Security Guidelines for Implementing Homomorphic Encryption
Authors
Abstract
Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows performing arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it has been considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to become a practical primitive with strong security guarantees. Most modern constructions are based on well-known lattice problems such as Learning With Errors (LWE). Besides its academic appeal, in recent years FHE has also attracted significant attention from industry, thanks to its applicability to a considerable number of real-world use-cases. An upcoming standardization effort by ISO/IEC aims to support the wider adoption of these techniques. However, one of the main challenges that standards bodies, developers, and end users usually encounter is establishing parameters. This is particularly hard in the case of FHE because the parameters are not only related to the security level of the system, but also to the type of operations that the system is able to handle. In this paper we provide examples of parameter sets for LWE targeting particular security levels, that can be used in the context of FHE constructions. We also give examples of complete FHE parameter sets, including the parameters relevant for correctness and performance, alongside those relevant for security. As an additional contribution, we survey the parameter selection support offered in open-source FHE libraries.
References
How to cite
Jean-Philippe Bossuat, Rosario Cammarota, Ilaria Chillotti, Benjamin R. Curtis, Wei Dai, Huijing Gong, Erin Hales, Duhyeong Kim, Bryan Kumara, Changmin Lee, Xianhui Lu, Carsten Maple, Alberto Pedrouzo-Ulloa, Rachel Player, Yuriy Polyakov, Luis Antonio Ruiz Lopez, Yongsoo Song, and Donggeon Yhee, Security Guidelines for Implementing Homomorphic Encryption. IACR Communications in Cryptology, vol. 1, no. 4, Jan 13, 2025, doi: 10.62056/anxra69p1.
Citations
There is at least one citation.
License
Copyright is held by the author(s)
This work is licensed under a Creative Commons Attribution (CC BY) license.