF

M

C

T

IV, K Twinkle

C

M

UHF

K ′

T ′ = T ?

Yes

Figure 5: The critical path in encryption and authentication process(top) and decryption
and verification process(bottom) with Nonce pre-generated

D Results of Security Evaluation
D.1 Differential Trail
Refer to Table 14.

D.2 Linear Trail
Refer to Table 15.

D.3 Truncated Difference Trails
Refer to Table 16 and Table 17.

40 Twinkle: A family of Low-latency Schemes

Table 14: The differential trail of Twinkle with 28 active S-boxes
Operations Output difference

S-box

....................8...4..1..

..1.........................4.............

..2...1.........................8...

..1.................

R

..

..

..

...1..................................

S-box ◦ R

..

..

..

...8..................................

R2

...4................

..

..8.........................

...8................................

S-box ◦ R2

...2................

..

..3.........................

...9................................

R3

.....................8...4.....2........

..................1.........2....8.....1..

.............................1...2..............1.......8.......................

..........2...................1..................8...1..........................

Table 16: The truncated differential trail of Twinkle128/Twinkle256 with a probability of
1

Last 3.5-round truncated differential trail

∆in

1000
1000
00
1000
00
00
00
00
00
00
00
00
00
00
00
00

Round 1

000?00
00000000000?00
00000000?000
00
00
00000000000000000?00
00?000
00?00000000000000000000000
00
00
00
00
000?
00?00000000000000000000000000000000000
000000000000000000000000000?00
00

Round 2

00000?00?000000000000000?0000000000000000000?00000000000000000000?00000000?00000
00000000?00000000?0?00?00?0000000000000000000?0000000000000000?000?0000000000000
00000?000000?000?00?0000000?00000?000000000000000000000?0000000000000000?0000000
0000000?0000000000?00000?0000000000000000?0000000000?00?0?0?00000000000000000?00
0000000000000?00?0000000000000?000000000000000000000000?000000000?000000000?0000
00000000000000?0000000000?0??000000000000000000?00000000000000000000?00000000000
0000?00?00000000000000000000000000000000000000?0000000000000000000?000000?000000
000000000000000000000000000000?0000000000000000000?00?0000000000?00?000?00000000

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 41

00000000?00000000000000000?000000000??00?000000000000?00000000000000000000000000
??00000000000000000000?000000000000?0000000000000000000000000?0?0000000000000000
00000000?000000?0000000000000000000?0000000?000000000000?00000000000000?00000000
000000000??000000000000000?0000?00000000000000000000000000000?00000000?000000000
0?00000?00?000000000000000000?00000?0000000000?00000000?00000000000000000000?000
00000000000000?00000000000000000000000000?0000000?00?00?000000000000000000000?00
000?00000000000000000000?000000?000?00?000000000?0000000000000000000000000000000
0000000000?0000000000000000?00000000000000000?0000000000?00?00?00000000000000000

Round 3

00????0?0??00????0???????000?0?0????????0???000???00?0????0?0????0000?0?0????0?0
?00?0?00?00000???0??0?????0????0???????0?0?0??0?0?00??0??00?00???????0?00??0??0?
??????0?0???0?0??000?00?????0?????0?00?00????0?00?00??0?0?0??0??0???0???0??0??00
0000??0???0?00??????0?0?0??0?????00??0??0??0000???0??0?0??00????0????????0?0??00
?00?00?????0??0?0?000?00??????0?????00?00???0??0??00???00000????????0??0???0?0?0
0???0?000?0????00??00??????00???????????0??0?0?0?0?00?0?0???0??0??0?0?00?0???0??
??0????0????????0??0??0?000?0??0000???00??0???00?00?0??????00?????00???00??0??00
?????00?0?0000000?00??00??0???0?0???00?????0??0????0???000??0?0??0???0?0????00??
0?0????0?0???????00???0?00?000??0??0??????00?????0?????????00??0?????0??0??00000
???0??00??0??00?00?????000000??0??0?0?0??00?00???????0??00?0??0?0?0?0???????????
0??00??00??0?????00??0??????00?0?0??0000????0???0???????00???000?0????0?0???000?
????????0?0?0?00???0??0?0?0?????00?00???0??0?00?00?0000?0?????0???0?0?00?0???0??
000?????0?0??00????00?0????00?0????00?00?00??????0???0?0???00?0????0000???0??0??
???00?0???0?00???0??0???0??????0?00??0?00?000?????0???0???00?????0?0??0????00?0?
???0????0??????000??0?0??0?0?00?????000????????00??????0?0???00?0??0?00??000?00?
??00000????0???000?0??0???0??????????0???0?00?000000??0??00??0?0????0??0??0?0?0?

∆out

??????????????????????????????0???
??????????????????????????0???
????????????0???
???0??????????????????
??
??
??
??
??
??
??
??
??
??
??
??

Table 17: The truncated differential trail of Twinkle64 with a probability of 2−7.4

Last 4-round truncated differential trail

∆in

00
00
00
00
1000
00
1000
00
00
00
00
00
00
00
00
00

Sb
p = 3

8

00
00
00
00
00
00
?000
1000
00
00
00
00
00
00
00

42 Twinkle: A family of Low-latency Schemes

00

S ◦ R
p = 2−5

0?00000000000000?000
0?00000000000000?000
0000000000000000?000
0000000000000000?000
00?000000000000000?000000000
00?000000000000000?000000000
00?000000000000000?000000000
00?000000000000000?000000000
00000000000000?000
00000000000000?000
00000000000000?000
00000000000000?000
000100000000000000000000
00
00
000100000000000000000000

S ◦ R2

p = 2−1

000000?00000??00000000???00?0000000000??000000000000000?0000??00000000??00000??0
000000?00000??00000000???00?0000000000??000000000000000?0000??00000000??00000??0
000000?00000??00000000???00?0000000000??000000000000000?0000??00000000??00000??0
000000?00000??00000000???00?0000000000??000000000000000?0000??00000000??00000??0
000000000000?00000?000000?00?0000?00?0000?00??0000000?0000?0?00000?0??00?0000?00
000000000000?00000?000000?00?0000?00?0000?00??0000000?0000?0?00000?0??00?0000?00
000000000000?00000?000000?00?0000?00?0000?00??0000000?0000?0?00000?0??00?0000?00
000000000000?00000?000000?00?0000?00?0000?00?10000000?0000?0?00000?0??00?0000?00
0000?000?0000?000000000000000?00000000000000??0000000?00000?00000000?0000?0?0000
0000?000?0000?000000000000000?00000000000?00??0000000?00000?00000000?0000?0?0000
0000?000?0000?000000000000000?00000000000?00??0000000?00000?00000000?0000?0?0000
0000?000?0000?000000000000000?00000000000?00??0000000?00000?00000000?0000?0?0000
?00000?000000?0?00000000000000000?00000000??0?000?0000000000??00?000000000000000
?00000?000000?0?00000000000000000?00000000??0?000?0000000000??00?000000000000000
?00000?000000?0?00000000000000000?00000000??0?000?0000000000??00?000000000000000
?00000?000000?0?00000000000000000?00000000??0?000?0000000000?100?000000000000000

S ◦ R3

p = 1

0??????0???????00??????????????????????0????????0????0????????0?00??????????????
0??????0???????00??????????????????????0????????0????0????????0?00??????????????
0??????0???????00??????????????????????0????????0????0????????0?00??????????????
0??????0???????00??????????????????????0????????0????0????????0?00??????????????
??????0??????0???????00???????????????0??????????????????????0??0?????0?????????
??????0??????0???????00???????????????0??????????????????????0??0?????0?????????
??????0??????0???????00???????????????0??????????????????????0??0?????0?????????
??????0??????0???????00???????????????0??????????????????????0??0?????0?????????
??????????????0??????0???????0???????0??0????0??0???????????00????0?????????0???
??????????????0??????0???????0???????0??0????0??0???????????00????0?????????0???
??????????????0??????0???????0???????0??0????0??0???????????00????0?????????0???
??????????????0??????0???????0???????0??0????0??0???????????00????0?????????0???
?0???????0?????????????????0???????????????????????????0?????????????????0??????
?0???????0?????????????????0???????????????????????????0?????????????????0??????
?0???????0?????????????????0???????????????????????????0?????????????????0??????
?0???????0?????????????????0???????????????????????????0?????????????????0??????

∆out

????
????
????
????
????
????
???0
????
????
????
????
????
????
????
????
????

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu 43

Table 15: The linear trail of Twinkle with 28 active S-boxes
Operations Output mask

S-box

.........2........8..............................1......1.......................
8..........1..........................1...
..................2..1........................4........8........................
...............8..................1..............4..........................8...

R

..

...1..............

.....c..

.................9..

S-box ◦ R

..

...2..............

.....1..

.................1..

R2

..

..

...1

..

S-box ◦ R2

..

..

...2

..

R3

..4..........2

.8...2..........................

.......4..28....................

..................2...1.

E Test Vectors

E.1 Twinkle64

K = 0x00

00

00

00

IV = 0x00000000000000000000000000000000

O = 0x94e02b57b26533584379d913a624479abaa5350226bbbd54c06a68e79f544a8a

87c9637257d94c75a6d80e18fd56157d7e00dcca6366691c307ff99695ed7063

046c8b7940641c8be53c562d591fb71abe75c8d6d474b2806f373b49c55248ae

f4d84ef3336fac360d26487ff234776bcb7f24c1531884bb7b16195d343429c3

a5f3f19df1dce04c76ddf79f402ca5cc

44 Twinkle: A family of Low-latency Schemes

E.2 Twinkle128

K = 0x00

00

00

00

IV = 0x00000000000000000000000000000000

O = 0xdb177b7356bd5bbac97b11626fc1fdcf20e3b1dc2e47677161762e9d7ce5a980

b02e7bfe101e689d3a44a3378edb1bc1edf86800a48c7fc49e75b45b05f98456

0d663630cc66313b4b65b56de7ebfd671411fb366fdcfd0d32650fc9a6c10e9b

cb176f97f92a652c192ba8cd7590fe39fd18e3cc855360da1cef031c8222b6f6

bf0b8e4504d37b8d64fa78eb8eed9a7d

E.3 Twinkle256

K = 0x00

00

00

00

IV = 0x00000000000000000000000000000000

O = 0x181d3de8a1c97b9fb38a06a182ae7472763eb6b8523b2b11088da5941c09087a

d4d3d45b45e4d9f27ee7ef865711694548d4f22cdddcd98e4a5d27b80a47d31e

dcadfd08333bcf49b15389d6f438c5c32fc3fa950c91e7a8cc1127bfcb2d73a4

58c196e5ee71166b4a7fa80048621cd5635c7997296a8df8e26548c93b9732fb

35800f0e727a6ddf65db82b704e0d46f

	Introduction
	Our Contributions
	Organization

	Preliminaries
	Operations
	Notations
	Wegman-Carter MACs

	Specification of PRFs
	Key Scheduling Function
	Round Function
	Input Expansion Operation
	Output Compression Operation
	The Number of Rounds

	Application of Twinkle
	Specification of the Twinkle-AE
	Specification of Twinkle-PA

	Design Rationale
	Construction of Twinkle-AE
	Construction of Twinkle-PA
	Design of Twinkle Function
	Design of R

	Security Analysis
	The Security of Twinkle
	The Security of Twinkle-AE
	The Security of Twinkle-PA

	Hardware Evaluation
	Results
	Discussion on protected implementations

	Conclusion
	References
	Latency Comparison of Different 4-bit S-boxes
	The Specification of RCi
	The Critical Path in AE/VD Process with Nonce Pre-Generated
	Results of Security Evaluation
	Differential Trail
	Linear Trail
	Truncated Difference Trails

	Test Vectors
	Twinkle64
	Twinkle128
	Twinkle256

