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Abstract. Fully Homomorphic Encryption (FHE) is a cryptographic primitive that
allows performing arbitrary operations on encrypted data. Since the conception of
the idea in [RAD78], it has been considered a holy grail of cryptography. After the
first construction in 2009 [Gen09], it has evolved to become a practical primitive
with strong security guarantees. Most modern constructions are based on well-known
lattice problems such as Learning With Errors (LWE). Besides its academic appeal,
in recent years FHE has also attracted significant attention from industry, thanks
to its applicability to a considerable number of real-world use-cases. An upcoming
standardization effort by ISO/IEC aims to support the wider adoption of these
techniques. However, one of the main challenges that standards bodies, developers,
and end users usually encounter is establishing parameters. This is particularly hard
in the case of FHE because the parameters are not only related to the security level
of the system, but also to the type of operations that the system is able to handle.
In this paper we provide examples of parameter sets for LWE targeting particular
security levels, that can be used in the context of FHE constructions. We also give
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examples of complete FHE parameter sets, including the parameters relevant for
correctness and performance, alongside those relevant for security. As an additional
contribution, we survey the parameter selection support offered in open-source FHE
libraries.

Keywords: Fully Homomorphic Encryption · Homomorphic Encryption · Learning
With Errors · Parameter Selection · Concrete Security · BFV · BGV · CKKS ·
DM · CGGI

1 Introduction

An encryption scheme is said to be fully homomorphic if arbitrary computations can be
conducted on encrypted inputs without knowledge of the decryption key, and thus without
access to the plaintext input. From the time the first construction was proposed in [Gen09],
there has been a significant effort to improve fully homomorphic encryption (FHE) schemes
in terms of both efficiency and security. The study of its potential application started as
early as [RAD78]. In fact, FHE supports many applications [KL21], including computation
over data stored on private clouds [BY87], private information retrieval [MCR21], and
secure inference [JVC18].

There has been significant academic and commercial effort towards developing real-
world applications for FHE. As a result, a community initiative towards standardizing
FHE called HomomorphicEncryption.org was launched in 2017. More recently, there is an
ongoing effort to formally standardize FHE schemes by ISO/IEC. The schemes expected
to be standardized are BFV [Bra12, FV12], BGV [BGV12], CKKS [CKKS17], DM [DM15],
and CGGI [CGGI16]. A new FHE scheme [LMK+23], which is regarded as a more efficient
alternative to DM [BBB+22], is included in this document under the DM umbrella term1.
These FHE schemes are based on well-known variants of the Learning With Errors (LWE)
problem [Reg05], including Ring-LWE (RLWE) [SSTX09, LPR10, LPR13] and General-LWE
(GLWE) [BGV12, CGGI17]2. To assess the concrete security of FHE schemes, we must
therefore estimate the concrete hardness of the underlying variant of LWE. Every instance
of RLWE and GLWE can be interpreted as an LWE instance. Moreover, it is not known
how to cryptanalytically exploit the algebraic structures of RLWE and GLWE. For this
reason, it is appropriate to restrict focus to the concrete security of LWE.

The main purpose of this document is to support the ISO/IEC effort towards the
standardization of FHE and its goal is two-fold. The first goal is to present LWE parameter
sets that can be used in FHE implementations that target particular levels of security.
These parameter sets are presented in Section 5.1. They are developed using the prevailing
methodology to establish parameters for LWE-based cryptography, following works such
as [APS15a] and the Lattice Estimator3. We make available our code for estimating the
security of these parameters sets at https://github.com/gong-cr/FHE-Security-Gui
delines/.

Our second goal is to present examples of functional parameter sets that could be
used for particular FHE schemes in different contexts. These parameter sets, presented in
Section 5.2, mention not only those parameters that are relevant for security but also those
relevant for correctness and functionalities. These parameter sets are necessarily exemplar
and may not suit all implementations in all application contexts. Thus, in Section 5.4, we
also survey the parameter selection support offered in open source FHE libraries.

1We note that elsewhere in the literature the CGGI, DM, and LMK+ schemes are sometimes thought
of as the same, whilst utilising differing blind rotation algorithms, e.g. in [XZD+23].

2GLWE is also referred to as Module LWE (MLWE) in the literature [BGV12, LS15], but we will use
the terminology “GLWE” in this document for consistency.

3https://github.com/malb/lattice-estimator.

https://github.com/gong-cr/FHE-Security-Guidelines/
https://github.com/gong-cr/FHE-Security-Guidelines/
https://github.com/malb/lattice-estimator
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1.1 Comparison to prior work [ACC+19]
Our approach builds upon the efforts from previous work by HomomorphicEncryp-
tion.org [ACC+19] (later published as [ACC+21]), by updating and expanding the LWE
parameter sets for FHE schemes that target specific levels of security. While their work
provided valuable insights, it had certain limitations. Specifically, it did not consider
parameter sets commonly used in schemes like [DM15, CGGI16, LMK+23] and similar
ones [BR15, BDF18, KS23]. Additionally, it overlooked binary secret distributions, which
are often used in practical applications. Furthermore, the LWE dimensions considered
in [ACC+19] are limited to a range of n = 1024 to n = 32768, despite larger dimensions
being employed in practice nowadays. Since currently there is no scientific evidence
against including these parameter sets, we overcome these limitations in this document.
In addition, the security of the parameter sets provided in [ACC+19] was estimated using
the (classical) cost model [BDGL16]4 with the LWE Estimator [APS15b], which is an
old version of the currently maintained Lattice Estimator [APS15a]. The parameter
sets provided in [ACC+19] may now be considered somewhat outdated, due to recent
cryptanalytic advancements that may have implications on the concrete hardness of LWE
instances used in FHE applications [CHHS19, SC19, EJK20, GJ21, BLLW22, MAT22,
CST22, DP23b, PS24, DP23a, XWW+24]. In particular, the security of the parameter sets
provided in this work is estimated using the classical cost model [MAT22] in the Lattice
Estimator5. Despite these differences, both [ACC+19] and our work provide bounds of
concrete parameters for certain security levels in the form of lookup tables, and focus on
specifying concrete parameters for power-of-two cyclotomic fields for RLWE schemes.

It is important to note that the goals of this document and [ACC+19] are different.
In addition to presenting wider ranges of LWE parameter sets targeting specific levels
of security, we also include functional parameter sets. These functional parameter sets
offer examples of complete sets of parameters, rather than presenting only the parameters
that are relevant for security. However, we would like to emphasize that the functional
parameter tables provided are not exhaustive and should be viewed as examples. In
addition, in contrast to [ACC+19], we do not provide details for any particular FHE
construction or cryptanalytic attack. Instead, we encourage readers to consult the existing
literature for detailed information on these aspects.

1.2 Related work
There are many other works in the literature on subjects that are similar to, but not
directly addressed by, this document. Here we present an overview of these topics.

1.2.1 NTRU-based FHE

The NTRU problem [HPS98] is another widely used assumption in lattice-based cryp-
tography. It has been shown that RLWE-like encryption can be built using statistically
hard instances of NTRU [SS11]. Several FHE schemes based on NTRU have been pro-
posed [LTV12, BLLN13, Klu22, BIP+22, XZD+23]. However, it is known that the sublattice
structure of the NTRU lattice can be used to optimize attacks [ABD16, CJL16, KF17,
DvW21], leaving some NTRU-based FHE schemes insecure. It was shown in [DvW21]
that, to avoid the sublattice attacks, one should use modulus q smaller than O(n2.484).
The analysis of [DvW21] was extended in [HSS23], where it was experimentally estimated
that the concrete fatigue point is q = 0.0058 · σ2 · n2.484. This seems to rule out the
BGV/BFV-like NTRU-based FHE schemes that require large modulus (e.g., [LTV12]), but
not CGGI-like NTRU-based schemes (e.g., [BIP+22]). As the NTRU-based schemes that

4Known as BKZ.sieve in the LWE Estimator.
5Known as RC.MATZOV in the Lattice Estimator.
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are secure against the sublattice attacks are relatively new, they are not considered further
in this work.

1.2.2 Reductions between LWE and other lattice problems

This document considers the hardness of LWE from the point of view of estimating the
concrete security of specific LWE instances. The hardness of LWE can also be established
by considering reductions between this and other lattice problems. It is known that solving
LWE is at least as hard as quantumly [Reg05, Reg09], or classically [Pei09, BLP+13],
solving worst-case lattice hard problems such as the decisional Shortest Vector Problem
(Gap-SVP) and the Shortest Independent Vectors Problem (SIVP). While these hardness
proofs mainly focused on the case that the secret key is sampled from the uniform
distribution, there are also reductions from LWE with uniform secret to LWE with some
other secret key distributions, including the error distribution [ACPS09], a uniform binary
distribution [BLP+13], and a sparse binary distribution [CHK+16]. RLWE (resp. GLWE) is
proved to be at least as hard as worst-case lattice hard problems over ideal (resp. module)
lattices [LPR10, LPR13, PRS17, LS15]. Algorithms for solving Ideal-SVP are considered
in [CDPR16, PHS19, BL21].

1.2.3 Machine learning attacks

The line of work [WCCL22, LSW+23, LWA+23, SWL+24] shows how a transformer model
may sometimes be used to recover secrets from LWE instances with sparse secrets in
dimensions n ≤ 1024 for relatively large modulus q. It is not clear whether the approach
would be feasible or competitive for attacking LWE instances that are used in FHE, which
would either use a much smaller modulus q than considered in [SWL+24] for n ≤ 1024, or
use a larger dimension n. Hence we do not consider this approach further.

1.2.4 Side-channel attacks

Side-channel attacks exploit leakage gained from a specific implementation of an algorithm
on a specific computer system, rather than weaknesses in the implemented algorithm itself.
The discussion and mitigation of potential side-channel leakages in FHE is not considered
in this document. We merely note that prior literature has exploited side channels in
certain FHE implementations [PPM17, AKP+22, DP22, AA22], and that any potential
side-channel leakage deserves attention since it can amplify the utility of algorithmic
approaches for solving LWE [DDGR20, DGHK23].

1.2.5 Parameter selection

In Section 5.1 we present LWE parameter sets for FHE that target particular levels of
security. Such sets could be used as part of an automatic parameter selection tool or
compiler that considers functionality and efficiency alongside security. Approaches for
automating the selection of FHE (or partial) parameters were given in e.g. [DKS+20,
LHC+22, LCK+23, BBB+23, CP23]. Similar such sets [ACC+19] have also been used in
major FHE libraries as a lookup table to inform default parameters. We will mention this
further in Section 5.4. Efforts have also explored frameworks or formulas as alternatives to
lookup tables for selecting FHE parameters, e.g. [BBB+23, MML+23, KMR24].

1.3 Structure of document
The remainder of this document is organized as follows. Section 2 introduces the LWE
problem and its algebraic variants used in FHE schemes. Section 3 discusses several security
notions relevant to protocols making use of FHE. Section 4 states the security levels that
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we target and describes the tools and assumptions that we use to give concrete security
estimates of LWE parameter sets. Section 5.1 gives examples of LWE parameter sets chosen
to target a given security level that can be used in FHE applications. Section 5.2 presents
examples of complete FHE parameter sets. These parameters include the LWE parameters
relevant to security, as well as other parameters (such as plaintext modulus) that are
relevant for correctness and performance. Section 5.3 summarizes the high-level efficiency
tradeoffs when selecting the main FHE parameters. Section 5.4 surveys the parameter
selection support offered in some open source FHE libraries.

2 Notation and definitions
In this section, we specify the notation used in the remainder of the document. We
define the variants of the Learning With Errors problem that are relevant to the FHE
constructions presented in this document, i.e. LWE, RLWE, and GLWE. We also specify
the secret and error distributions that are used in practice.

2.1 The Learning With Errors problems

2.1.1 Learning With Errors (LWE)

The LWE problem is parametrized by (n, m, q, χs, χe), where n is the dimension, m is the
number of available samples, q is the modulus, χs is the secret distribution over Zn

q , and
χe is the error distribution over Zm.

Definition 1 (LWE distribution). For a secret s ∈ Zn
q that is chosen according to χs, the

LWE distribution samples a ∈ Zn
q uniformly at random, samples e ∈ Z from χe, computes

b := a · s + e mod q, and outputs (a, b).

Definition 2 (Decision LWE). The Decision LWE problem asks to decide whether samples
(a, b) are from the LWE distribution or are chosen uniformly at random from Zn+1

q .

Definition 3 (Search LWE). The Search LWE problem asks to recover s (or equivalently
e1, . . . , em) given m samples {(ai, bi) : i = 1, . . . , m} from the LWE distribution.

2.1.2 Ring Learning With Errors (RLWE)

Let Rq = Zq[X]/(fN (x)) be a polynomial ring with modulus q, where fN (x) is an
irreducible polynomial of degree N . We often take a power-of-two cyclotomic ring so that
N is a power of two and fN (x) = xN + 1. Let χs denote a secret distribution over Rq,
and let χe denote an error distribution over Rq.

Definition 4 (RLWE distribution). For a secret s ∈ Rq that is chosen according to χs,
the RLWE distribution samples a ∈ Rq uniformly, samples an error e ∈ Rq according to
χe, computes b := as + e ∈ Rq, and outputs (a, b).

Definition 5 (Decision RLWE). The Decision RLWE problem asks to decide whether
samples (a, b) are from the RLWE distribution or are chosen uniformly at random from
Rq × Rq.

Definition 6 (Search RLWE). The Search RLWE problem asks to recover s given m
samples {(ai, bi = ai · s + ei) : i = 1, . . . , m} from the RLWE distribution.
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2.1.3 General Learning With Errors (GLWE)

We again let Rq be an (e.g. cyclotomic) polynomial ring with modulus q. We overload
notation to let χs denote a secret distribution over Rk

q , and to let χe denote an error
distribution over Rq.

Definition 7 (GLWE distribution). For a secret s ∈ Rk
q that is chosen according to χs,

sample a ∈ Rk
q uniformly, and sample an error e ∈ Rq from χe. The GLWE distribution

computes b := a · s + e ∈ Rq, and outputs (a, b).

Definition 8 (Decision GLWE). The Decision GLWE problem asks to decide whether
samples (a, b) are from the GLWE distribution or are chosen uniformly at random from
Rk+1

q .

Definition 9 (Search GLWE). The Search GLWE problem asks to recover s given m
samples {(ai, bi) : i = 1, . . . , m} from the GLWE distribution.

2.2 Error distributions
If the standard deviation of the error distribution is Ω(

√
n), the best-known algorithm to

solve the LWE problem requires exponential time [AG11]. In practice, implementations
of RLWE/GLWE-based homomorphic encryption schemes typically choose much narrower
distributions. For RLWE-based schemes with an underlying power-of-two cyclotomic
ring, each coordinate of the error polynomial is independently sampled from a Gaussian
distribution centered at 0 with standard deviation σ. A very common choice is σ ≈
3.2 [ACC+19, HS20]. For RLWE-based schemes where the underlying ring is the kth

cyclotomic ring (where k is not a power of two), each coordinate of the error polynomial is
sampled from Gaussian distribution centered at 0 with standard deviation σ

√
k [HS20].

As an alternative, the FIPS 203 standard [NIS24] makes use of a Centered Binomial
Distribution as the error distribution. For example, a Centered Binomial Distribution
resulted from 42 fair coin tosses centered at 0 has standard deviation 3.24. Constant-time
sampling from a Centered Binomial Distribution can be more efficient than that from a
discrete Gaussian distribution when σ is small.

2.3 Secret distributions
Various choices are used in practice for the secret key distribution. Below we list some
examples.

• The coefficients of the secret polynomial s are chosen uniformly at random from Zq:
this is known as uniform secret.

• The secret polynomial s is chosen according to the error distribution χe: this is
known as normal form secret or Gaussian secret.

• The coefficients of the secret polynomial s are chosen uniformly at random from
{−1, 0, 1}: this is known as uniform ternary secret.

• The coefficients of the secret polynomial s are chosen uniformly at random from
{0, 1}: this is known as uniform binary secret.

• The coefficients of the secret polynomial s are chosen in {−1, 0, 1} with a restriction
that exactly h of them are 1 or −1, and the rest are all zeros: this is known as fixed
Hamming weight secret. The exact method for sampling the nonzero entries may
vary depending on the implementation.
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• For a fixed Hamming weight secret such that the Hamming weight is small (e.g.,
h < 0.25 · n), keys chosen from this distribution are called sparse secret keys. We
discuss sparse secrets in the following subsection. The LWE parameter sets presented
in this document do not have sparse secrets.

2.3.1 Sparse secrets

Sparse secrets were first used in LWE-based homomorphic encryption to reduce the
complexity of recryption, a part of bootstrapping [HS21], and were previously used to
support bootstrapping in Gentry’s original scheme [Gen09]. For certain schemes, the
multiplicative depth of bootstrapping depends on the Hamming weight of the secret
key [CH18]. For others, the bootstrapping approach relates the Hamming weight of
the secret key to the approximation interval of a sine function or to the degree of an
interpolation polynomial, and consequently this Hamming weight must be bounded and
somewhat small [CHK+18, CCS19, HK20, MHWW24] (see also Appendix A). For these
reasons, many implementations of BFV, BGV, and CKKS bootstrapping use sparse secret
keys [CHK+18, CH18, CCS19, HK20] or temporarily switch the ciphertext to a sparse
secret [BTH22]. However, some implementations of CKKS [BMTH21] and BFV [OPP23]
have correct and reasonably efficient bootstrapping with non-sparse keys.

Reductions exist for the sparse secret variant of LWE, denoted as spLWE. It has been
shown that spLWE can be reduced from standard LWE [GKPV10, BLP+13, CHK+16]. As
is the case for reductions for LWE with uniform binary and ternary secrets, the reduction
is not sufficiently tight to provide useful insight into FHE parameter setting based on
uniform-secret LWE hardness.

Many attacks and analyses leverage properties of sparse secrets [How07, CP19, CHHS19,
May21, CSY22, HKLS22, LLW24, NMW+24] and thus may be applicable to FHE parameter
sets with sparse secrets. Some of these works provide their own tools for estimating the
cost of these attacks for specific parameters. However, the Lattice Estimator—the tool we
use—currently does not support these cost estimates. As a result, we have opted not to
include parameter sets with sparse secrets in the current study, leaving the discussion for
future work. We encourage the integration of these attack cost estimates into the Lattice
Estimator to enable a more rigorous and equitable evaluation of the concrete security of
parameter sets for which these attacks are applicable.

3 Security notions
In this section, we discuss the essential security notions relevant to homomorphic encryption
protocols. Designing a protocol using homomorphic encryption requires a comprehensive
review by cryptography experts, as the interactions within a protocol define the adversary
model and introduce potential attack vectors. To establish the security of a cryptosystem,
one must first identify the resources and capabilities available to an attacker and define
the criteria for a successful attack. These concepts are typically encapsulated in a security
model.

Informally, in security modelling, IND refers to the adversary’s goal of distinguishing an
encryption of a message from a collection. The adversary is typically given a challenge, that
is, an encryption of a random message from the collection, and its task is to identify what
message is encrypted by the challenge. In a chosen plaintext attack (CPA) the adversary
has access to an encryption oracle, and it is allowed to choose any two plaintexts to form
the challenge ciphertext. In a chosen ciphertext attack (CCA) the adversary also has
access to a decryption oracle. There are two standard versions of IND-CCA. In CCA1, the
adversary only has access to the decryption oracle before it selects the plaintexts to form
the challenge. On the other hand, in CCA2, the adversary also has access to the decryption
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oracle after it receives the challenge, with the restriction of not being allowed to query the
challenge ciphertext itself.

It is well known that IND-CCA2 cannot be satisfied by any cryptosystem with ho-
momorphic properties. For instance, in an additive encryption scheme, simply adding
an encryption of 0 to the challenge ciphertext allows the adversary to submit a valid
query to the decryption oracle. FHE schemes that are IND-CCA1-secure, or target se-
curity against other types of active attacker, have been considered in several works
[LMSV11, BSW12, FHR22, AGHV22, MN24]. While theoretically possible, achieving
IND-CCA1-secure FHE is currently impractical. In addition, most approaches for achieving
IND-CCA1 would require a cryptosystem to never share encrypted key material since it
can be queried to the decryption oracle, the response to which would reveal this material
in plaintext [LMSV11]. All modern FHE constructions, including those considered in this
document, make use of encrypted key material, such as relinearization keys, bootstrapping
keys, etc. For the above reasons, IND-CPA has historically been the standard security
notion for FHE constructions.

In recent years, there have been several new attacks on all the schemes considered
in this paper. The first one of these attacks was described by Li and Micciancio against
CKKS in [LM21]. To perform this attack, the adversary must first gain access to decrypted
results from valid ciphertexts. The original decryption circuit for CKKS [CKKS17] outputs
an approximate version of the encrypted message, thus containing information about
the underlying secret key and encryption randomness. To capture this attack, Li and
Micciancio proposed the notion of IND-CPAD, where the adversary is allowed to request
decryptions of ciphertexts for which it knows the underlying message. Exact scheme
instantiations with non-negligible probability of decryption failure (i.e. probability of
decryption failure greater than 1/2Ω(s) for a statistical security parameter6 s) are not
exempt from similar attacks. Recent works [CSBB24, CCP+24, ML24] have proposed
attacks on BFV, BGV, DM, and CGGI, which work by exploiting potential decryption
errors7.

There have been several measures proposed to counteract this type of attack. In the case
of CKKS, the most common technique is noise flooding [LM21, LMSS22], which consists
of adding a large noise in 2Ω(s) to the message during the decryption step, effectively
hiding the key-related information. Other mitigations such as rounding and adding a
deterministic noise have also been proposed [LM21] and implemented in several libraries
[CHK20]. For exact encryption schemes, the attack can be mitigated by reducing the
probability of decryption failure to negligible levels (i.e., less than 1/2Ω(s)). Further attacks
against provably IND-CPAD secure instantiations have been proposed in [CSBB24, CCP+24,
GNSJ24], and countermeasures have been proposed in [ABMP24, BCM+24, ML24].

The development of definitions and methods to model and guarantee security for FHE
schemes is currently an active area of research, and is beyond the scope of this paper.
Hence, in this work we mainly focus on providing (computational) IND-CPA security for
FHE. We leave the consideration of advanced security notions for future work.

4 Concrete security estimation
In this section we state the security levels that the parameter sets in Section 5.1 target,
and we outline the assumptions under which we give estimates for the concrete security of
those parameter sets.

6We use the notation s here to distinguish from the computational security parameter λ that is used
elsewhere in the paper. See e.g. [LMSS22] for further details of the statistical security parameter in this
context.

7Other attacks exploiting decryption failure in cryptography more broadly, and for lattice-based
cryptography and FHE specifically, had been previously known (see e.g. [HGS99, LMSV11, BDPS13,
DGJ+19]).
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4.1 Security Levels
We define three classical security levels according to the NIST Special Publication 800-57
Part 1 [Bar20], as follows.

Category 128, 192, 256 Any algorithm that solves the underlying LWE instance must re-
quire (classical) computational resources comparable to or greater than those required
for key search on a block cipher with a 128-bit, respectively 192-bit, respectively
256-bit key.

4.2 The Lattice Estimator
We estimate concrete security of the FHE parameter sets given in Section 5.1 using the
open-source Lattice Estimator tool [APS15a]. The Lattice Estimator is widely used in
estimating the security of FHE parameter sets [ACC+19] as well as more broadly in
lattice-based cryptography.

Algorithms for solving LWE, that are currently supported in the Lattice Estimator,
include the primal attack [BG14, ADPS16], the dual attack [MR09, Alb17, GJ21, MAT22],
decoding attacks [LN13], Coded-BKW [GJS15, KF15], and algebraic algorithms [AG11,
ACF+15]. Some combinatorial algorithms, including hybrid combinatorial and lattice
algorithms [How07, ACW19, CHHS19, EJK20] are also supported.

However, it is important to note that some cryptanalytic algorithms applicable to LWE
instances, including those typical of FHE applications, are not supported in the Lattice
Estimator. This includes some combinatorial and hybrid approaches [May21, HKLS22,
BLLW22, EGMS23].

4.3 Lattice reduction algorithms and cost models
Since several of the algorithms for solving LWE rely on a lattice reduction subroutine (most
commonly instantiated as BKZ), it is important to specify the cost model used for lattice
reduction. There are several cost models available in the Lattice Estimator and there is
not consensus in the literature as to a universally preferred cost model (see e.g. [ACD+18]).
For configuration in the Lattice Estimator, we choose RC.MATZOV [MAT22] as the cost
model in the classical setting.
Remark 1. Note that the work by [MAT22] introduces two components: a refinement of the
sieving cost and a dual attack strategy. The sieving cost improvement is generally accepted,
and is integrated by default in the Lattice Estimator. However, the dual attack strategy,
which is also integrated by default in the Estimator, has been subject to critique [DP23b].
These critiques are not unique to [MAT22] but apply to a class of dual attacks employing
FFT tricks, including e.g. [GJ21]. While there are parameter regimes where these critiques
may not apply, the exact boundaries of such regimes remain unclear, and improving
analyses for dual attacks is an active area of research [PS24, DP23a]. Despite these
considerations, RC.MATZOV is selected as the default classical cost model in the Lattice
Estimator, and for this reason we have also selected this cost model. For users who prefer
other cost models, we note that alternatives such as RC.BDGL16 remain available in the
Lattice Estimator and are supported in our scripts8.

4.3.1 Quantum cost models

In a prior version of this work, we also considered a quantum sieving cost model to target
security against adversaries with quantum computational resources. This presentation

8It is also possible to obtain dual attack estimates in the Lattice Estimator without the [MAT22] strategy,
but would require directly calling a lower-level function, rather than using the top-level LWE.estimate().

https://github.com/malb/lattice-estimator/
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paralleled that of [ACC+19], who also gave tables developed using classical and quantum
sieving cost models. After feedback from an earlier draft of this work, we decided to
remove the parameter sets targeting specific security levels against quantum adversaries,
whose concrete security was estimated using quantum sieving cost models. The main
reason for this is that estimates in [AGPS20] of the concrete performance of quantum
sieving algorithms indicates only a mild improvement over classical sieving even when
very optimistic assumptions are made about the cost of quantum random memory access
and quantum error correction. Indeed, it is shown in [JR23] that assuming quantum
random access memory is cheap may be a very strong assumption. Moreover, it is argued
in [AS22] that quantum algorithms “can effectively be ignored when setting parameters”
in lattice-based cryptography.

This decision also makes Tables 5.2 and 5.3 easier to use: for example, in Table 5.2, there
is now a clear maximal bitsize of ciphertext modulus for a fixed choice of ring dimension and
secret distribution. As all our tables are reproducible, users can separately run estimates
for any other cost model implemented in the Lattice Estimator, including a quantum
sieving cost model, if so desired. To make this simpler, in the code that accompanies our
work, we have included code for a quantum sieving estimate based on [CL21].

4.4 Computational cost metric
To assess whether we have met a target security level as defined in Section 4.1, we need
to define a metric for the “computational resources”. Multiple such metrics exist (see
e.g. [ADPS16, ABD+20]) and their refinement is the subject of ongoing research. Since
we use the Lattice Estimator to estimate the concrete cost of algorithms for solving LWE,
we use the unit of computation used in the Estimator: “ring operations”. That is, we
will estimate that a particular parameter set meets Category 128 if the Lattice Estimator
estimates that all algorithms cost greater than 2128 ring operations when using a classical
lattice reduction cost model. Note that “ring operations” can be converted into CPU
cycles for classical computers.

5 Tables of parameters
In this section, we provide examples of parameter sets for FHE, targeting security (Sec-
tion 5.1) and functionality (Section 5.2). We also review the parameter selection support
offered in some of the major open-source FHE libraries. The notation used in Sections 5.1
and 5.2 is summarised in Table 5.1.

5.1 Parameter sets that target particular security levels
In this section, we give in Table 5.2 and 5.3 examples of LWE parameter sets that can be
used in FHE applications.

These LWE parameter sets target particular security levels as defined in Section 4.1
using the Lattice Estimator under the assumptions stated in Section 4.3 and 4.4. As
such, the tables in this section are similar to those presented in [ACC+19]. The concrete
security of the parameter sets is assessed by estimating the cost of primal_usvp, primal_bdd,
hybrid_bdd (for dimension N ≤ 214), and hybrid_dual using commit 8f1ff7e of the Lattice
Estimator, dated Aug 27, 2024.

We want to emphasize that these tables are estimated to meet the target security levels,
under the assumptions we have outlined. The estimated security of these parameter sets
may be impacted by future advancements in cryptanalysis. It may also be affected by
implementation choices in the Lattice Estimator, such as the chosen cost model. We make
available scripts that we used to generate the tables at https://github.com/gong-cr/FH

https://github.com/gong-cr/FHE-Security-Guidelines/
https://github.com/gong-cr/FHE-Security-Guidelines/
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Table 5.1: Notation used in Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.
Parameter Definition

λ Security level (classical) of the parameter set.
N Dimension of the RLWE instance.
n Dimension of the LWE instance, n = kN when modelling GLWE.

q
LWE modulus. Largest ciphertext modulus for BGV, BFV, CKKS,
DM and CGGI.

qks LWE modulus used for key switching in DM and CGGI when σ = 3.19.
Q Largest modulus of the ciphertext space, for BGV, BFV, CKKS.

P
Auxiliary (hybrid key switching) modulus for BGV, BFV, CKKS,
with q = PQ bounded according to security level.

t BGV/BFV/DM/CGGI plaintext modulus.
χs Probability distribution of the LWE secret.
χe Probability distribution of the error of a fresh LWE sample.

σ
Standard deviation of the LWE error distribution, also target
standard deviation of the error distribution for ciphertexts
after CKKS bootstrapping.

L Level, number of maximal repeated multiplications supported.
dnum Number of digits used for hybrid key switching.

Scaling Factor CKKS scaling factor.
Base prime

size Smallest modulus of the ciphertext space for CKKS.

E-Security-Guidelines/, which could be re-run with subsequent versions of the Lattice
Estimator if desired.

Table 5.2 presents the maximal log (base 2) of the modulus q that can be used in
dimension N , for Gaussian error distribution with standard deviation σ = 3.19, and for
secret distributions that are either uniform ternary or Gaussian with standard deviation
σ = 3.19, to give LWE parameter sets that target the Category 128, 192, and 256 security
levels. This table is suitable in but not limited to the BFV/BGV/CKKS application settings
where the error distribution standard deviation σ = 3.19 is typically fixed, but the modulus
q can be varied.

We note that the Lattice Estimator models all error distributions as Gaussians of
a given standard deviation. So, using a different fixed error distribution with standard
deviation close to σ = 3.19, such as a centered binomial distribution resulting from 42 fair
coin tosses centered at 0, would yield similar values for the maximal log2(q) as in Table 5.2.

In the DM/CGGI setting, q is typically fixed to either 32-bit or 64-bit, and the error
standard deviation can be varied. Thus, in Table 5.3, we present the minimal log (base 2)
of the error distribution standard deviation σ, that can be used in dimension n = k · N , for
modulus q, and for secret distributions that are either uniform binary, uniform ternary, or
Gaussian, to give LWE parameter sets that target the Category 128, 192, and 256 security
levels.

https://github.com/gong-cr/FHE-Security-Guidelines/
https://github.com/gong-cr/FHE-Security-Guidelines/
https://github.com/gong-cr/FHE-Security-Guidelines/
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Table 5.2: Maximal log (base 2) of the modulus q that can be used in dimension N , for
Gaussian error distribution with standard deviation σ = 3.19, and for secret distributions
χs that are either uniform ternary or Gaussian with standard deviation σ = 3.19, to give
LWE parameter sets that target the security level categories 128, 192 and 256.

N log2(q)

Ternary Gaussian
λ = 128

1024 26 28
2048 53 55
4096 106 108
8192 214 216
16384 430 432
32768 868 870
65536 1747 1749
131072 3523 3525

λ = 192

2048 36 38
4096 73 75
8192 147 149
16384 297 299
32768 597 599
65536 1199 1201
131072 2411 2413

λ = 256

2048 27 30
4096 56 58
8192 114 116
16384 230 232
32768 462 464
65536 929 931
131072 1866 1868
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Table 5.3: Minimal log (base 2) of the error distribution standard deviation σ, that can be
used in dimension n = kN and for secret distributions χs that are either uniform binary,
uniform ternary, or Gaussian with standard deviation σs = 4, to give LWE parameter sets
that target the security level categories 128, 192 and 256. Since DM and CGGI consider
LWE ciphertexts, the dimension n is not restricted to a power of two, and therefore other
values of n can be used (similarly, other values of q can be used). In both cases, the value
of log2(σ) should be adapted accordingly.

n log2(q) log2(σ)

Binary Ternary Gaussian
λ = 128

630
32

18.5 17.2 14.6
1024 8.3 7.1 4.6

≥ 2048 2.0 2.0 2.0
630

64

50.5 49.2 46.6
750 47.4 46.2 43.5
870 44.3 43.1 40.3
1024 40.3 39.1 36.4
2048 13.7 12.4 10.0

≥ 4096 2.0 2.0 2.0
λ = 192

750
32

22.1 20.8 17.9
1024 17.2 15.9 13.0

≥ 2048 2.0 2.0 2.0
750

64

54.1 52.8 49.9
870 52.0 50.6 47.7
1024 49.2 47.9 45.0
2048 30.9 29.5 26.5

≥ 4096 2.0 2.0 2.0
λ = 256

1024
32

21.8 20.5 17.4
2048 7.6 6.1 3.2

≥ 4096 2.0 2.0 2.0
1024

64

53.8 52.5 49.4
2048 39.6 38.1 35.0
4096 10.9 9.3 6.4

≥ 8192 2.0 2.0 2.0
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5.2 Functional parameter sets

This section presents example parameter sets for different applications of BGV, BFV, CKKS,
DM, and CGGI. For BGV, BFV, and the initial examples of CKKS, some of the parameter
sets provided are tailored to their Somewhat Homomorphic Encryption (SHE) variants
(i.e., they do not support any of the known bootstrapping procedures). Consequently, each
parameter set can only execute a limited number of consecutive homomorphic operations,
which we measure by the maximum number of levels they support (see Table 5.1).

Moreover, for BGV, BFV and CKKS, the parameter sets included are particularly
relevant for implementations that leverage the Residue Number System (RNS). In this
representation, the ciphertext moduli correspond to the product of distinct coprime integers.
We specify only the total bit size of the ciphertext moduli, as their precise decomposition
depends on the low-level details of the RNS implementation in each library. The use of
RNS facilitates efficient operations over large moduli by decomposing them into smaller
components that fit within the size of the machine word.

Finally, the tables provided summarize the parameters related to security, as well as
those concerning correctness and performance. Note that the parameter sets presented
herein are intended as illustrative examples. They may not necessarily represent optimal
configurations for the individual libraries and are not intended for comparison among
libraries.

5.2.1 Functional parameters for BGV and BFV

Table 5.4 and 5.5 provide examples of parameter sets for (RNS variants of) BGV/BFV in
an SHE setting, i.e., without bootstrapping. The parameters were estimated to illustrate
the Category 128, 192, or 256 security levels. The notation used in both tables is described
in Table 5.1. The parameters in Table 5.4 were generated9 using Microsoft SEAL [SEA23].
The high-level procedure for generating Table 5.4 is to set the modulus q to the maximum
value supported for a given ring dimension, and then find the maximum multiplicative
depth that can be achieved by examining the noise budget after decryption. The parameters
in Table 5.5 were generated using the cryptographic context generation API in OpenFHE
v1.2.010. The high-level idea is to allow the user to enter the main application specifications,
such as multiplicative depth, plaintext modulus, and security level, and let the library
estimator find appropriate lattice parameters. Note that the purpose of both tables is
to illustrate the main considerations when selecting parameters, rather than providing
optimized parameters for a given application. Table 5.5 also lists the values of dnum, the
number of digits for hybrid key switching, which affects both the size of the maximal
modulus q = PQ and size of evaluation keys for multiplication and key switching. A higher
value of dnum allows the user to reduce P , hence achieving the largest depth for a given
ring dimension, but it also increases the evaluation key size and key switching runtime11.
Hence, dnum is a configurable parameter that may be tailored to application needs.

Since BFV/BGV bootstrapping has seen a lot of recent developments and improve-
ments [GV23, GIKV23, OPP23, Gee24, KSS24, KDE+24, MHWW24, LW25], we choose
not to present example parameters for BFV/BGV with bootstrapping.

9Table 5.4 can be reproduced using a script available at https://github.com/WeiDaiWD/SEAL-Depth-E
stimator.

10The OpenFHE cryptographic context generation capability finds parameters using the multiplicative
depth, plaintext modulus, number of digits used for hybrid key switching (dnum), security level, desired
scaling modulus size for BFV, and other parameters. These parameter sets can be reproduced using the
scripts available at https://github.com/gong-cr/FHE-Security-Guidelines/.

11One evaluation key in this case has the size of dnum ciphertexts with modulus P Q and the key
switching runtime is proportional to dnum; see [HK20] for more details.

https://github.com/WeiDaiWD/SEAL-Depth-Estimator
https://github.com/WeiDaiWD/SEAL-Depth-Estimator
https://github.com/gong-cr/FHE-Security-Guidelines/
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Table 5.4: Sample SEAL parameters for BFV/BGV without bootstrapping.
λ 128 192 256

log2(n) 14 15 16
log2(q) 424 585 920
log2(t) 20 20 20

χs Ternary Ternary Ternary
σ (χe) 3.2 3.2 3.2

L (BFV) 10 14 23
L (BGV) 8 12 19

Table 5.5: Sample OpenFHE parameters for BFV/BGV without bootstrapping.
λ 128 192 256

χs Ternary Ternary Ternary
σ (χe) 3.19 3.19 3.19

t 65537 65537 786433
log2(n) 14 15 16

BFV parameters
L12 10 15 18

log2(Q) 360 531 720
log2(P ) 60 60 180

log2(PQ) 420 591 900
dnum 6 9 4

BGV parameters
L13 8 13 16

log2(Q) 337 532 686
log2(P ) 60 60 240

log2(PQ) 397 592 926
dnum 10 15 4

5.2.2 Sample parameters for CGGI and DM

In Table 5.6 we present examples of parameters for CGGI and DM that are estimated to
meet the Category 128 security level. Note that for DM we refer to the parameters for its
optimized variant proposed in [LMK+23] and implemented in OpenFHE. The notation used
in Table 5.6 is as defined in Table 5.1, with the following additions: (χLWE, σLWE) denote
the secret key distribution and the standard deviation of the Gaussian error used in LWE
ciphertexts; (χGLWE, σGLWE) denote the secret key distribution and the standard deviation
of the Gaussian error used in GLWE ciphertexts; (βks, ℓks) denote the digit size and number
of digits used in key-switching keys; and (βpbs, ℓpbs) denote the digit size and number of
digits used in the bootstrapping keys. Finally, perror denotes the error probability for a

12The depth L is conservatively chosen for both BGV and BFV to achieve negligible practical (via
subgaussian analysis) decryption probability of failure by using the expansion factor of 2

√
n; (see [KPZ21]

for more details on parameter estimation for BGV and BFV in OpenFHE).
13For BGV, up to 5 additions and 3 key switching operations were allowed per level. The FLEXIBLEAUTOEXT

scaling mode was used.
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single bootstrapping operation. The TFHE-rs parameters in Table 5.6 were generated
using the optimization techniques found in Concrete [BBB+23]. The OpenFHE parameters
in Table 5.6 were found using the OpenFHE estimation tool for DM and CGGI variants14.

Table 5.6: Sample parameters for CGGI and DM. The first two parameter sets for CGGI
(with n = 742 and 777) are taken from the TFHE-rs library15. The third and fourth
parameter sets (with n = 805 and 687) are from the Concrete compiler. The fourth
(with n = 503) and fifth (with n = 556) parameter sets are taken from the parameters
recommended for the CGGI implementation in OpenFHE v1.2.0 [MP21, BBB+22]. Finally,
the sixth (with n = 447) and seventh (with n = 593) correspond to the parameters
recommended for the DM implementation in OpenFHE v1.2.0 [LMK+23, BBB+22]. Note
that the failure probabilities perror are computed using different techniques (see Appendix B
for details). The parameter t, plaintext modulus, is sometimes also referred to as p in the
literature.

λ 128 128 128 128 128 128 128 128

Scheme CGGI CGGI CGGI CGGI CGGI CGGI DM DM
Library TFHE-rs TFHE-rs Concrete Concrete OpenFHE OpenFHE OpenFHE OpenFHE

n 841 785 805 687 503 556 447 556
log2(N) 11 9 11 9 10 10 10 10

k 1 4 1 3 1 1 1 1
q 264 264 264 264 ≈ 227 ≈ 227 ≈ 228 ≈ 227

qks 264 264 264 264 ≈ 214 ≈ 215 ≈ 214 ≈ 215

t 24 2 24 2 2 2 2 2
χLWE Binary Binary Binary Binary Ternary Ternary Gaussian Ternary
χGLWE Binary Binary Binary Binary Ternary Ternary Gaussian Ternary

βks 23 24 23 24 25 25 25 25

ℓks 5 3 5 3 3 3 3 3
βpbs 222 223 215 218 29 27 210 29

ℓpbs 1 1 2 1 3 4 3 3
σLWE 245.72 247.22 215.68 245.99 3.19 3.19 3.19 3.19
σGLWE 215.68 214.05 214.05 249.02 3.19 3.19 3.19 3.19
perror 2−64 2−64 2−64 2−64 2−40 2−220 2−55 2−120

5.2.3 Sample parameters for CKKS

In Table 5.7, respectively Table 5.8, we present example parameter sets for (an RNS
variant) of CKKS without, respectively with, bootstrapping. The parameters in Table 5.7
are estimated to meet the Category 128, 192, or 256 levels of security. The parameters in
Table 5.8 are estimated to meet the Category 128 level of security.

The parameters in Table 5.7 were selected using OpenFHE v1.2.0 [BBB+22]. The
parameters in Table 5.8 are selected16 using Lattigo v5.0.2 [EL23]17 for Set I and using
OpenFHE v1.2.0 [BBB+22] for Set II. The rescaling method for all OpenFHE parameter sets

14The OpenFHE parameters can be regenerated using the OpenFHE lattice estimator tool at https:
//github.com/openfheorg/openfhe-lattice-estimator (commit 4f9e143), which uses the Lattice
Estimator for finding secure LWE parameters.

15We note that the TFHE-rs parameter sets presented in Table 5.6 are not associated to a public script
for reproducibility.

16Tables 5.7 and 5.8 can be reproduced using scripts available at https://github.com/gong-cr/FHE-S
ecurity-Guidelines/.

17Lattigo also provides support by default for the sparse secret encapsulation technique [BTH22], but
this feature was disabled to instead use a dense secret.

https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/gong-cr/FHE-Security-Guidelines/
https://github.com/gong-cr/FHE-Security-Guidelines/
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was set to FLEXIBLEAUTO and dnum was set to 3. Both libraries contain implementation of
several bootstrapping algorithms, including [CHK+18, CCS19, HK20, BMTH21, BCC+22].

The total cost in levels of CKKS bootstrapping can be broken down into several
specific building blocks, with the most resource-intensive steps being: (1) CoeffsToSlots,
(2) EvalMod and (3) SlotsToCoeffs. Table 5.8 provides the number of consumed levels for
the execution of each of these blocks.

Table 5.7: Sample parameters for RNS-CKKS without bootstrapping.
λ 128 192 256

log2(N) 14 15 15
χs Ternary Ternary Ternary

σ (χe) 3.19 3.19 3.19
Base Prime Size 40 43 40

L 7 9 7
log2(PQ) 427 592 434
log2(Q) 307 412 314
log2(P ) 120 180 120

log2 (Scaling Factor) 38 41 39
Precision Bit 22.3 24.0 22.2

Table 5.8: Sample parameters for RNS-CKKS with bootstrapping.
Set I18 Set II19

λ 128 128

log2(N) 16 16
Number of Slots20 32768 32768

χs Ternary Ternary
σ (χe) 3.19 3.19

Base Prime Size 45 60
L (after bootstrapping) 10 6

log2(Scaling Factor) 35 58
log2(PQ) 1734 1691
log2(Q) 1464 1511
log2(P ) 305 180

Level cost of SlotsToCoeffs 4 3
Level cost of EvalMod 12 13

log2(Pr[||I(X)|| > K])21 -37.65 -37.65
K 512 512

Level cost of CoeffsToSlots 3 3
Iterations22 1 1

Precision Bits23 15.9 12.0
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5.3 High-level efficiency trade-offs when selecting the main FHE
parameters

The primary goal of this work is to illustrate secure parameter choices for different FHE
schemes rather than to identify optimal parameters. Parameter selection has a high impact
on the functionalities and on the efficiency of each FHE scheme. Optimization tools could
be used to find the best parameter choice, at the condition of always making sure that the
parameters selected achieve the expected security level.

Here we briefly discuss some high-level efficiency trade-offs that involve the core RLWE
parameters, namely, the RLWE dimension N , the largest ciphertext modulus q and the
error standard deviation σ. In all five schemes, N has a direct effect on the latency of all
core FHE operations. More concretely, the latency is Ω (N log2(N)). As N is a power of
two in Table 5.2, there is a more-than-2x increase in latency when the dimension N is
doubled due to a larger modulus requirement.

If the main objective for a given FHE application is to minimize latency, one can try
to minimize N and adjust the other parameters in order to keep the security level as
expected: if σ is fixed, one can decrease the value of q; if instead the value of q is fixed, one
can increase the value of σ. However, if the main objective is to maximize throughput in
Simple-Instruction-Multiple-Data (SIMD) schemes (which support simultaneous encryption
and homomorphic operations on multiple numbers within a single ciphertext) — such
as BGV, BFV, and CKKS — increasing N can be a reasonable strategy, at the cost of
increasing the latency.

A larger N provides more flexibility in choosing other parameters of the concrete FHE
scheme. For example, in the SIMD schemes it allows for a higher multiplicative depth,
reducing the number of bootstrapping operations that are needed, while in CGGI/DM
schemes it allows to evaluate a larger table look-up during bootstrapping. It also allows to
have a smaller dnum in hybrid key switching, which speeds up the key switching operation.

Another important consideration is that the size of all large keys is linearly proportional
to N . If key size is a concern, for example, due to input/output or communication
bandwidth limitations, log2(q) could be minimized to keep N as small as possible.

5.4 Parameter selection in open-source libraries and compilers
Most FHE libraries lack a systematic process to select parameters for a desired application.
However, external tools have been developed to help with this task for some of the most
popular libraries. Table 5.9 lists some of the available open-source FHE libraries and the
schemes they support. In this section, we will overview parameter selection approaches in
some of the major FHE libraries and compilers.

5.4.1 OpenFHE

OpenFHE [BBB+22] supports the schemes BFV, BGV, CGGI, CKKS and DM. For each of
BFV, BGV, and CKKS, the authors of the library provide a process to select parameters,
depending on various factors such as desired security level, depth support, batch size,

18The scaling factor in this parameter set does not affect bootstrapping as Lattigo uses different
independent internal scaling factors for each step of the bootstrapping circuit.

19OpenFHE automatically adds “small” flooding noise on top of existing approximation error as a
mitigation for the case when the decryption result may be accidentally shared; this flooding noise slightly
reduces the output precision.

20Number of Slots refers to the number of complex numbers that are encrypted in each separate ciphertext.
21A detailed explanation of bootstrapping failure probability and parameter K is in Appendix A.
22Following [BCC+22], Iterations corresponds to the number of repetitions applied to improve the final

precision. Here, Iterations set to 1 means that no additional bootstrapping repetitions are applied.
23Precision Bits are evaluated as the negative base 2 logarithm of the average L1 norm between results

from standard (cleartext) calculation and those computed homomorphically.
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Table 5.9: Some open-source homomorphic encryption libraries and the algorithms they
support.

Library Link BFV BGV CKKS CGGI/DM Note

Cingulata CEA−LIST/Cingulata ✓ Also a compiler toolchain
for its own BFV imple-
mentation and for TFHE-
lib.

FHE-DECK FHE-Deck/fhe-deck-core ✓

FHELib Crypto-TII/fhelib ✓

HEaaN cryptolabinc/heaan ✓ Proprietary. Free for
non-commercial usage.

HELib homenc/HElib ✓ ✓

HEHub primihub/hehub ✓ ✓ ✓

Lattigo tuneinsight/lattigo ✓ ✓ ✓ * Only certain building
blocks for CGGI/DM are
implemented, but no
high level API.

Liberate. FHE Desilo/liberate-fhe ✓

NFLLib quarkslab/NFLlib ✓

OpenFHE openfheorg ✓ ✓ ✓ ✓

Parmesan crates/parmesan ✓ Builds on TFHE-rs.

Phantom
encryptorion-lab/

phantom-fhe
✓ ✓ ✓

Poseidon luhang-HPU/Poseidon ✓ ✓ ✓

REDcuFHE TrustworthyComputing/REDcuFHE ✓

SEAL microsoft/SEAL ✓ ✓ ✓

TFHE-rs zama-ai/tfhe-rs ✓

TFHElib tfhe/tfhe ✓

key-switching mechanism, etc. The library then finds24 the appropriate parameters based
on the tables in [ACC+19].

5.4.2 SEAL and EVA

Microsoft’s SEAL [SEA23] supports BFV, BGV and CKKS. The main library does not have
an elaborate system to find optimal parameters for the desired application. Nonetheless,
it does provide25 a list of upper bounds for the ciphertext modulus depending on the
dimension of the ring, the desired security level and the distribution of the secret key.
This list follows the tables from [ACC+19]. It is worth noting that SEAL uses, by
default, a centered binomial distribution for the generation of LWE samples. Microsoft’s
EVA [DKS+20] is a compiler for homomorphic encryption built to work with the SEAL
library. It contains a mechanism26 to select an adequate decomposition of the ciphertext
modulus depending on the desired application.

24The relevant code can be found in files bfvrns-parametergeneration.cpp,
bgvrns-parametergeneration.cpp, and ckksrns-parametergeneration.cpp (Retrieved from OpenFHE
v1.2.0).

25The relevant code can be found in the file hestdparms.h (Retrieved from SEAL v4.1.1 – com-
mit 206648d).

26The relevant code can be found in the file encryption_parameter_selector.h (Retrieved from EVA
v1.0.1 – commit 4cd3254).

https://github.com/CEA-LIST/Cingulata
https://github.com/FHE-Deck/fhe-deck-core
https://github.com/Crypto-TII/fhelib
https://hub.docker.com/r/cryptolabinc/heaan
https://github.com/homenc/HElib
https://github.com/primihub/hehub
https://github.com/tuneinsight/lattigo
https://github.com/Desilo/liberate-fhe
https://github.com/quarkslab/NFLlib
https://github.com/openfheorg
https://crates.io/crates/parmesan
https://github.com/encryptorion-lab/phantom-fhe
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5.4.3 Lattigo

Tune Insight’s Lattigo [EL23] contains implementations of BFV, BGV and CKKS as well
as support for the CGGI-like scheme FHEW. The library allows the user to set their own
parameters, only providing a method to verify that the parameters are valid, i.e., that the
parameters follow the hypotheses required for the construction to work and that they do
not lead to a zero secret or error.

5.4.4 TFHE-rs and Concrete

Zama’s TFHE-rs [Zam22b] implements a variant of the CGGI scheme. The library of-
fers parameter sets for different configurations depending on the application. Zama’s
Concrete [Zam22a] is a compiler for CGGI built on top of THFE-rs. It contains an opti-
mizing tool27 to find appropriate parameters for a given FHE computation. It makes use
of the Lattice Estimator to find the security level of the parameters.

5.4.5 HECATE and ELASM

Besides EVA, there have been other efforts proposing automatic scale management schemes
for CKKS through compilers. For instance, HECATE [LHC+22] and ELASM [LCK+23]
target CKKS implementations. HECATE explores the scale management space to optimize
for latency, while ELASM additionally considers the error/latency tradeoff. A survey of
earlier FHE compiler works can be found in [VJH21].

6 Conclusion
This work provides example LWE parameter sets that can be used in FHE implementations
to target particular levels of security. We also make available the code used to estimate the
security of these parameter sets. We recognize the dynamic nature of cryptographic attacks
and the necessity of updating our parameters in response to significant advancements in
lattice cryptanalysis. We anticipate if these advancements are integrated into the Lattice
Estimator, then using our methods and code will enable users to independently update
these parameter sets as necessitated by new developments. Furthermore, as the field
of FHE matures and expands, we hope that more types of FHE schemes, diverse noise
distributions, and comprehensive attack scenarios can be integrated into future guidelines.

This work provides examples of functional parameter sets that could be used for
particular FHE schemes in different contexts, and reviews parameter selection support in
some of the major FHE libraries. In practice, it is not only security that must be considered,
but also functional correctness and efficiency; and the optimal choice of parameters may be
application- and library-dependent. An advanced parameter selection framework for FHE
that takes into account all these aspects is an important direction for future research.
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A CKKS bootstrapping failure probability
In this Appendix we give more details about the failure probability in CKKS bootstrapping
as briefly mentioned in Table 5.8. We omit a full description of CKKS bootstrapping and
refer the reader to e.g. [CHK+18, CCS19, HK20, BMTH21, BCC+22] for more details.

The bootstrapping failure probability plays a crucial role in the practicality of CKKS
bootstrapping and it is related to the EvalMod step. The EvalMod step of the bootstrapping
takes as input the message I(Y ) · Q + ∆m(Y ) with Y = XN/2M (M being the number
of complex slots) and aims to vanish the integer polynomial I(Y ) by homomorphically
evaluating the function fmod = x mod 1 in the union of intervals ∪K

i=−K [i − ϵ, i + ϵ], with
[−ϵ, ϵ] being the expected interval where the original message lies. The coefficients of the
polynomial I(Y ) are the sum of h + 1 uniform random variables in [−0.5, 0.5), with h the
Hamming weight of the secret.
Remark 2. There have been many works proposing different approaches for the EvalMod
step. However, all practical approaches follow the same blueprint, which is to find a good
polynomial approximation of fmod. Which function is chosen to closely match fmod and
how the polynomial approximation is done has no effect on the failure probability. Only the
interval in which it is approximated, i.e. the parameter K, affects the failure probability.

If ∥I(Y )∥ > K, then the EvalMod step returns an unusable corrupted plaintext. This
failure probability is defined as ffail(K, h, M) = Pr [∥I(Y )∥ > K] by [BTH22] and they
show how to compute it by adapting the Irwin Hall cumulative distribution function:

ffail(K, h, M) : 1−

 2
(h + 1)!

⌊K+0.5(h+1)⌋∑
i=0

(−1)i

(
h + 1

i

)
(K + 0.5(h + 1) − i)h+1

 − 1

2M

.

(1)
Usually the bootstrapping parameters are instantiated using a secret with fixed Ham-

ming weight h, which allows to get an exact estimation of ffail(K, h, M), and thus to choose
K according to the desired failure probability. However, in our case we have a ternary
secret with coefficients sampled with probability [p/2, 1 − p, p/2] and p = 2/3, thus the
exact value of h is unknown and this prevents from being able to estimate the exact failure
probability. We provide a procedure to find a suitable K in such case given N , p and M
and a desired failure probability 2δ for some δ < 0:

1. Estimate K based on E[h]: This step is straightforward and can be done with a
binary search on K by successive evaluations of ffail(K, E[h], M).

2. Estimate a correction factor K ′ such that 1−Pr[ffail(K +K ′, h, M) ≤ 2δ] ≤ 2δ: Since
I follows an Irwin Hall distribution, it is O(

√
h) and we have

K =
⌈
κ ·

√
E[h] + 1

⌉
,

from which we obtain κ. Let now σh =
√

Np(1 − p), then the value K will increase
by d κσh√

E[h]+1
≈ dκ

√
1 − p if h deviates by dσh of E[h]28. Therefore

Pr
[
h ≤ E[h] + dσh

]
= erf

(
dσh√
2σh

)
= erf

(
d√
2

)
.

Thus given 1 − erf
(

d√
2

)
≤ 2δ we have K ′ = ⌈dκ

√
1 − p⌉.

28We assume that d is positive since the converse would not have a negative impact on the failure
probability.
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3. Set K := K + K ′.

Following the procedure described above, we implemented the following two helper
functions:

1. Probability(Xs, K, log2(N), log2(M)) → δ: given Xs the secret distribution, K,
log2(N) and log2(M) returns δ = log2(Pr [∥I(Y )∥ > K]).

2. FindSuitableK(Xs, log2(N), log2(M), δ) → K: given given Xs the secret distribution,
log2(N) and log2(M) and δ, returns K such that Pr [∥I(Y )∥ > K]) ≤ 2δ.

Both 1. and 2. take into account the correction factor K ′ if Xs is specified as a probability
density. The code is available at https://github.com/gong-cr/FHE-Security-Guide
lines/blob/main/RNS-CKKS-examples/lattigo/templates/bootstrapping/failur
e/failure_probability.go.
Remark 3. Equation 1 require arbitrary precision arithmetic of precision 2h to produce
accurate results due to (i) the alternating sum over K + h/2 and (ii) the exponentiation by
h + 1. Thus evaluating 1 is O(h3), making it prohibitively expensive for large values of h.
Instead, we can pre-compute a table of (K, δ) for a fixed large enough h (e.g. 8192) and a
range of δ that are likely to be used in practice (e.g. 0 > δ > −512). Then the value K ′

for some other h′ can be approximated by using the relation κ ≈ K/
√

h + 1 ≈ K ′/
√

h′ + 1
for a given δ.

B CGGI/DM bootstrapping failure probability
In this Appendix we give more details about the failure probability in CGGI/DM boot-
strapping, as mentioned in Table 5.6.

The OpenFHE bootstrapping failure probability estimation method is taken from [MP21].
The correctness of OpenFHE parameters was checked using numerical experiments. The
fresh ciphertexts were pre-bootstrapped before performing any Boolean operations to
estimate the error for the case of independently refreshed ciphertexts. For each parameter
set, we recorded the actual values of the error/noise for a relatively large sample (1,000
bootstrapping runs), and then estimated the standard deviation of the error βexp. Assum-
ing the normal distribution of the error, we estimated the decryption failure probability, i.e.,
the probability of the error exceeding q/8, for both DM/LMK+ and CGGI cryptosystems.
Since we need to support one homomorphic addition for Boolean gates, we estimated the
probability of decryption failure as 1 − erf( q/8

2βexp
).

In TFHE-rs and Concrete, the approach is similar, except that, due to the increased
precision considered, q

8 is replaced by q
2log2(t)+2 . Here, t is the size of the plaintext space.

This can be seen to match the above by setting t = 2.

https://github.com/gong-cr/FHE-Security-Guidelines/blob/main/RNS-CKKS-examples/lattigo/templates/bootstrapping/failure/failure_probability.go
https://github.com/gong-cr/FHE-Security-Guidelines/blob/main/RNS-CKKS-examples/lattigo/templates/bootstrapping/failure/failure_probability.go
https://github.com/gong-cr/FHE-Security-Guidelines/blob/main/RNS-CKKS-examples/lattigo/templates/bootstrapping/failure/failure_probability.go
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