15 results sorted by publication date
The Module Learning With Errors (MLWE)-based Key Encapsulation Mechanism (KEM) Kyber is NIST's new standard scheme for post-quantum encryption. As a building block, Kyber uses a Chosen Plaintext Attack (CPA)-secure Public Key Encryption (PKE) scheme, referred to as Kyber.CPAPKE. In this paper we study the robustness of Kyber.CPAPKE against key mismatch attacks.
We demonstrate that Kyber's security levels can be compromised if having access to a few mismatch queries of Kyber.CPAPKE, by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in Kyber.CPAPKE.
We further propose an adaptive method to enhance parallel mismatch attacks, initially proposed by Shao et al. at AsiaCCS 2024, thereby significantly reducing query complexity. This method combines the adaptive attack with post-processing via lattice reduction to retrieve the final secret key entries. Our method proves its efficacy by reducing query complexity by 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber1024.
Furthermore, this approach has the potential to improve multi-value Plaintext-Checking (PC) oracle-based side-channel attacks and fault-injection attacks against Kyber itself.
Isogeny-based schemes often come with special requirements on the field of definition of the involved elliptic curves. For instance, the efficiency of SQIsign, a promising candidate in the NIST signature standardisation process, requires a large power of two and a large smooth integer $T$ to divide $p^2-1$ for its prime parameter $p$. We present two new methods that combine previous techniques for finding suitable primes: sieve-and-boost and XGCD-and-boost. We use these methods to find primes for the NIST submission of SQIsign. Furthermore, we show that our methods are flexible and can be adapted to find suitable parameters for other isogeny-based schemes such as AprèsSQI or POKE. For all three schemes, the parameters we present offer the best performance among all parameters proposed in the literature.
We analyze Layered ROLLO-I, a code-based cryptosystem published in IEEE Communications Letters and submitted to the Korean post-quantum cryptography competition. Four versions of Layered ROLLO-I have been proposed in the competition. We show that the first two versions do not provide the claimed security against rank decoding attacks and give reductions to small instances of the original ROLLO-I scheme, which was a candidate in the NIST competition and eliminated there due to rank decoding attacks. As a second contribution, we provide two efficient message recovery attacks, affecting every security level of the first three versions of Layered ROLLO-I and security levels 128 and 192 of the fourth version.
Restricted syndrome decoding problems (R-SDP and R-SDP($G$)) provide an interesting basis for post-quantum cryptography. Indeed, they feature in CROSS, a submission in the ongoing process for standardizing post-quantum signatures.
This work improves our understanding of the security of both problems. Firstly, we propose and implement a novel collision attack on R-SDP($G$) that provides the best attack under realistic restrictions on memory. Secondly, we derive precise complexity estimates for algebraic attacks on R-SDP that are shown to be accurate by our experiments. We note that neither of these improvements threatens the updated parameters of CROSS.
In this work, we introduce two post-quantum Verifiable Random Function (VRF) constructions based on abelian group actions and isogeny group actions with a twist. The former relies on the standard group action Decisional Diffie-Hellman (GA-DDH) assumption. VRFs serve as cryptographic tools allowing users to generate pseudorandom outputs along with publicly verifiable proofs. Moreover, the residual pseudorandomness of VRFs ensures the pseudorandomness of unrevealed inputs, even when multiple outputs and proofs are disclosed. Our work aims at addressing the growing demand for post-quantum VRFs, as existing constructions based on elliptic curve cryptography (ECC) or classical DDH-type assumptions are vulnerable to quantum threats.
In our contributions, our two VRF constructions, rooted in number-theoretic pseudorandom functions, are both simple and secure over the random oracle model. We introduce a new proof system for the factorization of group actions and set elements, serving as the proofs for our VRFs. The first proposal is based on the standard GA-DDH problem, and for its security proof, we introduce the (group action) master Decisional Diffie-Hellman problem over group actions, proving its equivalence to the standard GA-DDH problem. In the second construction, we leverage quadratic twists to enhance efficiency, reducing the key size and the proof sizes, expanding input size. The scheme is based on the square GA-DDH problem.
Moreover, we employ advanced techniques from the isogeny literature to optimize the proof size to 39KB and 34KB using CSIDH-512 without compromising VRF notions. The schemes feature fast evaluations but exhibit slower proof generation. To the best of our knowledge, these constructions represent the first two provably secure VRFs based on isogenies.
Raccoon is a lattice-based scheme submitted to the NIST 2022 call for additional post-quantum signatures. One of its main selling points is that its design is intrinsically easy to mask against side-channel attacks. So far, Raccoon's physical security guarantees were only stated in the abstract probing model. In this paper, we discuss how these probing security results translate into guarantees in more realistic leakage models. We also highlight that this translation differs from what is usually observed (e.g., in symmetric cryptography), due to the algebraic structure of Raccoon's operations. For this purpose, we perform an in-depth information theoretic evaluation of Raccoon's most innovative part, namely the AddRepNoise function which allows generating its arithmetic shares on-the-fly. Our results are twofold. First, we show that the resulting shares do not enforce a statistical security order (i.e., the need for the side-channel adversary to estimate higher-order moments of the leakage distribution), as usually expected when masking. Second, we observe that the first-order leakage on the (large) random coefficients manipulated by Raccoon cannot be efficiently turned into leakage on the (smaller) coefficients of its long-term secret. Concretely, our information theoretic evaluations for relevant leakage functions also suggest that Raccoon's masked implementations can ensure high security with less shares than suggested by a conservative analysis in the probing model.
For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the transition to quantum-safe cryptographic solutions. This necessity is enforced by numerous recognized government bodies around the world, including NIST which initiated the first open competition in standardizing post-quantum (PQ) cryptographic schemes, focusing primarily on digital signatures and key encapsulation/public-key encryption schemes. Despite the current efforts in standardizing PQ primitives, the landscape of complex, privacy-preserving cryptographic protocols, e.g., zkSNARKs/zkSTARKs, is at an early stage. Existing solutions suffer from various disadvantages in terms of efficiency and compactness and in addition, they need to undergo the required scrutiny to gain the necessary trust in the academic and industrial domains. Therefore, it is believed that the migration to purely quantum-safe cryptography would require an intermediate step where current classically secure protocols and quantum-safe solutions will co-exist. This is enforced by the report of the Commercial National Security Algorithm Suite version 2.0, mandating transition to quantum-safe cryptographic algorithms by 2033 and suggesting to incorporate ECC at 192-bit security in the meantime. To this end, the present paper aims at providing a comprehensive study on pairings at 192-bit security level. We start with an exhaustive review in the literature to search for all possible recommendations of such pairing constructions, from which we extract the most promising candidates in terms of efficiency and security, with respect to the advanced Special TNFS attacks. Our analysis is focused, not only on the pairing computation itself, but on additional operations that are relevant in pairing-based applications, such as hashing to pairing groups, cofactor clearing and subgroup membership testing. We implement all functionalities of the most promising candidates within the RELIC cryptographic toolkit in order to identify the most efficient pairing implementation at 192-bit security and provide extensive experimental results.
The Learning with Errors (LWE) problem has become one of the most prominent candidates of post-quantum cryptography, offering promising potential to meet the challenge of quantum computing. From a theoretical perspective, optimizing algorithms to solve LWE is a vital task for the analysis of this cryptographic primitive. In this paper, we propose a fine-grained time/memory trade-off method to analyze c-sum BKW variants for LWE in both classical and quantum models, then offer new complexity bounds for multiple BKW variants determined by modulus q, dimension k, error rate alpha, and stripe size b. Through our analysis, optimal parameters can be efficiently found for different settings, and the minimized complexities are lower than existing results. Furthermore, we enhance the performance of c-sum BKW in the quantum computing model by adopting the quantum Meet-in-the-Middle technique as c-sum solver instead of the naive c-sum technique. Our complexity trade-off formula also applies to the quantum version of BKW, and optimizes the theoretical quantum time and memory costs, which are exponentially lower than existing quantum c-sum BKW variants.
We present a solution to the open problem of designing a linear-time, unbiased and timing attack-resistant shuffling algorithm for fixed-weight sampling. Although it can be implemented without timing leakages of secret data in any architecture, we illustrate with ARMv7-M and ARMv8-A implementations; for the latter, we take advantage of architectural features such as NEON and conditional instructions, which are representative of features available on architectures targeting similar systems, such as Intel. Our proposed algorithm improves asymptotically upon the current approach based on constant-time sorting networks ($O(n)$ versus $O(n \log^2 n)$), and an implementation of the new algorithm applied to NTRU is also faster in practice, by a factor of up to $6.91\ (591\%)$ on ARMv8-A cores and $12.89\ (1189\%)$ on the Cortex-M4; it also requires fewer uniform random bits. This translates into performance improvements for NTRU encapsulation, compared to state-of-the-art implementations, of up to 50% on ARMv8-A cores and 72% on the Cortex-M4, and small improvements to key generation (up to 2.7% on ARMv8-A cores and 6.1% on the Cortex-M4), with negligible impact on code size and a slight improvement in RAM usage for the Cortex-M4.
Transport Layer Security (TLS) is the backbone security protocol of the Internet. As this fundamental protocol is at risk from future quantum attackers, many proposals have been made to protect TLS against this threat by implementing post-quantum cryptography (PQC). The widespread interest in post-quantum TLS has given rise to a large number of solutions over the last decade. These proposals differ in many aspects, including the security properties they seek to protect, the efficiency and trustworthiness of their post-quantum building blocks, and the application scenarios they consider, to name a few.
Based on an extensive literature review, we classify existing solutions according to their general approaches, analyze their individual contributions, and present the results of our extensive performance experiments. Based on these insights, we identify the most reasonable candidates for post-quantum TLS, which research problems in this area have already been solved, and which are still open. Overall, our work provides a well-founded reference point for researching post-quantum TLS and preparing TLS in practice for the quantum age.
X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is secure when used as a pseudorandom function. The first result is proved in the ROM, whereas the second one holds in the standard model. Loosely speaking, this means X-Wing is secure if either X25519 or ML-KEM-768 is secure. We stress that these security guarantees and optimizations are only possible due to the concrete choices that were made, and it may not apply in the general case.
Proving whether it is possible to build IND-CCA public-key encryption (PKE) from IND-CPA PKE in a black-box manner is a major open problem in theoretical cryptography. In a significant breakthrough, Gertner, Malkin and Myers showed in 2007 that shielding black-box reductions from IND-CCA to IND-CPA do not exist in the standard model. Shielding means that the decryption algorithm of the IND-CCA scheme does not call the encryption algorithm of the underlying IND-CPA scheme. In other words, it implies that every tentative construction of IND-CCA from IND-CPA must have a re-encryption step when decrypting.
This result was only proven with respect to classical algorithms. In this work we show that it stands in a post-quantum setting. That is, we prove that there is no post-quantum shielding black-box construction of IND-CCA PKE from IND-CPA PKE. In the type of reductions we consider, i.e. post-quantum ones, the constructions are still classical in the sense that the schemes must be computable on classical computers, but the adversaries and the reduction algorithm can be quantum. This suggests that considering quantum notions, which are stronger than their classical counterparts, and allowing for quantum reductions does not make building IND-CCA public-key encryption easier.
Efficient polynomial multiplication routines are critical to the performance of lattice-based post-quantum cryptography (PQC). As PQC standards only recently started to emerge, CPUs still lack specialized instructions to accelerate such routines. Meanwhile, deep learning has grown immeasurably in importance. Its workloads call for teraflops-level of processing power for linear algebra operations, mainly matrix multiplication. Computer architects have responded by introducing ISA extensions, coprocessors and special-purpose cores to accelerate such operations. In particular, Apple ships an undocumented matrix-multiplication coprocessor, AMX, in hundreds of millions of mobile phones, tablets and personal computers. Our work repurposes AMX to implement polynomial multiplication and applies it to the NTRU cryptosystem, setting new speed records on the Apple M1 and M3 systems-on-chip (SoCs): polynomial multiplication, key generation, encapsulation and decapsulation are sped up by $1.54$–$3.07\times$, $1.08$–$1.33\times$, $1.11$–$1.50\times$ and $1.20$–$1.98\times$, respectively, over the previous state-of-the-art.
Verifiable encryption (VE) is a protocol where one can provide assurance that an encrypted plaintext satisfies certain properties, or relations. It is an important building block in cryptography with many useful applications, such as key escrow, group signatures, optimistic fair exchange, and others. However, the majority of previous VE schemes are restricted to instantiation with specific public-key encryption schemes or relations. In this work, we propose a novel framework that realizes VE protocols using zero-knowledge proof systems based on the MPC-in-the-head paradigm (Ishai et al. STOC 2007). Our generic compiler can turn a large class of zero-knowledge proofs into secure VE protocols for any secure public-key encryption scheme with the undeniability property, a notion that essentially guarantees binding of encryption when used as a commitment scheme. Our framework is versatile: because the circuit proven by the MPC-in-the-head prover is decoupled from a complex encryption function, the work of the prover is focused on proving the encrypted data satisfies the relation, not the proof of plaintext knowledge. Hence, our approach allows for instantiation with various combinations of properties about the encrypted data and encryption functions. We then consider concrete applications, to demonstrate the efficiency of our framework, by first giving a new approach and implementation to verifiably encrypt discrete logarithms in any prime order group more efficiently than was previously known. Then we give the first practical verifiable encryption scheme for AES keys with post-quantum security, along with an implementation and benchmarks.