10 results sorted by publication date
Oblivious Pseudorandom Functions (OPRFs) allow a client to evaluate a pseudorandom function (PRF) on her secret input based on a key that is held by a server. In the process, the client only learns the PRF output but not the key, while the server neither learns the input nor the output of the client. The arguably most popular OPRF is due to Naor, Pinkas and Reingold (Eurocrypt 2009). It is based on an Oblivious Exponentiation by the server, with passive security under the Decisional Diffie-Hellman assumption. In this work, we strengthen the security guarantees of the NPR OPRF by protecting it against active attacks of the server. We have implemented our solution and report on the performance. Our main result is a new batch OPRF protocol which is secure against maliciously corrupted servers, but is essentially as efficient as the semi-honest solution. More precisely, the computation (and communication) overhead is a multiplicative factor $o(1)$ as the batch size increases. The obvious solution using zero-knowledge proofs would have a constant factor overhead at best, which can be too expensive for certain deployments. Our protocol relies on a novel version of the DDH problem, which we call the Oblivious Exponentiation Problem (OEP), and we give evidence for its hardness in the Generic Group model. We also present a variant of our maliciously secure protocol that does not rely on the OEP but nevertheless only has overhead $o(1)$ over the known semi-honest protocol. Moreover, we show that our techniques can also be used to efficiently protect threshold blind BLS signing and threshold ElGamal decryption against malicious attackers.
In this work, we introduce two post-quantum Verifiable Random Function (VRF) constructions based on abelian group actions and isogeny group actions with a twist. The former relies on the standard group action Decisional Diffie-Hellman (GA-DDH) assumption. VRFs serve as cryptographic tools allowing users to generate pseudorandom outputs along with publicly verifiable proofs. Moreover, the residual pseudorandomness of VRFs ensures the pseudorandomness of unrevealed inputs, even when multiple outputs and proofs are disclosed. Our work aims at addressing the growing demand for post-quantum VRFs, as existing constructions based on elliptic curve cryptography (ECC) or classical DDH-type assumptions are vulnerable to quantum threats.
In our contributions, our two VRF constructions, rooted in number-theoretic pseudorandom functions, are both simple and secure over the random oracle model. We introduce a new proof system for the factorization of group actions and set elements, serving as the proofs for our VRFs. The first proposal is based on the standard GA-DDH problem, and for its security proof, we introduce the (group action) master Decisional Diffie-Hellman problem over group actions, proving its equivalence to the standard GA-DDH problem. In the second construction, we leverage quadratic twists to enhance efficiency, reducing the key size and the proof sizes, expanding input size. The scheme is based on the square GA-DDH problem.
Moreover, we employ advanced techniques from the isogeny literature to optimize the proof size to 39KB and 34KB using CSIDH-512 without compromising VRF notions. The schemes feature fast evaluations but exhibit slower proof generation. To the best of our knowledge, these constructions represent the first two provably secure VRFs based on isogenies.
In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric key primitive called the forkcipher, designed for lightweight applications handling short messages. A forkcipher is a keyed function with a public tweak, featuring fixed-length input and fixed-length (expanding) output. They also proposed a specific forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC schemes based on forkciphers have been proposed, catering not only to short messages but also to various purposes such as leakage resilience and cloud security. While forkciphers have proven to be efficient solutions for designing AEAD schemes, the area of forkcipher design remains unexplored, particularly the lack of provably secure forkcipher constructions.
In this work, we propose forkcipher design for various tweak lengths, based on a block cipher as the underlying primitive. We provide proofs of security for these constructions, assuming the underlying block cipher behaves as an ideal block cipher. First, we present a forkcipher, $\widetilde{\textsf{F}}1$, for an $n$-bit tweak and prove its optimal ($n$-bit) security. Next, we propose another construction, $\widetilde{\textsf{F}}2$, for a $2n$-bit tweak, also proving its optimal ($n$-bit) security. Finally, we introduce a construction, $\widetilde{\textsf{F}}r$, for a general $rn$-bit tweak, achieving $n$-bit security.
Raccoon is a lattice-based scheme submitted to the NIST 2022 call for additional post-quantum signatures. One of its main selling points is that its design is intrinsically easy to mask against side-channel attacks. So far, Raccoon's physical security guarantees were only stated in the abstract probing model. In this paper, we discuss how these probing security results translate into guarantees in more realistic leakage models. We also highlight that this translation differs from what is usually observed (e.g., in symmetric cryptography), due to the algebraic structure of Raccoon's operations. For this purpose, we perform an in-depth information theoretic evaluation of Raccoon's most innovative part, namely the AddRepNoise function which allows generating its arithmetic shares on-the-fly. Our results are twofold. First, we show that the resulting shares do not enforce a statistical security order (i.e., the need for the side-channel adversary to estimate higher-order moments of the leakage distribution), as usually expected when masking. Second, we observe that the first-order leakage on the (large) random coefficients manipulated by Raccoon cannot be efficiently turned into leakage on the (smaller) coefficients of its long-term secret. Concretely, our information theoretic evaluations for relevant leakage functions also suggest that Raccoon's masked implementations can ensure high security with less shares than suggested by a conservative analysis in the probing model.
To address security issues in cloud computing, fully homomorphic encryption (FHE) enables a third party to evaluate functions using ciphertexts that do not leak information to the cloud server. The remaining problems of FHE include high computational costs and limited arithmetic operations, only evaluating additions and multiplications. Arbitrary functions can be evaluated using a precomputed lookup table (LUT), which is one of the solutions for those problems. Previous studies proposed LUT-enabled computation methods 1) with bit-wise FHE and 2) with word-wise FHE. The performance of LUT-enabled computation with bit-wise FHE drops quickly when evaluating BigNum functions because of the complexity being O(s·2^d·m), where m represents the number of inputs, d and s represent the bit lengths of the inputs and outputs, respectively. Thus, LUT-enabled computation with word-wise FHE, which handles a set of bits with one operation, has also been proposed; however, previous studies are limited in evaluating multivariate functions within two inputs and cannot speed up the evaluation when the domain size of the integer exceeds 2N, where N is the number of elements packed into a single ciphertext. In this study, we propose a non-interactive model, in which no decryption is required, to evaluate arbitrary multivariate functions using homomorphic table lookup with word-wise FHE. The proposed LUT-enabled computation method 1) decreases the complexity to O(2^d·m/l), where l is the element size of FHE packing; 2) extends the input and output domain sizes to evaluate multivariate functions over two inputs; and 3) adopts a multidimensional table for enabling multithreading to reduce latency. The experimental results demonstrate that evaluating a 10-bit two-input function and a 5-bit three-input function takes approximately 90.5 and 105.5 s with 16-thread, respectively. Our proposed method achieves 3.2x and 23.1x speedup to evaluate two-bit and three-bit 3-input functions compared with naive LUT-enabled computation with bit-wise FHE.
Watermarking pseudorandom functions (PRF) allow an authority to embed an unforgeable and unremovable watermark into a PRF while preserving its functionality. In this work, we extend the work of Kim and Wu [Crypto'19] who gave a simple two-step construction of watermarking PRFs from a class of extractable PRFs satisfying several other properties – first construct a mark-embedding scheme, and then upgrade it to a message-embedding scheme.
While the message-embedding scheme of Kim and Wu is based on complex homomorphic evaluation techniques, we observe that much simpler constructions can be obtained and from a wider range of assumptions, if we forego the strong requirement of security against the watermarking authority. Concretely, we introduce a new notion called extractable PRGs (xPRGs), from which extractable PRFs (without security against authorities) suitable for the Kim-Wu transformations can be simply obtained via the Goldreich-Goldwasser-Micali (GGM) construction. We provide simple constructions of xPRGs from a wide range of assumptions such as hardness of computational Diffie-Hellman (CDH) in the random oracle model, as well as LWE and RSA in the standard model.
In this paper, we aim to explore the design of low-latency authenticated encryption schemes particularly for memory encryption, with a focus on the temporal uniqueness property. To achieve this, we present the low-latency Pseudo-Random Function (PRF) called Twinkle with an output up to 1152 bits. Leveraging only one block of Twinkle, we developed Twinkle-AE, a specialized authenticated encryption scheme with six variants covering different cache line sizes and security requirements. We also propose Twinkle-PA, a pointer authentication algorithm, which takes a 64-bit pointer and 64-bit context as input and outputs a tag of 1 to 32 bits.
We conducted thorough security evaluations of both the PRFs and these schemes, examining their robustness against various common attacks. The results of our cryptanalysis indicate that these designs successfully achieve their targeted security objectives.
Hardware implementations using the FreePDK45nm library show that Twinkle-AE achieves an encryption and authentication latency of 3.83 ns for a cache line. In comparison, AES-CTR with WC-MAC scheme and Ascon-128a achieve latencies of 9.78 ns and 27.30 ns, respectively. Moreover, Twinkle-AE is also most area-effective for the 1024-bit cache line. For the pointer authentication scheme Twinkle-PA, the latency is 2.04 ns, while QARMA-64-sigma0 has a latency of 5.57 ns.
Decentralized Multi-Client Functional Encryption (DMCFE) extends the basic functional encryption to multiple clients that do not trust each other. They can independently encrypt the multiple plaintext-inputs to be given for evaluation to the function embedded in the functional decryption key, defined by multiple parameter-inputs. And they keep control on these functions as they all have to contribute to the generation of the functional decryption keys. Tags can be used in the ciphertexts and the keys to specify which inputs can be combined together. As any encryption scheme, DMCFE provides privacy of the plaintexts. But the functions associated to the functional decryption keys might be sensitive too (e.g. a model in machine learning). The function-hiding property has thus been introduced to additionally protect the function evaluated during the decryption process.
In this paper, we provide new proof techniques to analyze a new concrete construction of function-hiding DMCFE for inner products, with strong security guarantees: the adversary can adaptively query multiple challenge ciphertexts and multiple challenge keys, with unbounded repetitions of the same tags in the ciphertext-queries and a fixed polynomially-large number of repetitions of the same tags in the key-queries. Previous constructions were proven secure in the selective setting only.
We introduce InspectorGadget, an Open-Source Python-based software for assessing and comparing the complexity of masking gadgets. By providing a limited set of characteristics of a hardware platform, our tool allows to estimate the cost of a masking gadget in terms of cycle count equivalent and memory footprint. InspectorGadget is highly flexible. It enables the user to define her own estimation functions, as well as to expand the set of gadgets and predefined microcontrollers. As a case-study, we produce a fair comparison of several masked versions of Kyber compression function from the literature, together with novel alternatives automatically generated by our tool. Our results confirm that an interesting middle ground exists between theoretical performance measures (asymptotic complexity or operations count) and real implementations benchmarks (clock cycle accurate evaluations). InspectorGadget offers both simplicity and genericity while capturing the main performance-related parameters of a hardware platform.