Communications in Cryptology IACR CiC


Dates are inconsistent
7 results sorted by publication date
Editors in chief
Call for papers: IACR Communications in Cryptology Submit a paper Communications in Cryptology is a journal for original research papers which welcomes submissions on any topic in cryptology. This covers all research topics in cryptography and cryptanalysis, including but not limited to foundational theory and mathematics the design, proposal, and analysis of cryptographic primitives a...
Benoît Cogliati, Jérémy Jean, Thomas Peyrin, Yannick Seurin
Published 2024-07-08 PDFPDF

We analyze the multi-user (mu) security of a family of nonce-based authentication encryption (nAE) schemes based on a tweakable block cipher (TBC). The starting point of our work is an analysis of the mu security of the SCT-II mode which underlies the nAE scheme Deoxys-II, winner of the CAESAR competition for the defense-in-depth category. We extend this analysis in two directions, as we detail now.

First, we investigate the mu security of several TBC-based variants of the counter encryption mode (including CTRT, the encryption mode used within SCT-II) that differ by the way a nonce, a random value, and a counter are combined as tweak and plaintext inputs to the TBC to produce the keystream blocks that will mask the plaintext blocks. Then, we consider the authentication part of SCT-II and study the mu security of the nonce-based MAC Nonce-as-Tweak (NaT) built from a TBC and an almost universal (AU) hash function. We also observe that the standard construction of an AU hash function from a (T)BC can be proven secure under the assumption that the underlying TBC is unpredictable rather than pseudorandom, allowing much better conjectures on the concrete AU advantage. This allows us to derive the mu security of the family of nAE modes obtained by combining these encryption/MAC building blocks through the NSIV composition method.

Some of these modes require an underlying TBC with a larger tweak length than what is usually available for existing ones. We then show the practicality of our modes by instantiating them with two new TBC constructions, Deoxys-TBC-512 and Deoxys-TBC-640, which can be seen as natural extensions of the Deoxys-TBC family to larger tweak input sizes. Designing such TBCs with unusually large tweaks is prone to pitfalls: Indeed, we show that a large-tweak proposal for SKINNY published at EUROCRYPT 2020 presents an inherent construction flaw. We therefore provide a sound design strategy to construct large-tweak TBCs within the Superposition Tweakey (STK) framework, leading to new Deoxys-TBC and SKINNY variants. We provide software benchmarks indicating that while ensuring a very high security level, the performances of our proposals remain very competitive.

Nilanjan Datta, Avijit Dutta, Eik List, Sougata Mandal
Published 2024-07-08 PDFPDF

There has been a notable surge of research on leakage-resilient authenticated encryption (AE) schemes, in the bounded as well as the unbounded leakage model. The latter has garnered significant attention due to its detailed and practical orientation. Designers have commonly utilized (tweakable) block ciphers, exemplified by the TEDT scheme, achieving $\mathcal{O}(n-\log(n^2))$-bit integrity under leakage and comparable AE security in the black-box setting. However, the privacy of TEDT was limited by $n/2$-bits under leakage; TEDT2 sought to overcome these limitations by achieving improved security with $\mathcal{O}(n-\log n)$-bit integrity and privacy under leakage.

This work introduces FEDT, an efficient leakage-resilient authenticated encryption (AE) scheme based on fork-cipher. Compared to the state-of-the-art schemes TEDT and TEDT2, which process messages with a rate of $1/2$ block per primitive call for encryption and one for authentication, FEDT doubles their rates at the price of a different primitive. FEDT employs a more parallelizable tree-based encryption compared to its predecessors while maintaining $\mathcal{O}(n-\log n)$-bit security for both privacy and integrity under leakage. FEDT prioritizes high throughput at the cost of increased latency. For settings where latency is important, we propose FEDT*, which combines the authentication part of FEDT with a CTR-based encryption. FEDT* offers security equivalent to FEDT while increasing the encryption rate of $4/3$ and reducing the latency.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu
Published 2024-07-08 PDFPDF

In this paper, we aim to explore the design of low-latency authenticated encryption schemes particularly for memory encryption, with a focus on the temporal uniqueness property. To achieve this, we present the low-latency Pseudo-Random Function (PRF) called Twinkle with an output up to 1152 bits. Leveraging only one block of Twinkle, we developed Twinkle-AE, a specialized authenticated encryption scheme with six variants covering different cache line sizes and security requirements. We also propose Twinkle-PA, a pointer authentication algorithm, which takes a 64-bit pointer and 64-bit context as input and outputs a tag of 1 to 32 bits.

We conducted thorough security evaluations of both the PRFs and these schemes, examining their robustness against various common attacks. The results of our cryptanalysis indicate that these designs successfully achieve their targeted security objectives.

Hardware implementations using the FreePDK45nm library show that Twinkle-AE achieves an encryption and authentication latency of 3.83 ns for a cache line. In comparison, AES-CTR with WC-MAC scheme and Ascon-128a achieve latencies of 9.78 ns and 27.30 ns, respectively. Moreover, Twinkle-AE is also most area-effective for the 1024-bit cache line. For the pointer authentication scheme Twinkle-PA, the latency is 2.04 ns, while QARMA-64-sigma0 has a latency of 5.57 ns.

Marcel Tiepelt, Christian Martin, Nils Maeurer
Published 2024-04-09 PDFPDF

Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion.

We initiate the study of the LDACS key agreement protocol (Edition 01.01.00 from 25.04.2023), which is soon-to-be-standardized by the International Civil Aviation Organization. The protocol's cipher suite features Diffie-Hellman as well as a KEM-based key agreement protocol to provide post-quantum security. While the former results in an instantiation of an ISO key agreement inheriting all security properties, the security achieved by the latter is ambiguous. We formalize the computational security using the systematic notions of de Saint Guilhem, Fischlin and Warinshi (CSF '20), and prove the exact security that the KEM-based variant achieves in this model; primarily entity authentication, key secrecy and key authentication. To further strengthen our “pen-and-paper” findings, we model the protocol and its security guarantees using Tamarin, providing an automated proof of the security against a Dolev-Yao attacker.

Mustafa Khairallah
Published 2024-04-09 PDFPDF

The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security beyond the tag length, and (b) it is possible to have IND-CCA security beyond the tag length in a restricted Encode-then-Encipher framework. In this paper, we address some of the remaining gaps in this area. Our main result is to show that, for a fixed stretch, Pseudo-Random Injection security implies IND-CCA security as long as the minimum ciphertext size is at least as large as the required IND-CCA security level. We also show that this bound is tight and that any AEAD scheme that allows empty plaintexts with a fixed stretch cannot achieve IND-CCA security beyond the tag length. Next, we look at the weaker notion of MRAE security, and show that two-pass schemes that achieve MRAE security do not achieve IND-CCA security beyond the tag size. This includes SIV and rugged PRPs.

Fabio Campos, Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, Thom Wiggers
Published 2024-04-09 PDFPDF

In this work, we assess the real-world practicality of CSIDH, an isogeny-based non-interactive key exchange. We provide the first thorough assessment of the practicality of CSIDH in higher parameter sizes for conservative estimates of quantum security, and with protection against physical attacks.

This requires a three-fold analysis of CSIDH. First, we describe two approaches to efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second, we optimize such high-security implementations, on a high level by improving several subroutines, and on a low level by improving the finite field arithmetic. Third, we benchmark the performance of high-security CSIDH. As a stand-alone primitive, our implementations outperform previous results by a factor up to 2.53×.

As a real-world use case considering network protocols, we use CSIDH in TLS variants that allow early authentication through a NIKE. Although our instantiations of CSIDH have smaller communication requirements than post-quantum KEM and signature schemes, even our highly-optimized implementations result in too-large handshake latency (tens of seconds), showing that CSIDH is only practical in niche cases.