Communications in Cryptology IACR CiC

Learning with Errors from Nonassociative Algebras

Authors

Andrew Mendelsohn, Cong Ling
Andrew Mendelsohn ORCID
Department of Electrical and Electronic Engineering, Imperial College London, London, UK
am3518 at ic dot ac dot uk
Cong Ling ORCID
Department of Electrical and Electronic Engineering, Imperial College London, London, UK
c dot ling at imperial dot ac dot uk

Abstract

We construct a provably-secure structured variant of Learning with Errors (LWE) using nonassociative cyclic division algebras, assuming the hardness of worst-case structured lattice problems, for which we are able to give a full search-to-decision reduction, improving upon the construction of Grover et al. named `Cyclic Learning with Errors' (CLWE). We are thus able to create structured LWE over cyclic algebras without any restriction on the size of secret spaces, which was required for CLWE as a result of its restricted security proof. We reduce the shortest independent vectors problem in ideal lattices, obtained from ideals in orders of such algebras, to the decision variant of LWE defined for nonassociative CDAs. We believe this variant has greater security and greater freedom with parameter choices than CLWE, and greater asymptotic efficiency of multiplication than module LWE. Our reduction requires new results in the ideal theory of such nonassociative algebras, which may be of independent interest. We then adapt an LPR-like PKE scheme to hold for nonassociative spaces, and discuss the efficiency and security of our construction, showing that it is immune to certain subfield attacks. Finally, we give example parameters to construct algebras for cryptographic use.

References

[AD97]
Miklós Ajtai and Cynthia Dwork. A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. In 29th ACM STOC, pages 284–293. May 1997. ACM Press. DOI: 10.1145/258533.258604
[Ajt96]
M. Ajtai. Generating Hard Instances of Lattice Problems. Electron. Colloquium Comput. Complex., TR96, 1996. DOI: 10.1145/237814.237838
[Alb39]
A.A. Albert. Structure of Algebras. Number v. 24 in AMS colloquium publications. American Mathematical Society 1939.
[APS15]
M. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with Errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015. DOI: doi:10.1515/jmc-2015-0016
[BCV20]
C. Bootland, W. Castryck, and F. Vercauteren. On the security of the multivariate ring learning with errors problem. In ANTS XIV. 2020. MSP. DOI: 10.2140/obs.2020.4.57
[BP21]
C. Brown and S. Pumplun. How a nonassociative algebra reflects the properties of a skew polynomial. Glasgow Mathematical Journal, 63(1):6–26, 2021. DOI: 10.1017/S0017089519000478
[BV11]
Z. Brakerski and V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard) LWE. In FOCS 2011, pages 97-106. 2011. DOI: 10.1109/FOCS.2011.12
[CGGI19]
Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology, 33:34 - 91, 2019.
[CKKS17]
J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic Encryption for Arithmetic of Approximate Numbers. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, volume 10624 of LNCS, pages 409–437. 2017. Springer International Publishing. DOI: 10.1007/978-3-319-70694-8_15
[CL17]
X. Caruso and J. Le Borgne. Fast Multiplication for Skew Polynomials. In Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, pages 77–84. 2017. Assoc. for Computing Machinery. DOI: 10.1145/3087604.3087617
[DDLL13]
L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice Signatures and Bimodal Gaussians. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, volume 8042 of LNCS, pages 40–56. 2013. Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-40041-4_3
[DLL+17]
L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS-Dilithium: Digital Signatures from Module Lattices. 2017.
[GMLV22]
Charles Grover, Andrew Mendelsohn, Cong Ling, and Roope Vehkalahti. Non-commutative Ring Learning with Errors from Cyclic Algebras. Journal of Cryptology, 35(3):22, July 2022. DOI: 10.1007/s00145-022-09430-6
[GSW13]
Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. August 2013. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-40041-4_5
[HKS21]
W.C. Huffman, J.L. Kim, and P. Solé. Concise Encyclopedia of Coding Theory. CRC Press 2021.
[HLL08]
C. Hollanti, J. Lahtonen, and H. F. Lu. Maximal Orders in the Design of Dense Space-Time Lattice Codes. IEEE Transactions on Information Theory, 54(10):4493-4510, 2008. DOI: 10.1109/TIT.2008.928998
[KL14]
J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. Chapman & Hall/CRC Cryptography and Network Security Series. Taylor & Francis 2014.
[LM23]
C. Ling and A. Mendelsohn. NTRU In Quaternion Algebras Of Bounded Discriminant. In PQCrypto 2023, volume 14154 of LNCS, pages 256–290. 2023. Springer-Verlag. DOI: 10.1007/978-3-031-40003-2_10
[LM24]
C. Ling and A. Mendelsohn. Middle-Products of Skew Polynomials and Learning with Errors. In E. A. Quaglia, editor, IMACC 2023, volume 14421 of LNCS, pages 199–219. 2024. Springer. DOI: 10.1007/978-3-031-47818-5_11
[LÖ16]
P. Lundström and J. Öinert. Simple Graded Rings, Non-Associative Crossed Products and Cayley-Dickson Doublings. Journal of Algebra and Its Applications, 19, October 2016. DOI: 10.1142/S021949882050231X
[LPR13a]
V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit for Ring-LWE Cryptography. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. 2013. Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-38348-9_3
[LPR13b]
V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with Errors over Rings. J. ACM, 60(6), 2013. DOI: 10.1145/2535925
[LS15]
A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices. Designs, Codes and Cryptography, 75(3):565-599, June 2015. DOI: 10.1007/s10623-014-9938-4
[LW92]
H. J. Lee and W. C. Waterhouse. Maximal orders in nonassociative quaternion algebras. Journal of Algebra, 146(2):441-453, 1992. DOI: 10.1016/0021-8693(92)90077-Y
[Lyu12]
V. Lyubashevsky. Lattice Signatures without Trapdoors. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. 2012. Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-29011-4_43
[ML]
C Mendelsohn A and Ling. On the Hardness of Cryptographic Problems from Cyclic Algebras. To appear..
[ML23]
A. Mendelsohn and C. Ling. Fractional non-norm elements for division algebras, and an application to Cyclic Learning with Errors. Adv. Math. Commun., 2023. DOI: 10.3934/amc.2023043
[MP15]
D. Miccancio and C. Peikert. The Mathematics of Modern Cryptography Workshop. https://simons.berkeley.edu/workshops/mathematics-modern-cryptography. July 2015.
[MR04]
D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. In FOCS 2004, volume 37 of SIAM J. Comput., pages 372-381. 2004. DOI: 10.1137/S0097539705447360
[NIS22]
NIST. Post-Quantum Cryptography: Selected Algorithms 2022. https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. December 2022.
[Ore33]
O. Ore. Theory of Non-Commutative Polynomials. Annals of Mathematics, 34(3):480–508, 1933.
[OS13]
F. Oggier and B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Adv. Math. Commun., 7(4):441-461, 2013. DOI: 10.3934/amc.2013.7.441
[PTP16]
A. Pedrouzo-Ulloa, J. R. Troncoso-Pastoriza, and F. Pérez-González. On Ideal Lattices over the Tensor Product of Number Fields and Ring Learning with Errors over Multivariate Rings. CoRR, abs/1607.05244, 2016.
[PU11]
S. Pumplün and T. Unger. Space-time block codes from nonassociative division algebras. Adv. Math. Commun., 5(3):449-471, 2011. DOI: 10.3934/amc.2011.5.449
[Pum16]
S. Pumplün. How to obtain lattices from $(f, \sigma, \delta)$-codes via a generalization of Construction A. Applicable Algebra in Engineering, Communication and Computing, 29:313-333, 2016. DOI: 10.1007/s00200-017-0344-9
[Pum17]
S. Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to ($f$, $\sigma$, $\delta$)-codes. Advances in Mathematics of Communications, 11(3):615-634, 2017. DOI: 10.3934/amc.2017046
[Pum18]
S. Pumplün. Quotients of orders in algebras obtained from skew polynomials with applications to coding theory. Communications in Algebra, 46(11):5053-5072, 2018. DOI: 10.1080/00927872.2018.1461882
[PW16]
S. Puchinger and A. Wachter-Zeh. Sub-quadratic decoding of Gabidulin codes. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 2554-2558. 2016. DOI: 10.1109/ISIT.2016.7541760
[PW18]
S. Puchinger and A. Wachter-Zeh. Fast operations on linearized polynomials and their applications in coding theory. Journal of Symbolic Computation, 89:194-215, 2018. DOI: 10.1016/j.jsc.2017.11.012
[Reg09]
O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. of the ACM, 56, 2009. DOI: 10.1145/1568318
[Sch10]
R. Schafer. An Introduction to Nonassociative Algebras. Benediction Classics 2010.
[SPO12]
A. Steele, S. Pumplün, and F. Oggier. MIDO space-time codes from associative and nonassociative cyclic algebras. In 2012 IEEE Information Theory Workshop, pages 192-196. September 2012. DOI: 10.1109/ITW.2012.6404655
[SRS03]
B. A. Sethuraman, B. S. Rajan, and V. Shashidhar. Full-diversity, high-rate space-time block codes from division algebras. IEEE Trans. Inf. Theory, 49(10):2596-2616, 2003. DOI: 10.1109/TIT.2003.817831
[SSTX09]
Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient Public Key Encryption Based on Ideal Lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635. December 2009. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-10366-7_36
[Ste14a]
A. Steele. Nonassociative cyclic algebras. Israel Journal of Mathematics, 200, June 2014. DOI: 10.1007/s11856-014-0021-7
[Ste14b]
[Wat87]
W. C. Waterhouse. Nonassociative quarternion algebras. Algebras, Groups, Geometries, 4(3):365-378, 1987.

PDFPDF Open access

History
Submitted: 2024-10-09
Accepted: 2024-12-03
Published: 2025-01-13
How to cite

Andrew Mendelsohn and Cong Ling, Learning with Errors from Nonassociative Algebras. IACR Communications in Cryptology, vol. 1, no. 4, Jan 13, 2025, doi: 10.62056/aee0wa3y6.

License

Copyright is held by the author(s)

This work is licensed under a Creative Commons Attribution (CC BY) license.