Communications in Cryptology IACR CiC


Dates are inconsistent
12 results sorted by publication date
Possible spell-corrected query: how
Editors in chief
Frequently asked questions The International Association for Cryptologic Research (IACR) Communications in Cryptology (CiC) was approved by the Membership in the IACR 2022 election and targets publications that advance the field, but with a broader range of contributions than the ones accepted by the IACR flagship or area conferences. What are the main principles of CiC? Low-cost open ...
Aleksei Udovenko
Published 2024-10-07 PDFPDF

This note presents attacks on the lightweight hash function TS-Hash proposed by Tsaban, including a polynomial-time preimage attack for short messages (at most $n/2$ bits), high-probability differentials, a general subexponential-time preimage attack, and linearization techniques.

Aein Rezaei Shahmirzadi, Michael Hutter
Published 2024-10-07 PDFPDF

Masking schemes are key in thwarting side-channel attacks due to their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A) masking is a necessary step in various cryptography schemes, including hash functions, ARX-based ciphers, and lattice-based cryptography. While there exists a significant body of research focusing on B2A software implementations, studies pertaining to hardware implementations are quite limited, with the majority dedicated solely to creating efficient Boolean masked adders. In this paper, we present first- and second-order secure hardware implementations to perform B2A mask conversion efficiently without using masked adder structures. We first introduce a first-order secure low-latency gadget that executes a B2A2k in a single cycle. Furthermore, we propose a second-order secure B2A2k gadget that has a latency of only 4 clock cycles. Both gadgets are independent of the input word size k. We then show how these new primitives lead to improved B2Aq hardware implementations that perform a B2A mask conversion of integers modulo an arbitrary number. Our results show that our new gadgets outperform comparable solutions by more than a magnitude in terms of resource requirements and are at least 3 times faster in terms of latency and throughput. All gadgets have been formally verified and proven secure in the glitch-robust PINI security model. We additionally confirm the security of our gadgets on an FPGA platform using practical TVLA tests.

Lichao Wu, Azade Rezaeezade, Amir Ali-pour, Guilherme Perin, Stjepan Picek
Published 2024-10-07 PDFPDF

Profiling side-channel analysis has gained widespread acceptance in both academic and industrial realms due to its robust capacity to unveil protected secrets, even in the presence of countermeasures. To harness this capability, an adversary must access a clone of the target device to acquire profiling measurements, labeling them with leakage models. The challenge of finding an effective leakage model, especially for a protected dataset with a low signal-to-noise ratio or weak correlation between actual leakages and labels, often necessitates an intuitive engineering approach, as otherwise, the attack will not perform well.

In this paper, we introduce a deep learning approach with a flexible leakage model, referred to as the multi-bit model. Instead of trying to learn a pre-determined representation of the target intermediate data, we utilize the concept of the stochastic model to decompose the label into bits. Then, the deep learning model is used to classify each bit independently. This versatile multi-bit model can adjust to existing leakage models like the Hamming weight and Most Significant Bit while also possessing the flexibility to adapt to complex leakage scenarios. To further improve the attack efficiency, we extend the multi-bit model to profile all 16 subkey bytes simultaneously, which requires negligible computational effort. The experimental results show that the proposed methods can efficiently break all key bytes across four considered datasets while the conventional leakage models fail. Our work signifies a significant step forward in deep learning-based side-channel attacks, showcasing a high degree of flexibility and efficiency with the proposed leakage model.

Rustem Takhanov
Published 2024-10-07 PDFPDF

Almost pairwise independence (API) is a quantitative property of a class of functions that is desirable in many cryptographic applications. This property is satisfied by Learning with errors (LWE)-mappings and by special Substitution-Permutation Networks (SPN). API block ciphers are known to be resilient to differential and linear cryptanalysis attacks. Recently, security of protocols against neural network-based attacks became a major trend in cryptographic studies. Therefore, it is relevant to study the hardness of learning a target function from an API class of functions by gradient-based methods.

We propose a theoretical analysis based on the study of the variance of the gradient of a general machine learning objective with respect to a random choice of target function from a class. We prove an upper bound and verify that, indeed, such a variance is extremely small for API classes of functions. This implies the resilience of actual LWE-based primitives against deep learning attacks, and to some extent, the security of SPNs. The hardness of learning reveals itself in the form of the barren plateau phenomenon during the training process, or in other words, in a low information content of the gradient about the target function. Yet, we emphasize that our bounds hold for the case of a regular parameterization of a neural network and the gradient may become informative if a class is mildly pairwise independent and a parameterization is non-regular. We demonstrate our theory in experiments on the learnability of LWE mappings.

Gaëtan Cassiers, Loïc Masure, Charles Momin, Thorben Moos, Amir Moradi, François-Xavier Standaert
Published 2024-07-08 PDFPDF

Masking is a prominent strategy to protect cryptographic implementations against side-channel analysis. Its popularity arises from the exponential security gains that can be achieved for (approximately) quadratic resource utilization. Many variants of the countermeasure tailored for different optimization goals have been proposed. The common denominator among all of them is the implicit demand for robust and high entropy randomness. Simply assuming that uniformly distributed random bits are available, without taking the cost of their generation into account, leads to a poor understanding of the efficiency vs. security tradeoff of masked implementations. This is especially relevant in case of hardware masking schemes which are known to consume large amounts of random bits per cycle due to parallelism. Currently, there seems to be no consensus on how to most efficiently derive many pseudo-random bits per clock cycle from an initial seed and with properties suitable for masked hardware implementations. In this work, we evaluate a number of building blocks for this purpose and find that hardware-oriented stream ciphers like Trivium and its reduced-security variant Bivium B outperform most competitors when implemented in an unrolled fashion. Unrolled implementations of these primitives enable the flexible generation of many bits per cycle, which is crucial for satisfying the large randomness demands of state-of-the-art masking schemes. According to our analysis, only Linear Feedback Shift Registers (LFSRs), when also unrolled, are capable of producing long non-repetitive sequences of random-looking bits at a higher rate per cycle for the same or lower cost as Trivium and Bivium B. Yet, these instances do not provide black-box security as they generate only linear outputs. We experimentally demonstrate that using multiple output bits from an LFSR in the same masked implementation can violate probing security and even lead to harmful randomness cancellations. Circumventing these problems, and enabling an independent analysis of randomness generation and masking, requires the use of cryptographically stronger primitives like stream ciphers. As a result of our studies, we provide an evidence-based estimate for the cost of securely generating $n$ fresh random bits per cycle. Depending on the desired level of black-box security and operating frequency, this cost can be as low as $20n$ to $30n$ ASIC gate equivalents (GE) or $3n$ to $4n$ FPGA look-up tables (LUTs), where $n$ is the number of random bits required. Our results demonstrate that the cost per bit is (sometimes significantly) lower than estimated in previous works, incentivizing parallelism whenever exploitable. This provides further motivation to potentially move low randomness usage from a primary to a secondary design goal in hardware masking research.

Qinyi Li, Xavier Boyen
Published 2024-07-08 PDFPDF

Public-key searchable encryption allows keyword-associated tokens to be used to test if a ciphertext contains specific keywords. Due to the low entropies of keywords, the token holder can create ciphertexts from candidate keywords and test them using the token in hand to recover the keywords, known as inside keyword guessing attacks (IKGA). Public-key authenticated encryption with keyword search is a searchable encryption proposed to defend against such attacks. It ensures the sender's private key protects the ciphertexts from the IKGA. PAEKS schemes with reasonable security and practical efficiency remain elusive despite many proposals. This work provides a simple generic PAEKS scheme from non-interactive key exchange (NIKE) and symmetric-key equality-predicate encryption with three new constructions for the latter, respectively from pseudorandom functions (PRFs), the decision bilinear Diffie-Hellman assumption, and the learning-with-errors assumption. Instantiating our generic scheme, we derive several PAEKS schemes from the most well-known assumptions, with some of them achieving full cipher-keyword indistinguishability and full token indistinguishability in the standard model, for the first time. Our instantiated schemes allow practical implementations and outperform the existing PAEKS schemes under the same assumptions.

Jianhua Wang, Tao Huang, Shuang Wu, Zilong Liu
Published 2024-07-08 PDFPDF

In this paper, we aim to explore the design of low-latency authenticated encryption schemes particularly for memory encryption, with a focus on the temporal uniqueness property. To achieve this, we present the low-latency Pseudo-Random Function (PRF) called Twinkle with an output up to 1152 bits. Leveraging only one block of Twinkle, we developed Twinkle-AE, a specialized authenticated encryption scheme with six variants covering different cache line sizes and security requirements. We also propose Twinkle-PA, a pointer authentication algorithm, which takes a 64-bit pointer and 64-bit context as input and outputs a tag of 1 to 32 bits.

We conducted thorough security evaluations of both the PRFs and these schemes, examining their robustness against various common attacks. The results of our cryptanalysis indicate that these designs successfully achieve their targeted security objectives.

Hardware implementations using the FreePDK45nm library show that Twinkle-AE achieves an encryption and authentication latency of 3.83 ns for a cache line. In comparison, AES-CTR with WC-MAC scheme and Ascon-128a achieve latencies of 9.78 ns and 27.30 ns, respectively. Moreover, Twinkle-AE is also most area-effective for the 1024-bit cache line. For the pointer authentication scheme Twinkle-PA, the latency is 2.04 ns, while QARMA-64-sigma0 has a latency of 5.57 ns.

Thomas Pornin
Published 2024-04-09 PDFPDF

This paper describes a generic methodology for obtaining unified, and then complete formulas for a prime-order group abstraction homomorphic to a subgroup of an elliptic curve with even order. The method is applicable to any curve with even order, in finite fields of both even and odd characteristic; it is most efficient on curves with order equal to 2 modulo 4, dubbed "double-odd curves". In large characteristic fields, we obtain doubling formulas with cost as low as 1M + 5S, and the resulting group allows building schemes such as signatures that outperform existing fast solutions, e.g. Ed25519. In binary fields, the obtained formulas are not only complete but also faster than previously known incomplete formulas; we can sign and verify in as low as 18k and 27k cycles on x86 CPUs, respectively.

Jingwen Chen, Qun Liu, Yanhong Fan, Lixuan Wu, Boyun Li, Meiqin Wang
Published 2024-04-09 PDFPDF

In recent years, quantum technology has been rapidly developed. As security analyses for symmetric ciphers continue to emerge, many require an evaluation of the resources needed for the quantum circuit implementation of the encryption algorithm. In this regard, we propose the quantum circuit decision problem, which requires us to determine whether there exists a quantum circuit for a given permutation f using M ancilla qubits and no more than K quantum gates within the circuit depth D. Firstly, we investigate heuristic algorithms and classical SAT-based models in previous works, revealing their limitations in solving the problem. Hence, we innovatively propose an improved SAT-based model incorporating three metrics of quantum circuits. The model enables us to find the optimal quantum circuit of an arbitrary 3 or 4-bit S-box under a given optimization goal based on SAT solvers, which has proved the optimality of circuits constructed by the tool, LIGHTER-R. Then, by combining different criteria in the model, we find more compact quantum circuit implementations of S-boxes such as RECTANGLE and GIFT. For GIFT S-box, our model provides the optimal quantum circuit that only requires 8 gates with a depth of 31. Furthermore, our model can be generalized to linear layers and improve the previous SAT-based model proposed by Huang et al. in ASIACRYPT 2022 by adding the criteria on the number of qubits and the circuit depth.

Subhadeep Banik, Andrea Caforio, Serge Vaudenay
Published 2024-04-09 PDFPDF

The LowMC family of block ciphers was proposed by Albrecht et al. in Eurocrypt 2015, specifically targeting adoption in FHE and MPC applications due to its low multiplicative complexity. The construction operates a 3-bit quadratic S-box as the sole non-linear transformation in the algorithm. In contrast, both the linear layer and round key generation are achieved through multiplications of full rank matrices over GF(2). The cipher is instantiable using a diverse set of default configurations, some of which have partial non-linear layers i.e., in which the S-boxes are not applied over the entire internal state of the cipher.

The significance of cryptanalysing LowMC was elevated by its inclusion into the NIST PQC digital signature scheme PICNIC in which a successful key recovery using a single plaintext/ciphertext pair is akin to retrieving the secret signing key. The current state-of-the-art attack in this setting is due to Dinur at Eurocrypt 2021, in which a novel way of enumerating roots of a Boolean system of equation is morphed into a key-recovery procedure that undercuts an ordinary exhaustive search in terms of time complexity for the variants of the cipher up to five rounds.

In this work, we demonstrate that this technique can efficiently be enriched with a specific linearization strategy that reduces the algebraic degree of the non-linear layer as put forward by Banik et al. at IACR ToSC 2020(4). This amalgamation yields new attacks on certain instances of LowMC up to seven rounds.

Fabio Campos, Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, Thom Wiggers
Published 2024-04-09 PDFPDF

In this work, we assess the real-world practicality of CSIDH, an isogeny-based non-interactive key exchange. We provide the first thorough assessment of the practicality of CSIDH in higher parameter sizes for conservative estimates of quantum security, and with protection against physical attacks.

This requires a three-fold analysis of CSIDH. First, we describe two approaches to efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second, we optimize such high-security implementations, on a high level by improving several subroutines, and on a low level by improving the finite field arithmetic. Third, we benchmark the performance of high-security CSIDH. As a stand-alone primitive, our implementations outperform previous results by a factor up to 2.53×.

As a real-world use case considering network protocols, we use CSIDH in TLS variants that allow early authentication through a NIKE. Although our instantiations of CSIDH have smaller communication requirements than post-quantum KEM and signature schemes, even our highly-optimized implementations result in too-large handshake latency (tens of seconds), showing that CSIDH is only practical in niche cases.