23 results sorted by publication date
Oblivious Pseudorandom Functions (OPRFs) allow a client to evaluate a pseudorandom function (PRF) on her secret input based on a key that is held by a server. In the process, the client only learns the PRF output but not the key, while the server neither learns the input nor the output of the client. The arguably most popular OPRF is due to Naor, Pinkas and Reingold (Eurocrypt 2009). It is based on an Oblivious Exponentiation by the server, with passive security under the Decisional Diffie-Hellman assumption. In this work, we strengthen the security guarantees of the NPR OPRF by protecting it against active attacks of the server. We have implemented our solution and report on the performance. Our main result is a new batch OPRF protocol which is secure against maliciously corrupted servers, but is essentially as efficient as the semi-honest solution. More precisely, the computation (and communication) overhead is a multiplicative factor $o(1)$ as the batch size increases. The obvious solution using zero-knowledge proofs would have a constant factor overhead at best, which can be too expensive for certain deployments. Our protocol relies on a novel version of the DDH problem, which we call the Oblivious Exponentiation Problem (OEP), and we give evidence for its hardness in the Generic Group model. We also present a variant of our maliciously secure protocol that does not rely on the OEP but nevertheless only has overhead $o(1)$ over the known semi-honest protocol. Moreover, we show that our techniques can also be used to efficiently protect threshold blind BLS signing and threshold ElGamal decryption against malicious attackers.
Side-channel Collision Attacks (SCCA) is a classical method that exploits information dependency leaked during cryptographic operations. Unlike collision attacks that seek instances where two different inputs to a cryptographic algorithm yield identical outputs, SCCAs specifically target the internal state, where identical outputs are more likely. Although SCCA does not rely on the pre-assumption of the leakage model, it explicitly operates on precise trace segments reflecting the target operation, which is challenging to perform when the leakage measurements are noisy. Besides, its attack performance may vary dramatically, as it relies on selecting a reference byte (and its corresponding leakages) to “collide” other bytes. A poor selection would lead to many bytes unrecoverable. These two facts make its real-world application problematic.
This paper addresses these challenges by introducing a novel plaintext-based SCCA. We leverage the bijective relationship between plaintext and secret data, using plaintext as labels to train profiling models to depict leakages from varying operations. By comparing the leakage representations produced by the profiling model instead of the leakage segmentation itself, all secret key differences can be revealed simultaneously without processing leakage traces. Furthermore, we propose a novel error correction scheme to rectify false predictions further. Experimental results show that our approach significantly surpasses the state-of-the-art SCCA in both attack performance and computational complexity (e.g., training time reduced from approximately three hours to five minutes). These findings underscore our method's effectiveness and practicality in real-world attack scenarios.
The generic-group model (GGM) and the algebraic-group model (AGM) have been exceptionally successful in proving the security of many classical and modern cryptosystems. These models, however, come with standard-model uninstantiability results, raising the question of whether the schemes analyzed under them can be based on firmer standard-model footing.
We formulate the uber-knowledge (UK) assumption, a standard-model assumption that naturally extends the uber-assumption family to knowledge-type problems. We justify the soundness of UK in both the bilinear GGM and the bilinear AGM. Along the way we extend these models to account for hashing into groups, an adversarial capability that is available in many concrete groups—In contrast to standard assumptions, hashing may affect the validity of knowledge assumptions. These results, in turn, enable a modular approach to security in the GGM and the AGM.
As example applications, we use the UK assumption to prove knowledge soundness of Groth's zero-knowledge SNARK (EUROCRYPT 2016) and of KZG polynomial commitments (ASIACRYPT 2010) in the standard model, where for the former we reuse the existing proof in the AGM without hashing.
In this work, we introduce two post-quantum Verifiable Random Function (VRF) constructions based on abelian group actions and isogeny group actions with a twist. The former relies on the standard group action Decisional Diffie-Hellman (GA-DDH) assumption. VRFs serve as cryptographic tools allowing users to generate pseudorandom outputs along with publicly verifiable proofs. Moreover, the residual pseudorandomness of VRFs ensures the pseudorandomness of unrevealed inputs, even when multiple outputs and proofs are disclosed. Our work aims at addressing the growing demand for post-quantum VRFs, as existing constructions based on elliptic curve cryptography (ECC) or classical DDH-type assumptions are vulnerable to quantum threats.
In our contributions, our two VRF constructions, rooted in number-theoretic pseudorandom functions, are both simple and secure over the random oracle model. We introduce a new proof system for the factorization of group actions and set elements, serving as the proofs for our VRFs. The first proposal is based on the standard GA-DDH problem, and for its security proof, we introduce the (group action) master Decisional Diffie-Hellman problem over group actions, proving its equivalence to the standard GA-DDH problem. In the second construction, we leverage quadratic twists to enhance efficiency, reducing the key size and the proof sizes, expanding input size. The scheme is based on the square GA-DDH problem.
Moreover, we employ advanced techniques from the isogeny literature to optimize the proof size to 39KB and 34KB using CSIDH-512 without compromising VRF notions. The schemes feature fast evaluations but exhibit slower proof generation. To the best of our knowledge, these constructions represent the first two provably secure VRFs based on isogenies.
Salient in many cryptosystems, the exponent-inversion technique began without randomization in the random oracle model (SCIS '03, PKC '04), evolved into the Boneh-Boyen short signature scheme (JoC '08) and exerted a wide influence. Seen as a notable case, Gentry's (EuroCrypt '06) identity-based encryption (IBE) applies exponent inversion on a randomized base in its identity-based trapdoors. Making use of the non-static q-strong Diffie-Hellman assumption, Boneh-Boyen signatures are shown to be unforgeable against q-chosen-message attacks, while a variant q-type decisional assumption is used to establish the security of Gentry-IBE. Challenges remain in proving their security under weaker static assumptions.
Supported by the dual form/system framework (Crypto '09, AsiaCrypt '12), we propose dual form exponent-inversion Boneh-Boyen signatures and Gentry-IBE, with security proven under the symmetric external Diffie-Hellman (SXDH) assumption. Starting from our signature scheme, we extend it into P-signatures (TCC '08), resulting in the first anonymous credential scheme from the SXDH assumption, serving as a competitive alternative to the static-assumption construction of Abe et al. (JoC '16). Moreover, from our Gentry-IBE variant, we propose an accountable-authority IBE scheme also from SXDH, surpassing the fully secure Sahai-Seyalioglu scheme (PKC '11) in efficiency and the generic Kiayias-Tang transform (ESORICS '15) in security. Collectively, we present a suite of results under static assumptions.
The security of lattice-based crytography (LWE, NTRU, and FHE) depends on the hardness of the shortest-vector problem (SVP). Sieving algorithms give the lowest asymptotic runtime to solve SVP, but depend on exponential memory. Memory access costs much more in reality than in the RAM model, so we consider a computational model where processors, memory, and meters of wire are in constant proportions to each other. While this adds substantial costs to route data during lattice sieving, we modify existing algorithms to amortize these costs and find that, asymptotically, a classical computer can achieve the previous RAM model cost of $2^{0.2925d+o(d)}$ to sieve a $d$-dimensional lattice for a computer existing in 3 or more spatial dimensions, and can reach $2^{0.3113d+o(d)}$ in 2 spatial dimensions, where “spatial dimensions” are the dimensions of the physical geometry in which the computer exists.
Since this result implies an increased cost in 2 spatial dimensions, we make several assumptions about the constant terms of memory access and lattice attacks so that we can give bit security estimates for Kyber and Dilithium. These estimates support but do not increase the security categories claimed in the Kyber and Dilithium specifications, at least with respect to known attacks.
This work introduces several algorithms related to the computation of orientations in endomorphism rings of supersingular elliptic curves. This problem is at the heart of several results regarding the security of oriented-curves in isogeny-based cryptography. Under the Deuring correspondence, it can be expressed purely in terms of quaternion and boils down to representing integers by ternary quadratic forms. Our main contribution is to show that there exist efficient algorithms to solve this problem for quadratic orders of discriminant $n$ up to $O(p^{4/3})$. Our approach improves upon previous results by increasing this bound from $O(p)$ to $O(p^{4/3})$ and removing some heuristics. We introduce several variants of our new algorithm and provide a careful analysis of their asymptotic running time (without heuristic when it is possible). The best proven asymptotic complexity of one of our variants is $O(n^{3/4}/p)$ in average. The best heuristic variant has a complexity of $O(p^{1/3})$ for big enough $n$. We then introduce several results regarding the computation of ideals between oriented orders. The first application of this is a simplification of the known reduction from vectorization to computing the endomorphism ring, removing the assumption on the factorization of the discriminant. As a second application, we relate the problem of computing fixed-degree isogenies between supersingular curves to the problem of computing orientations in endomorphism rings, and we show that for a large range of degree $d$, our new algorithms improve on the state-of-the-art, and in important special cases, the range of degree $d$ for which there exist a polynomial-time algorithm is increased. In the most special case we consider, when both curves are oriented by a small degree endomorphism, we show heuristically that our techniques allow the computation of isogenies of any degree, assuming they exist.
We analyze the multi-user (mu) security of a family of nonce-based authentication encryption (nAE) schemes based on a tweakable block cipher (TBC). The starting point of our work is an analysis of the mu security of the SCT-II mode which underlies the nAE scheme Deoxys-II, winner of the CAESAR competition for the defense-in-depth category. We extend this analysis in two directions, as we detail now.
First, we investigate the mu security of several TBC-based variants of the counter encryption mode (including CTRT, the encryption mode used within SCT-II) that differ by the way a nonce, a random value, and a counter are combined as tweak and plaintext inputs to the TBC to produce the keystream blocks that will mask the plaintext blocks. Then, we consider the authentication part of SCT-II and study the mu security of the nonce-based MAC Nonce-as-Tweak (NaT) built from a TBC and an almost universal (AU) hash function. We also observe that the standard construction of an AU hash function from a (T)BC can be proven secure under the assumption that the underlying TBC is unpredictable rather than pseudorandom, allowing much better conjectures on the concrete AU advantage. This allows us to derive the mu security of the family of nAE modes obtained by combining these encryption/MAC building blocks through the NSIV composition method.
Some of these modes require an underlying TBC with a larger tweak length than what is usually available for existing ones. We then show the practicality of our modes by instantiating them with two new TBC constructions, Deoxys-TBC-512 and Deoxys-TBC-640, which can be seen as natural extensions of the Deoxys-TBC family to larger tweak input sizes. Designing such TBCs with unusually large tweaks is prone to pitfalls: Indeed, we show that a large-tweak proposal for SKINNY published at EUROCRYPT 2020 presents an inherent construction flaw. We therefore provide a sound design strategy to construct large-tweak TBCs within the Superposition Tweakey (STK) framework, leading to new Deoxys-TBC and SKINNY variants. We provide software benchmarks indicating that while ensuring a very high security level, the performances of our proposals remain very competitive.
Watermarking pseudorandom functions (PRF) allow an authority to embed an unforgeable and unremovable watermark into a PRF while preserving its functionality. In this work, we extend the work of Kim and Wu [Crypto'19] who gave a simple two-step construction of watermarking PRFs from a class of extractable PRFs satisfying several other properties – first construct a mark-embedding scheme, and then upgrade it to a message-embedding scheme.
While the message-embedding scheme of Kim and Wu is based on complex homomorphic evaluation techniques, we observe that much simpler constructions can be obtained and from a wider range of assumptions, if we forego the strong requirement of security against the watermarking authority. Concretely, we introduce a new notion called extractable PRGs (xPRGs), from which extractable PRFs (without security against authorities) suitable for the Kim-Wu transformations can be simply obtained via the Goldreich-Goldwasser-Micali (GGM) construction. We provide simple constructions of xPRGs from a wide range of assumptions such as hardness of computational Diffie-Hellman (CDH) in the random oracle model, as well as LWE and RSA in the standard model.
Public-key searchable encryption allows keyword-associated tokens to be used to test if a ciphertext contains specific keywords. Due to the low entropies of keywords, the token holder can create ciphertexts from candidate keywords and test them using the token in hand to recover the keywords, known as inside keyword guessing attacks (IKGA). Public-key authenticated encryption with keyword search is a searchable encryption proposed to defend against such attacks. It ensures the sender's private key protects the ciphertexts from the IKGA. PAEKS schemes with reasonable security and practical efficiency remain elusive despite many proposals. This work provides a simple generic PAEKS scheme from non-interactive key exchange (NIKE) and symmetric-key equality-predicate encryption with three new constructions for the latter, respectively from pseudorandom functions (PRFs), the decision bilinear Diffie-Hellman assumption, and the learning-with-errors assumption. Instantiating our generic scheme, we derive several PAEKS schemes from the most well-known assumptions, with some of them achieving full cipher-keyword indistinguishability and full token indistinguishability in the standard model, for the first time. Our instantiated schemes allow practical implementations and outperform the existing PAEKS schemes under the same assumptions.
To be useful and widely accepted, automated contact tracing schemes (also called exposure notification) need to solve two seemingly contradictory problems at the same time: they need to protect the anonymity of honest users while also preventing malicious users from creating false alarms. In this paper, we provide, for the first time, an exposure notification construction that guarantees the same levels of privacy and integrity as existing schemes but with a fully malicious database (notably similar to Auerbach et al. CT-RSA 2021) without special restrictions on the adversary. We construct a new definition so that we can formally prove our construction secure. Our definition ensures the following integrity guarantees: no malicious user can cause exposure warnings in two locations at the same time and that any uploaded exposure notifications must be recent and not previously uploaded. Our construction is efficient, requiring only a single message to be broadcast at contact time no matter how many recipients are nearby. To notify contacts of potential infection, an infected user uploads data with size linear in the number of notifications, similar to other schemes. Linear upload complexity is not trivial with our assumptions and guarantees (a naive scheme would be quadratic). This linear complexity is achieved with a new primitive: zero knowledge subset proofs over commitments which is used by our "no cloning" proof protocol. We also introduce another new primitive: set commitments on equivalence classes, which makes each step of our construction more efficient. Both of these new primitives are of independent interest.
In this work we first present an explicit forking lemma that distills the information-theoretic essence of the high-moment technique introduced by Rotem and Segev (CRYPTO '21), who analyzed the security of identification protocols and Fiat-Shamir signature schemes. Whereas the technique of Rotem and Segev was particularly geared towards two specific cryptographic primitives, we present a stand-alone probabilistic lower bound, which does not involve any underlying primitive or idealized model. The key difference between our lemma and previous ones is that instead of focusing on the tradeoff between the worst-case or expected running time of the resulting forking algorithm and its success probability, we focus on the tradeoff between higher moments of its running time and its success probability.
Equipped with our lemma, we then establish concrete security bounds for the BN and BLS multi-signature schemes that are significantly tighter than the concrete security bounds established by Bellare and Neven (CCS '06) and Boneh, Drijvers and Neven (ASIACRYPT '18), respectively. Our analysis does not limit adversaries to any idealized algebraic model, such as the algebraic group model in which all algorithms are assumed to provide an algebraic justification for each group element they produce. Our bounds are derived in the random-oracle model based on the standard-model second-moment hardness of the discrete logarithm problem (for the BN scheme) and the computational co-Diffie-Hellman problem (for the BLS scheme). Such second-moment assumptions, asking that the success probability of any algorithm in solving the underlying computational problems is dominated by the second moment of the algorithm's running time, are particularly plausible in any group where no better-than-generic algorithms are currently known.
This paper develops Central Limit arguments for analysing the noise in ciphertexts in two homomorphic encryption schemes that are based on Ring-LWE. The first main contribution of this paper is to present and evaluate an average-case noise analysis for the BGV scheme. Our approach relies on the recent work of Costache et al.(SAC 2023) that gives the approximation of a polynomial product as a multivariate Normal distribution. We show how this result can be applied in the BGV context and evaluate its efficacy. We find this average-case approach can much more closely model the noise growth in BGV implementations than prior approaches, but in some cases it can also underestimate the practical noise growth. Our second main contribution is to develop a Central Limit framework to analyse the noise growth in the homomorphic Ring-LWE cryptosystem of Lyubashevsky, Peikert and Regev (Eurocrypt 2013, full version). Our approach is very general: apart from finite variance, no assumption on the distribution of the noise is required (in particular, the noise need not be subgaussian). We show that our approach leads to tighter bounds for the probability of decryption failure than those of prior work.
Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion.
We initiate the study of the LDACS key agreement protocol (Edition 01.01.00 from 25.04.2023), which is soon-to-be-standardized by the International Civil Aviation Organization. The protocol's cipher suite features Diffie-Hellman as well as a KEM-based key agreement protocol to provide post-quantum security. While the former results in an instantiation of an ISO key agreement inheriting all security properties, the security achieved by the latter is ambiguous. We formalize the computational security using the systematic notions of de Saint Guilhem, Fischlin and Warinshi (CSF '20), and prove the exact security that the KEM-based variant achieves in this model; primarily entity authentication, key secrecy and key authentication. To further strengthen our “pen-and-paper” findings, we model the protocol and its security guarantees using Tamarin, providing an automated proof of the security against a Dolev-Yao attacker.
X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is secure when used as a pseudorandom function. The first result is proved in the ROM, whereas the second one holds in the standard model. Loosely speaking, this means X-Wing is secure if either X25519 or ML-KEM-768 is secure. We stress that these security guarantees and optimizations are only possible due to the concrete choices that were made, and it may not apply in the general case.
In a multiparty signing protocol, also known as a threshold signature scheme, the private signing key is shared amongst a set of parties and only a quorum of those parties can generate a signature. Research on multiparty signing has been growing in popularity recently due to its application to cryptocurrencies. Most work has focused on reducing the number of rounds to two, and as a result: (a) are not fully simulatable in the sense of MPC real/ideal security definitions, and/or (b) are not secure under concurrent composition, and/or (c) utilize non-standard assumptions of different types in their proofs of security. In this paper, we describe a simple three-round multiparty protocol for Schnorr signatures that is secure for any number of corrupted parties; i.e., in the setting of a dishonest majority. The protocol is fully simulatable, secure under concurrent composition, and proven secure in the standard model or random-oracle model (depending on the instantiations of the commitment and zero-knowledge primitives). The protocol realizes an ideal Schnorr signing functionality with perfect security in the ideal commitment and zero-knowledge hybrid model (and thus the only assumptions needed are for realizing these functionalities).
In our presentation, we do not assume that all parties begin with the message to be signed, the identities of the participating parties and a unique common session identifier, since this is often not the case in practice. Rather, the parties achieve consensus on these parameters as the protocol progresses.
Verifiable secret sharing (VSS) protocols enable parties to share secrets while guaranteeing security (in particular, that all parties hold valid and consistent shares) even if the dealer or some of the participants are malicious. Most work on VSS focuses on the honest majority case, primarily since it enables one to guarantee output delivery (e.g., a corrupted recipient cannot prevent an honest dealer from sharing their value). Feldman's VSS is a well known and popular protocol for this task and relies on the discrete log hardness assumption. In this paper, we present a variant of Feldman's VSS for the dishonest majority setting and formally prove its security. Beyond the basic VSS protocol, we present a publicly-verifiable version, as well as show how to securely add participants to the sharing and how to refresh an existing sharing (all secure in the presence of a dishonest majority). We prove that our protocols are UC secure, for appropriately defined ideal functionalities.
In this work we study algebraic and generic models for group actions, and extend them to the universal composability (UC) framework of Canetti (FOCS 2001). We revisit the constructions of Duman et al. (PKC 2023) integrating the type-safe model by Zhandry (Crypto 2022), adapted to the group action setting, and formally define an algebraic action model (AAM). This model restricts the power of the adversary in a similar fashion to the algebraic group model (AGM). By imposing algebraic behaviour to the adversary and environment of the UC framework, we construct the UC-AAM. Finally, we instantiate UC-AAM with isogeny-based assumptions, in particular the CSIDH action with twists, obtaining the explicit isogeny model, UC-EI; we observe that, under certain assumptions, this model is "closer" to standard UC than the UC-AGM, even though there still exists an important separation. We demonstrate the utility of our definitions by proving UC-EI security for the passive-secure oblivious transfer protocol described by Lai et al. (Eurocrypt 2021), hence providing the first concretely efficient two-message isogeny-based OT protocol in the random oracle model against malicious adversaries.
Fully Homomorphic Encryption (FHE) is a prevalent cryptographic primitive that allows for computation on encrypted data. In various cryptographic protocols, this enables outsourcing computation to a third party while retaining the privacy of the inputs to the computation. However, these schemes make an honest-but-curious assumption about the adversary. Previous work has tried to remove this assumption by combining FHE with Verifiable Computation (VC). Recent work has increased the flexibility of this approach by introducing integrity checks for homomorphic computations over rings. However, efficient FHE for circuits of large multiplicative depth also requires non-ring computations called maintenance operations, i.e. modswitching and keyswitching, which cannot be efficiently verified by existing constructions. We propose the first efficiently verifiable FHE scheme that allows for arbitrary depth homomorphic circuits by utilizing the double-CRT representation in which FHE schemes are typically computed, and using lattice-based SNARKs to prove components of this computation separately, including the maintenance operations. Therefore, our construction can theoretically handle bootstrapping operations. We also present the first implementation of a verifiable computation on encrypted data for a computation that contains multiple ciphertext-ciphertext multiplications. Concretely, we verify the homomorphic computation of an approximate neural network containing three layers and >100 ciphertexts in less than 1 second while maintaining reasonable prover costs.
The problem of Broadcast Encryption (BE) consists in broadcasting an encrypted message to a large number of users or receiving devices in such a way that the emitter of the message can control which of the users can or cannot decrypt it.
Since the early 1990s, the design of BE schemes has received significant interest and many different concepts were proposed. A major breakthrough was achieved by Naor, Naor and Lotspiech (CRYPTO 2001) by partitioning cleverly the set of authorized users and associating a symmetric key to each subset. Since then, while there have been many advances in public-key based BE schemes, mostly based on bilinear maps, little was made on symmetric cryptography.
In this paper, we design a new symmetric-based BE scheme, named $\Sigma\Pi$BE, that relies on logic optimization and consensual security assumptions. It is competitive with the work of Naor et al. and provides a different tradeoff: the bandwidth requirement is significantly lowered at the cost of an increase in the key storage.
A verifiable delay function (VDF) is an important tool used for adding delay in decentralized applications. This paper surveys and compares two beautiful verifiable delay functions, one due to Pietrzak, and the other due to Wesolowski, In addition, we provide a new computational proof of security for one of them, present an attack on an incorrect implementation of the other, and compare the complexity assumptions needed for both schemes.
There has been a recent interest in proposing quantum protocols whose security relies on weaker computational assumptions than their classical counterparts. Importantly to our work, it has been recently shown that public-key encryption (PKE) from one-way functions (OWF) is possible if we consider quantum public keys. Notice that we do not expect classical PKE from OWF given the impossibility results of Impagliazzo and Rudich (STOC'89).
However, the distribution of quantum public keys is a challenging task. Therefore, the main question that motivates our work is if quantum PKE from OWF is possible if we have classical public keys. Such protocols are impossible if ciphertexts are also classical, given the impossibility result of Austrin et al.(CRYPTO'22) of quantum enhanced key-agreement (KA) with classical communication.
In this paper, we focus on black-box separation for PKE with classical public key and quantum ciphertext from OWF under the polynomial compatibility conjecture, first introduced in Austrin et al.. More precisely, we show the separation when the decryption algorithm of the PKE does not query the OWF. We prove our result by extending the techniques of Austrin et al. and we show an attack for KA in an extended classical communication model where the last message in the protocol can be a quantum state.