Communications in Cryptology IACR CiC

A high-level comparison of state-of-the-art quantum algorithms for breaking asymmetric cryptography

Authors

Martin Ekerå, Joel Gärtner
Martin Ekerå ORCID
KTH Royal Institute of Technology, Stockholm, Sweden
Swedish NCSA, Swedish Armed Forces, Stockholm, Sweden
ekera at kth dot se
Joel Gärtner ORCID
KTH Royal Institute of Technology, Stockholm, Sweden
Swedish NCSA, Swedish Armed Forces, Stockholm, Sweden
jgartner at kth dot se

Abstract

We provide a high-level cost comparison between Regev's quantum algorithm with Ekerå–Gärtner's extensions on the one hand, and existing state-of-the-art quantum algorithms for factoring and computing discrete logarithms on the other. This when targeting cryptographically relevant problem instances, and when accounting for the space-saving optimizations of Ragavan and Vaikuntanathan that apply to Regev's algorithm, and optimizations such as windowing that apply to the existing algorithms.

Our conclusion is that Regev's algorithm without the space-saving optimizations may achieve a per-run advantage, but not an overall advantage, if non-computational quantum memory is cheap. Regev's algorithm with the space-saving optimizations does not achieve an advantage, since it uses more computational memory, whilst also performing more work, per run and overall, compared to the existing state-of-the-art algorithms. As such, further optimizations are required for it to achieve an advantage for cryptographically relevant problem instances.

References

[ACD+24]
M.R. Albrecht, B. Curtis, L. Ducas, F. Göpfert, H. Hunt, H. Kippen, C. Lefebvre, J. Owen, R. Player, L. Pulles, M. Schmidt, S. Scott, F. Virdia, M. Walter, and C. Yun. Security estimates for lattice problems. GitHub repository malb/lattice-estimator. 2014–2024.
[APS15]
M.R. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with Errors. J. Math. Cryptol., 9(3):169–203, 2015. DOI: 10.1515/jmc-2015-0016
[BBP24]
R. Barbulescu, M. Barcau, and V. Paşol. A comprehensive analysis of Regev's quantum algorithm. (Dated 2024-11-05.). Cryptology ePrint Archive, Paper 2024/1758. 2024.
[BCR+18]
E. Barker, L. Chen, A. Roginsky, A. Vassilev, and R. Davis. Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography. (3rd revision). National Institute of Standards and Technology (NIST) Special Publication (SP) 800-56A. 2018.
[BCR+19]
E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, and S. Simon. Recommendation for Pair-Wise Key-Establishment Using Integer Factorization Cryptography. (2nd revision). National Institute of Standards and Technology (NIST) Special Publication (SP) 800-56B. 2019.
[Che13]
Y. Chen. Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe. PhD thesis, Université Paris Diderot (Paris 7), 2013.
[Cop02]
D. Coppersmith. An approximate Fourier transform useful in quantum factoring. (Also IBM Research Report RC 19642.). 2002.
[DH76]
W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory, 22(6):644–654, 1976. DOI: 10.1109/TIT.1976.1055638
[EG24b]
M. Ekerå and J. Gärtner. Extending Regev's Factoring Algorithm to Compute Discrete Logarithms. In M.-J. Saarinen and D. Smith-Tone, editors, Post-Quantum Cryptography, pages 211–242, Cham. 2024. Springer Nature Switzerland. DOI: 10.1007/978-3-031-62746-0_10
[EH17]
M. Ekerå and J. Håstad. Quantum Algorithms for Computing Short Discrete Logarithms and Factoring RSA Integers. In T. Lange and T. Takagi, editors, Post-Quantum Cryptography, pages 347–363, Cham. 2017. Springer International Publishing. DOI: 10.1007/978-3-319-59879-6_20
[Eke20]
M. Ekerå. On post-processing in the quantum algorithm for computing short discrete logarithms. Des. Codes Cryptogr., 88(11):2313–2335, 2020. DOI: 10.1007/s10623-020-00783-2
[Eke21]
M. Ekerå. Quantum algorithms for computing general discrete logarithms and orders with tradeoffs. J. Math. Cryptol., 15(1):359–407, 2021. DOI: 10.1515/jmc-2020-0006
[Eke23]
M. Ekerå. On the success probability of the quantum algorithm for the short DLP. 2023.
[Eke24a]
M. Ekerå. Qunundrum. GitHub repository ekera/qunundrum. 2020–2024.
[Eke24b]
M. Ekerå. Revisiting Shor's quantum algorithm for computing general discrete logarithms. 2024.
[GE21]
C. Gidney and M. Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum, 5:433, 2021. DOI: 10.22331/q-2021-04-15-433
[Gid19]
C. Gidney. Windowed quantum arithmetic. 2019.
[Gil16]
D. Gillmor. Negotiated Finite Field Diffie–Hellman Ephemeral Parameters for Transport Layer Security (TLS). Request for Comments (RFC) 7919. 2016.
[KJ17]
B. S. Kaliski Jr. Targeted Fibonacci Exponentiation. 2017.
[KK03]
M. Kojo and T. Kivinen. More Modular Exponential (MODP) Diffie–Hellman groups for Internet Key Exchange (IKE). Request for Comments (RFC) 3526. 2003.
[LLL82]
A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982. DOI: 10.1007/BF01457454
[ME99]
M. Mosca and A. Ekert. The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer. In C.P. Williams, editor, Quantum Computing and Quantum Communications, pages 174–188. 1999. Springer Berlin Heidelberg. DOI: 10.1007/3-540-49208-9_15
[{Nat}94]
National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS). Federal Information Processing Standard (FIPS) 186. 1994.
[{Nat}23]
National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS). Federal Information Processing Standard (FIPS) 186-5. 2023.
[NC23]
National Institute of Standards, Technology (NIST), and Canadian Centre for Cyber Security (CCCS). Implementation guidance for FIPS 140-2 and the cryptographic module validation program. (Dated October 30, 2023.). 2023.
[Pil24]
C. Pilatte. Unconditional correctness of recent quantum algorithms for factoring and computing discrete logarithms. 2024.
[PP00]
S. Parker and M.B. Plenio. Efficient Factorization with a Single Pure Qubit and $\log N$ Mixed Qubits. Phys. Rev. Lett., 85:3049–3052, 2000. DOI: 10.1103/PhysRevLett.85.3049
[Rag24]
S. Ragavan. Regev Factoring Beyond Fibonacci: Optimizing Prefactors. (Dated 2024-07-01.). Cryptology ePrint Archive, Paper 2024/636. 2024.
[Reg25]
O. Regev. An Efficient Quantum Factoring Algorithm. J. ACM, 72(1):10:1–13, 2025. DOI: 10.1145/3708471
[RSA78]
R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978. DOI: 10.1145/359340.359342
[RV23]
S. Ragavan and V. Vaikuntanathan. Optimizing Space in Regev's Factoring Algorithm. 2023.
[RV24]
S. Ragavan and V. Vaikuntanathan. Space-Efficient and Noise-Robust Quantum Factoring. In L. Reyzin and D. Stebila, editors, Advances in Cryptology — CRYPTO 2024, pages 107–140, Cham, Switzerland. 2024. Springer Nature. DOI: 10.1007/978-3-031-68391-6_4
[SE94]
C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program., 66(1):181–199, 1994. DOI: 10.1007/BF01581144
[Sei01]
J.-P. Seifert. Using Fewer Qubits in Shor's Factorization Algorithm via Simultaneous Diophantine Approximation. In D. Naccache, editor, Topics in Cryptology — CT-RSA 2001, pages 319–327, Berlin, Heidelberg. 2001. Springer Berlin Heidelberg. DOI: 10.1007/3-540-45353-9_24
[Sho94]
P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134. 1994. DOI: 10.1109/SFCS.1994.365700
[Sho97]
P.W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, 1997. DOI: 10.1137/S0097539795293172
[VM08]
R. Van Meter. Architecture of a Quantum Multicomputer Optimized for Shor's Factoring Algorithm. PhD thesis, Keio University, 2008.
[VMI05]
R. Van Meter and K.M. Itoh. Fast quantum modular exponentiation. Phys. Rev. A, 71:052320, 2005. DOI: 10.1103/PhysRevA.71.052320

PDFPDF Open access

History
Submitted: 2025-01-14
Accepted: 2025-03-11
Published: 2025-04-08
How to cite

Martin Ekerå and Joel Gärtner, A high-level comparison of state-of-the-art quantum algorithms for breaking asymmetric cryptography. IACR Communications in Cryptology, vol. 2, no. 1, Apr 08, 2025, doi: 10.62056/ayzojb0kr.

License

Copyright is held by the author(s)

This work is licensed under a Creative Commons Attribution (CC BY) license.