
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 36 pages.

https://doi.org/10.62056/ayzojb0kr
Check for updates

A high-level comparison of state-of-the-art
quantum algorithms for breaking asymmetric

cryptography
Martin Ekerå1,2 and Joel Gärtner1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Swedish NCSA, Swedish Armed Forces, Stockholm, Sweden

Abstract. We provide a high-level cost comparison between Regev’s quantum
algorithm with Ekerå–Gärtner’s extensions on the one hand, and existing state-of-
the-art quantum algorithms for factoring and computing discrete logarithms on the
other. This when targeting cryptographically relevant problem instances, and when
accounting for the space-saving optimizations of Ragavan and Vaikuntanathan that
apply to Regev’s algorithm, and optimizations such as windowing that apply to the
existing algorithms. Our conclusion is that Regev’s algorithm without the space-
saving optimizations may achieve a per-run advantage, but not an overall advantage,
if non-computational quantum memory is cheap. Regev’s algorithm with the space-
saving optimizations does not achieve an advantage, since it uses more computational
memory, whilst also performing more work, per run and overall, compared to the
existing state-of-the-art algorithms. As such, further optimizations are required for it
to achieve an advantage for cryptographically relevant problem instances.
Keywords: Regev’s algorithm · Cost estimates · Factoring · Discrete logarithms

1 Introduction
In August of 2023, Regev [Reg25]1 introduced a quantum factoring algorithm that may be
perceived as a d-dimensional variation of Shor’s factoring algorithm [Sho94,Sho97].

To factor an n-bit integer N , Regev raises the squares of the first d = ⌈
√

n ⌉ primes to
short exponents. By using binary tree-based arithmetic, and square-and-multiply–based
exponentiation, Regev achieves a circuit size reduction by a factor Θ̃(

√
n) compared to

the other state-of-the-art variations of Shor’s algorithms that are in the literature. This
reduction comes at the expense of having to perform d + 4 runs, however, and at the
expense of using O(n3/2) qubits of space in each run. Regev’s algorithm furthermore relies
on a heuristic number-theoretic assumption.

In October of 2023, Ragavan and Vaikuntanathan [RV23] reduced the space requirements
to Õ(n) qubits by using Fibonacci-based exponentiation. A few months later, in February
of 2024, Ragavan and Vaikuntanathan [RV24]2 improved the constants in their analysis
and assigned a new title to their pre-print. More recently, in April and May of 2024,
Ragavan [Rag24] introduced further optimizations, and generalized the Fibonacci-based
exponentiation so as to allow for tradeoffs between the circuit size and the space usage.

In November of 2023, Ekerå and Gärtner [EG24b]3 extended Regev’s factoring algo-
rithm to algorithms for computing discrete logarithms and orders quantumly in groups for

E-mail: ekera@kth.se (Martin Ekerå), jgartner@kth.se (Joel Gärtner)
1For the initial pre-print version of [Reg25], see ArXiv 2308.06572v1.
2For the pre-print version of [RV24], see ArXiv 2310.00899v2.
3For the initial pre-print version of [EG24b], see ArXiv 2311.05545v1.

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-14 Accepted: 2025-03-11

https://doi.org/10.62056/ayzojb0kr
https://crossmark.crossref.org/dialog/?doi=10.62056/ayzojb0kr&domain=pdf&date_stamp=2025-04-03
https://orcid.org/0000-0002-7061-2374
https://orcid.org/0000-0002-3724-2914
mailto:ekera@kth.se
mailto:jgartner@kth.se
https://arxiv.org/abs/2308.06572v1
https://arxiv.org/abs/2310.00899v2
https://arxiv.org/abs/2311.05545v1
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 A high-level comparison of state-of-the-art quantum algorithms

which there exist a notion of small elements.4 Furthermore, Ekerå and Gärtner explained
how to factor integers completely via order finding. The resulting factoring algorithm is
slightly more efficient per run compared to Regev’s original algorithm. Note, however,
that Ekerå and Gärtner’s extensions rely on a slightly stronger heuristic number-theoretic
assumption than Regev’s original algorithm.

In April of 2024, Pilatte [Pil24] proved a version of this stronger assumption by using
tools from analytic number theory. This allows Ekerå–Gärtner’s extensions of Regev’s
algorithm to be used to unconditionally factor and compute discrete logarithms, although
this requires selecting parameters in a manner that may not be preferable in practice.

1.1 Our contributions
Arguably, quantum algorithms for factoring integers and computing discrete logarithms
are of interest primarily because such algorithms may be used to break currently widely
deployed asymmetric cryptography — including but not limited to Rivest–Shamir–Adleman
(RSA) [RSA78,BCR+19], Diffie–Hellman (DH) [DH76,BCR+18] and DSA [Nat94,Nat23],
and their elliptic curve counterparts EC-DH [BCR+18] and EC-DSA [Nat23].

Limiting factors for when it will first become possible to execute a quantum algorithm
is arguably the size and depth of the circuit for the algorithm, and the space usage of the
circuit. Further limiting factors that are important to consider are the number of runs of
the circuit that are required, and whether or not all of these runs have to be correct.

Although the circuit for Regev’s algorithm is asymptotically smaller than the circuits
for the other state-of-the-art variations of Shor’s algorithms, the asymptotic advantage
only kicks in for sufficiently large problem instances. Furthermore, the circuit for Regev’s
algorithm uses more space, and asymptotically more runs of the circuit are required to
achieve a high success probability. Hence, it is not clear that Regev’s algorithm has an
advantage in practice for cryptographically relevant problem instances, and the same holds
true for Ekerå–Gärtner’s extensions.

To begin to resolve this situation, in this work, we provide a coarse high-level comparison
between Regev’s algorithm and Ekerå–Gärtner’s extensions of it on the one hand, and
some of the other state-of-the-art quantum algorithms [EH17,Eke20,Eke23,Eke21,Eke24b]
on the other hand. In particular, we consider factoring RSA integers to break RSA, and
computing discrete logarithms in subgroups to Z∗

N for N a large prime to break DH and
DSA. We do not consider EC-DH and EC-DSA since these schemes work in elliptic curve
groups that do not admit a trivial notion of small group elements.5

For factoring RSA integers and computing short discrete logarithms, we compare Ekerå–
Gärtner’s extensions of Regev’s algorithm to Ekerå–Håstad’s variation [EH17,Eke20,Eke23]
of Shor’s algorithm. For computing general discrete logarithms, we instead compare them
to Ekerå’s variation [Eke24b] of Shor’s algorithm.

We account for Ragavan’s generalization [Rag24] of the space-saving optimizations
of Ragavan and Vaikuntanathan [RV24] that apply to Regev’s algorithm and to Ekerå–
Gärtner’s extensions, and for optimizations such as windowing [GE21,Gid19,VMI05,VM08]
that apply to most other variations of Shor’s algorithms, including in particular to Ekerå–
Håstad’s and Ekerå’s variations.

We consider a range of problem instance sizes from currently widely deployed to more
conservative. Since all of the aforementioned schemes (RSA, DH and DSA) are being

4The extended algorithms are generic, and work in any group (since the required arithmetic can be
implemented in the same way as for Shor’s algorithms), but for the algorithms to achieve a practical
advantage over Shor there must exist a notion of small elements in the group, as explained in [EG24b].

5It should be stated that a non-trivial notion was recently given in [BBP24] for certain special-form
curves. Said work claims an asymptotic improvement, but as far as we can see it does not provide an
improvement in practice for problem instances of cryptographically relevant sizes.

Martin Ekerå, Joel Gärtner 3

phased out, we do not foresee that larger key sizes than the sizes that we cost in this paper
will be widely deployed in the future.

1.2 Methodology
Regev’s algorithm [Reg25] and Ekerå–Gärtner’s extensions [EG24b] use more space, and re-
quire more runs, than Ekerå–Håstad’s [EH17,Eke20,Eke23] and Ekerå’s [Eke24b] variations
of Shor’s algorithm — hereinafter referred to as the existing algorithms. This is true also
when accounting for the space-saving optimizations of Ragavan and Vaikuntanathan [RV24],
and Ragavan’s generalization [Rag24] thereof. It follows that for Regev’s algorithm and
Ekerå–Gärtner’s extensions to achieve an advantage per run in practice over the existing
algorithms, they need to perform less work per run.

To compare the amount of work performed per run, we follow Ragavan and Vaikun-
tanathan [RV24,Rag24], and assume that we have a quantum circuit that maps∣∣u, v, t, 0S

〉
→
∣∣u, v, (t + uv) mod N, 0S

〉
(1)

for S the number of ancilla qubits, and for u, v, t ∈ [0, N)∩Z, where we furthermore require
u and v to be invertible modulo N . All of the aforementioned quantum algorithms can be
implemented by calling this circuit as a subroutine. Furthermore, for the parameterizations
of the aforementioned algorithms that we consider, all other work performed is negligible
compared to the calls to this circuit. Hence, we may roughly compare the amount of work
that the algorithms perform — i.e. the circuit depth and size — by counting the number
of calls that they make to this multiplication circuit. This allows us to ignore the low-level
details of how the algorithms are implemented, which greatly simplifies the comparison.

For RSA, for N an RSA integer, we count the number of calls made to the multiplication
circuit (1) in a run of Ekerå–Håstad’s variation of Shor’s algorithm, and of Regev’s algorithm
or of Ekerå–Gärtner’s extension to factoring via order finding, respectively.

For DH and DSA, for N a large prime, we similarly count the number calls made to
the multiplication circuit (1) in a run of Ekerå–Håstad’s or of Ekerå’s variation of Shor’s
algorithm, and of Ekerå–Gärtner’s extension of Regev’s algorithm, respectively.

Furthermore, we estimate the number of runs required to solve the problem instance
with a given high success probability, and count the overall number of circuit calls required
across all of these runs. This allows us to state both per-run and overall costs.

We consider N of bit length n ∈ {2048, 3072, 4096, 6144, 8192}. Our rationale for this
choice is that n ∈ {2048, 3072, 4096} are arguably the most common choices in current
commercial cryptographic applications, whereas n ∈ {6144, 8192} are more conservative
choices. Note also that already for quite some time now, there has been a gradual shift
away from RSA, DH and DSA — initially to EC-DH and EC-DSA, and more recently to
post-quantum secure cryptography. Hence, we do not expect N of larger bit lengths to
be widely deployed in the future. Rather, we expect the use of RSA, DH and DSA to
continue to decrease, and eventually cease.

For DSA, that uses Schnorr groups, we consider subgroups of sizes selected based on
the strength level estimates used by NIST, as given in [BCR+18, Tab. 25–26 in App. D on
p. 133] and [NC23, Sect. 7.5 on p. 126]. For DH, we consider both safe-prime groups with
short exponents and Schnorr groups. We select the logarithm length and subgroup size,
respectively, based on the strength level estimates used by NIST. Note that for DH, the
security typically depends on the short discrete logarithm problem in practice in protocols
such as TLS [Gil16] and IKE [KK03].

1.3 Overview
In what follows, we first review Ekerå–Håstad’s and Ekerå’s variations of Shor’s algorithm
in Sect. 2. We then review Regev’s algorithm and Ekerå–Gärtner’s extensions of it in

4 A high-level comparison of state-of-the-art quantum algorithms

Sect. 3. We describe the outcome of our cost comparison in Sect. 4, and summarize and
conclude the paper in Sect. 5. We provide detailed tabulated results in App. A.

1.4 Notation
In what follows, we denote by log the base-two logarithm. We use ⌈u⌉, ⌊u⌋ and ⌊u⌉ to
denote u rounded up, down and to the closest integer, respectively. We use the convention
that empty products evaluate to one.

2 Existing variations of Shor’s algorithms
In this section, we briefly review Ekerå–Håstad’s [EH17,Eke20,Eke23] and Ekerå’s [Eke24b]
variations of Shor’s algorithms [Sho94,Sho97], so as to introduce relevant notation, and so
as to describe implementation details relevant to our cost comparison.

For detailed information on these algorithms, the reader is referred to the aforementioned
references since our goal here is not to write a survey paper, nor to describe algorithms that
are already in the literature. To facilitate reader comprehension, we do however start off
by briefly introducing Shor’s original algorithms [Sho94,Sho97] in Sect. 2.1 below, and then
proceed to Ekerå–Håstad’s and Ekerå’s variations in Sect. 2.2 and Sect. 2.3, respectively.

Our rationale for considering these variations in particular is that they represent a part
of the state of the art, and that they provide an advantage in our cost metric, which is
sufficient to show that Regev’s algorithm does not have the advantage.

2.1 Preliminaries
Let g be a generator of a finite cyclic group of order r, and let x = gd for some integer
d ∈ [0, r). The order-finding problem (OFP) is then the problem of finding r given g,
whereas the discrete logarithm problem (DLP) is the problem of finding d given g, x, and
optionally the order r of g. When d ≪ r, the logarithm d and the DLP are said to be
short, whereas the logarithm d and the DLP are said to be general when d ∈ [0, r). For
convenience, we write the group ⟨g⟩ multiplicatively.

Given a composite integer N , the integer factoring problem (IFP) is the problem of
splitting N into a product of two non-trivial factors. The RSA IFP is the problem of
splitting an RSA integer N = pq into p, q — two large random distinct primes of equal bit
lengths. When N is not of special form, the integer N and the IFP are said to be general.

2.1.1 Shor’s original algorithms

At an overarching level, Shor’s quantum algorithms [Sho94,Sho97] for the OFP and DLP
may be said to induce the state

1√
LaLb

La−1∑
a = 0

Lb−1∑
b = 0

∣∣ a, b, gax−b
〉

(2)

which — depending on how La, Lb are selected — is periodic in the logarithm d and/or
in the order r. By applying quantum Fourier transforms (QFTs) to the first two control
registers, reading out the resulting frequencies, and classically post-processing them, r
and/or d may be probabilistically recovered — provided that La, Lb are sufficiently large.

The computation of gax−b to the last work register dominates the cost of the quantum
circuit for inducing the above state. In practice this computation is typically implemented
by pre-computing powers of g, x−1, g2, x−2, g22

, x−22
, . . . classically, and then composing

Martin Ekerå, Joel Gärtner 5

these quantumly conditioned on the qubits in the control register — i.e. via the square-and-
multiply algorithm. This implies that the total exponent length, as given by log La +log Lb,
essentially determines the cost of the quantum circuit when working in a fixed group ⟨g⟩.

Further details For the DLP, Shor originally proposed [Sho97, Sect. 6] to let La = Lb = r.
More specifically, Shor assumes g to be a generator of Z∗

N for N a prime, which implies
that g has known order r = N − 1. The order r is also used in the classical post-processing.

For the OFP, Shor originally proposed [Sho97, Sect. 5] to let La > r2 be a power of
two, and to let Lb = 1. More specifically, Shor assumes g to be a generator of a cyclic
subgroup to Z∗

N for N an integer, and uses that r < N to bound La.
For the IFP, Shor originally proposed [Sho97, p. 1498] to factor general integers N via

a classical probabilistic reduction from the IFP to the OFP in Z∗
N .

Shor [Sho97, Sects. 5–6] lower-bounds the probability of his algorithms succeeding in
recovering the solution after a given number of runs of the quantum circuit. A fairly large
number of runs are required to guarantee a high success probability via these bounds.

2.1.2 Subsequent improvements

Following Shor’s groundbreaking publication [Sho94,Sho97] in 1994 several variations of
Shor’s algorithms have been introduced [Sei01,EH17,Eke20,Eke23,Eke21,Eke24b] that
aim to reduce the total per-run exponent length. Amongst these, we find Ekerå–Håstad’s
algorithm [EH17,Eke20,Eke23] for the short DLP, that can efficiently compute d without
knowledge of r when d ≪ r. Ekerå–Håstad’s algorithm can also be used to factor RSA
integers, via a classical probabilistic reduction from the RSA IFP to the short DLP.

In 2001, Seifert [Sei01] proposed to make tradeoffs in Shor’s algorithm for the OFP. In
essence, Seifert’s idea is to compute a small amount of information on r in each run of
the quantum algorithm by selecting La only slightly larger than r, to perform many runs,
and to then jointly post-process the resulting frequencies from all of these runs classically.
Ekerå [Eke21, App. A] later proposed to use lattice-based post-processing for Seifert’s
algorithm, and estimated the number of runs required to guarantee a success probability
≥ 99% for different choices of La — i.e. when making different tradeoffs.

Without initially being aware of Seifert’s work, Ekerå and Håstad [EH17] proposed
to make tradeoffs when introducing their algorithm for the short DLP in 2017. Ekerå
subsequently extended the notion to a slightly modified variation [Eke24b] of Shor’s
algorithm for the DLP, and estimated the number of runs required to guarantee a success
probability ≥ 99% when making different tradeoffs in this algorithm [Eke24b], and in
Ekerå–Håstad’s algorithm for the short DLP [Eke20]. When not making tradeoffs, a single
run of these algorithms suffices [Eke23,Eke24b] to guarantee a success probability ≥ 99%.

To the best of our knowledge, the aforementioned variations of Shor’s algorithms
represent the state of the art for solving the RSA IFP, short DLP and general DLP
quantumly when excluding Regev’s recent variation [Reg25] and its extensions [EG24b].

2.2 Ekerå–Håstad’s variation of Shor’s algorithm
Ekerå–Håstad’s variation [EH17,Eke20,Eke23] of Shor’s algorithm [Sho94,Sho97] (EHS)
efficiently solves the short DLP quantumly in cyclic groups of unknown order. It furthermore
efficiently breaks RSA via a reduction from the RSA IFP to the short DLP.

The algorithm induces the state

1√
2m+2ℓ

2m+ℓ−1∑
a = 0

2ℓ−1∑
b = 0

∣∣ a, b, gax−b
〉 QFT−−−→

6 A high-level comparison of state-of-the-art quantum algorithms

1
2m+2ℓ

2m+ℓ−1∑
a, j = 0

2ℓ−1∑
b, k = 0

exp
(

2πi
2m+ℓ

(aj + 2mbk)
) ∣∣ j, k, gax−b

〉
where g ∈ Z∗

N in the cases we consider in this paper, for N an RSA integer or a prime,
x = gd for d a short m-bit logarithm, and ℓ ∼ m/s for s a tradeoff factor.

By increasing s, the amount of work that needs to be performed in each run of the
algorithm is reduced, at the expense of more runs being required to solve for d in the
classical post-processing. Each run yields approximately ℓ bits of information on d, so the
idea is to perform n ≥ s runs and to jointly solve the n outputs for d. In practice, this is
achieved by using classical lattice-based post-processing.

For an analysis of how many runs n are required for a given tradeoff factor s and
logarithm length m when breaking RSA, or when solving short discrete logarithms in
safe-prime groups, see [Eke20]. For an analysis of how much work is required when picking
ℓ = m − ∆ for some small ∆ and solving in a single run, see [Eke23].

2.2.1 Implementing the algorithm

Although there are more elaborate ways to implement EHS in an optimized fashion (see
e.g. [GE21]), a straightforward way to implement the algorithm is to classically pre-compute
powers of the group elements that are to be exponentiated, and to compose them quantumly
under the group operation — in this case multiplication modulo N — conditioned on a
control qubit. For this purpose, we essentially need a circuit that maps

| ci, u ⟩ → | ci, u · vci
i mod N ⟩

for vi the classically pre-computed value, and ci ∈ {0, 1} the control qubit.
Such a circuit may be constructed from the circuit in (1) by loading vci

i — i.e. either 1
or vi conditioned on ci — into a quantum register, and then taking∣∣ ci, u, vci

i , 0, 0S
〉

→
∣∣ ci, u, vci

i , u · vci
i mod N, 0S

〉
after which we unload vci

i , load −v−ci
i mod N = −(v−1

i) ci mod N , and take∣∣ ci, u, −v−ci
i mod N, u · vci

i mod N, 0S
〉

→
∣∣ ci, 0, −v−ci

i mod N, u · vci
i mod N, 0S

〉
after which we unload −v−ci

i mod N to obtain∣∣ ci, u · vci
i mod N, 0, 0, 0S

〉
as desired. A few intermediary swaps are required. We may then proceed to process the
next element and control qubit, recursively. As we run through i ∈ [0, ne) ∩ Z, for ne the
total exponent length, we make a total of 2ne calls to the circuit in (1).

Following the exponentiation, two QFTs are applied to the control registers, and
the resulting frequency pair (j, k) read out. To save space in practical implementations,
the two QFTs may be interleaved with the exponentiation, and the control qubit re-
cycled [PP00, ME99]. A single qubit then suffices to implement the control registers
for the exponentiation. Note also that small phase shifts may be dropped by using
Coppersmith’s [Cop02] approximate QFT.

As a further optimization, we may use windowing [GE21,Gid19,VMI05,VM08], and
process the control qubits in a window of some given size w. That is to say, instead of
loading vci

i and −v−ci
i mod N , we may use a quantum lookup table to load

w−1∏
j = 0

v
ci+j

i+j mod N and −
w−1∏
j = 0

v
−ci+j

i+j mod N,

Martin Ekerå, Joel Gärtner 7

respectively, reducing the number of calls to the circuit in (1) to 2 · ⌈ne/w⌉. As explained
above, the QFT may be interleaved with the exponentiation, and the control qubits
recycled, in which case w qubits suffice to implement the control registers.

For each windowed multiplication, a table of 2w values is first classically pre-computed,
after which a quantum lookup into this table is performed. The classical pre-computation
is not limiting, as we envisage quantum computations to be significantly more expensive
than classical computations. However, the quantum lookup is not free. The cost of the
lookup bounds how large w can reasonably be selected if we are to be able to neglect the
lookup cost when comparing it to the cost of performing a large multiplication modulo N .

As explained in [GE21,Gid19], it is possible to go further and to combine windowing
over the control qubits in the exponent with windowing over control qubits inside the
multiplication circuit, and to optimize the multiplication circuit in various ways.

More specifically, in [GE21] for RSA-2048, these two levels of windowing are both of
size 5, resulting in the algorithm performing lookups in a table of size 210. The window
over the exponent decreases the number of multiplications by a factor of 5, and the window
inside the multiplication circuit reduces the cost of this circuit by a factor of 5. Windowing
hence essentially decreases the cost of the algorithm as a whole by a factor of 25.

For our cost estimates, we consider a black-box multiplication circuit, which we can
not optimize, and we therefore can not use two levels of windowing. Instead, for simplicity,
and for the same lookup cost, we use a single window of size w = 10 over the exponent to
decrease the number of multiplications by a factor of 10. Note that this underestimates
the efficiency gain from windowing in practice, as a larger gain would be possible if using
a non-black-box multiplication circuit.

Note furthermore that selecting a larger window size could be beneficial for larger
problem sizes. In practice, it would be reasonable to for example select w = Θ(log log N),
but for simplicity we fix w = 10 for now in our cost comparisons. This when having a
circuit for schoolbook multiplication in mind, as this seems to be the optimal choice [Gid19]
for the problem sizes we consider in this paper.

2.3 Ekerå’s variation of Shor’s algorithm
Ekerå [Eke24b] has modified Shor’s algorithm for computing general discrete logarithms
so as to obtain an algorithm (ES) that efficiently solves the general DLP in cyclic groups
of known order. The resulting algorithm induces the state

1√
2m+ς+ℓ

2m+ς −1∑
a = 0

2ℓ−1∑
b = 0

∣∣ a, b, gax−b
〉 QFT−−−→

1
2m+ς+ℓ

2m+ς −1∑
a, j = 0

2ℓ−1∑
b, k = 0

exp
(

2πi
2m+ℓ

(aj + 2m+ℓ−ςbk)
) ∣∣ j, k, gax−b

〉
where g ∈ Z∗

N in the cases we consider in this paper, for N a prime, x = gd for d ∈ [0, r)∩Z,
m the bit length of the order r of g, and ℓ ∼ m/s for s a tradeoff factor and ς a parameter
to suppress noise. As for EHS, each run of ES yields approximately ℓ bits of information
on d. The idea is to perform n ≥ s runs and to jointly post-process the outputs given r
using lattice-based post-processing.

As is explained in [Eke24b], a problem that arises when making these modifications is
that noise appears in the distribution. When solving in a single run with s = 1, this is
not a problem since we may overcome the noise by searching a bit in the post-processing.
When picking s > 1 and solving in n ≥ s runs, the parameter ς may be increased slightly
above zero to suppress the noise. Hence, we pick ς = 0 when solving in a single run and
some small ς when solving in many runs.

8 A high-level comparison of state-of-the-art quantum algorithms

Note that besides enabling tradeoffs, the modifications made to the algorithm enable
qubit recycling by ensuring that the control qubits are separable. This is not the case
in Shor’s original algorithm where the control registers run over [0, N − 1) ∩ Z. The
modifications furthermore make the complexity of the algorithm depend on the bit length m
of r, rather than on N as in Shor’s original algorithm.

2.3.1 Implementing the algorithm

ES may be implemented in the same way as EHS, using control qubit recycling, approximate
QFTs, windowing, etc. For further details, see Sect. 2.2.1.

The total exponent length is ne = m + ς + ℓ, and there are 2 ⌈ne/w⌉ calls to the
multiplication circuit, for w the window size.

3 Regev’s algorithm and its extensions
In this section, we briefly review Regev’s factoring algorithm [Reg25] and Ekerå–Gärtner’s
extensions [EG24b] thereof in Sects. 3.1–3.2 so as to introduce relevant notation, and so
as to describe implementation details relevant to our cost comparison. In particular, we
review the space-saving optimizations of Ragavan and Vaikuntanathan [RV24,Rag24].

For detailed information on these algorithms and optimizations, the reader is referred
to the aforementioned references since our goal here is not to write a survey paper, nor to
describe algorithms and optimizations that are already in the literature.

In Sects. 3.3–3.5, we furthermore provide a concrete analysis of how to parameterize
the aforementioned algorithms so as to minimize the per-run cost of the quantum circuit as
a function of the amount of work that the classical post-processing is allowed to perform.
This concrete analysis is in itself a new contribution. It allows for significant cost savings,
as illustrated in further detail in Sect. 4.

3.1 High-level overview
Regev’s factoring algorithm [Reg25] and Ekerå–Gärtner’s extensions [EG24b] thereof
to computing discrete logarithms and orders, and for factoring via order finding, may
be perceived as high-dimensional variations of Shor’s algorithms [Sho94, Sho97]. More
specifically, these quantum algorithms induce an approximation of a state proportional to

∑
z ∈ {−D/2,...,D/2−1}d+k

ρR(z)
∣∣∣∣∣ z1, . . . , zd+k,

d∏
i = 1

a
zi+D/2
i

k∏
i = 1

x
zd+i+D/2
i mod N

〉
(3)

where a1, . . . , ad are small integers and x1, . . . , xk are arbitrary integers. Furthermore,
z = (z1, . . . , zd+k), ρR(z) is a Gaussian function of parameter R, and D = 2l is a power
of two closely related to R. For Regev’s original algorithm k = 0, whereas k is a small
constant for Ekerå–Gärtner’s extensions.

In analogy with Shor’s algorithms, QFTs of the first d + k control registers are then
performed and the resulting frequencies read out. Provided that the parameters are
appropriately selected, there will be a periodicity in the state that can be found, under a
heuristic assumption, by classically post-processing the outputs from m independent runs
of the circuit. This periodicity contains enough information to allow N to be efficiently
factored classically, and for all discrete logarithm relations between the ai and the xi to
be efficiently computed classically. As for Shor’s algorithms, the per-run cost of the circuit
is dominated by the cost of computing the product in the last work register.

The total exponent length of Regev’s algorithm as given by (d + k)l is essentially on
par with that of Shor’s algorithms when selecting parameters as Regev originally proposed.

Martin Ekerå, Joel Gärtner 9

However, Regev is able to leverage that a1, . . . , ad are small integers to compute the
first part of the product using only O(l) instead of O(dl) large multiplications modulo N ,
as described in further detail in Sect. 3.2. For Ekerå–Gärtner’s extensions, for which k
is a small constant as stated above, the second part of the product can be computed in
the same way as for Shor’s algorithms, as described in further detail in Sect. 3.2.3, still
resulting in O(l) large multiplications modulo N .

There is an intricate relationship between value of d, the number of runs m, the value of l
(that essentially determines the per-run cost) and the cost of the classical post-processing.
Previous works have mainly considered the case d ≈ m ≈

√
n and l = Θ(

√
n), but in

Sects. 3.3–3.5 we provide a more advanced analysis that allows us to concretely select l as
a function of d and m and the classical post-processing employed. Up to a certain limit,
this allows us to increase d and m so as to decrease l and hence the per-run cost.

3.2 Implementing the algorithms
In this section, we first explain how to implement Regev’s original algorithm for which k = 0,
and then consider the case k > 0 as it is relevant to some of Ekerå and Gärtner’s extensions.

3.2.1 Regev’s original arithmetic

To compute the product over a1, . . . , ad in the last register in (3), Regev originally proposed
to process the first d registers z1, . . . , zd bit by bit. Let

zi + D/2 =
l−1∑
j = 0

2jzi,j for zi,j ∈ {0, 1}.

Then the product in the last register may be re-written as

d∏
i = 1

a
zi+D/2
i mod N =

l−1∏
j = 0

(
d∏

i = 1
a

zi,j

i

)2j

mod N =
l−1∏
j = 0

c 2j

j mod N

where we denote the inner product over i by cj .
In Regev’s algorithm, the ai are small integers, so cj is the product of small integers ai

raised to powers zi,j ∈ {0, 1}. For the values of d considered by Regev, the product cj

is furthermore guaranteed to be significantly smaller than N , ensuring that cj can be
computed quite efficiently by using a binary tree-based approach, as described by Regev.

To compute the full product given the cj , Regev proposes to use the square-and-multiply
algorithm: The first step is to compute cl−1 to an intermediate register. Next, the square
modulo N of this register is computed to another intermediate register and multiplied
with cl−2 modulo N . The algorithm continues this process recursively until c0 is multiplied
into the last intermediary register, which then contains the desired product. Finally, the
result is copied out to a separate register, and the whole circuit run in reverse to uncompute
the intermediary registers.

In total the algorithm thus performs 2(l − 1) squarings modulo N , and 2(l − 1)
multiplications by cj modulo N for different j. A squaring or multiplication modulo N can
be performed in a single call to the circuit in (1). If the cost of computing and uncomputing
the cj is ignored, the algorithm can thus be implemented by calling said circuit 4(l − 1)
times. Unfortunately, however, the algorithm also requires l + 1 = O(log D) = O(

√
n)

registers, each of length n qubits, to hold the intermediate values generated by the squaring
operations and the final result. This is necessary since squaring modulo N is not a reversible
operation; it can not be efficiently performed in place.

Note also that windowing can not be applied to Regev’s algorithm, since both operands
passed to the multiplication circuit are quantum in his algorithm, whereas one of the

10 A high-level comparison of state-of-the-art quantum algorithms

operands is a conditionally loaded classical constant in most other variations of Shor’s
algorithms. Windowing is used to load the constant operand in an efficient manner: It
critically relies on the values in the lookup table being classical constants that can be
pre-computed. Only the lookup index is quantum.

3.2.2 Ragavan–Vaikuntanathan’s space-saving optimizations

To circumvent the reversibility issue in Regev’s original arithmetic, and the space increase
to which it gives rise, Ragavan and Vaikuntanathan [RV23,RV24] have proposed to compute
the product

d∏
i = 1

a
zi+D/2
i mod N (4)

in a different way, that does not require non-invertible squarings modulo N to be performed.
They accomplish this feat by adapting ideas from Kaliski [KJ17] and decomposing the
product with Fibonacci numbers in the exponent instead of powers of two, by writing

zi + D/2 =
K∑

j = 1
zi,jFj for zi,j ∈ {0, 1},

where Fj is the j:th Fibonacci number, and K is the greatest integer such that FK ≤ D.
In a recent follow-up work, Ragavan [Rag24] generalizes this idea by defining generalized

Fibonacci numbers via the recurrence

G
(r)
j = rG

(r)
j−1 + G

(r)
j−2, G

(r)
1 = G

(r)
0 = 1,

for r some positive integer. Ragavan decomposes the product (4) with these generalized
Fibonacci numbers in the exponent, by writing

zi + D/2 =
K(r)∑
j = 1

zi,jG
(r)
j for zi,j ∈ {0, 1, . . . , r},

where K(r) is the greatest integer such that G
(r)
K(r) ≤ D.

Note that the generalized Fibonacci numbers reduce to the ordinary Fibonacci numbers
for r = 1, so we describe only Ragavan’s generalization in what follows.

Note furthermore that re-writing a number in the generalized Fibonacci basis can be
accomplished efficiently and essentially in-place, as explained by Ragavan [Rag24]. The
cost is negligible compared to the cost of performing large multiplications modulo N , so
we neglect it in our cost estimates.

The product (4) is rewritten as

d∏
i = 1

a
zi+D/2
i mod N =

K(r)∏
j = 1

(
d∏

i = 1
a

zi,j

i

)G
(r)
j

mod N =
K(r)∏
j = 1

c
G

(r)
j

j mod N (5)

where, for each j, we denote the inner product over i by cj .
As cj is the product of d small integers ai raised to powers zi,j ∈ {0, 1, . . . , r}, for

relatively small d and r, it can be computed quite efficiently by generalizing Regev’s binary
tree-based arithmetic. For d = ⌊

√
n⌋ and constant r as considered by Ragavan [Rag24],

the cost of computing the cj is negligible. However, in practice it is beneficial to select
larger d and r, see Sect. 3.3, which may result in a non-negligible cost for computing the cj .
For technical reasons, Ragavan and Vaikuntanathan must also compute c−1

j , and the cost

Martin Ekerå, Joel Gärtner 11

of this computation may also be affected by selecting larger d and r. See Sect. 3.4 for
details on how this cost is accounted for in our cost metric.

To compute the product (4), Ragavan introduces an additional parameter s that is a
power of two such that r is a multiple of s. By using ∼ 2 log s additional intermediary
n-bit registers, Ragavan computes the product with f(r, s) · K(r) large multiplications
modulo N , where

f(r, s) = 2 · (3r/s + 4 log s + 7) (6)

as described in [Rag24, Thm. 2.4]. Note that our expression for the cost differs from the
expression in [Rag24] in that it depends directly on K(r) instead of estimating K(r) as
log D/ log β for β = (r +

√
r2 + 4)/2. Note furthermore that we have doubled the cost

compared to the expression in [Rag24], as the circuit described by Thm. 2.4 must be
run twice — once to compute the product, and once in reverse to clean up intermediary
values. Finally, note that this expression for the cost does not take into account the cost
of computing the cj , as this cost is negligible for the parameters considered by Ragavan.

3.2.3 Ekerå–Gärtner’s extensions

As previously stated in the high-level overview, the quantum circuit for Ekerå–Gärtner’s
extensions are very similar to that of Regev’s original algorithm: The circuits differ only in
that not all of the elements included in the product in the last register of the state in (3)
are small. Instead, in addition to the first d small elements a1, . . . , ad, there are also k
elements x1, . . . , xk that may be arbitrarily selected, for k a small constant.

The part of the product that depends on the small elements a1, . . . , ad can be computed
in exactly the same way as for Regev’s original algorithm [Reg25], with or without the
space-saving optimizations of Ragavan and Vaikuntanathan [RV24,Rag24]. Hence, with
O(n3/2) qubits of memory, this part can be computed by calling the quantum circuit in (1)
no more than 4 log D times.6 Alternatively, it can be computed by calling said circuit no
more than f(r, s) · K(r) times while using only O(n) qubits of memory.

The part of the product that depends on the remaining k elements x1, . . . , xk can be
computed using standard arithmetic in the same way as for the existing variations of Shor’s
algorithms, see Sect. 2.2.1. Hence, they can be computed by calling the multiplication
circuit no more than 2k log D times. Furthermore, windowing may be applied to compute
this part of the product, again see Sect. 2.2.1. With a window size of w it is then sufficient
to call the multiplication circuit 2 ⌈(k log D)/w⌉ times.

The full product can thus be computed with O(n3/2) + S qubits of memory by calling
the multiplication circuit 4 log D + 2 ⌈(k log D)/w⌉ times, or with O(n) + S qubits of
memory by calling the multiplication circuit f(r, s) · K(r) + 2 ⌈(k log D)/w⌉ times.

Ekerå–Gärtner’s extensions of Regev’s algorithms — hereinafter also referred to as
EGR — furthermore differs from Regev’s original algorithm in how the small elements
a1, . . . , ad are selected: Whereas Regev selects them as the squares of d small primes,
in EGR they are instead selected as d small primes. When comparing EGR to Regev’s
original algorithm, this somewhat decreases the cost of computing the first part of the
product in the last work register in (3), as the bit lengths of a1, . . . , ad are halved.

Note that up until now, in the above descriptions of Regev’s original algorithm and
of EGR, the cost of computing the cj ≤ ar

1 · . . . · ar
d has been ignored, as it is typically

negligible in our cost metric due to the cj being less than N . This being said, for
certain parameterizations that we consider, the cj may be greater than N . For such
parameterizations, we account for the cost of computing the cj as described in Sect. 3.4.
Furthermore, for such parameterizations, the choice of a1, . . . , ad as primes in EGR instead
of as squares of primes reduces the cost of EGR in our metric.

6Ragavan [Rag24] discusses an option for reducing the cost from 4 log D to (2 + ϵ) log D.

12 A high-level comparison of state-of-the-art quantum algorithms

A further, more important, observation is that the fact that EGR uses smaller a1, . . . , ad

than Regev’s original algorithm allows larger values of d and r to be used with EGR
without the cost of computing the cj becoming non-negligible.

Finally, it should be stated that Ekerå and Gärtner [EG24b] make a slightly stronger
heuristic assumption in their analysis compared to the assumption made by Regev [Reg25]
in his original analysis. This being said, and as explained in detail by Ekerå and Gärt-
ner [EG24b], there is no reason to doubt the validity of either of these heuristic assumptions.
On the contrary, they can be seen to hold for special-form integers and small integers in
simulations [EG24b, EG24a]. Furthermore, Pilatte [Pil24] has proved that a variant of
these assumptions holds.

3.3 Selecting the constant C

As previously explained in Sect. 1.2, to compare the cost of EGR to EHS and ES, respec-
tively, we count the number of calls to the circuit (1) for performing large multiplications
modulo N that are required to solve a given problem instance, per run and overall.

For EGR, when using Regev’s original arithmetic, the number of large multiplications
modulo N that need to be performed per run depends on the value of log D ∼ C

√
n,

and hence on the constant C. When using Ragavan’s generalization of Ragavan and
Vaikuntanathan’s space-saving optimizations, it also depends on r and s via f(r, s) and
K(r) ≈ log D/ log β where β = (r +

√
r2 + 4)/2. In Ragavan and Vaikuntanathan’s original

work, r = 1, in which case β is the golden ratio ϕ = (1 +
√

5)/2.
In [Reg25], Regev does not explore how to select the constant C as a function of the

dimension d, number of runs m and quality of the lattice basis reduction. To explore how
to select C, we must examine the heuristic assumption upon which his algorithm relies.

The heuristic assumption varies somewhat between Regev’s original algorithm and
Ekerå and Gärtner’s extensions. In both cases, the assumption relates to a lattice L that is
determined by the small integers a1, . . . , ad and the modulus N . Ekerå and Gärtner assume
for their extensions that this lattice L has a basis that consists of vectors of length at most
T = exp(O(n/d)). This is also a sufficient assumption for Regev’s original algorithm.

To analyze which value of C is sufficient, we let T = exp(κn/d) for some constant κ.
For Regev’s variant of the heuristic assumption, with the specific choice of d = ⌈

√
n ⌉, it is

natural to assume that selecting κ slightly larger than one is sufficient, as noted in [RV24].
It is also natural to assume that the somewhat stronger heuristic assumption that Ekerå
and Gärtner rely on for their extensions holds for κ slightly larger than one.

In the primary analysis of his algorithm, Regev selects d ≈
√

n and m = d + 4 when
using LLL for the classical post-processing. However, Regev also notes that selecting a
larger value for d may be beneficial when using a better — and typically computationally
more expensive — lattice reduction algorithm for the classical post-processing, as it allows
the per-run cost of the quantum circuit to be reduced. It can furthermore be seen that,
even for a fixed value of d, increasing the number of runs m allows the algorithm to
succeed with a smaller value of the constant C. As such, the choice of d and m has a large
impact on the efficiency of the algorithm. Selecting m ≈ d ≈

√
n, as previously primarily

considered in [Reg25,RV24], is therefore probably not the best choice in practice.
For the classical post-processing to be successful in recovering the solution, Regev’s

analysis in [Reg25, Sect. 5] requires that

(2d + 4)1/2 · 2d+2 · (d + 5)1/2 · T <

√
2 · 2C

√
n

6
√

d
· (det L)−1/m

for the special case of m = d + 4. It can be seen that for arbitrary m this requirement

Martin Ekerå, Joel Gärtner 13

corresponds to the requirement that

(m + d)1/2 · 2(m+d)/2 · (m + 1)1/2 · T <

√
2 · 2C

√
n

6
√

d
· (det L)−1/m. (7)

Inserting T = 2κn/d and det L < 2n into (7) leads to the requirement

(m + d)1/2 · 2κn/d+(m+d)/2 · (m + 1)1/2 <

√
2

6
√

d
2C

√
n−n/m

which, by taking logarithms on both sides, leads to the requirement

C >
κ

√
n

d
+ m + d

2
√

n
+

√
n

m
+ o(1)

where, as previously mentioned, the heuristic assumption should reasonably hold for κ ≈ 1.
If we let κ = 1 + o(1), the above lower bound on C is minimized when m ≈ d ≈

√
2n,

which leads to the conclusion that C > 2
√

2 + o(1) is required.
However, we believe that in practice it is possible to select C that is significantly smaller

than 2
√

2. This is partly due to the fact that LLL [LLL82] performs significantly better in
practice than Regev’s analysis predicts, since it relies on the provable properties of LLL.
Furthermore, it is due to the fact that the post-processing can use a computationally more
expensive lattice reduction algorithm, such as BKZ [SE94], allowing an even smaller value
of C to be used. This in turn reduces the per-run cost of the quantum circuit.

3.3.1 Using better lattice reduction

The factor 2(m+d)/2 in (7) is due to Regev’s analysis relying on the provable properties
of LLL. In particular, he relies on the Gram–Schmidt norm of two successive vectors of an
LLL-reduced basis decreasing by at most a factor

√
2, giving rise to the factor 2(m+d)/2

for the full (m + d)-dimensional lattice.
Heuristic analyses of the performance of lattice reduction algorithms often rely on the

so-called Geometric Series Assumption (GSA), under which the Gram–Schmidt norms of
successive vectors decrease by some factor γ. Under the GSA, we can thus replace the
factor 2(m+d)/2 in Regev’s algorithm by a factor γm+d, with γ based on the heuristically
estimated performance of the lattice reduction algorithm.

The performance of lattice reduction algorithms is not typically expressed directly in
terms of the factor γ that is relevant for our analysis. Instead, the root-Hermite factor δ
is often used, with the shortest vector b in a reduced basis of an n-dimensional lattice L
having norm at most δn · (det L)1/n.

As the determinant of a lattice is equal to the product of the Gram–Schmidt norms of
the vectors in any basis for the lattice, under the GSA we have that

det L = ∥b∥n
n−1∏
i = 0

γ−i = ∥b∥n
γ−(n2−n)/2,

and thus
∥b∥ = γ(n−1)/2 · (det L)1/n ≈ γn/2 · (det L)1/n,

and we therefore heuristically take γ to be equal to δ2. To estimate δ for BKZ [SE94] with
varying block sizes, we use the formula of Chen [Che13] with special handling for small
block sizes, in the same way as is done in the lattice estimator [APS15,ACD+24].

Using γ as determined by the heuristically estimated performance of the lattice reduction
employed, the bound on C then becomes

C >

√
n

d
+ log γ

(
m + d√

n

)
+

√
n

m
+ o(1) (8)

14 A high-level comparison of state-of-the-art quantum algorithms

with κ = 1 + o(1). From this, we can see that the lower bound on C is minimized when
m ≈ d ≈

√
n/ log γ, leading to the requirement that C > 4

√
log γ + o(1).

3.4 On the cost of computing the cj

Asymptotically, the cost of computing the cj is negligible for as long as ar
1 · . . . · ar

d ≪ N ,
since the multiplications that are required to compute this product then only involve
comparatively small integers, and no reductions modulo N occur. When selecting d = ⌈

√
n ⌉

as Regev originally proposed, and r = 1, it is always the case that ar
1 · . . . · ar

d ≪ N .
This being said, it may be beneficial to grow d and r so large that ar

1 · . . . · ar
d > N for

the purpose of suppressing C, as this may result in a smaller per-run cost, even if the cost
of computing the cj in each run is then no longer negligible.7

To estimate the cost of computing the cj via Regev’s binary tree-based approach in
this setting, we count the number M(d, r) of multiplications in the tree that yield a result
≥ 2n, and for which neither operand is equal to one, for n the bit length of N . This
when taking the leaf nodes of the binary tree to be (ar

1, . . . , ar
d, 1, . . . , 1), where the least

number t of ones is padded on to the right for d + t to become a power of two.
We note that other choices are possible: For instance, we could instead pad to the left,

or balance the tree with the aim of having subtrees of approximately equal size at each
level of the tree. For simplicity, we picked the above option of padding to the right since it
is most in line with Regev’s original proposal.

The cost of computing and uncomputing cj and c−1
j not captured by f(r, s) is then

22 · M(d, r) for each j ∈ {1, . . . , K(r)}. Recall furthermore that the product in (3) is first
computed, copied out, and then uncomputed again, so the total cost is 23 · M(d, r) · K(r).

Note that the above expression ignores the cost of all multiplications in the tree for
which reductions modulo N do not occur. This is in accordance with our cost metric, but
it should be stated that some of these multiplications still involve fairly large numbers.
Note furthermore that growing d and r also has an additional cost in terms of increased
space usage that is not captured by our cost metric.

3.5 Selecting parameters
To optimally select the parameters d, m, r and s for a given n, we need a method for
estimating the least value of the constant C that guarantees a sufficiently high success
probability in the classical post-processing. For this purpose, we use the bound (8) in
Sect. 3.3 whilst ignoring the o(1)-term. Based on simulations, we believe that selecting C
in this manner should lead to a success probability close to 1.

A reasonable objection to this approach is that the o(1)-term may potentially be
significant for the problem instances we consider. However, we find that the least C yielded
by the bound when ignoring the o(1)-term agrees quite well with C as estimated by the
simulator in [EG24a]. Based on this observation, we conclude that the o(1)-term may be
neglected for the problem instances we consider.

By using better lattice reduction, and selecting larger d and m, the constant C can be
decreased, resulting in a lower cost for the quantum circuit. If one ignores the cost of the
lattice reduction, and consider only the per-run cost, m can be selected arbitrarily large.
This is in contrast to d which is still indirectly restricted, due to the fact that increasing d
leads to an increased cost M(d, r) of computing the cj and c−1

j , as detailed in Sect. 3.4.
To select r, d and s optimally given n, we exhaustively search through reasonable

combinations of these parameters and select the combination that minimizes the cost in our

7We thank Seyoon Ragavan for raising this issue with us in private communication following the
publication of the first version of this pre-print.

Martin Ekerå, Joel Gärtner 15

metric. As such, when factoring, we minimize (f(r, s) + 23 · M(d, r)) · K(r). When comput-
ing discrete logarithms, we instead minimize (f(r, s) + 23 · M(d, r)) · K(r) + 2 ⌈(log D)/w⌉
since we then use a variant [EG24b, Sect. 3.1] of EGR for which k = 1.

4 Cost comparisons and results
In App. A, we present several cost comparisons between the existing variations of Shor’s
algorithms on the one hand, and EGR with the space-saving optimizations of Ragavan and
Vaikuntanathan on the other. In particular, we focus on cryptographically relevant instances
of the RSA integer factoring problem (IFP) and the discrete logarithm problem (DLP).

The most interesting comparison is between Regev’s algorithm, with all currently
available improvements and optimizations applied, and somewhat optimized versions of
the existing variations of Shor’s algorithms. Some details differ between the IFP and DLP,
and between the different problem instances for the DLP that we consider, whilst other
overarching aspects remain the same.

In particular, Ragavan’s generalization [Rag24] of the aforementioned space-saving
optimizations yields the lowest cost in our metric. Furthermore, to optimize the cost of
Regev’s algorithm in our metric, the best lattice reduction algorithm that it is practically
feasible to use should be employed for the post-processing. Given an estimate of the
performance of this lattice reduction algorithm, the optimal cost in our metric is achieved
by selecting d, m, r and s as described in Sect. 3.5.

In practice, the best lattice reduction is achieved by the BKZ algorithm [SE94] with as
large a block size as it is practically feasible to select. It is not clear exactly what the limit
is for the block size. So as to avoid overestimating the cost of Regev’s algorithm, given
that we intentionally seek to bias our comparisons to be in its favor, we select a block
size of 200 in our primary comparisons. This is clearly a larger block size than what is
practically feasible to use today, yet not too great of an exaggeration. We heuristically
estimate the performance of BKZ, and select the minimum C with precision 0.01 that
allows the post-processing to succeed, again see Sect. 3.5.

In addition to our primary comparisons that use BKZ-200, we provide a set of additional
comparisons for RSA to illustrate the benefits of the different optimizations that we apply
to Regev’s algorithm, and of windowing. Some of these comparisons use LLL.

Finally, it should be noted that our cost metric cannot be used to make useful compar-
isons between Regev’s original algorithm without Ragavan–Vaikuntanathan’s space-saving
optimizations and the pre-Regev variations of Shor’s algorithm. In Sect. 4.3, we detail
why this is the case, and why a much more advanced cost metric would be needed to fairly
make such comparisons.

4.1 Comparisons for RSA
In this section, we compare Regev’s algorithm that solves the IFP to EHS that solves the
RSA IFP. In particular, we focus on Ekerå–Gärtner’s extension of Regev’s algorithm to
factoring via order finding [EG24b, App. A] since it allows for slightly better flexibility in
how parameters are selected. In turn, this allows the algorithm to achieve a slightly better
efficiency in our cost metric.

We consider n-bit RSA integers N for n ∈ {2048, 3072, 4096, 6144, 8192} so as to model
RSA-2048 up to and including RSA-8192. By RSA integer we mean an integer with two
random prime factors of identical bit lengths.

For EHS, we consider both the case where we do not make tradeoffs and solve in a
single run, and the case where we make tradeoffs with a reasonably large tradeoff factor.
For further details, see App. A.

16 A high-level comparison of state-of-the-art quantum algorithms

To start off, we first provide a baseline comparison in Sect. 4.1.1 between Regev’s
algorithm parameterized as originally proposed by Regev, and EHS without windowing.
For all other comparisons in Sects. 4.1.2–4.1.6, we compare EGR to EHS unless otherwise
stated, and apply windowing with a window size of w = 10 to EHS.

The comparisons in Sects. 4.1.2–4.1.6 differ only with respect to how Regev’s algorithm
and its extensions are parameterized. We select optimal d and m as described in Sect. 3.5,
and explore different choices of lattice reduction algorithms, and of using the generalized
Fibonacci-based exponentiation proposed by Ragavan.

For an overview of how the different parameterizations compare to EHS, see Fig. 1
where the advantage of EHS over EGR is plotted as a function of the problem size for the
different parameterizations considered in Sects. 4.1.2–4.1.5. The figure is based on the
data tabulated in Tabs. 2–5 in App. A.

4.1.1 A basic baseline comparison

In App. A.1.1, for Regev’s algorithm, we use LLL, and let d = ⌈
√

n ⌉ and m = d + 4,
as originally proposed by Regev. Furthermore, we use Ragavan’s generalization of the
space-saving optimizations with r = 1 leading to 20K operations in the form of large
multiplications modulo N being required per run.

As may be seen in Tab. 1 in App. A.1.1, Regev’s algorithm performs approximately
between a factor two to four fewer operations per run than EHS when not making tradeoffs.
However, EHS requires significantly fewer operations overall when not making tradeoffs,
as it then only requires a single run. Hence, if the goal is to optimize the overall work, not
making tradeoffs is typically preferable.

By making tradeoffs, EHS has an advantage over Regev’s algorithm, both per run and
overall, for RSA-2048. For RSA-3072, the per-run cost is essentially on par, but EHS has
the overall advantage. For RSA-4096 up to and including RSA-8192, EHS retains the
overall advantage, but it has a per-run disadvantage.

Asymptotically, Regev’s algorithm has the per-run advantage, and this is consistent
with the behavior we observe in Tab. 1. This is the case for all the parameterization of
Regev’s algorithm that we consider for the RSA IFP, but the break-even point differs
between the parameterizations.

The per-run cost for Regev’s algorithm is essentially determined by the value of the
constant C, see Sect. 3.3. As may be seen in Tab. 1, and as previously pointed out
in [EG24b], it suffices to select C ≈ 2 when the algorithm is parameterized as in this
baseline comparison. By selecting a better parameterization, and potentially also using a
better lattice reduction algorithm, the value of C can be decreased.

4.1.2 Using LLL and r = 1

In App. A.1.2, for EGR, we use LLL, select r = 1, and select optimal d and m. Furthermore,
we apply windowing with w = 10 for EHS from this point on.

As may be seen in Tab. 2 in App. A.1.2, selecting C ≈ 1 for EGR is sufficient with
this parameterization. The cost per run for EGR with this parameterization is thus
approximately halved compared to the baseline for which C ≈ 2. At the same time,
since we select larger m with this parameterization, the overall cost for EGR increases by
approximately a factor of two compared to the baseline, leading to EHS having a significant
overall advantage — but our goal in this comparison is to optimize for the per-run cost.

The above having been said, even though the per-run cost of EGR decreases by a
factor of two compared to the baseline, the per-run gap to EHS in fact increases, thanks to
windowing having been applied. Windowing reduces both the per-run cost and the overall
cost of EHS by approximately a factor of w = 10. EHS therefore now has the per-run

Martin Ekerå, Joel Gärtner 17

advantage for RSA-2048 up to and including RSA-8192. This underscores how important
an optimization windowing is in practice.

From this point on, we apply no further optimizations to EHS, so the costs in Tab. 2
for EHS are the costs that EGR must go below to achieve an advantage.

4.1.3 Using BKZ-200 and r = 1

In App. A.1.3, we replace LLL with BKZ-200, select r = 1, and optimal d and m.
As may be seen in Tab. 3 in App. A.1.3, with this parameterization, it is sufficient

to select C ≈ 0.5. Thus, if BKZ-200 can be used for post-processing instead of LLL, the
per-run cost of the quantum algorithm can be decreased by approximately a factor of two.
However, this reduction comes at the cost of approximately doubling the number of runs
required, so the overall cost of the quantum algorithm is approximately the same.

By using BKZ-200 in the post-processing, EGR now again outperforms EHS per
run when not making tradeoffs, for RSA-4096 up to RSA-8192. For RSA-4096, the two
algorithms are essentially on par. Note however that, for all problem instances, including
the aforementioned instances, the overall cost of EGR is more than 400 times greater than
that of EHS when not making tradeoffs.

By making tradeoffs, EHS outperforms EGR, both per run and overall, for RSA-2048
up to and including RSA-8192. For EGR to achieve a per-run advantage compared to
EHS when making tradeoffs, even for the largest problem instances we consider, its cost
must decrease by almost a factor of two. The first multiple of 1024 bits for which EGR
achieves a per-run advantage with this parameterization is for RSA-27648, which has a
classical strength level of 336 bits in the NIST model [NC23, Sect. 7.5 on p. 126].

4.1.4 Using LLL and optimal r

In App. A.1.4, we once again use LLL, select optimal r and s, and optimal d and m.
As may be seen in Tab. 4 in App. A.1.4, the effect of picking optimal r and s in

Ragavan’s generalization of the space-saving optimizations has a similar effect on the
per-run cost to that of using BKZ-200 instead of LLL, and selecting r = 1 and optimal d
and m, see Tab. 3 in App. A.1.3 and compare. Meanwhile, the overall cost is decreased by
almost a factor of two compared to the overall cost in Tab. 3.

EGR again outperforms EHS per run when not making tradeoffs, for RSA-6144 and
RSA-8192, and is on par with EHS for RSA-4096. However, its overall cost is at least
200 times greater than that of EHS. When making tradeoffs, EHS outperforms EGR, both
per run and overall, for RSA-2048 up to and including RSA-8192.

Note than an important distinction between the parameterization in this section and
the one in and Sect. 4.1.3 is that the post-processing in this section is feasible to execute
in practice, whereas the post-processing in Sect. 4.1.3 is impractical.

4.1.5 Using BKZ-200 and optimal r

In App. A.1.5, we use BKZ-200, select optimal r and s, and optimal d and m.
As may be seen in Tab. 5 in App. A.1.5, by using all available optimizations, and

BKZ-200 for the post-processing, we achieve a significantly lower per-run cost than for any
of the parameterizations previously considered. Compared to using LLL with optimal r, the
per-run cost decreases by slightly more than a factor of 4/3. The improvement achieved by
using better lattice reduction is thus smaller in this case where we use optimal r compared
to the case when r = 1, see Sect. 4.1.3.

Note that for RSA-3072, selecting optimal d and r results in a non-negligible cost M(d, r)
of computing the cj . For all other problem instances sizes considered, this cost is negligible.

This parameterization of EGR achieves a per-run advantage over EHS, when not
making tradeoffs, for RSA-3072 up to RSA-8192. Furthermore, for RSA-8192, it only has

18 A high-level comparison of state-of-the-art quantum algorithms

a slight per-run disadvantage to EHS when making tradeoffs. Note, however, that EHS
still has a large overall advantage for RSA-2048 up to and including RSA-8192.

The first multiple of 1024 bits for which EGR achieves a per-run advantage with this
parameterization is for RSA-13312, which has a classical strength level of 248 bits in the
NIST model [NC23, Sect. 7.5 on p. 126].

R
SA

-2
04

8

R
SA

-3
07

2

R
SA

-4
09

6

R
SA

-6
14

4

R
SA

-8
19

2

1

2

3

4

5

6

7

P
er

-r
un

ad
va

nt
ag

e
of

E
H

S
ov

er
E

G
R

LLL and r = 1 (from Tab. 2)
BKZ-200 and r = 1 (from Tab. 3)
LLL and optimal r (from Tab. 4)
BKZ-200 and optimal r (from Tab. 5)

Figure 1: A plot of the per-run advantage of EHS over EGR for the RSA IFP for
the parameterizations of EGR considered in Tabs. 2–5 in Apps. A.1.2–A.1.5. See also
Sects. 4.1.2–4.1.5 for details on the parameterizations and tables.

The per-run advantage of EHS over EGR is plotted in Fig. 1 for the parameterization
considered in this section, and for the parameterizations considered in Sects. 4.1.2–4.1.4,
so as to provide an overview and to facilitate comparisons. As may be seen in Fig. 1,
it is only when using BKZ-200, selecting optimal r and s, and optimal d and m, as in
this section, that the per-run cost of EGR can be brought to be close to that of EHS for
RSA-8192. Asymptotically, EGR has the advantage for all four parameterizations, but the
asymptotic advantage only kicks in for sufficiently large problem instances.

4.1.6 Using perfect reduction and optimal r

In App. A.1.6, we use perfect lattice reduction, as modelled by letting γ → 1 (in the
analysis in Sect. 3.3.1), select optimal r and s, and optimal d and m. Note that this implies
that m → ∞, leaving the bound on C as C >

√
n/d.

Needless to say, this is not a realistic cost comparison since it is completely impractical
to use perfect lattice reduction. Rather, its use essentially corresponds to the situation
in the curious corollary by Regev in the introduction of [Reg25], which states that a
quantum circuit for factoring with essentially linear size in n exists if lattice problems are
easy to solve classically. In our model, this is captured by C not being constant. Rather,
increasingly smaller values of C can be used as the problem instance size grows larger.

In App. A.1.6, we furthermore compare both Regev’s original algorithm and EGR to
EHS. In EGR, the small elements a1, . . . , ad are the first d primes, whereas in Regev’s

Martin Ekerå, Joel Gärtner 19

original algorithm, they are the squares of the first d primes. This implies that the cost of
computing the cj is somewhat higher for Regev’s original algorithm than for EGR.

When selecting optimal parameters under our cost metric, this leads to smaller values
of d and r being selected for Regev’s original algorithm than for EGR since the cost M(d, r)
is higher for Regev’s original algorithm than for EGR. The better the lattice reduction, the
greater the impact of this difference between the algorithms. There is hence a significant
performance difference between Regev’s original algorithm and EGR when using perfect
lattice reduction. This may be seen in Tab. 6 in App. A.1.6, where for each problem
instance size, the top line is for Regev’s original algorithm and the bottom line for EGR.

Even in the extremely biased comparison in Tab. 6, EHS does however retain a per-run
advantage over Regev’s original algorithm for RSA-2048 up to and including RSA-4096.
Meanwhile, EHS retains a per-run advantage over EGR for RSA-2048 and RSA-3072. For
larger problem instance sizes, the per-run cost of EHS is somewhat higher than that of
Regev’s original algorithm and EGR, respectively.

Note that we do not provide a comparison of the overall costs of the algorithms in
Tab. 6. This is because the overall number of operations tends to infinity with m for
Regev’s algorithm and EGR, giving EHS an infinite overall advantage.

4.2 Comparisons for discrete logarithms
In addition to the above comparison for the RSA IFP, we provide analogous comparisons
for the DLP in r-order subgroups to Z∗

N , for N = 2ur + 1 a large n-bit prime, and r a
prime. We use the model of NIST, as given in [BCR+18, Tab. 25–26 in App. D on p. 133]
and [NC23, Sect. 7.5 on p. 126], to estimate the classical strength level z of N . As for
RSA, we consider n ∈ {2048, 3072, 4096, 6144, 8192}. We consider both safe-prime groups
for which u = 1, and Schnorr groups for which r is of length 2z bits. Both of these groups
have a classical strength level of z bits.

In the case of safe-prime groups, we consider the short DLP where the logarithm is of
length 2z bits, and the general DLP where the logarithm is on [0, r). Again, both of these
problems have a classical strength level of z bits. Note that cryptographic applications are
typically based on the short DLP since it is much more efficient, but we nevertheless also
include the general DLP in our comparison.

When using EGR to compute discrete logarithms, the algorithm cannot directly leverage
that the r-order subgroup is small, as is the case for Schnorr groups, nor that the logarithm
is short, so its cost is the same for all three parameterizations. We compare EGR to ES
for the general DLP in Schnorr groups and safe-prime groups, and to EHS for the short
DLP in safe-prime groups.

Note that in [EG24b], several extensions of Regev’s algorithm are given for the DLP
that use k ∈ {1, 2}, for k as defined in Sect. 3. In our comparison, for EGR, we use an
extension with k = 1, necessitating either doubling the number of runs or performing some
pre-computation for the specific choice of generator. We do not include these costs in the
cost we report for EGR. The high-level outcome of the comparison would not be affected
by choosing an extension with k = 2, but we select one with k = 1 to minimize the cost in
our metric.

4.2.1 General DLP in safe-prime groups

As may be seen in Tab. 7 in App. A.2.1, EGR achieves a slight per-run advantage for
6144-bit and larger moduli, when comparing against ES and making tradeoffs. As for the
overall cost, ES has the advantage by more than a factor 220 when not making tradeoffs,
for all of the problem instance sizes considered.

Note that the reason for why EGR achieves an advantage for the general DLP, but
not for the RSA IFP, is not because of differences between Ekerå–Gärtner’s extensions of

20 A high-level comparison of state-of-the-art quantum algorithms

Regev’s algorithm to the IFP via the OFP, and to the DLP, respectively. Rather, it is
because EHS for the RSA IFP achieves a reduction in the total control register length by
using an efficient reduction from the RSA IFP to the short DLP.

Note furthermore that, as stated above, the cryptographically relevant cases are short
discrete logarithms in safe-prime groups, and discrete logarithms in Schnorr groups,
respectively, see the next two sections.

4.2.2 Short DLP in safe-prime groups

As may be seen in Tab. 8 in App. A.2.2, when the logarithm is short, EHS has a considerable
advantage, both per run and overall, for 2048-bit moduli up to and including 8192-bit
moduli. This is because EHS is specifically tailored to leverage the fact that the logarithm
is short, whereas the complexity of EGR depends on the size of Z∗

N . It is hence the same
irrespective of whether the logarithm is short or full length. A strongly contributing
reason for the advantage of EHS over EGR is the use of windowing, but even without
windowing EHS would have slightly lower per-run cost than EGR, and also a significant
overall advantage over EGR.

4.2.3 DLP in Schnorr groups

As may be seen in Tab. 9 in App. A.2.3, for Schnorr groups, ES has a considerable
advantage, both per run and overall, for 2048-bit moduli up to and including 8192-bit
moduli. Again, this is because ES is specifically tailored to leverage the fact that the
subgroup is small, whereas the cost of EGR depends on the size of Z∗

N . The cost of EGR
is hence the same irrespective of whether g generates Z∗

N , or a small subgroup of Z∗
N . A

strongly contributing reason for the advantage of ES over EGR is the use of windowing,
but even without windowing ES would have slightly lower per-run cost than EGR, and
also a significant overall advantage over EGR.

4.2.4 On the asymptotic advantage of Ekerå–Gärtner

In analogy to the situation for the RSA IFP, EGR achieves an asymptotic advantage over
ES for the general DLP. This may be seen in Tab. 7 in App. A.2.1 where the advantage of
ES decreases with the size of the problem instance.

For the short DLP, and the DLP in Schnorr groups, the situation is quite different,
however. In these cases, the total exponent length in EHS and ES is a small multiple of
the strength level z = O(n1/3 log2/3 n), see the NIST model [NC23, Sect. 7.5 on p. 126].
The number of large multiplication modulo N that need to be performed is twice the total
exponent length. Meanwhile, Θ(n1/2) such operations need to be performed in EGR.

Note that in Tab. 8–9 in App. A.2.2–A.2.3, the advantage of EHS and ES does decrease
with the size of the problem instance, but this phenomenon is not indicative of the
asymptotic behavior.

4.3 More refined cost metrics
Our cost metric is simplistic, yet sufficient to enable us to compare the algorithms we
consider in this work, and to draw several important conclusions.

In particular, our comparisons indicate that making a more detailed physical cost
estimate of Regev’s algorithm with Ragavan–Vaikuntanathan’s space-saving optimizations
is premature: Although such a cost estimate would give a clearer picture of the concrete
cost of the algorithm, our much simpler analysis already shows that previous variations of
Shor’s algorithms would outperform it for cryptographically relevant problem instances.
Hence, it would be fruitful to attempt to find further optimizations of the algorithm before
proceeding to make physical cost estimates.

Martin Ekerå, Joel Gärtner 21

A limitation to our simplistic cost metric is that it does not account for the memory
usage of the algorithms we compare. However, even with Ragavan–Vaikuntanathan’s
space-saving optimizations, Regev’s algorithm still uses more memory than the variations
of Shor’s algorithm to which we compare it. As such, by not accounting for the memory
usage, our metric biases the comparison in favor of Regev’s algorithm. Since our conclusion
is that Regev’s algorithm does not have the advantage, this bias is not an issue.

To fairly compare Regev’s original algorithm without Ragavan–Vaikuntanathan’s space-
saving optimizations to the previous variations of Shor’s algorithms would require us to
somehow account for the memory usage of the algorithms: As Regev’s original algorithm
uses a lot more memory than the previous variations, using our simplistic cost metric that
ignores memory costs would heavily bias the comparison in favor of Regev’s algorithm. At
the same time, the metric would often indicate that Regev’s algorithm has the advantage,
and hence it would not be possible to draw any useful conclusions from the comparison.

As we see it, it is very much non-trivial to define a simplistic cost metric that fairly
accounts for both the computations and the memory usage of the algorithms that we are
interested in comparing. In particular, defining such a cost metric would require us to
make a range of assumptions regarding the relative costs of computations and memory
usage. A further complicating factor is that a much more detailed exploration of potential
optimizations and memory tradeoffs for the algorithms would need to be undertaken to
enable a fair comparison. Yet another complicating factor is that Regev’s original algorithm
uses both computational and non-computational memory8, and that non-computational
memory may be less expensive to implement in practice than computational memory.

From this, we conclude that a full-blown physical cost estimate would in essence be
required to fairly compare Regev’s original algorithm to the previous variations of Shor’s
algorithms. Developing such a physical cost estimate is far beyond the scope of this paper.

5 Summary and conclusion
Regev’s factoring algorithm [Reg25] with the space-saving optimizations of Ragavan and
Vaikuntanathan [RV24], as generalized by Ragavan [Rag24], does not achieve an advantage
over the existing state-of-the-art variations of Shor’s algorithms for cryptographically
relevant problem instances. Further optimizations are required for it to achieve such an
advantage. The same holds true for Ekerå–Gärtner’s extensions to computing discrete
logarithms, and to factoring via order finding.

This when using the number of large multiplications modulo N per run as the cost
metric in a black-box model, and ignoring the fact that the space usage, and the number
of runs required, is larger for Regev’s algorithm and Ekerå–Gärtner’s extensions. If we
would instead have used a different cost metric that also accounts for the space usage,
such as the spacetime volume, the difference in the advantage would have been even more
pronounced.

It would also have been more pronounced if we had attempted to account for the
overhead of quantum error correction. The fact that Regev’s algorithm and Ekerå–Gärtner’s
extensions typically require many more runs than the existing state-of-the-art algorithms
drives up the cost of the error correction. This is because the error correction has to be
parameterized so as to ensure that all runs are correct with sufficiently high probability.
Alternatively, the erroneous runs can be filtered out before the post-processing, or the
erroneous runs jointly post-processed alongside the correct runs, as proposed by Ragavan
and Vaikuntanathan [RV24], and by Ekerå and Gärtner [EG24b], respectively. However,
this requires increasing C, driving up the per-run cost of the algorithm in our metric, and
it requires making even more runs.

8Memory to which we can swap out a state for an extended period of time and then swap it back in at
a later time when it is needed for the uncomputation in Regev’s arithmetic.

22 A high-level comparison of state-of-the-art quantum algorithms

Treating the multiplication circuit as a black box precludes the use of known opti-
mizations that would benefit the existing state-of-the-art variations of Shor’s algorithm,
but that are not directly applicable to Regev’s algorithm and Ekerå–Gärtner’s extensions,
further biasing the comparison in our cost metric. In practice, choosing the multiplication
circuit is non-trivial. The same circuit need not necessarily be optimal for all of the
aforementioned algorithms, depending on what other optimizations can be applied, but
going into details on the implementation of the multiplication circuit is beyond the scope
of this work.

In summary, the cost metric we use in this work is deliberately biased in favor of
Regev’s algorithm and Ekerå–Gärtner’s extensions. This is not an issue, however, when
our comparison shows that the existing state-of-the-art variations of Shor’s algorithm have
the advantage. We can then still draw valid conclusions.

Regev’s algorithm [Reg25] without the space-saving optimizations does achieve an
advantage over Ekerå–Håstad’s algorithm for cryptographically relevant instances of the
RSA IFP.9 This when using the aforementioned biased cost metric, and when considering
a standard implementation of Ekerå–Håstad’s algorithm with windowing but no other
significant optimizations. The same holds true for Ekerå–Gärtner’s extensions of Regev’s
algorithm, for the general DLP in safe-prime groups — but not for the short DLP in such
groups, or for the DLP in Schnorr groups, which are arguably the two cryptographically
relevant problems to consider.

Hence, if we envisage non-computational quantum memory to be cheap, then Regev’s
factoring algorithm may have an advantage over the existing state-of-the-art algorithms
for cryptographically relevant instances of the RSA IFP. Note however that even in our
biased cost metric, where we ignore the space usage, there is only a per-run advantage —
not an overall advantage.

A key reason for why the existing state-of-the-art variations of Shor’s algorithm
outperform Regev’s algorithm in our comparisons is that many of the techniques used to
derive and optimize these variations do not translate directly to Regev’s algorithm. Regev’s
algorithm is still quite new, however, and more optimizations may become available as
time progresses. A more detailed cost comparison may then be warranted to establish
which algorithm has the advantage, but for now, the above biased comparison suffices,
when not considering space to be cheap.

Acknowledgements

We are grateful to Johan Håstad for his comments on early versions of this manuscript,
and to Oded Regev’s for his generous support. We thank Craig Gidney, Seyoon Ragavan
and Vinod Vaikuntanathan for useful discussions. We furthermore thank Seyoon Ragavan
for pointing out that it may in some cases be beneficial to allow d to grow past the point
where large modular multiplications are required to compute the cj .

This work was supported by the KTH Centre for Cyber Defence and Information
Security (CDIS), and funded and supported by the Swedish NCSA that is a part of the
Swedish Armed Forces. Computations were enabled by resources provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS) at PDC at KTH partially
funded by the Swedish Research Council through grant agreement no. 2022-06725.

9The per-run cost of Regev’s original algorithm and Ekerå–Gärtner’s extensions without the space-
saving optimizations is 4 log D in our metric, for D as in the tables in App. A. As previously noted,
Ragavan [Rag24] discusses an option for reducing the cost from 4 log D to (2 + ϵ) log D.

Martin Ekerå, Joel Gärtner 23

References
[ACD+24] M.R. Albrecht, B. Curtis, L. Ducas, F. Göpfert, H. Hunt, H. Kippen, C. Lefeb-

vre, J. Owen, R. Player, L. Pulles, M. Schmidt, S. Scott, F. Virdia, M. Walter,
and C. Yun. Security estimates for lattice problems. GitHub repository
malb/lattice-estimator, 2014–2024. URL: https://github.com/malb/la
ttice-estimator.

[APS15] M.R. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning
with Errors. J. Math. Cryptol., 9(3):169–203, 2015. doi:10.1515/jmc-2015-0
016.

[BBP24] R. Barbulescu, M. Barcau, and V. Paşol. A comprehensive analysis of regev’s
quantum algorithm. Cryptology ePrint Archive, Paper 2024/1758, 2024. (Dated
2024-11-05.). URL: https://eprint.iacr.org/2024/1758.

[BCR+18] E. Barker, L. Chen, A. Roginsky, A. Vassilev, and R. Davis. Recommendation
for pair-wise key-establishment schemes using discrete logarithm cryptography.
National Institute of Standards and Technology (NIST) Special Publication (SP)
800-56A, 2018. (3rd revision). doi:10.6028/NIST.SP.800-56Ar3.

[BCR+19] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, and S. Simon. Recom-
mendation for pair-wise key-establishment using integer factorization cryptog-
raphy. National Institute of Standards and Technology (NIST) Special Publica-
tion (SP) 800-56B, 2019. (2nd revision). doi:10.6028/NIST.SP.800-56Br2.

[Che13] Y. Chen. Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. PhD thesis, Université Paris Diderot (Paris 7), 2013. URL:
http://www.theses.fr/2013PA077242.

[Cop02] D. Coppersmith. An approximate Fourier transform useful in quantum factoring,
2002. (Also IBM Research Report RC 19642.). arXiv:quant-ph/0201067v1.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.

[EG24a] M. Ekerå and J. Gärtner. Simulating Regev’s quantum factoring algorithm
and Ekerå–Gärtner’s extensions to discrete logarithm finding, order finding and
factoring via order finding. GitHub repository ekera/regevnum, 2023–2024.
URL: https://github.com/ekera/regevnum.

[EG24b] M. Ekerå and J. Gärtner. Extending Regev’s factoring algorithm to compute
discrete logarithms. In M.-J. Saarinen and D. Smith-Tone, editors, Post-
Quantum Cryptography, pages 211–242, Cham, 2024. Springer Nature Switzer-
land. doi:10.1007/978-3-031-62746-0_10.

[EH17] M. Ekerå and J. Håstad. Quantum algorithms for computing short discrete
logarithms and factoring RSA integers. In T. Lange and T. Takagi, editors, Post-
Quantum Cryptography, pages 347–363, Cham, 2017. Springer International
Publishing. doi:10.1007/978-3-319-59879-6_20.

[Eke20] M. Ekerå. On post-processing in the quantum algorithm for computing short
discrete logarithms. Des. Codes Cryptogr., 88(11):2313–2335, 2020. doi:
10.1007/s10623-020-00783-2.

[Eke21] M. Ekerå. Quantum algorithms for computing general discrete logarithms
and orders with tradeoffs. J. Math. Cryptol., 15(1):359–407, 2021. doi:
10.1515/jmc-2020-0006.

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://eprint.iacr.org/2024/1758
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
http://www.theses.fr/2013PA077242
https://arxiv.org/abs/quant-ph/0201067v1
https://doi.org/10.1109/TIT.1976.1055638
https://github.com/ekera/regevnum
https://github.com/ekera/regevnum
https://doi.org/10.1007/978-3-031-62746-0_10
https://doi.org/10.1007/978-3-319-59879-6_20
https://doi.org/10.1007/s10623-020-00783-2
https://doi.org/10.1007/s10623-020-00783-2
https://doi.org/10.1515/jmc-2020-0006
https://doi.org/10.1515/jmc-2020-0006

24 A high-level comparison of state-of-the-art quantum algorithms

[Eke23] M. Ekerå. On the success probability of the quantum algorithm for the short
DLP, 2023. arXiv:2309.01754v1.

[Eke24a] M. Ekerå. Qunundrum. GitHub repository ekera/qunundrum, 2020–2024.
URL: https://github.com/ekera/qunundrum.

[Eke24b] M. Ekerå. Revisiting Shor’s quantum algorithm for computing general discrete
logarithms, 2024. arXiv:1905.09084v4.

[GE21] C. Gidney and M. Ekerå. How to factor 2048 bit RSA integers in 8 hours using
20 million noisy qubits. Quantum, 5:433, 2021. doi:10.22331/q-2021-04-1
5-433.

[Gid19] C. Gidney. Windowed quantum arithmetic, 2019. arXiv:1905.07682v1.

[Gil16] D. Gillmor. Negotiated finite field Diffie–Hellman ephemeral parameters for
Transport Layer Security (TLS). Request for Comments (RFC) 7919, 2016.
doi:10.17487/RFC7919.

[KJ17] B. S. Kaliski Jr. Targeted Fibonacci exponentiation, 2017. arXiv:1711.02491.

[KK03] M. Kojo and T. Kivinen. More modular exponential (MODP) Diffie–Hellman
groups for Internet Key Exchange (IKE). Request for Comments (RFC) 3526,
2003. doi:10.17487/RFC3526.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261(4):515–534, 1982. doi:10.1007/BF0145
7454.

[ME99] M. Mosca and A. Ekert. The hidden subgroup problem and eigenvalue estima-
tion on a quantum computer. In C.P. Williams, editor, Quantum Computing
and Quantum Communications, pages 174–188. Springer Berlin Heidelberg,
1999. doi:10.1007/3-540-49208-9_15.

[Nat94] National Institute of Standards and Technology (NIST). Digital Signature
Standard (DSS). Federal Information Processing Standard (FIPS) 186, 1994.
doi:10.6028/NIST.FIPS.186.

[Nat23] National Institute of Standards and Technology (NIST). Digital Signature
Standard (DSS). Federal Information Processing Standard (FIPS) 186-5, 2023.
doi:10.6028/NIST.FIPS.186-5.

[NC23] National Institute of Standards and Technology (NIST) and Canadian Centre
for Cyber Security (CCCS). Implementation guidance for FIPS 140-2 and the
cryptographic module validation program, 2023. (Dated October 30, 2023.).

[Pil24] C. Pilatte. Unconditional correctness of recent quantum algorithms for factoring
and computing discrete logarithms, 2024. arXiv:2404.16450v1.

[PP00] S. Parker and M.B. Plenio. Efficient factorization with a single pure qubit and
log n mixed qubits. Phys. Rev. Lett., 85:3049–3052, 2000. doi:10.1103/Phys
RevLett.85.3049.

[Rag24] S. Ragavan. Regev factoring beyond Fibonacci: Optimizing prefactors. Cryp-
tology ePrint Archive, Paper 2024/636, 2024. (Dated 2024-07-01.). URL:
https://eprint.iacr.org/2024/636.

[Reg25] O. Regev. An efficient quantum factoring algorithm. J. ACM, 72(1):10:1–13,
2025. doi:10.1145/3708471.

https://arxiv.org/abs/2309.01754v1
https://github.com/ekera/qunundrum
https://github.com/ekera/qunundrum
https://arxiv.org/abs/1905.09084v4
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/1905.07682v1
https://doi.org/10.17487/RFC7919
https://arxiv.org/abs/1711.02491
https://doi.org/10.17487/RFC3526
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/3-540-49208-9_15
https://doi.org/10.6028/NIST.FIPS.186
https://doi.org/10.6028/NIST.FIPS.186-5
https://arxiv.org/abs/2404.16450v1
https://doi.org/10.1103/PhysRevLett.85.3049
https://doi.org/10.1103/PhysRevLett.85.3049
https://eprint.iacr.org/2024/636
https://doi.org/10.1145/3708471

Martin Ekerå, Joel Gärtner 25

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.
doi:10.1145/359340.359342.

[RV23] S. Ragavan and V. Vaikuntanathan. Optimizing space in Regev’s factoring
algorithm, 2023. arXiv:2310.00899v1.

[RV24] S. Ragavan and V. Vaikuntanathan. Space-efficient and noise-robust quantum
factoring. In L. Reyzin and D. Stebila, editors, Advances in Cryptology —
CRYPTO 2024, pages 107–140, Cham, Switzerland, 2024. Springer Nature.
doi:10.1007/978-3-031-68391-6_4.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66(1):181–199,
1994. doi:10.1007/BF01581144.

[Sei01] J.-P. Seifert. Using fewer qubits in Shor’s factorization algorithm via simultane-
ous Diophantine approximation. In D. Naccache, editor, Topics in Cryptology

— CT-RSA 2001, pages 319–327, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg. doi:10.1007/3-540-45353-9_24.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, 1994. doi:10.1109/SFCS.1994.365700.

[Sho97] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
doi:10.1137/S0097539795293172.

[VM08] R. Van Meter. Architecture of a Quantum Multicomputer Optimized for Shor’s
Factoring Algorithm. PhD thesis, Keio University, 2008.

[VMI05] R. Van Meter and K.M. Itoh. Fast quantum modular exponentiation. Phys.
Rev. A, 71:052320, 2005. doi:10.1103/PhysRevA.71.052320.

https://doi.org/10.1145/359340.359342
https://arxiv.org/abs/2310.00899v1
https://doi.org/10.1007/978-3-031-68391-6_4
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/3-540-45353-9_24
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevA.71.052320

26 A high-level comparison of state-of-the-art quantum algorithms

A Tables
In this appendix, we tabulate cost comparisons between Regev’s variation [Reg25] of
Shor’s algorithms [Sho94, Sho97], and Ekerå–Gärtner’s extensions [EG24b] thereof, on
the one hand, and Ekerå–Håstad’s [EH17] and Ekerå’s [Eke24b] variations of Shor’s
algorithms [Sho94, Sho97] on the other. In the tables, we inherit notation from the
aforementioned works, sometimes leading to the same symbol being used to denote different
quantities depending on where in the table it is used. To prevent misunderstandings, we
describe how the tables were constructed below:

• For Regev’s algorithm and Ekerå–Gärtner’s extensions (EGR):
As in [Reg25,EG24b], we let n = ⌈log N⌉. We let d denote the dimension, and m

the number of runs. We let R = 2C
√

n, for C > 0, and D = 2⌈log(2
√

dR)⌉.
We use Ragavan’s generalization [Rag24] of the space-saving optimizations of Ragavan
and Vaikuntanathan [RV24]. We let r and s be as defined by Ragavan [Rag24].
We let K(r) be maximal such that G

(r)
K(r) ≤ D as in [Rag24, Sect. 3.2]. If r > 1, we

tabulate K(r) and r. Otherwise, if r = 1, we only tabulate K = K(1).
We do not tabulate s. Instead, we pick s as function of r: If r = 1, we must pick
s = 1. Otherwise, if r > 1 and a power of two, we pick s = r/2. Otherwise, we pick s
as the greatest power of two that divides r. This is the optimal way to pick s in our
cost metric as it minimizes f(r, s), see Sect. 3.2.2.
The number of large multiplications modulo N of the form∣∣u, v, t, 0S

〉
→
∣∣u, v, (t + uv) mod N, 0S

〉
(9)

that need to be performed per run is (23 · M(d, r) + f(r, s)) · K(r), see Sect. 3.5.
Overall, the number of large multiplications modulo N that need to be performed
is hence (23 · M(d, r) + f(r, s)) · K(r) · m. We tabulate these counts in the columns
denoted “#ops”. (In Tab. 6, where m → ∞, we only tabulate the per-run count.)
For reference, we also include M(d, r) in the tables, in the column denoted M , except
in Tabs. 1–4 as M(d, r) would always be zero in these tables.

• For Ekerå–Håstad’s variation of Shor’s algorithm (EHS):
As in [EH17], we let m be an upper bound on the bit length of the short discrete
logarithm d. For the RSA IFP, we have that m = ⌈log N⌉ /2 − 1, whereas m = 2z
for the DLP in safe-prime groups, for z the strength level in bits.
We consider both the case of solving for d in a single run via [Eke23] with ∆ = 30
and ℓ = m − ∆, and of making tradeoffs with tradeoff factor s > 1 and solving
via [Eke20] in n ≥ s runs with ℓ = ⌈m/s⌉.
In the former case, the success probability ≫ 99%, see [Eke23, Tab. 1]. In the latter
case, we pick s and n from [Eke20, Tab. 3], leading to a success probability ≥ 99%
without enumerating. Other parameterizations are of course possible.
We use standard arithmetic, with windowing with a w = 10 bit window, and without
windowing corresponding to having a w = 1 bit window.
The total exponent length per run is m + 2ℓ. It follows that number of large
multiplications modulo N of the form (9) that need to be performed per run is
2 · ⌈(m + 2ℓ)/w⌉. Overall, the number of such operations that need to be performed
is thus 2n · ⌈(m + 2ℓ)/w⌉. We tabulate these counts in the columns denoted “#ops”.
We define the advantage as the quotient between the number of such operations
required by Regev’s algorithm, or EGR, and EHS, respectively. We tabulate the

Martin Ekerå, Joel Gärtner 27

advantage, per run and overall, in the columns denoted “adv”. (In Tab. 6, we tabulate
only the advantage per run.)

• For Ekerå’s variation of Shor’s algorithm (ES):
As in [Eke24b], we let m be an upper bound on the bit length of the logarithm d.
For the general DLP in safe-prime groups we have that m = ⌈log N⌉ − 1. For the
DLP in Schnorr groups we instead have that m = 2z, for z the strength level in bits.
We consider both the case of solving for d in a single run via [Eke24b, Sect. 6.1] with
ς = 0 and ℓ = m, and of making tradeoffs with tradeoff factor s > 1 and solving
via [Eke24b, Sect. 6.2] in n ≥ s runs with ℓ = ⌈m/s⌉.
In the former case, the success probability ≫ 99%, provided that one performs a
limited search in the classical post-processing, see [Eke23, Tab. 1 in App. A.1]. In
the latter case, we pick s, ς and n so as to achieve a reasonable tradeoff and a success
probability ≥ 99% without enumerating, and with η1 = . . . = ηn = 0. This based on
simulations performed with the Qunundrum [Eke24a] suite of MPI programs on the
Dardel HPE Cray EX supercomputer at PDC at KTH. Other parameterizations are
of course possible.
We use standard arithmetic, with windowing with a w = 10 bit window.
The total exponent length per run is m + ς + ℓ. It follows that number of large
multiplications modulo N of the form (9) that need to be performed per run is
2·⌈(m + ς + ℓ)/w⌉. Overall, the number of such operations that need to be performed
is thus 2n·⌈(m + ς + ℓ)/w⌉. We tabulate these counts in the columns denoted “#ops”.
We define the advantage as the quotient between the number of such operations
required by Regev’s algorithm, or EGR, and ES, respectively. We tabulate the
advantage, per run and overall, in the columns denoted “adv”.
It should be noted that the analysis in [Eke24b] is heuristic. We could instead have
based our comparison on the algorithm and analysis in [Eke21] that does not require
the group order to be known. This would have led to a cost profile essentially identical
to that for EHS [EH17,Eke20,Eke23], but for the fact that somewhat smaller tradeoff
factors s would have had to be selected for the Schnorr groups to ensure that the
upper bound on the approximation error in the analysis in [Eke21] is sufficiently low.

28
A

high-levelcom
parison

ofstate-of-the-art
quantum

algorithm
s

A.1 RSA IFP
A.1.1 A basic baseline comparison

Table 1: Comparison between Regev’s algorithm [Reg25] (with [RV24, Rag24], LLL, r = 1, d = ⌈
√

n ⌉, m = d + 4) and Ekerå–Håstad’s
variation [EH17,Eke20,Eke23] of Shor’s algorithm [Sho94,Sho97] for the RSA IFP (with w = 1). For further information on this table and how to
interpret it, see Sect. 4.1.1 and App. A.

IFP via Regev [Reg25] RSA IFP via Ekerå–Håstad
with [RV24, Rag24] [EH17, Eke20, Eke23]

per run overall per run overall
⌈ log N ⌉ d m C log D K #ops #ops m s ℓ n #ops adv #ops adv

2048 46 50 2.03 96 138 2760 138000 1023 – 993 1 6018 0.46 6018 22.9
17 61 20 2290 1.20 45800 3.01

3072 56 60 2.05 118 170 3400 204000 1535 – 1505 1 9090 0.37 9090 22.4
21 74 24 3366 1.01 80784 2.52

4096 64 68 2.08 138 199 3980 270640 2047 – 2017 1 12162 0.33 12162 22.2
24 86 27 4438 0.90 119826 2.25

6144 79 83 2.07 167 241 4820 400060 3071 – 3041 1 18306 0.26 18306 21.8
31 100 34 6542 0.74 222428 1.79

8192 91 95 2.08 193 278 5560 528200 4095 – 4065 1 24450 0.23 24450 21.6
34 121 37 8674 0.64 320938 1.64

M
artin

Ekerå,JoelG
ärtner

29

A.1.2 Using LLL and r = 1

Table 2: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], LLL, r = 1, optimal d and m)
and Ekerå–Håstad’s variation [EH17,Eke20,Eke23] of Shor’s algorithm [Sho94,Sho97] (with w = 10) for the RSA IFP. For further information on
this table and how to interpret it, see Sect. 4.1.2 and App. A.

IFP via Regev [Reg25] RSA IFP via Ekerå–Håstad
with [RV24, Rag24, EG24b] [EH17, Eke20, Eke23]

per run overall per run overall
⌈ log N ⌉ d m C log D K #ops #ops m s ℓ n #ops adv #ops adv

2048 137 181 1.02 51 74 1480 267880 1023 – 993 1 602 2.45 602 444
17 61 20 230 6.43 4600 58.2

3072 182 222 1.01 61 88 1760 390720 1535 – 1505 1 910 1.93 910 429
21 74 24 338 5.20 8112 48.1

4096 210 256 1.01 70 101 2020 517120 2047 – 2017 1 1218 1.65 1218 424
24 86 27 444 4.54 11988 43.1

6144 237 314 1.02 85 123 2460 772440 3071 – 3041 1 1832 1.34 1832 421
31 100 34 656 3.75 22304 34.6

8192 297 362 1.01 97 140 2800 1013600 4095 – 4065 1 2446 1.14 2446 414
34 121 37 868 3.22 32116 31.5

30
A

high-levelcom
parison

ofstate-of-the-art
quantum

algorithm
s

A.1.3 Using BKZ-200 and r = 1

Table 3: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], BKZ-200, r = 1, optimal d
and m) and Ekerå–Håstad’s variation [EH17, Eke20, Eke23] of Shor’s algorithm [Sho94, Sho97] (with w = 10) for the RSA IFP. For further
information on this table and how to interpret it, see Sect. 4.1.3 and App. A.

IFP via Regev [Reg25] RSA IFP via Ekerå–Håstad
with [RV24, Rag24, EG24b] [EH17, Eke20, Eke23]

per run overall per run overall
⌈ log N ⌉ d m C log D K #ops #ops m s ℓ n #ops adv #ops adv

2048 232 342 0.55 30 43 860 294120 1023 – 993 1 602 1.42 602 488
17 61 20 230 3.73 4600 63.9

3072 284 419 0.55 36 52 1040 435760 1535 – 1505 1 910 1.14 910 478
21 74 24 338 3.07 8112 53.7

4096 366 483 0.54 40 58 1160 560280 2047 – 2017 1 1218 0.95 1218 460
24 86 27 444 2.61 11988 46.7

6144 449 592 0.54 48 69 1380 816960 3071 – 3041 1 1832 0.75 1832 445
31 100 34 656 2.10 22304 36.6

8192 652 683 0.53 54 78 1560 1065480 4095 – 4065 1 2446 0.64 2446 435
34 121 37 868 1.79 32116 33.1

M
artin

Ekerå,JoelG
ärtner

31

A.1.4 Using LLL and optimal r

Table 4: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], LLL, optimal r, optimal d
and m) and Ekerå–Håstad’s variation [EH17, Eke20, Eke23] of Shor’s algorithm [Sho94, Sho97] (with w = 10) for the RSA IFP. For further
information on this table and how to interpret it, see Sect. 4.1.4 and App. A.

IFP via Regev [Reg25] RSA IFP via Ekerå–Håstad
with [RV24, Rag24, EG24b] [EH17, Eke20, Eke23]

per run overall per run overall
⌈ log N ⌉ d m C log D K(r) r #ops #ops m s ℓ n #ops adv #ops adv

2048 78 181 1.19 58 28 4 952 172312 1023 – 993 1 602 1.58 602 286
17 61 20 230 4.13 4600 37.4

3072 107 222 1.14 68 33 4 1122 249084 1535 – 1505 1 910 1.23 910 273
21 74 24 338 3.31 8112 30.7

4096 138 256 1.10 75 36 4 1224 313344 2047 – 2017 1 1218 1.00 1218 257
24 86 27 444 2.75 11988 26.1

6144 211 314 1.04 87 42 4 1428 448392 3071 – 3041 1 1832 0.78 1832 244
31 100 34 656 2.17 22304 20.1

8192 195 362 1.10 105 40 6 1600 579200 4095 – 4065 1 2446 0.65 2446 236
34 121 37 868 1.84 32116 18.0

32
A

high-levelcom
parison

ofstate-of-the-art
quantum

algorithm
s

A.1.5 Using BKZ-200 and optimal r

Table 5: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], BKZ-200, optimal r, optimal d
and m) and Ekerå–Håstad’s variation [EH17, Eke20, Eke23] of Shor’s algorithm [Sho94, Sho97] (with w = 10) for the RSA IFP. For further
information on this table and how to interpret it, see Sect. 4.1.5 and App. A.

IFP via Regev [Reg25] RSA IFP via Ekerå–Håstad
with [RV24, Rag24, EG24b] [EH17, Eke20, Eke23]

per run overall per run overall
⌈ log N ⌉ d m C log D K(r) r M #ops #ops m s ℓ n #ops adv #ops adv

2048 137 342 0.65 34 27 2 0 702 240084 1023 – 993 1 602 1.16 602 398
17 61 20 230 3.05 4600 52.1

3072 196 419 0.61 39 19 4 1 798 334362 1535 – 1505 1 910 0.88 910 367
21 74 24 338 2.36 8112 41.2

4096 148 483 0.74 52 25 4 0 850 410550 2047 – 2017 1 1218 0.70 1218 337
24 86 27 444 1.91 11988 34.2

6144 201 592 0.70 60 29 4 0 986 583712 3071 – 3041 1 1832 0.54 1832 318
31 100 34 656 1.50 22304 26.1

8192 255 683 0.67 66 32 4 0 1088 743104 4095 – 4065 1 2446 0.44 2446 303
34 121 37 868 1.25 32116 23.1

M
artin

Ekerå,JoelG
ärtner

33

A.1.6 Using perfect reduction and optimal r

Table 6: Comparison between Regev’s algorithm [Reg25] (with [RV24, Rag24], perfect reduction, optimal r, optimal d and m → ∞) and
Ekerå–Håstad’s variation [EH17,Eke20,Eke23] of Shor’s algorithm [Sho94,Sho97] (with w = 10) for the RSA IFP. Note that this table is special in
that it considers Regev’s algorithm both with and without the extensions of Ekerå and Gärtner [EG24b], and in that the number of runs m → ∞
for Regev giving Ekerå–Håstad an infinite overall advantage. Note furthermore that since C is quite small in this table, we exceptionally tabulate C
with precision 0.001. For further information on this table and how to interpret it, see Sect. 4.1.6 and App. A.

IFP via Regev [Reg25] RSA IFP via Ekerå–Håstad
with [RV24, Rag24, EG24b] [EH17, Eke20]

per run per run
⌈ log N ⌉ d C log D K r M #ops m s ℓ n #ops adv

2048 143 0.317 19 15 2 1 510 1023 17 61 20 230 2.21
227 0.200 14 11 2 1 374 1.62

3072 204 0.272 20 16 2 1 544 1535 21 74 24 338 1.60
351 0.158 14 11 2 1 374 1.10

4096 256 0.250 21 17 2 1 578 2047 24 86 27 444 1.30
427 0.150 15 12 2 1 408 0.92

6144 347 0.226 23 18 2 1 612 3071 31 100 34 656 0.93
454 0.173 19 11 3 1 440 0.67

8192 809 0.112 16 23 1 1 644 4095 34 121 37 868 0.74
809 0.112 16 13 2 1 442 0.51

34
A

high-levelcom
parison

ofstate-of-the-art
quantum

algorithm
s

A.2 DLP in finite fields
A.2.1 General DLP in safe-prime groups

Table 7: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], BKZ-200, optimal r, optimal d
and m) and Ekerå’s variation [Eke24b] of Shor’s algorithm [Sho94,Sho97] (with w = 10) for the general DLP in safe-prime groups. For further
information on this table and how to interpret it, see Sect. 4.2.1 and App. A.

DLP via Ekerå–Gärtner [EG24b, Reg25] DLP via Ekerå’s variation [Eke24b]
with [RV24, Rag24] of Shor [Sho94, Sho97]

per run overall per run overall
⌈ log N ⌉ z d m C log D K(r) r M #ops #ops m s ς ℓ n #ops adv #ops adv

2048 112 137 342 0.65 34 27 2 0 710 242820 2047 1 0 2047 1 820 0.86 820 296
24 11 86 27 430 1.65 11610 20.9

3072 128 196 419 0.61 39 19 4 1 806 337714 3071 1 0 3071 1 1230 0.66 1230 274
31 12 100 34 638 1.26 21692 15.5

4096 152 148 483 0.74 52 25 4 0 862 416346 4095 1 0 4095 1 1638 0.53 1638 254
34 12 121 37 846 1.01 31302 13.3

6144 176 201 592 0.70 60 29 4 0 998 590816 6143 1 0 6143 1 2458 0.41 2458 240
37 12 167 40 1266 0.79 50640 11.6

8192 200 255 683 0.67 66 32 4 0 1102 752666 8191 1 0 8191 1 3278 0.34 3278 229
40 12 205 43 1682 0.66 72326 10.4

M
artin

Ekerå,JoelG
ärtner

35

A.2.2 Short DLP in safe-prime groups

Table 8: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], BKZ-200, optimal r, optimal d
and m) and Ekerå–Håstad’s variation [EH17, Eke20, Eke23] of Shor’s algorithm [Sho94, Sho97] (with w = 10) for the short DLP in safe-prime
groups. For further information on this table and how to interpret it, see Sect. 4.2.2 and App. A.

DLP via Ekerå–Gärtner [EG24b, Reg25] short DLP via Ekerå–Håstad
with [RV24, Rag24] [EH17, Eke20, Eke23]

per run overall per run overall
⌈ log N ⌉ z d m C log D K(r) r M #ops #ops m s ℓ n #ops adv #ops adv

2048 112 137 342 0.65 34 27 2 0 710 242820 224 – 194 1 124 5.72 124 1950
7 32 10 58 12.2 580 418

3072 128 196 419 0.61 39 19 4 1 806 337714 256 – 226 1 142 5.67 142 2370
8 32 11 64 12.5 704 479

4096 152 148 483 0.74 52 25 4 0 862 416346 304 – 274 1 172 5.01 172 2420
9 34 12 76 11.3 912 456

6144 176 201 592 0.70 60 29 4 0 998 590816 352 – 322 1 200 4.99 200 2950
10 36 13 86 11.6 1118 528

8192 200 255 683 0.67 66 32 4 0 1102 752666 400 – 370 1 228 4.83 228 3300
11 37 14 96 11.4 1344 560

36
A

high-levelcom
parison

ofstate-of-the-art
quantum

algorithm
s

A.2.3 DLP in Schnorr groups

Table 9: Comparison between Ekerå–Gärtner’s extension [EG24b] of Regev’s algorithm [Reg25] (with [RV24,Rag24], BKZ-200, optimal r, optimal d
and m) and Ekerå’s variation [Eke24b] of Shor’s algorithm [Sho94,Sho97] (with w = 10) for the DLP in Schnorr groups. For further information on
this table and how to interpret it, see Sect. 4.2.3 and App. A.

DLP via Ekerå–Gärtner [EG24b, Reg25] DLP via Ekerå’s variation [Eke24b]
with [RV24, Rag24] of Shor [Sho94, Sho97]

per run overall per run overall
⌈ log N ⌉ z d m C log D K(r) r M #ops #ops m s ς ℓ n #ops adv #ops adv

2048 112 137 342 0.65 34 27 2 0 710 242820 224 1 0 224 1 90 7.88 90 2690
7 9 32 10 54 13.1 540 449

3072 128 196 419 0.61 39 19 4 1 806 337714 256 1 0 256 1 104 7.75 104 3240
8 9 32 11 60 13.4 660 511

4096 152 148 483 0.74 52 25 4 0 862 416346 304 1 0 304 1 122 7.06 122 3410
9 10 34 12 70 12.3 840 495

6144 176 201 592 0.70 60 29 4 0 998 590816 352 1 0 352 1 142 7.02 142 4160
10 10 36 13 80 12.4 1040 568

8192 200 255 683 0.67 66 32 4 0 1102 752666 400 1 0 400 1 160 6.88 160 4700
11 10 37 14 90 12.2 1260 597

	Introduction
	Our contributions
	Methodology
	Overview
	Notation

	Existing variations of Shor's algorithms
	Preliminaries
	Ekerå–Håstad's variation of Shor's algorithm
	Ekerå's variation of Shor's algorithm

	Regev's algorithm and its extensions
	High-level overview
	Implementing the algorithms
	Selecting the constant C
	On the cost of computing the cj
	Selecting parameters

	Cost comparisons and results
	Comparisons for RSA
	Comparisons for discrete logarithms
	More refined cost metrics

	Summary and conclusion
	References
	Tables
	RSA IFP
	DLP in finite fields

