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Abstract. We construct a provably-secure structured variant of Learning with Errors
(LWE) using nonassociative cyclic division algebras, assuming the hardness of worst-
case structured lattice problems, for which we are able to give a full search-to-decision
reduction, improving upon the construction of Grover et al. named ‘Cyclic Learning
with Errors’ (CLWE). We are thus able to create structured LWE over cyclic algebras
without any restriction on the size of secret spaces, which was required for CLWE as
a result of its restricted security proof. We reduce the shortest independent vectors
problem in ideal lattices, obtained from ideals in orders of such algebras, to the
decision variant of LWE defined for nonassociative CDAs. We believe this variant
has greater security and greater freedom with parameter choices than CLWE, and
greater asymptotic efficiency of multiplication than module LWE. Our reduction
requires new results in the ideal theory of such nonassociative algebras, which may
be of independent interest. We then adapt an LPR-like PKE scheme to hold for
nonassociative spaces, and discuss the efficiency and security of our construction,
showing that it is immune to certain subfield attacks. Finally, we give example
parameters to construct algebras for cryptographic use.
Keywords: learning with errors · lattices · post-quantum · public-key encryption

1 Introduction
In [Ajt96], Ajtai gave a reduction from the ‘shortest vector problem’ (SVP) on integer
lattices to random instances of SVP on a particular class of integer lattices. These
reductions were later used to ground the security of a public key encryption (PKE) scheme
[AD97]. Such worst-case to average-case reductions have been acclaimed by cryptographers:
they imply that if some instance of a problem is ‘hard’ (i.e. computationally intractable)
then with respect to some distribution over problem instances, a randomly selected instance
will also be hard to solve.

Similar reductions for other cryptographic problems have subsequently been obtained:
in [MR04] it was shown that an average-case form of the ‘small integer solutions’ (SIS)
problem is at least as hard as a worst-case ‘shortest independent vectors problem’ (SIVP),
and, pertinently for this work, in [Reg09] it was shown that average-case ‘learning with
errors’ (LWE) is at least as hard as worst-case SIVP.

In more detail, (search) LWE asks a solver to obtain a vector s ∈ Znq of integers modulo
q from samples of the form

(a, 〈a, s〉+ e) ∈ Znq × Zq

Here Zq = Z/qZ, e is an ‘error’ (or ‘noise’) term and a is taken uniformly at random over
the domain. One can also consider the case of errors taken from a domain which is not
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discrete. The decision form of the problem is to decide if a collection of samples is taken
as above, or is sampled uniformly from the domain.

LWE has subsequently become a centerpiece of lattice-based cryptography. Varied
functionalities, from signature schemes (e.g. [Lyu12], [DDLL13], [DLL+17]) to fully
homomorphic encryption (e.g. [BV11], [GSW13], [CKKS17], [CGGI19]), have been obtained
from the LWE assumption. Moreover, in 2022 NIST standardized Crystals-Kyber as their
post-quantum KEM of choice, and Crystals-Dilithium as one of two standardized post-
quantum signatures [NIS22]. Both schemes are based on structured forms of LWE.

Schemes based on structured forms of LWE, like Kyber, aim to achieve tradeoffs
between efficiency and security by using algebraic structure (e.g. from rings of integers of
number fields or modules over these rings). These structured variants include Ring LWE
(RLWE) [LPR13b] using rings of integers of number fields, Polynomial LWE [SSTX09]
using a more general class of polynomial rings, and Module LWE (MLWE) [LS15] using
modules of finite rank over rings of integers, and others.

In [GMLV22], a structured form of LWE was introduced, via an object known as a
cyclic division algebra (CDA), and called CLWE. This variant generalised RLWE, and
aimed to attain a comparable level of security to MLWE while improving on its efficiency.
A limitation of CLWE, however, is that while a reduction from worst-case lattice problems
to the search CLWE problem was obtained, the reduction from the search to the decision
problem only holds for a limited set of secrets. There may thus be choices of secret for
CLWE which are in some sense structurally weak, and so no security reduction may be
given for them. In this work, we study structured LWE over a closely related family of
algebras, for which we obtain a full reduction from worst-case lattice problems. This allows
us to totally remove the restriction on the size of the set of secrets which limited CLWE,
for well-chosen parameters. We may thus be confident that structured LWE can be created
from CDAs with no possibility of structurally weak secrets. This may suggest that the
nonassociative generalisation of number fields will prove a more fruitful structure with
which to structure LWE than the associative option.

1.1 Contributions
We introduce NCLWE, a form of structured LWE obtained by using orders of nonassociative
cyclic algebras, rather than orders of associative cyclic algebras as in CLWE. We briefly
outline the construction of these algebras (more detail is given in Section 3). In [GMLV22],
CDAs were built by setting K = Q(ζm) to be the mth cyclotomic field, and taking a
certain finite extension L of degree [L : K] = d, with cyclic Galois group generated by
an automorphism θ such that a chosen element γ ∈ O×

K is not in the image of the field
norm NL/K(·) from L to K. An auxiliary element u satisfying ud = γ and ux = θ(x)u

was defined, and an algebra A = L⊕ uL⊕ ...⊕ ud−1L constructed. An order (full-rank
discrete subring) is then defined: Λ = OL ⊕ uOL ⊕ ...⊕ ud−1OL, called the natural order.

In this work we consider the case of γ ∈ O×
L \ O

×
K . As will be seen below, the resulting

algebras A still yield CDAs and Λ is still an order, but multiplication is not associative; for
instance, u(ud−1u) = uγ, but (uud−1)u = uθ(γ). This lack of associativity poses a number
of technical problems; mathematically, results on the ideal theory of associative Λ cannot
be applied, and cryptographically, the Regev-style cryptosystem of [GMLV22] cannot be
straightforwardly mirrored for CLWE-style samples defined from nonassociative CDAs.

In this work we overcome both of these obstacles. We begin with a study of multiplicative
ideal theory of two-sided ideals in nonassociative natural orders, and obtain

Theorem 6. Let Λ ⊂ A = (L/K, θ, γ) be the natural order of a nonassociative CDA and
γ ∈ O×

L . Then multiplication of Λ-ideals I such that I ∩ OK is unramified in OL yields
ideals, and is commutative and associative.

We use this to give an unrestricted search-to-decision reduction for NCLWE samples,
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in contrast to the partial reduction for CLWE, for certain moduli. Below, Λ∨ is the dual
of Λ.

Theorem 7, informal. Let Λ ⊂ A = (L/K, θ, γ), q ≥ 2 such that qOK =
∏g
i=1 qi, and

α ∈ (0, 1) such that αq ≥ ηε (Λ∨) for negligible ε. Then there is a probabilistic polynomial-
time reduction from search NCLWEq,s,Σα,G for s in any pairwise difference set G ⊂ Λ∨

q to
decision NCLWEq,Υα .

When the qi are inert in OL and either d is prime or 1, γ, . . . , γd−1 are linearly
independent over OK/qi for each i, then there is a probabilistic polynomial-time reduction
from search NCLWEq,s,Σα

to decision NCLWEq,Υα
.

We then obtain a reduction from SIVP on lattices which are embeddings of ideals of Λ
in the standard manner of [LS15],[GMLV22], [ML23], which combined with Theorem 7
yields a reduction from worst-case lattice problems to decision NCLWE.

We then relate NCLWE to cryptography by tweaking the Regev-style scheme of
[GMLV22] to maintain correctness in spite of the nonassociativity of our algebras, when
d = 2. We conclude by giving parameter suggestions for CDAs with which to implement
our scheme, with a discussion of a subspace attack on structured LWE variants, and with
numerical results from the lattice estimator [APS15] applied to our parameter choices.

As mentioned above, our results introduce a structured form of LWE using cyclic
algebras which has a complete security proof. A consequence of this is that we may have
greater confidence in NCLWE than CLWE that there are no structurally weak choices
of secret, a possibility left open by the security proofs of [GMLV22]. We also note that
nonassociative rings may be considered the least structured algebraic object used to create
ring-based LWE to date (insofar as they lack associativity and commutativity), and it
may be considered advantageous to have such unstructured LWE instances so as to hedge
against the possibility of algebraic attacks which exploit specific algebraic structures also
solving our LWE instances; for instance, attacks against LWE over cyclotomic fields may
be unlikely to also apply to LWE over nonassociative algebras.

We note that both CLWE and NCLWE are in fact instance of structured MLWE. This
is because one sample of (N)CLWE results in numerous correlated samples of MLWE. It is
thus possible that the security of (N)CLWE is close to that of MLWE while allowing for
greater asymptotic efficiency than MLWE. We see the exploration of this possibility as an
interesting question and we leave quantifying the gap between (N)CLWE and MLWE for
future work.

1.2 Prior work

Associative cyclic division algebras were used in coding theory in [SRS03]. Works such as
[OS13], [HLL08] further developed this. Nonassociative CDAs were developed in [Wat87],
[LW92], Steele’s thesis [Ste14b], and also in [Ste14a], [SPO12], [PU11].

CDAs were used in cryptography to create structured LWE in [GMLV22], [ML23] and
for NTRU in [LM23]. For more on the mathematics of nonassociative rings, see [Sch10].

The usefulness of noncommutative structures for post-quantum cryptography was
hinted at by Micciancio and Peikert in the Simons Institute Workshop on the Mathematics
of Modern Cryptography [MP15], where they wrote that lattice-based cryptographic
progress had been built on ‘approximation problems on point lattices, their specializations
to structured lattices arising in algebraic number theory, and, more speculatively, problems
from noncommutative algebra.’
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2 Preliminaries
2.1 Lattices
A Z-lattice L is the integer linear span of a set of vectors bi, L = {

∑
i aibi : ai ∈ Z}.

We may write the bi as the columns of a matrix B and refer to the lattice L = L(B)
defined by the span of the columns of B. More generally, if V is a finite-dimensional vector
space over a field K and R is a discrete subring of K then an R-lattice in V is a subspace
L ⊂ V such that L is a finitely-generated R-module. Equivalently, L is a finitely-generated
torsion-free R-module. If dimZ(R) = dimQ(V ), we call R an order. An order is maximal
if it is maximal with respect to inclusion. An R-lattice L is called full if it contains a
K-basis of V , so V = KL. Fixing a basis B of V , the R-linear span of B is a full lattice.
We will be concerned with full lattices in V = Rn.

Definition 1. Let L be a lattice, and Rn be endowed with inner product 〈·, ·〉. Then the
set L∨ = {v ∈ Rn : 〈L, v〉 ⊂ Z} is called the dual lattice of L.

Definition 2. Let L ⊂ Rn be a lattice and ‖ · ‖ be a norm. Then λi(L) denotes the ith
successive minimum of L with respect to the norm ‖ · ‖, that is the minimum length of a
set of i linearly independent vectors in L, where the length of a set of vectors {x1, . . . ,xn}
is maxi (‖xi‖).

2.2 Discrete Gaussians
Equip Rn with the Euclidean norm ‖ · ‖2 = ‖ · ‖, and let a ∈ Rn and r > 0. Define the
Gaussian function by ρr,a : Rn → (0, 1],x 7→ exp

(
−π‖x− a‖/r2

)
. Then the Gaussian

distribution Dr is defined by the probability density function 1
rρr,0.

Let b1, . . . ,bn be a basis of Rn and r = (r1, . . . , rn) ∈ Rn. An elliptical Gaussian
distribution Dr over Rn is obtained by sampling xi ← Dri independently for all i 6= j and
outputting

∑n
i=1 xibi. If the ri are all identical, Dr is spherical.

For a lattice L, let ρr(L) =
∑
x∈L ρr(x). Then for x ∈ L, the discrete Gaussian

distribution DL,r outputs x with probability ρr(x)
ρr(L) .

The smoothing parameter, introduced in [MR04], will be used throughout:

Definition 3. Let L be a lattice and ε > 0. Then the smoothing parameter ηε(L) of L is
the smallest r > 0 such that ρ1/r (L∨/{0}) ≤ ε.

The statistical distance between distributions D,D′ over a discrete set S is denoted
∆(D,D′) = 1

2

∑
x∈S |D(x)−D′(x)|. We may denote the uniform distribution over S by

U(S). We also need the following statistical lemma:

Lemma 1. [MR04, Lemma 4.1] For a lattice L over Rn, ε > 0, r ≥ ηε(L), and x ∈ Rn,
the statistical distance between (Dr + x) mod L and the uniform distribution modulo L is
bounded above by ε/2. Equivalently, ρr(L+ x) ∈

[
1−ε
1+ε , 1

]
· ρr(L)

2.3 Number Fields
An algebraic number field is a field containing Q with finite index. An example of an
algebraic number field is a cyclotomic field, obtained by adjoining a primitive mth root
of unity ζm to Q for Q(ζm), which has degree [Q(ζm) : Q] = ϕ(m) where ϕ is the Euler
totient function. Cyclotomic fields are examples of Galois fields. These are characterised
by the property that their set of automorphisms has a group structure.

Let L/K be a Galois extension of algebraic number fields. The ring of integers of
K is denoted OK and is the maximal order of K, and similarly for OL and L. Given a
prime ideal p of OK , the ideal pOL =

∏g
i=1 Pei factors into a number of powers of prime
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OL-ideals Pi. It is a standard result that efg = [L : K], where f = [OL/Pi : OK/p]. If
e = 1, p is called unramified. If g = [L : K], p completely splits. If f = [L : K], p is inert.

2.4 Lattice Problems
We next define lattice problems used in our reductions for the nonassociative setting
outlined below . We parameterise our problems by an algebraic space A which may be
embedded into Rn for some n, containing an order AZ over which lattices are defined; for
example, Q-SVPξ refers to lattice problems over Z-lattices; K-SVPξ refers to SVP in an
ideal lattice I of the ring of integers of K; and A-SVPξ refers to SVP in an ideal lattice
of the natural order of a cyclic algebra A (definitions below), with respective norms ‖ · ‖.
Below, L is an AZ-lattice embedded into Rm.

Definition 4. For an approximation factor ξ = ξ(n) ≥ 1, the (approximate) Shortest
Vector Problem, A-SVPξ, is to find an element a ∈ L \ 0 such that ‖a‖ ≤ ξ · λ1(L).

Definition 5. The (approximate) Shortest Independent Vectors Problem, A-SIVPξ, is
to find n := [L : Z] linearly independent non-zero vectors x1, . . . ,xn over Z such that
maxi (‖xi‖) ≤ ξ · λn(L), where ξ ≥ 1.

Definition 6. The Discrete Gaussian Sampling problem, denoted A-DGSξ, is to sample a
discrete Gaussian DL,ξ, for some parameter ξ > 0.

For A a number field, d ≥ 1, and e ∈ Ad let ‖e‖2,∞ = maxj

√∑d−1
i=0 |σj (ei)|

2, where
the σj are the A-embeddings A ↪→ C. We now define the bounded distance decoding
(BDD) problems we require.

Definition 7. Let δ < λ1(L)/2 and ψ be an error distribution. Then the A-BDDL,δ
problem, on input y = x+ e for x ∈ L and e← ψ satisfying ‖e‖2,∞ ≤ δ, is to compute x.

Definition 8. For any q ≥ 2 the qA-BDDL,d problem is as follows: given an instance
of the A-BDDL,δ problem y = x + e with solution x ∈ I and error e ← ψ satisfying
‖e‖2,∞ ≤ δ, output x mod qL.

The above two BDD problems are straightforwardly extended to cyclic algebras by
considering the error terms as vectors with entries in a number field.

2.5 Learning with Errors
Learning with Errors (LWE) was introduced in [Reg09] by Regev. An LWE sample is
constructed by first sampling a← Znq uniformly at random for some modulus q ≥ 2 and
rank n. One then takes a secret s ∈ Znq , samples an error e← ψ from an error distribution
ψ over Zq, and outputs

(a, 〈a, s〉+ e mod q) ∈ Znq × Zq
The search problem is to recover s from polynomially many independent samples, and
the decision problem is to decide whether a collection of samples comprises samples taken
uniformly random over the domain, or whether they are a collection of independent LWE
samples.

One can batch together multiple LWE samples as follows: if there are ` LWE samples
(ai, 〈ai, s〉+ ei mod q), one can write

(A,As+ e mod q) ∈ Z`×nq × Znq

where A has ith row ai and the ith entry of e is ei. One can take ψ to be an error
distribution over a continuous domain, if desired. A reduction from SIVP to the decision
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LWE problem was given, relating the hardness of LWE to worst-case lattice problems
which are currently intractable for well-chosen parameters.

We conclude by observing two issues with LWE: first, that for large values of n, matrix-
vector multiplication is not efficient, and second, that storing an LWE sample requires
storing n2 + n values from Zq, which for large n is a strong requirement. For these reasons
and more, variants of LWE have been introduced using algebraic structure to alleviate
these concerns, which we explore below.

2.6 Ring LWE
Two works adapted LWE to polynomial rings [SSTX09], [LPR13b]. The latter of these
introduced Ring LWE, using rings of integers of Galois number fields, in particular those
of cyclotomic fields K = Q(ζm) ∼= Q[x]/Φm(x) generated by a primitive mth root of unity
(or the roots of the mth cyclotomic polynomial Φm(x)). For example, when m is a power
of two and K = Q[x]/f(x) with f(x) = xm + 1, fixing a basis {1, x, ..., xm−1}, one can
write multiplication of polynomials a = a0 + a1x+ ..., s = s0 + s1x+ ... ∈ Z[x]/f(x)Z[x]
as matrix-vector multiplication

vec(a · s) =


a0 −am−1 ... −a1
a1 a0 ... −a2
... ... ... ...

am−1 am−2 ... a0




s0
s1
...

sm−1


In this manner one can replace As+ e in LWE samples with polynomial multiplication
a · s + e in the ring of integers OK . Clearly one need only store the m coefficients of a
and the m coefficients of a · s + e to store an RLWE key, and fast algorithms exist for
polynomial multiplication. Expanding RLWE samples over the integers, one obtains a
number of correlated LWE instances.

RLWE was extended to modules of finite rank over number fields, called MLWE [LS15].
Here one takes s ∈ O`Kq

, samples a← O`Kq
uniformly and e← ψ over OKq

and outputs
(a, 〈a, s〉+ e mod q) ∈ O`Kq

×OKq
, where OKq

= OK/qOK and ` > 0 is the module rank.
We also introduce here the dual form of RLWE. Let TrK/Q(·) denote the field trace.

We define the codifferent as

O∨
K := {x ∈ K : TrK/Q(xOK) ⊂ Z}.

We then define a dual form of RLWE by taking s ∈ O∨
Kq

, a ∈ OKq
, and e← ψ where ψ

samples over OKq
, and outputting (a, 1q (a · s) + e mod O∨

K). This can again be straightfor-
wardly turned into a module problem.

Rather than simply taking the coefficients of polynomials to obtain LWE-style problems,
one can instead consider the canonical embedding of K into R[K:Q]. If K/Q is a finite Galois
number field and [K : Q] = n, then there exists an α with minimal polynomial mα(x)
such that K = Q[x]/(mα(x)) ∼= Q(α). Since K is Galois, it has n distinct automorphisms
which are defined by their action on α, and the automorphisms each extend to a unique
embedding K ↪→ C. If σi(K) ⊂ R, for an embedding σi, then σi is called real, and is
otherwise called complex. There are r1 real embeddings and r2 pairs of complex embeddings
of K, satisfying r1 + 2r2 = n. Ordering the real embeddings first, and then the complex
embeddings such that σr1+j = σr1+r2+j for 1 ≤ j ≤ r2, we define

Definition 9. The canonical embedding σK : K ↪→ Rr1 × C2r2 is defined by

x 7→ (σ1(x), ..., σn(x)), for x ∈ K

and imσK ⊂ H := {(x1, ..., xn) ∈ Rr1 × C2r2 : xr1+r2+j = xr1+j , 1 ≤ j ≤ r2}.
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As inner product spaces H ∼= Rn. Note σK(x) + σK(y) = σK(x+ y), so an algebraic
lattice in K has image under σK a lattice in Rn, and σK(xy) = σK(x) ? σK(y) where ?
denotes entry-wise products of vectors. The norm ‖x‖ := ‖σK(x)‖2 can then be defined,
and lattice problems with respect to this norm reduced to RLWE.

2.7 Cyclic LWE
In [GMLV22], LWE was adapted to the algebraic setting of cyclic division algebras. These
are rings which are also vector spaces over a number field, and this LWE variant targeted
achieving comparable security to MLWE while attaining a level of efficiency comparable
with that of RLWE. The cyclic algebras used are defined by a pair of number fields L,K
where L/K is a degree d extension with cyclic Galois group generated by an element θ,
and K := Q(ζm) is cyclotomic. To form a cyclic algebra, one defines an element u by the
properties ud = γ for some γ ∈ OK , and ux = θ(x)u for all x ∈ L, and sets

A := L⊕ uL⊕ ...⊕ ud−1L

This contains a subring which is also a lattice, denoted

Λ := OL ⊕ uOL ⊕ ...⊕ ud−1OL

and called the natural order. To illustrate multiplication of algebra elements, consider the
case d = 2 and a = a0 + ua1, s = s0 + us1. Then

a · s = a0s0 + γθ(a1)s1 + u (a1s0 + θ(a0)s1)

As in prior LWE variants, a matrix representation φ can be obtained by fixing the
basis 1, u, ..., ud−1 and computing the multiplication of a generic element a = a0 + ua0 +
...+ ud−1ad−1 ∈ A with an element s ∈ A in the basis. This is a linear transformation, so
the vector of coefficients of a · s can be written as matrix-vector multiplication:

vec(a · s) = φ(x)s =


a0 γθ(ad−1) . . . γθd−1(a1)
a1 θ(a0) . . . γθd−1(a2)
. . . . . . . . . . . .
ad−1 θ(ad−2) . . . θd−1(a0)




s0
s1
...

sd−1


We can also define a duality via a trace form: set Tr(x) := TrK/Q ◦ trace(φ(x)), for x ∈ A.
This is a symmetric map, and we define Λ∨ := {x ∈ A : Tr(xΛ) ⊂ Z}. An LWE-style
distribution was then defined:

Definition 10. Let L/K be a Galois extension of number fields of dimensions [L : K] = d,
[K : Q] = n, with cyclic Galois group generated by θ. Let A := (L/K, θ, γ) be the resulting
cyclic algebra with center K and invariant u with ud = γ ∈ OK . Let Λ be the natural
order of A, and Λq = Λ/qΛ. Let LR = L⊗R. For an error distribution ψ over ⊕d−1

i=0 u
iLR,

an integer modulus q ≥ 2, and a secret s ∈ Λ∨
q , a sample from the CLWE distribution

ΠCq,s,ψ is obtained by sampling a ← Λq uniformly at random, e ← ψ, and outputting
(a, b) = (a, (a · s)/q + e mod Λ∨) ∈ Λq ×

(
⊕d−1
i=0 u

iLR
)
/Λ∨.

Search and decision problems were defined in the standard way:

Definition 11. Let Ψ be a family of error distributions over
⊕d−1

i=0 u
iLR. Then the search

CLWE problem, denoted by CLWE q,s,ψ, is to recover s from a collection of independent
samples from ΠCq,s,ψ for arbitrary s ∈ Λ∨

q and ψ ∈ Ψ.
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Definition 12. Let Υ be some distribution on a family of error distributions over⊕d−1
i=0 u

iLR and UA denote the uniform distribution on
(
Λq,
(⊕d−1

i=0 u
iLR

)
/Λ∨

)
. Then,

the decision CLWE problem, written DCLWEq,Υ, is on input a collection of independent
samples from either ΠCq,s,ψ for a random choice of (s, ψ) ← U

(
Λ∨
q

)
× Υ or from UΛ, to

decide which is the case with non-negligible advantage.

To see that these definitions do yield structured LWE instances, one can expand them
using the map φ to obtain equations over OLq

, which can then be expanded over Zq.
Security reductions were also proved. The hardness of the search problem was obtained
from ideal SIVP on ideals in Λ, with respect to the family of error distributions comprising
Gaussians over ⊕d−1

i=0 u
iLR which have every marginal distribution Gaussian of parameter

rij at most α, denoted Σα.

Theorem 1. [GMLV22, Corollary 1] Let A = (L/K, θ, γ) be a CDA with |γ| = 1 such
that the natural order Λ is maximal, and let α ∈ (0, 1) and q unramified in L be such that
αq ≥ ω(

√
log nd2). Then, there is a polynomial-time quantum reduction from A-SIVPξ to

search CLWEq,s,Σα
for any

√
8nd2 · ξ = (ω(

√
dn)/α).

A restricted search-to-decision reduction was also obtained:

Theorem 2. Let K = Q(ζm), Λ be the natural order of a CDA A = (L/K, θ, γ),
q ∈ poly(n), and assume that αq ≥ ηε (Λ

∨) for a negligible ε = ε(n). Then, there is a
probabilistic reduction from search CLWEq,Σα,G for any pairwise difference set G ⊂ Λ∨

q to
decision CLWEq,Υα

which runs in time polynomial in n.

Above, a pairwise difference set G ⊂ Λ∨
q is a set such that the difference of any two

elements is invertible. We now discuss the search-to-decision reduction in more detail, and
explain why the restriction to such sets was necessary.

We first observe a technical difference between the search-to-decision reductions for
CLWE and for RLWE. Both reductions require a Chinese Remainder Theorem (CRT)
decomposition modulo q: the reduction for RLWE used a CRT on OK/qOK to rewrite the
quotient as the products of quotients by prime ideals of OK , whereas the CLWE reduction
used a CRT-style isomorphism which gives an isomorphism

Λ/qΛ ∼=
g∏
i=1

((OL/qiOL)/(OK/qi), θ, γ)

where qOK =
∏g
i=1 qi, which for primes unramified inOL is a direct product of (generalised)

cyclic algebras over finite fields OK/qi. The algebra of the right hand side induced by
qi was labelled Ri. However these algebras are not division algebras, but rather each
Ri is isomorphic to a matrix ring over a finite field, rather than simply a finite field
(which is what is obtained for the corresponding step for RLWE). Let us work through the
consequences.

The critical step in the reduction reduces search CLWE ‘modulo Ri’ to a hybrid
distribution. This hybrid distribution is denoted Ais,Σ, and is defined over Λq×(⊕iuiLR)/Λ

∨

by sampling (a, b)← ΠCq,s,Σ and outputting (a, b+h/q), where h ∈ Λ∨
q is uniformly random

and independent modulo Rj for all j ≤ i, and 0 modulo the remaining Rj . Then worst-
case decision CLWE modulo Ri, WDCLWEiq,Σ, is, given access to Ajs,Σ for arbitrary
s ∈ Λ∨

q ,Σ ∈ Σα, and j ∈ {i− 1, i}, to find j, for i ∈ Zg.
The reduction, given a CLWE sample (a, b), guesses s with g and computes

(a′, b′) = (a+ v, b+ (h+ vg)/q) ∈ Λq × (⊕iuiLR)/Λ
∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod Rj for j 6= i, and h ∈ Λ∨
q is

uniformly random and independent mod Rj for all j < i, and 0 mod the remaining Rj .
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Observe

b′ = b+ (h+ vg)/q = as/q + e+ h/q + vg/q = ((a+ v)s+ h+ v(g − s)) /q + e.

If the guess g = s, then (a′, b′) is a sample from Ai−1
s,Σ . However, if g 6= s, we do not find

that the resulting distribution is Ais,Σ unless g−s is invertible modulo Ri, that is, invertible
in some matrix ring over a finite field. To ensure this holds, [GMLV22] restricted the secret
space for this step of the reduction to a ‘pairwise difference set’ G ⊂ Λ∨

q , which under the
CRT-style map is a direct product of sets Gi ⊂ Ri, characterised by the property that the
difference of any two elements of Gi inverts. Such a set is of size at most |Gi| ≤ qd when
[L : K] = d, rather than the full secret space of size qd2 . As a result, there is currently no
unrestricted reduction from computationally hard lattice problems to decision CLWE. It is
the purpose of the present work to circumvent this problem by pivoting to nonassociative
algebras.

The CLWE problem was applied to cryptography to design a public key encryption
scheme. We also note [LM23], [ML23], [LM24] contributing to the study of CLWE.

3 Nonassociative Cyclic Algebras
We begin by defining nonassociative cyclic algebras. Recall a ring is nonassociative if

a(bc) = (ab)c

does not always hold, for ring elements a, b, c.

Definition 13. Let K be a degree n number field and L a cyclic Galois extension of
degree d over K. Let θ generate the Galois group of L/K. Let γ ∈ L. We call

A = L⊕ uL⊕ ...⊕ ud−1L,

where u is an auxiliary element subject to ud = γ and to xu = uθ(x) for all x ∈ L, a
cyclic algebra. Fixing the basis

{
1, u, . . . , ud−1

}
, we define multiplication on uix and ujy

for x, y ∈ L, 0 ≤ i, j, < d by

(
uix
) (
ujy
)
=

{
ui+jθj(x)y if i+ j < d
ui+j−dγθj(x)y if i+ j ≥ d

and extend this linearly to all of A. We denote this algebra by A = (L/K, θ, γ).

When γ ∈ L \K, the above algebra is not associative: observe (u · ud−1) · u = ud · u =
γu = uθ(γ), but u · (ud−1 · u) = u · ud = uγ. We refer to A as a nonassociative cyclic
algebra to emphasise this property. We measure lack of associativity with

Definition 14. The associator of A is [x, y, z] := (xy)z − x(yz). The left nucleus is
Nucl(A) := {x ∈ A : [x,A,A] = 0}. The middle and right nuclei are defined similarly.
The nucleus N (A) is N (A) := Nucl(A) ∩Nucm(A) ∩Nucr(A).

The nuclei are associative subalgebras of A.

Definition 15. The commuter of A is Comm(A) = {x ∈ A : xy = yx for all y ∈ A}.
The center of A is Z(A) = Comm(A) ∩ Nuc(A). An algebra A is central if Z(A) = K.
An algebra A is simple if it contains no non-trivial two-sided ideals.

Proposition 1. For a nonassociative cyclic algebra A = (L/K, θ, γ), we have N (A) = L
and Comm(A) = K, and A is a central simple K-algebra.
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Proof. Corollary 3.2.6 and Proposition 3.2.7 from [Ste14b].

We state a characterisation of the ‘division’ property of algebras:

Definition 16. A unital algebra over a field is a division algebra if every non-zero element
has a left and a right inverse.

One can also say an algebra is division if left (and right) multiplication defines a
bijective map from the algebra to itself. Thus there are no zero divisors in a division
algebra. An algebra element may have distinct left and right inverses. We state a criterion
for an associative cyclic algebra to be division, which we emphasize does not apply in the
nonassociative case:

Lemma 2. [Alb39] Let A = (L/K, θ, γ) be an associative cyclic algebra. Then A is a
division algebra if and only if γi is a non-norm element, i.e. @x ∈ L : NL/K(x) = γi, for
i = 1, ..., [L : K]− 1.

Such elements γ as in the above lemma are called ‘non-norm elements’. We now state
a corresponding result for nonassociative cyclic algebras:

Proposition 2. Let A be a nonassociative cyclic algebra of prime degree p. Then A is
a division algebra. If A has arbitrary degree d and the elements 1, γ, ..., γd−1 are linearly
independent over K, then A is a division algebra. If γ is not contained in any proper
subfield of L, A is a division algebra.

Proof. Corollary 3.2.11 and Theorem 3.2.10 of [Ste14b].

The search for non-norm elements, i.e. elements of the ground field K which aren’t
realisable as the norm of any element of L, is a key part of the construction of associative
CDAs. When taken for γ, as we saw above, they ensure the algebra is division. Their
importance is paralleled by their rarity, and several, often convoluted, methods have been
developed to obtain them (e.g. [ML23]). However, as shown in the above theorem, it is
much easier in the nonassociative case to guarantee a cyclic algebra is division; indeed, in
the degree p case it holds automatically.

Example: Let K = Q(ζm) and L = Q(ζpm) where p and m are coprime. Then ζp /∈ K,
and L/K is cyclic and Galois. Then (L/K, θ, ζpm) is a nonassociative cyclic division algebra.

Finally, we introduce a mild generalisation of cyclic algebras:

Definition 17. Let S/R be a finite extension of commutative rings and G = 〈θ〉 be a
finite cyclic group of order d acting on S with trivial action on R. Let γ ∈ S and u such
that ux = θ(x)u for all x ∈ S and ud = γ. Then we call

A = (S/R, θ, γ) := ⊕d−1
i=0 u

iS

equipped with multiplication as in Definition 13 a generalised cyclic algebra.

3.1 Matrix Representation
As explained above, one can consider RLWE as a structured form of LWE by fixing a
Z-basis of OK and writing a ·s as φ(a)s, where φ(a) is the matrix defined by multiplication
by a on the fixed basis and s is the coefficient vector of s. This yields a number of
correlated LWE samples equal to the dimension of the ring. As noted, MLWE and CLWE
are also structured forms of LWE. In the case of nonassociative algebras, there is again a
matrix representation arising from multiplication on a fixed basis in the nonassociative
algebra; however, unlike in associative cases, this defines an embedding into a vector
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space of matrices, rather than a ring, so is not multiplicative. That is, φ(as) 6= φ(a)φ(s).
Non-multiplicativity follows from the fact that matrix multiplication is associative; thus
there could be no multiplicative map from a nonassociative ring into a matrix ring. This
additive map is sufficient for our purposes, and will enable us to define a trace map as in
the associative case.

The representation is as before: left multiplication by a = a0 + ua1 + · · ·+ ud−1ad−1

on the basis {ui} inside (L/K, θ, γ) yields the following matrix:

φ(a) =


a0 γθ (ad−1) γθ2 (ad−2) · · · γθd−1 (a1)
a1 θ (a0) γθ2 (ad−1) · · · γθd−1 (a2)
...

...
... . . .

...
ad−1 θ (ad−2) θ2 (ad−3) · · · θd−1 (a0)


So a sample of nonassociative CLWE defined below yields m correlated MLWE samples

from one nonassociative CLWE sample.

3.2 Integral Structures in Nonassociative Algebras
In order to define the lattice problems we will use in our reduction, we need to define
orders and ideals in nonassociative algebras. The primary reference for this section is
[Pum18]. Set A = (L/K, θ, γ) with γ ∈ L \K such that A is a division algebra.

Recall an OK -lattice is a finitely generated torsion-free OK -module. We define the nat-
ural order of a nonassociative CDA (L/K, θ, γ) identically as for CLWE: Λ =

⊕d−1
i=0 u

iOL.
Then:

Proposition 3. If γ ∈ OL \ OK , Λ is an order of A = (L/K, θ, γ).

Proof. Λ is clearly an OK -module. To see multiplicative closure, we demonstrate the case
of d = 2. Let a, b ∈ Λ and observe

a · b = (a0 + ua1) · (b0 + ub1) = a0b0 + u(θ(a0)b1 + a1b0) + γa1b1,

which lies in Λ if γ ∈ OL. So Λ is a subring (this holds for all d ∈ Z≥1) and is discrete by
virtue of OL being a lattice inside L.

Note however that if γ ∈ L \ OL, Λ is not multiplicatively closed. We proceed to study
ideals in Λ, properties of which we redefine for the nonassociative setting. An ‘ideal’ will
refer to a two-sided ideal (unless specified otherwise).

Definition 18. A one-sided Λ-ideal I ⊂ A is an additively closed set closed under
multiplication from Λ on one side, e.g. I is a right ideal if IΛ ⊂ I. A two-sided ideal is
closed additively and under multiplication by Λ on both sides.

Definition 19. An ideal is maximal if it is not properly contained in any other proper
ideal. An ideal is prime if it is a maximal two-sided ideal.

Definition 20. The sum and product of two ideals I,J are defined as usual; I + J =
{i + j : i ∈ I, j ∈ J } and I · J = {

∑m
k=1 ik · jk : ik ∈ I, jk ∈ J ,m <∞} . A two-sided

ideal I is fractional if cI = J for a two-sided ideal J and c ∈ K.

The sum of two fractional ideals can clearly be seen to yield another fractional ideal.
The product of two ideals in a nonassociative space less clearly yields another ideal, however.
In the following pages we develop an ideal theory that will permit us to prove a security
reduction for nonassociative CLWE from nonassociative ideal lattices. We recall and
extend a number of results from [Pum18].
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Let q ∈ Z be a prime. Then q ∈ Comm(A) and qΛ is a two-sided ideal of Λ. Let
I ⊂ OK be an ideal. Then we have the following product

IΛ =

{∑
i

aixi | ai ∈ I, xi ∈ Λ

}
=

{
d−1∑
i=0

uiai | ai ∈ IOL

}
,

which is a two-sided ideal of Λ.

Proposition 4. Let J ⊂ Λ be a two-sided ideal. Then I = J ∩ OL is a non-zero ideal of
OL. If I is an ideal of K, then IΛ ∩ OK = I.

Proof. Lemma 5.1 and Remark 5.2 of [Pum18].

Proposition 5. Let A = (L/K, θ, γ) be a nonassociative CDA with γ ∈ O×
L \ O

×
K and

natural order Λ. Let I ⊂ Λ be a two-sided ideal. Then θ(I ∩ OL) = I ∩ OL.

Proof. Suppose θ(I ∩OL) 6= I ∩OL. So there exists x ∈ I ∩OL such that θ(x) 6∈ I ∩ OL.
As I is two-sided, Iu ⊂ I, so xu = uθ(x) ∈ I. Moreover, ud−1I ⊂ I, so ud−1(uθ(x)) =
udθ(x) = γθ(x) ∈ I. Since γ is a unit, γ−1I ⊂ I, so γ−1(γθ(x)) = θ(x) ⊂ I. Finally,
θ(x) ∈ OL, so θ(x) ∈ I ∩ OL - a contradiction.

This result in fact holds for generalised cyclic algebras when γ is a unit. We now recall
that if I = qs11 · · · q

st
t is an ideal of OK , then we have

OK/I = OK/qs11 · · · q
st
t
∼= OK/qs11 × · · · × OK/q

st
t

and
OL/IOL = OL/qs11 · · · q

st
t OL ∼= OL/q

st
t OL × · · · × OL/q

st
t OL.

Below is a version of the Chinese remainder theorem (CRT) for Λ:

Theorem 3. For I = qs11 · · · q
st
t an ideal of OK , we have

Λ/IΛ ∼=
(
(OL/IOL) / (OK/I) , θ̄, γ + IOL

)
=

d−1⊕
i=0

ui (OL/IOL)

∼=
(
(OL/qs11 OL) / (OK/q

s1
1 ) , θ̄, γ + qs11

)
× · · ·

· · · ×
(
(OL/qstt OL) / (OK/q

st
t ) , θ̄, γ + qstt

)
,

where θ̄ is defined by its actions on the quotients θ̄ (x+ qsii OL) = θ(x) + qsii OL.

Proof. [Pum18], Theorem 5.3 and Lemma 5.4.

In an abuse of notation, we may write θ for θ̄. Below, we study quotients Λ/IΛ in
greater detail.

4 Multiplicative Ideal Theory of Nonassociative Orders
In this section we classify unramified two-sided ideals of natural orders in CDAs of the form
(L/K, θ, γ) where K = Q(ζm) and γ ∈ O×

L \ O
×
K , and use this to prove that multiplication

of such ideals is associative and commutative, and that inverses and duals of such ideals
can be meaningfully defined. Our strategy to achieve this classification is by induction;
we begin by proving, as a base case, that under weak conditions quotient rings of Λ by
prime ideals are simple. We then give our induction proof, which essentially claims that
two-sided ideals of Λ are twisted direct sums of ideals of OL. The desired multiplicative
properties then follow.
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4.1 Unramified Primes: Inert and Split
Recall for fixed prime ideal q ⊂ OK we have [L : K] = eLfLgL with gL the number of
primes in the factorization of qOL, eL the ramification index and fL the inertial degree.
We presently consider cases where eL = 1, so [L : K] = fLgL. Let γ ∈ OL \ OK .

First, suppose gL = 1, so q is inert in L. Then fL = [L : K] = d and L̄ := OL/qOL is
a cyclic Galois extension of K̄ := OK/q of degree d. Then

Proposition 6. [Pum18, Theorem 6.1] Let q be a prime ideal in OK which is inert in
OL, and qOL = Q,Q a prime ideal in OL. Let γ̄ = γ mod q. Then

Λ/qΛ ∼=
(
(OL/qOL)/(OK/q), σ̄, γ̄

)
= (L̄/K̄, σ̄, γ̄)

is a nonassociative cyclic algebra of degree d over K̄. If d is prime or 1, γ̄, ..., γ̄d−1 are
linearly independent over K̄, then this is a central simple division algebra and the only
proper two-sided ideal J of Λ containing q is

qΛ =

d−1⊕
j=0

ujqOL.

Proof. Note γ /∈ q, i.e. γ̄ ∈ (OK/q)×, so Λ/qΛ ∼= ((OL/qOL)/(OK/q), θ̄, γ̄) is a degree d
nonassociative cyclic algebra over OK/q. By Proposition 2, if d is prime or if 1, γ̄, . . . , γ̄d−1

are linearly independent over OK/q, Λ/qΛ is a division algebra, so any two-sided ideal
is trivial. Hence by the correspondence between ideals of Λ containing qΛ and ideals of
Λ/qΛ the only proper two-sided ideal J of Λ containing q is qΛ.

Next, consider the case when eL = 1 but gL > 1. This is the split case, in which
qOL = Q1...QgL . As in the associative setting, it was shown in [Pum18, §7.3] that
Λ/qΛ ∼=

((
L̄(1) × · · · × L̄(g)

)
/K̄, θ̄, γ̄

)
, where L̄(i) = OL/Qi. To prove that this quotient

is a simple ring, we first require some definitions.

Definition 21. Let G be a group. A ring R is G-graded if there are additive subgroups
Rg ⊂ R, for g ∈ G, such that R =

⊕
g∈GRg and RgRh ⊆ Rg+h, for g, h ∈ G. If

RgRh = Rg+h, for g, h ∈ G, then R is strongly G-graded.

Let I be an OK-ideal. Consider Λ/IΛ = ⊕d−1
i=0 u

i (OL/IOL). Setting G = Z/dZ and
Ri = uiOL/IOL, one can see that the Ri are additive subgroups, and

RiRj = (uiOL/IOL)(ujOL/IOL) = ui+jθj(OL/IOL)OL/IOL = Ri+j

So Λ/IΛ is a strongly Z/dZ-graded ring.

Definition 22. Let G be a group and J a two-sided ideal of a ring R. Then J is G-graded
if J =

⊕
g∈G (J ∩Rg). The ring R is called G-graded simple if the only G-graded ideals

of R are {0} and R.

We now show Λ/IΛ is Z/dZ-graded simple for certain ideals I.

Lemma 3. Let γ ∈ O×
L \ O

×
K . Let I = q ⊂ OK be a prime ideal unramified in OL. Then

Λ/IΛ is Z/dZ-graded simple.

Proof. Equip Λ/IΛ with the Z/dZ grading as before. We need to show, for any Z/dZ-
graded ideal J , that in fact J = ⊕i∈Z/dZJ ∩uiOL/IOL is 0 or Λ/IΛ. Write IOL =

∏
iQi.

By the correspondence between ideals of Λ containing IΛ and ideals of Λ/IΛ and an abuse
of notation, write the ideal as J /IΛ. Then J /IΛ ∩

∏
iOL/Qi is an ideal of

∏
iOL/Qi,

so has the form
∏
i∈S Qi/

∏g
i=1Qi for some S ⊂ [g]. Moreover, by Proposition 5, we must

have θ(J /IΛ ∩
∏
iOL/Qi) = θ(

∏
i∈S Qi/

∏g
i=1Qi) =

∏
i∈S Qi/

∏g
i=1Qi. But the Galois
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action on the primes Qi above q is transitive, so θ cannot fix any such product except
when S = {1, ..., g} or S = ∅. Thus J /IΛ ∩ OL/IOL = J /IΛ ∩R0 is 0 or OL/IOL.

Since J /IΛ is an ideal and γ is invertible, ujJ /IΛ = J /IΛ, so

J /IΛ ∩Ri = ui · J /IΛ ∩ ui · R0 = ui(J /IΛ ∩R0)

=

{
0 if J /IΛ ∩R0 = 0

uiOL/IOL if J /IΛ ∩R0 = OL/IOL.

So either J /IΛ is ⊕i∈Z/dZ0 = 0 or ⊕i∈Z/dZu
iOL/IOL = Λ/IΛ.

A group G is hypercentral if every non-trivial factor group of G has a non-trivial center.
In particular, any abelian group is hypercentral. We now state

Theorem 4. [LÖ16, Theorem 4] If a nonassociative unital ring is graded by a hypercentral
group, then the ring is simple if and only if it is graded simple and the center of the ring is
a field.

From the above discussion we can conclude

Proposition 7. Let q be a prime OK-ideal such that qOL = Q1...Qg where Qi is a prime
OL-ideal, i = 1, ..., g. Let γ ∈ O×

L \ O
×
K . Then

Λ/qΛ ∼=
((
L̄(1) × · · · × L̄(g)

)
/K̄, θ̄, γ̄

)
is a generalised nonassociative cyclic algebra of degree d = g over K̄. The only proper
two-sided ideal J of Λ that contains q is

J = qΛ =

d−1⊕
j=0

ujqOL

Proof. The first statement is shown in [Pum18, §7.3]. The second follows since 1. Z/dZ is
hypercentral, 2. the center of Λ/qΛ is a field, and 3. Λ/qΛ is Z/dZ-graded simple (Lemma
3). Then Theorem 4 implies Λ/qΛ is simple and hence qΛ is maximal in Λ.

Although we cannot prove a general result on the factorisation of ideals in nonassociative
natural orders, we can prove the following theorem, an analogue of which was given in a
concurrent work [ML] for associative CDAs; we prove it here for nonassociative CDAs.

Theorem 5. Let Λ ⊂ A = (L/K, θ, γ) be the natural order of a nonassociative CDA and
γ ∈ OL. Let I ⊂ Λ be an integral two-sided ideal and I = I ∩K. If the prime factors of
I are unramified in L and γ 6≡ 0 mod I, then I = IΛ.

The proof of the theorem requires a corollary of Propositions 6 and 7:

Corollary 1. Suppose that p is a prime in OK , such that p is unramified in L, with
γ 6≡ 0 mod p. Then the only proper two-sided ideal I of Λ containing p−1 is p−1Λ =
⊕d−1
i=0 u

ip−1OL.

Proof. If there is a proper ideal J strictly containing p−1Λ, then p2J is a proper ideal
strictly containing pΛ, which contradicts Propositions 6 and 7.

We use transfinite induction over a tuple (e1, ..., en) ∈ Zn≥1, which requires a well-ordering
on Zn≥1. Define the following well-ordering: let (e1, ..., en) ∈ Zn≥1. Given n-tuples
(e1, ..., en), (f1, ..., fn), we say (e1, ..., en) > (f1, ..., fn) ∈ Zn≥1 if

∏n
1 p

ei
i >

∏n
1 p

fi
i , where pi

is the ith prime. For fixed n, the smallest element is (1, ..., 1). Since this is a total order,
and since any subset of n-tuples has a smallest element, this is a well-ordering of Zn≥1.
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Proof of Theorem 5. Suppose that I maximally contains a subideal I which is unramified
in L, that is, I is the largest OK-ideal contained in I. Suppose I = pe11 pe22 ...p

en
n , for

distinct primes pi, and positive integers ei. We claim that when the largest OK -ideal of I
has this form, then I = IΛ.

We want to show that I = pe11 ...p
en
n Λ. First, note that I is contained in a maximal

ideal M, which contains some prime ideal r of OK , and so we have M = rΛ, and
pe11 ...p

en
n Λ ⊂ I ( rΛ. But pe11 ...p

en
n ⊂ r implies that r = pi for some i; without loss of

generality suppose r = p1, and write pe11 ...p
en
n Λ ⊂ I ( p1Λ.

Proceed by double induction on n ∈ N≥1 and (e1, ..., en) ∈ Z≥1 × ... × Z≥1. The
statement is true in the case n = 1, e1 = 1 by Propositions 6 and 7. We first prove the
statement for n = 1, and use induction on e1. Suppose the statement holds for e′1 < e1
and suppose I contains pe11 and no larger OK-ideal. Then we have pe11 Λ ⊂ I ( p1Λ.
Then p−1

1 I is integral, and the largest OK -ideal it contains is pe1−1
1 , so p−1

1 I = pe1−1
1 Λ by

hypothesis. Hence I = pe11 Λ, as required.
Next, we show the statement for (1, ..., 1) and any n by inducting on n. Suppose

I = p1p2...pn, for distinct primes pi. Note that I is contained in a maximal ideal M,
which contains some prime ideal r of OK , and so we haveM = rΛ, and p1...pnΛ ⊂ I ( rΛ.
But p1...pn ⊂ r implies that r = pi for some i; without loss of generality suppose r = p1,
and write p1...pnΛ ⊂ I ( p1Λ. We now claim that if p1...pn is the largest OK-ideal in I,
then I = p1...pnΛ.

We have seen that the n = 1 case is true. Proceeding by induction, suppose the
statement is true for n < k, and consider an integral ideal I such that p1...pk−1pk is
the largest OK-ideal in I. We have p1...pk−1pkΛ ⊂ I ( p1Λ. Consider p−1

1 I; we have
p2...pk−1pkΛ ⊂ p−1

1 I ( Λ, so p−1
1 I is integral. Then observe that the largest OK-ideal

contained in p−1
k I is p1...pk−1, so by induction we have p−1

k I = p1...pk−1Λ, and hence
I = p1...pk−1pkΛ, as required.

Now suppose the statement is true for n < k and (e′1, ..., e
′
n) = (e1, ..., en) ∈ Zn≥1, and

true for n = k and (e′1, ..., e
′
k) < (e1, ..., ek), and consider an ideal I such that pe11 ...p

ek−1

k−1 p
ek
k

is the largest OK-ideal in I. Like before, pe11 ...p
ek−1

k−1 p
ek
k Λ ⊂ I ( pkΛ (simply relabel the

primes for this to hold). Again, p−1
k I is integral, and observe that the largest OK-ideal

contained in p−1
k I is pe11 ...p

ek−1
k . We split into two cases: ek − 1 = 0, and ek − 1 > 0.

When ek−1 > 0, we use induction on (e′1, ..., e
′
k), and since (e1, ..., ek−1) < (e1, ..., ek),

by hypothesis have p−1
k I = pe11 ...p

ek−1
k Λ. Hence I = pe11 ...p

ek−1

k−1 p
ek
k Λ, as required.

When ek−1 = 0, the largest OK -ideal contained in p−1
k I is pe11 ...p

ek−1

k−1 . We then induct
on n, since n = k − 1 < k, to obtain p−1

k I = pe11 ...p
ek−1

k−1 Λ and hence I = pe11 ...p
ek−1

k−1 pk, as
required.

When γ is a unit, this fully characterises unramified ideals in the natural order of the
CDAs we consider. The following result then follows:
Theorem 6. Let Λ ⊂ A = (L/K, θ, γ) be the natural order of a nonassociative CDA and
γ ∈ O×

L . Then multiplication of Λ-ideals I such that I ∩ OK is unramified in OL yields
ideals, and is commutative and associative.
Proof. Let I and J be two-sided ideals of Λ. Write Ī = I ∩L. Then I = ĪΛ and J = J̄Λ.
Then, using that L = N (A), we have IJ = (ĪΛ)(J̄Λ) = (Ī(ΛJ̄))Λ = (Ī)θ(J̄)Λ))Λ = ĪJ̄Λ.
It can be seen by a similar argument that ĪJ̄Λ is a two-sided ideal of Λ.

Next note that the product of two ideals whose OK -intersections are ideals unramified
in OL is an ideal which also has OK -intersection unramified in OL, so this set of ideals is
closed under taking products.

Moreover, IJ = (ĪΛ)(J̄Λ) = ĪJ̄Λ = J̄ ĪΛ = (J̄Λ)(ĪΛ) = JI, so ideal multiplication is
commutative.

Finally, let K also be a two-sided Λ-ideal. Then (IJ)K = (ĪJ̄Λ)K̄Λ = ĪJ̄K̄Λ =
ĪΛ(J̄K̄Λ) = I(JK). So ideal multiplication is also associative.



16 LWE from Nonassociative Algebras

For convenience we will call the two-sided ideals satisfying the condition of the theorem
‘unramified ideals of Λ’.

4.2 Inverse Ideals
Let A = (L/K, θ, γ) with γ ∈ O×

L \O
×
K , and let I = ĪΛ be a two-sided unramified ideal of

Λ. Then, writing J = Ī−1Λ, we have I · J = (ĪΛ)(Ī−1Λ) = (ΛĪ)(Ī−1Λ) = Λ(Ī(Ī−1Λ)) =
Λ((ĪĪ−1)Λ) = Λ(OLΛ) = Λ. Motivated by this, we give the following definition:

Definition 23. Let A = (L/K, θ, γ) with γ ∈ O×
L \ O

×
K , and let I = ĪΛ be a two-sided

unramified ideal of Λ. Then the inverse of I is I−1 := Ī−1Λ.

Note all ideals of Λ as in the definition are invertible. Furthermore, observe that I−1

is additively closed, and closed under multiplication on the right from Λ. Moreover, since
θ(Ī) = Ī by Proposition 5, we have ĪĪ−1 = OL implies θ(Ī)θ(Ī−1) = Īθ(Ī−1) = OL,
and hence OLθ(Ī−1) = Ī−1OL. Since Ī−1 is an OL-ideal, θ(Ī−1) is also an OL-ideal,
and we obtain θ(Ī−1) = Ī−1. So θ fixes Ī−1. Then ΛI−1 = Λ(Ī−1Λ) = Λ(Λθ(Ī−1)) =
Λ(ΛĪ−1) = (ΛΛ)Ī−1 = ΛĪ−1 = Ī−1Λ = I−1, and I−1 is closed under multiplication from
the left too. So I−1 is a fractional Λ-ideal.

Clearly this means that (I−1)−1 = I, so left and right inverse ideals coincide, and
hence each unramified ideal has a unique inverse ideal.

4.3 Dual Ideals
When the algebra A is associative, the dual lattice of Λ is defined as

Λ∨ = {x ∈ A : Tr(xΛ) ⊂ Z}

where Tr refers to the trace defined Tr(a) := TrK/Q(Trace(φ(a))). Note Tr(·) is a linear
map and non-degenerate, and Λ∨ is additively closed. This is (in the associative scenario)
extended to ideals I of Λ as follows: the dual of an ideal is defined as

I∨ = {x ∈ A : Tr(xI) ⊂ Z}.

However, when A is nonassociative the Tr(·) map is not symmetric (that is, Tr(xy) 6=
Tr(yx)), which causes many familiar results not to hold in the case of nonassociative
algebras. This can be seen from the matrix representation: since φ : A → Md(L) is not
a homomorphism of rings but merely of vector spaces, φ(xy) 6= φ(x)φ(y), so in general
Tr(xy) = TK/Q ◦ Trace(φ(xy)) 6= TK/Q ◦ Trace(φ(x)φ(y)) = TK/Q ◦ Trace(φ(y)φ(x)) =
Tr(yx). It is hence not clear what the definition of I∨ should be for ideals in orders in
nonassociative algebras. In the absence of a symmetric trace form, we make the following
definition:

Definition 24. Let Λ be the natural order of cyclic division algebra A = (L/K, θ, γ),
with γ ∈ O×

L and [L : K] = d. Let I be an ideal of Λ and Ī = I ∩ L. Then the dual ideal
I∨ of I is defined as

I∨ = Ī∨Λ

Before we prove properties of I∨, note that it immediately bears some similarities to
the usual notion of the dual ideal of, say, an ideal in the ring of integers in a number
field. For integral ideals, we have I ⊂ Λ ⊂ I∨, and I∨ is an OK-module. Moreover,
(I∨)∨ = (Ī∨Λ)∨ = (Ī∨Λ∩L)∨Λ = (Ī∨)∨Λ = ĪΛ = I. Finally, I∨ = Ī∨Λ = (Ī−1O∨

L)Λ =
(Ī−1Λ)(O∨

LΛ) = I−1Λ∨. We now show:

Proposition 8. Let I ⊂ Λ be a two-sided integral unramified ideal. Then I∨ is a two-sided
fractional ideal of Λ.



Andrew Mendelsohn, Cong Ling 17

Proof. First, note additive closure is immediate since both Ī∨ and Λ are additively closed.
Next, since Ī∨ ⊂ L = N (A) we have that if x ∈ Λ, then I∨x = (Ī∨Λ)x = Ī∨(Λx) ⊂

Ī∨Λ = I∨, so I∨ is closed under multiplication from Λ on the right.
To see left multiplication is closed: we have θ(I∨) = θ(Ī∨Λ) = θ(Ī∨)θ(Λ) = θ(Ī∨)Λ,

where θ acts on Λ coefficient-wise, and is the identity on ui for all i. Letting x ∈ Λ, consider
x · I∨ = x(Ī∨Λ) = (xĪ∨)Λ. In moving elements of Ī∨ past x, powers of the automorphism
θ are applied to Ī∨ (corresponding to the power of u being ‘moved past’ by the element
of Ī∨). So if θ(Ī∨) = Ī∨, we would have: (xĪ∨)Λ = (Ī∨x)Λ = Ī∨(xΛ) ⊂ Ī∨Λ = I∨, as
required.

We conclude the proof by showing that θ(Ī∨) = Ī∨. Let m ⊂ OL be an ideal such
that θ(m) = m, and x ∈ m∨. We need θ(x) ∈ m∨, that is, TL/Q(θ(x)y) ∈ Z for any
y ∈ m. Because Gal(L/K) is cyclic, we can say TL/Q(θ(x)y) = TL/Q(xθ

−1(y)); since
θ(m) = m, θ−1(y) ∈ m, and so TL/Q(θ(x)y) = TL/Q(xθ

−1(y)) ∈ Z. Thus θ(x) ∈ m∨,
and so θ(m∨) ⊂ m∨. Replacing m with Ī, this implies that I∨ is a two-sided fractional
Λ-ideal.

Proposition 9. Let γ ∈ O×
L and I ⊂ Λ be a two-sided integral unramified ideal. Set

JI := {x ∈ A : Tr(xy) ∈ Z for all y ∈ I}. Then I∨ = JI .

Proof. We begin by showing I∨ ⊂ JI . We have

Tr(I∨I) = Tr((Ī∨Λ)(ĪΛ))
= Tr((Ī∨(ΛĪ))Λ)
= Tr((Ī∨(θ(Ī)Λ))Λ)
= Tr((Ī∨(ĪΛ))Λ)
= Tr((Ī∨Ī)Λ).

Since Tr(uizi) = 0 if i 6= 0, we get Tr((Ī∨Ī)Λ) = TL/Q((Ī∨Ī)OL) = TL/Q(Ī∨Ī) ∈ Z,
since γ ∈ OL. So for integral Λ-ideals, I∨ = Ī∨Λ satisfies Tr(I∨I) ⊂ Z and (similarly)
Tr(II∨) ⊂ Z, so I∨ ⊂ JI .

It remains to show that JI ⊆ I∨. Take some x ∈ JI , and y ∈ I. Write x = ab with
a ∈ L and b ∈ Λ (this can be done for any algebra element). We want to show that x can
be written in the form a′b′, where a′ ∈ Ī∨ and b′ ∈ Λ. Thus if a ∈ Ī∨, we will be done.

By definition, Tr(xI) ⊂ Z. This implies that Tr(xĪ) ⊂ Z. Substituting for x, we
obtain Tr((ab)Ī) ⊂ Z. We can rearrange to obtain Tr((aĪ)b) ⊂ Z. Expanding b into the
form b =

∑d−1
i=0 u

ibi where the bi ∈ OL and applying additivity of the trace, we have
Tr((aĪ)b) = TL/Q(aĪb0) ⊂ Z. So ab0 ∈ Ī∨.

Now, note that uI ⊂ I. Moreover, up to application by θ and multiplication by γ, we
can move any coefficient of x ∈ Λ into the 0th position; if x = ⊕d−1

i=0 u
ixi, we can place xj

in the 0th position via xud−j = γθd−j(xj) + uγθd−j(xj+1) + ...+ ud−1θd−j(xj−1). Using
this trick, one can obtain θi(a)bi ∈ I

∨ as follows: Z ⊃ Tr(x(ud−iI)) = Tr((ab)(ud−iI))
= Tr(((ab)ud−i)I) = Tr((a(bud−i))I) = TL/Q(aγθ

d−i(bi)I), so aθd−i(bi) ∈ I
∨, and hence

θi(a)bi ∈ I
∨. Now observe that ab = ab0 + uθ(a)b1 + ... + ud−1θd−1(a)bd−1, so ab ∈

⊕d−1
i=0 u

iI∨ = I∨Λ, as required.

5 Nonassociative Cyclic Learning with Errors
We begin by defining lattices from ideal lattices in nonassociative algebras. Below n =
[K : Q].
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5.1 Ideals as Lattices and the Canonical Embedding
Since an ideal of an order is an additive subgroup of a lattice, it is itself a lattice. We embed
order ideals in nonassociative CDAs into Rnd2 using the canonical embedding as above, to
obtain lattices in Rnd2 . To do this, we consider the matrix representations of order elements,
vectorise the columns to obtain vectors with d2 entries, and apply the canonical embedding
of K, which yields a lattice of dimension nd2. We take norms of algebra elements by taking
the sum of the squares of the Frobenius norm of their matrix representation under the
presence of K-embeddings; that is, for x ∈ A we have ‖x‖2 =

∑n
i=1 ‖αi(φ(x))‖2F , where

‖ · ‖F denotes the Frobenius norm and αi(φ(x)) the application of αi ∈ Emb(K) to the
entries of φ(x). If |γ| = 1 this norm is submultiplicative, such as when γ is a root of unity.

Recall the family of error distributions used for CLWE:

Definition 25. Let Σα be the set of Gaussian distributions Σ over
⊕d−1

i=0 u
iLR with

Gaussian marginal distributions of parameters ri,j ≤ α.

We use the same distributions mutatis mutandis in the nonassociative setting.

5.2 NCLWE
We now define the nonassociative CLWE (NCLWE) distribution. We superscript the
NCLWE distribution (and the lattice problems on ideals in nonassociative orders referred
to below) by a ‘ν’ to distinguish them from associative variants of the problems.

Definition 26. Let L/K be a Galois extension of number fields of dimension [L : K] = d,
[K : Q] = n with cyclic Galois group generated by θ : L → L. Let A := (L/K, θ, γ)
be the resulting nonassociative cyclic algebra with center K and element u satisfying
ud = γ ∈ OL \ OK . Let Λ be the natural order of A. For an error distribution ψ over⊕d−1

i=0 u
iLR, an integer modulus q ≥ 2, and a secret s ∈ Λ∨

q a sample from the NCLWE
distribution Πνq,s,ψ is obtained by sampling a← Λq uniformly at random, sampling e← ψ,

and outputting (a, b) = (a, (a · s)/q + e mod Λ∨) ∈ Λq ×
(
⊕d−1
i=0 u

iLR
)
/Λ∨

From this distribution we give search and decision problems:

Definition 27. Let Ψ be a family of error distributions over
⊕d−1

i=0 u
iLR. Let Πνq,s,ψ be a

NCLWE distribution for parameters q ≥ 2, s ∈ Λ∨
q , and error distribution ψ ∈ Ψ. Then,

the search NCLWE problem, denoted SNCLWEq,s,ψ, is to recover s ∈ Λ∨
q from a collection

of independent samples from Πνq,s,ψ.

Definition 28. Let Υ be a distribution on a family of error distributions Σα over⊕d−1
i=0 u

iLR and UΛ the uniform distribution on Λq×
(⊕d−1

i=0 u
iLR

)
/Λ∨. Then the decision

NCLWE problem, DNCLWEq,Υ, is on input a number of independent samples from either
Πνq,s,ψ for a random choice of (s, ψ) ← U

(
Λ∨
q

)
× Υ, or from UΛ, to decide which with

non-negligible advantage.

6 Search-to-Decision Reduction for NCLWE
Recall the statement of Theorem 3: for I = qs11 ...q

st
t ⊂ OK an ideal, we have

Λ/IΛ ∼=
(
(OL/IOL) / (OK/I) , θ̄, γ + IOL

)
=

d−1⊕
i=0

ui (OL/IOL)

∼=
(
(OL/qs11 OL) / (OK/q

s1
1 ) , θ̄, γ̄1

)
× ...×

(
(OL/qstt OL) / (OK/q

st
t ) , θ̄, γ̄t

)
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where γ̄i = γ + qs11 . In the following proof, we write this as

Λ/IΛ ∼= R1 × ...×Rt.

The Ri-NCLWEq,s,Σα
problem is to find the value s mod Ri given access to the NCLWE

distribution Πνq,s,Σ for some Σ ∈ Σα. We begin the reduction with the following lemma:

Lemma 4. Let q completely split in OK and unramified in OL, and Σα be as in Definition
25. There is a deterministic polynomial time reduction from SNCLWEq,s,Σα

to Ri-
NCLWEq,s,Σα

.

Proof. Mutatis mutandis identical to [GMLV22, Lemma 13].

We now define an intermediate distribution as follows: for s ∈ Λ∨
q , distribution

Σ over
⊕

j u
jLR, and i ∈ [n], we define a sample from the distribution Πν iq,s,Σ over

Λq ×
(⊕d−1

i=0 u
iLR

)
/Λ∨ by taking (a, b)← Πνq,s,Σ and h ∈ Λ∨

q which is uniformly random
and independent mod Rj , j ≤ i and 0 mod Rj , j > i, and outputting (a, b + h/q). Set
Πν 0
q,s,Σ = Πνq,s,Σ.

Using this distribution we define a worst-case decision problem with respect to one Ri
and reduce it to the search problem Ri-NCLWE.

Definition 29. For 0 < i ≤ n and family of error distributions Σα, the W-D-NCLWEiq,s,Σα

problem is the problem of finding j given oracle access to Πν jq,s,Σ for j ∈ {i− 1, i} and valid
NCLWE secret and error distribution pair (s,Σ).

Recall q is a prime which factors in OK as qOK =
∏gK
i=1 qi such that qi is unramified

in OL for all i, that is qiOL =
∏gL
i=1Qi. In the next step of the reduction, when gL > 1

we restrict the secret space such that the secret is to be chosen from a space G in which
the difference of any two elements inverts. These sets were called ‘pairwise difference sets’
in [GMLV22], and the decomposition into Ri implies G ∼= G1 × ... × Gt for Gi ∈ Ri, a
fact we use below. The variant of SNCLWE with secrets restricted to such a G is denoted
SNCLWEq,s,Σα,G and similarly for the other distributions already defined. Moreover, the
above Lemma 4 holds when the secret is restricted to such sets G. However, when gL = 1,
qi is inert in OL and by the proof of Proposition 6 Ri is a division algebra. In this case,
there is no need to restrict the secret space, since the difference of two distinct elements in
a division algebra inverts by definition, and Gi = Ri.

Lemma 5. Let γ ∈ O×
L \ O

×
K , qOK =

∏g
i=1 qi, and K̄(i) = OK/qi. Then if s ∈ G there

is a ppt. reduction from Ri-NCLWEq,s,Σα,G to W-D-NCLWEiq,s,Σα
for any 0 < i ≤ n.

When the qi are inert in OL for i = 1, ..., g and either d = [L : K] is prime or
1, γ̄, . . . , γ̄d−1 are linearly independent over K̄(i), then for any s ∈ Ri there is a ppt.
reduction from Ri-NCLWEq,s,Σα to W-D-NCLWEiq,s,Σα

for any 0 < i ≤ n.

Proof. We will guess the secret s with a value g; we can do this efficiently since there are
only |Gi| ≤ qd

2

= poly(n) possible values of s mod Ri, with d considered to be some small
constant. To transform Πνq,s,Σ into either Πν i−1

q,s,Σ if g = s modRi or Πν iq,s,Σ otherwise, for
g ∈ Λ∨

q we take a sample (a, b)← Πνq,s,Σ and set

(a′, b′) := (a+ v, b+ (h+ vg)/q) ∈ Λq ×

(
d−1⊕
i=0

uiLR

)
/Λ∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod Rj for j 6= i and h ∈ Λ∨
q is uniformly

random and independent mod Rj , j < i and 0 on the other Rj . Note a′ ∈ Λq is uniformly
distributed. We now consider the distribution of b′. Conditioning on a fixed a′, we have

b′ = b+ (h+ vg)/q = (as+ h+ vg)/q + e

= (a′s+ h+ v(g − s)) /q + e,
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where e ∼ Σ. Now observe: if g = s mod Ri, then v(g − s) = 0 mod Ri, so (a′, b′) is
distributed according to

∏ν i−1
q,s,Σ . However, if g 6= s, then v(g − s) is uniformly random

mod Ri (since g − s inverts by definition of G) and 0 modulo the other Rj . We then set
h′ = h+ v(g − s) and the distribution of (a′, b′) is exactly Πν iq,s,Σ.

The second statement follows since we may choose Gi = Ri.

We now move to obtain a reduction from a worst-case problem to an average-case
problem. This section is mutatis mutandis identical to the corresponding section of
[GMLV22] (and is very similar to that of [LPR13b]) and is included for completeness.

Definition 30. The distribution Υα on the set of possible error distributions is defined by
choosing an error distribution Σ← Σα and adding it to Dr, where ri = α((nd2)1/4 · √yi)
for y1, . . . , ynd2 sampled from Γ(2, 1).

Definition 31. For i ∈ [n] and distribution Υα over possible error distributions, an
algorithm solves the DNCLWEiq,Υα

problem if with non-negligible probability over (s,Σ)←
U
(
Λ∨
q

)
×Υα it has a non-negligible difference in acceptance probability on inputs from

Πν iq,s,Σ and
∏ν i−1
q,s,Σ .

Lemma 6. For any α > 0 and i ∈ [n] there is a randomized polynomial-time reduction
from W-D-NCLWEiq,s,Σα

to DNCLWEiq,Υα
.

Proof. To sample from Υα we sample from Σα and add an elliptical Gaussian; this is as in
[LPR13b, Lemma 5.12], and so, replacing each instance of mod qiR

∨ with mod Ri, and
Rq with Λq, since associativity isn’t used the proof is the same.

Lemma 7. Let Υα be as above and s ∈ Λ∨
q . Then given a DNCLWEq,Υα

oracle O, there
exists an efficient algorithm that solves DNCLWEiq,Υα

for some i ∈ [n]

Proof. As in [LPR13b, Lemma 5.14] but for replacing the indexing set Z∗
m by [n].

We finally obtain:

Theorem 7. Let Λ be the natural order of a nonassociative CDA A = (L/K, θ, γ),
γ ∈ O×

L \O
×
K , d = [L : K], q ≥ 2 such that qOK =

∏g
i=1 qi and αq ≥ ηε (Λ∨) for negligible

ε = ε(n). Then there is a ppt. reduction from SNCLWEq,s,Σα,G for any pairwise difference
set G ⊂ Λ∨

q to DNCLWEq,Υα
.

When the qi are inert in OL and either d is prime or 1, γ̄, . . . , γ̄d−1 are linearly
independent over K̄(i), for each i, then there is a ppt. reduction from SNCLWEq,s,Σα to
DNCLWEq,Υα

.

7 Hardness of Search NCLWE
We demonstrate the hardness of NCLWE, using the same strategy as [GMLV22]. Since
the lattices obtained from our algebras can be seen as module lattices (i.e. the lattices
are isomorphic to module lattices as OK-modules), there is a reduction from A-SIVPνξ to
A-DGSνξ [Reg09, Lemma 3.17]. We will need some lemmas.

7.1 Technical Lemmas
The results below are proved for a CDA A = (L/K, θ, γ) with γ ∈ O×

L \ O
×
K , since they

implicitly require the above results on products, inverses, and duals of ideals.
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Lemma 8. Let I be an unramified ideal of the natural order Λ, and let J = qΛ, where
q ∈ Z is prime and qOK =

∏r
i=1 qi is a decomposition into prime ideals. Furthermore,

let the qi be unramified in OL. Assume γ /∈ qi for each i. Then, there exists an element
t ∈ I ∩OK such that t · I−1 ⊂ Λ is coprime to J , and we can compute such a t efficiently
given I and the prime factorization of J .

Proof. Denote I ∩ OK by Ī, which is an OK-ideal. We know, by [LPR13b], that there
exists a t ∈ Ī such that t · Ī−1 and qΛ∩OK are coprime as OK -ideals, with t ∈ Ī \

∏
i qiĪ.

Suppose t · I−1 + qΛ 6= Λ. Then, since they are both two-sided ideals whose sum is a
proper ideal, they must be contained in some maximal ideal. By Propositions 6 and 7
above, this maximal ideal must have the form qiΛ, for some i. Thus t · I−1 ⊂ qiΛ and
t ∈ qiIΛ∩OK = qiI ∩OK (note that the product qiIΛ is well-defined). Since t and qi are
central this is a contradiction, and the final equality is a consequence of Proposition 4.

Lemma 9. Let A and q be as in Lemma 8. Let I ⊂ Λ be unramified and J = qΛ, with
t ∈ I ∩ OK such that t · I−1 and qΛ are coprime as ideals, and let P be an arbitrary
fractional ideal of Λ. Assume γ /∈ qi for each i. Then the map χt : A → A, x 7→ t · x
induces an OK-module isomorphism from P/J · P → I · P/I · J · P. Furthermore, we
can efficiently compute the inverse.

Proof. Identical mutatis mutandis to [GMLV22, Lemma 7], using t ∈ Z(A) and Lemma
8.

7.2 Reducing Ideal SIVP to Search NCLWE
We now adapt the security proof of [GMLV22] to nonassociative CDAs. It proceeds
similarly; both our lattices and the lattices of [GMLV22] are modules over OK , so they
are module lattices as used in [LS15]. Thus the results of the latter paper that adapt for
CLWE often adapt for NCLWE. Moreover, nonassociativity will not prove a large obstacle
in the proofs - the primary result threatened by lack of associativity is Lemma 11, yet we
circumnavigate this issue via the centrality of the element t from Lemma 9.

Lemma 10. For any q ≥ 2 there is a deterministic polynomial time reduction from
A-BDDν

I,d to qA-BDDν
I,d.

Proof. Proved in [Reg09, Lemma 3.5], for arbitrary lattices.

Lemma 11. There is a probabilistic polynomial time algorithm that given a prime q ∈ Z,
α ∈ (0, 1), unramified fractional Λ-ideal I∨, a qA-BDDν

I∨,αqω(
√

log(nd))/
√
2ndr

instance
y = x + e with x ∈ I∨, r ≥

√
2qη(I), and samples from DI,r′ with r′ ≥ r, outputs

samples of negligible statistical distance from the NCLWE distribution Πνq,s,Σ, where
s = χt (x mod qI∨) ∈ Λ∨

q and Σ ∈ Σα.

Proof. The first step of the proof is to compute an element t ∈ I such that I−1 · t and qΛ
are coprime via Lemma 8. We then create a sample according to the NCLWE distribution
by taking a Gaussian sample z ← DI,r′ and setting

(a, b) =
(
χ−1
t (z mod qI), (z · y)/q + e′ mod Λ∨) ∈ (Λq ×(d−1⊕

i=0

uiLR

)
/Λ∨

)

where e′ ← Dα/
√
2. Since r ≥ q · η(I), by Lemma 1 the probability of obtaining any given

z mod qI lies in
[
1−ε
1+ε , 1

]
· β for some β > 0, so the statistical distance between z mod qI

and the uniform distribution is at most 2ε. Since χt is a bijection, a = χ−1
t (z mod qI) is

at most statistical distance 2ε from being uniformly distributed over Λq. Finally, we show
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that b has the shape (a · s)/q + e′′, for an error e′′ and uniformly random s, conditioned
on some fixed value of a. We have

b = (z · y)/q + e′ = (z · x)/q + (z · e)/q + e′ mod Λ∨

By construction z = t · a mod Λ∨
q . Since t ∈ Z(A), we have (z · x)/q = ((a · t) · x)/q =

(a · (t ·x))/q = (a · s)/q mod Λ∨ for s := χt (x mod qI∨) . If x is uniform over I∨q , then s is
uniformly random over Λ∨

q since χt is bijective. Finally, the analysis of the error proceeds
identically to [GMLV22, Lemma 10].

The above two lemmas reduce BDD to NCLWE. We combine this with a (quantum)
proof that given a BDD oracle, we can output a sample from a discrete Gaussian, to
recover the iterative step (as in the CLWE reduction). This then implies a reduction from
DGS to NCLWE. The quantum step is:
Lemma 12. There is an efficient quantum algorithm that given any nd2 dimensional
lattice L := σA(I) for some ideal I ⊂ Λ, 0 < δ < λ1 (L∗) /(2

√
2nd), and an oracle that

solves A-BDDν
L∗,δ with all but negligible probability, outputs an independent sample from

DL,
√
dω(

√
log(nd))/

√
2δ∗ .

Proof. Our lattices are a kind of module lattice (as modules over OK), so the adaptation
of [LS15] holds in this case too.

We combine these three results to obtain:
Theorem 8. Given an oracle that solves SNCLWEq,s,Σα for α ∈ (0, 1), q ≥ 2, an
unramified ideal I ⊂ Λ, an r ≥

√
2q · η(I) satisfying r′ := r · ω(

√
log nd2)/(αq) >√

2nd2/λ1 (I∨) , and polynomially many samples from DI,r, there exists an efficient
quantum algorithm that outputs an independent sample from DI,r′ .

Using this theorem, we can obtain:
Theorem 9. Let A = (L/K, θ, γ) be a nonassociative CDA, γ ∈ O×

L \ O
×
K , and |γ| = 1.

Let α = α(n) ∈ (0, 1) and q ≥ 2 unramified in L be parameters such that αq ≥ ω(1). Let
I be an unramified ideal of Λ. Then there is a polynomial-time quantum reduction from
A-DGSνξ to SNCLWEq,s,Σα

for any ξ = r
√
dω(
√
log nd)/αq, where r >

√
2q · ηε(I).

Proof. We prove the result in the standard iterative manner; for a large value of r, e.g.
r ≥ 22NλN (I), start by sampling classically from DI,r. Then apply the above theorem to
obtain a polynomial number of samples from DI,r′ . Iterating this step gives samples from
progressively narrower distributions, until we arrive at the desired parameter s ≥ ξ.

7.3 On SIVP in Number Fields and Cyclic Division Algebras
Here we comment on SIVP over ideal lattices in number fields, and SIVP over ideal lattices
in CDAs. Let I = IΛ be an ideal of Λ. Suppose the prime factors of I are unframified
in OL. Then it is shown in a concurrent (currently unpublished) work [ML] that if one
solves SIVP in IOL, one solves SIVP in I. If one solves SIVP in IOL, one obtains nd
short independent vectors in IOL. Denote these vectors by xi, i = 1, ..., nd. One can then
consider these vectors as elements of Λ: xi = xi · (1+u ·0+ ...ud−1 ·0) = xi ∈ Λ. Moreover,
these vectors clearly belong to I, as do ujxi, for j = 0, ..., d − 1 and i = 1, ..., nd, when
γ ∈ O×

L . This gives nd2 short independent vectors in I, that is, a solution to I-SIVP.
Thus it suffices to solve SIVP in ideal lattices of OL rather than in ideal lattices of Λ.

However, the SIVP to search NCLWE reduction only gives a lower bound on the security
of NCLWE; we expect the hardness of NCLWE to be significantly greater than SIVP in
OL. In the associative setting, the work [ML] provides two reductions linking SIVP on
ideal lattices and structured module lattices respectively to CLWE. We leave it as future
work to see if these reductions extend to NCLWE.
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8 NCLWE and Cryptography
Here we give a PKE scheme whose hardness is based on NCLWE. We discuss its efficiency,
sample parameters, and security against attacks. Our scheme is given for d = 2.

8.1 PKE from Nonassociative LWE
Let A := (L/K, θ, γ), where A is a CDA, Σ be an error distribution, and q a prime
completely split in OK , factorising as qOK =

∏[K:Q]
i=1 qi with prime factors qi inert in OL.

We denote the coefficient vector of a = a0+ua1+ . . .+u
d−1ad−1 by a = (a0, a1, . . . , ad−1) .

Note OL/qOL has a polynomial-size representation of dimension nd, so in our scheme
below we can encode a binary message m ∈ {0, 1}nd2 as an element of Λq by sending
each block of nd entries of m to a coefficient of an element of Λ. Recall the Regev-style
CLWE-based scheme, similar to the ‘LPR’ scheme of [LPR13b]:

Key generation Generate a CLWE sample (a, b := a · s+ e), where a ∈ Λq is uniformly
random and e← Σ, and output public key (a, b).

Encryption To encrypt m ∈ {0, 1}nd2 , sample t, e1, e2 ← Σ and output

(u,v) :=
(
φ(a)T t + e1, φ(b)

T t + e2 +
⌈q
2

⌋
·m
)

Decryption To decrypt, compute c = v− φ(s)Tu and recover each coordinate of m by
rounding the entries of c to 0 or

⌈
q
2

⌋
, and output 0 or 1 respectively.

This scheme is not directly applicable to our context, since the matrix representation
of nonassociative algebra elements is not multiplicative, i.e. φ(a)φ(s) 6= φ(as). To see this
explicitly, let d = 2 and a = a0 + ua1, s = s0 + us1. Then

φ(a) =

(
a0 γθ(a1)
a1 θ(a0)

)
and φ(s) =

(
s0 γθ(s1)
s1 θ(s0)

)
.

Thus
φ(a)φ(s) =

(
a0s0 + γθ(a1)s1 a0γθ(s1) + γθ(a1)θ(s0)
a1s0 + θ(a0)s1 a1γθ(s1) + θ(a0)θ(s0)

)
.

On the other hand, a · s = a0s0 + γθ(a1)s1 + u(a1s0 + θ(a0)s1), and

φ(as) =

(
a0s0 + γθ(a1)s1 γθ(a1)θ(s0) + γa0θ(s1)
a1s0 + θ(a0)s1 θ(a0)θ(s0) + θ(γ)a1θ(s1)

)
.

So one can see that

φ(as)− φ(a)φ(s) =
(
0 0
0 (θ(γ)− γ)a1θ(s1)

)
.

Thus when one computes c = v− φ(s)Tu, one is left with

c =

(
0 0
0 (θ(γ)− γ)a1θ(s1)

)
t + e′ +

⌈q
2

⌋
m, (1)

where e′ is an error term. One could absorb (θ(γ)−γ)a1θ(s1) into e′, and if (θ(γ)−γ)a1θ(s1)
is small proceed as usual; however, a ∈ Λq is uniformly random so this has low chance of
success. One could encrypt a message with 0 in the lower entry, i.e. m = (m 0)T , and
only run the decryption on the entries of c for which φ(as)− φ(a)φ(s) = 0. However, this
restricts the number of bits which can be sent. These observations lead us to the following
adapted scheme.
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8.2 LPR-Style Cryptosystem
Below the index i runs from 1 to 2. For an n-dimensional vector v the notation ṽ denotes
the vector (vn−i)i, and ṽ denotes an algebra element with vector of coefficients ṽ.

Key generation Generate two NCLWE samples (ai, bi := ai · si+ ei), where ai is sampled
uniformly at random, si ∈ Λq is small, and ei ← Σ, and output public keys (ai, bi).
Encryption To encrypt m ∈ {0, 1}2n, place the entries of m as an element m of Λq and
set m1 := m, m2 := m̃. Sample ti ← Λq, ei,1, ei,2 ← Σ and output

(ui,vi) :=
(
φ(ai)

T ti + ei,1, φ(bi)T ti + ei,2 +
⌊q
2

⌋
·mi

)
Decryption To decrypt, compute ci = vi − φ(si)Tui, and recover half the coordinates of
mi by rounding the top 1

2 [A : Q] entries of ci to 0 or
⌊
q
2

⌋
, and outputting 0 or 1 respectively.

This is IND-CPA secure under NCLWE because the two encryptions (of the mi) are
independent. We now prove this.

Lemma 13. Let A = (L/K, θ, γ) be a nonassociative cyclic division algebra with [L : K] =
2, where γ ∈ O×

L is a unit. Then

1. There exists another cyclic algebra A′ =
(
L/K, θ, θ(γ)−1

)
with matrix representation

φ′ (·) and natural order Λ′ such that for any a ∈ A there exists a′ ∈ Λ′ satisfying
φ(a)T = φ′ (a′). Moreover, A′ is a division algebra, and Λ′

q and Λq are canonically
isomorphic as additive groups.

2. If θ(γ) = γ−1, we may take A = A′ and there exists a′ ∈ Λ satisfying φ(a)T = φ (a′).

Proof. The proof of the first statement is identical to [GMLV22, Lemma 19]. For the

second statement, recall φ(a) =
(
a0 γθ(a1)
a1 θ(a0)

)
so φ(a)T =

(
a0 a1

γθ(a1) θ(a0)

)
. Now, set

a′ := a0 + uγθ(a1)

Then φ(a′) =

(
a0 γθ(γθ(a1))

γθ(a1) θ(a0)

)
=

(
a0 a1

γθ(a1) θ(a0)

)
. Comparison yields the result.

An example algebra satisfying the second property is A = (Q(ζm)/Q(ζm+ ζ−1
m ), θ, ζm),

m > 2.
We say a scheme is IND-CPA secure if any probabilistic polynomial time (ppt.)

adversary has only negligible advantage in the PubK experiment:

Definition 32. ([KL14]) Let Π = (Gen, Enc, Dec) be a PKE scheme, and A be an
adversary. Say Π is indistinguishable under chosen-plaintext attack if a ppt. adversary in
the following experiment PubKA,Π(n) has negligible advantage:

1. Gen is run to obtain keys (pk, sk).

2. Adversary A is given pk, and outputs a pair of equal-length messages m0,m1.

3. A uniform bit b ∈ {0, 1} is chosen, and then a challenge ciphertext c← Encpk (mb)
is computed and given to A.

4. A outputs a bit b′. The output of the experiment is 1 if b′ = b, and 0 otherwise. If
b′ = b we say that A succeeds.
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That is, Pr [PubKA,Π(n) = 1] ≤ 1
2 + neg(n).

We now prove our scheme is IND-CPA secure, assuming NCLWE is intractable.

Lemma 14. Let A = (L/K, θ, γ) be a nonassociative cyclic division algebra with [L : K] =
2, where γ is a unit and θ(γ) = γ−1. Then the above scheme is correct if∥∥∥∥e3 +

⌈q
2

⌋
·m−

(
s0 s1
0 0

)
e1 −

(
0 0

θ(s0) θ(s1)

)
e2

∥∥∥∥
∞
≤
⌈q
4

⌋
and is IND-CPA secure, assuming the hardness of NCLWE.

Proof. The correctness condition follows from the computation of Section 8.1.
For IND-CPA security, the adversary receives public key (a1, b1, a2, b2). Under the

NCLWE assumption, this four-tuple is indistinguishable from uniformly random (i.e.
distinguishable with at most negligible advantage). Note the pairs (a1, b1) and (a2, b2)
are independent. We may thus replace b1, b2 by uniformly random elements b′1, b′2 and
proceed with the experiment. The adversary then receives an encryption of mb of the
form (u1,v1,u2,v2), for b ∈ {0, 1}. Since the four-tuple (u1,v1 −

⌊
q
2

⌋
m,u2,v2 −

⌊
q
2

⌋
m̃)

is a tuple of valid independent NCLWE samples in A′ (by Lemma 13), we have that
(u1,v1 −

⌊
q
2

⌋
m,u2,v2 −

⌊
q
2

⌋
m̃) is indistinguishable from a uniformly random four-tuple

(with at most negligible advantage) under the NCLWE assumption. We then obtain that
(u1,v1,u2,v2) is also close to uniform, and we conclude that the adversary has at most
negligible advantage.

We close this section with a remark. The above scheme encrypts a message of dimension
nd2 by performing two independent Regev-style encryptions. While this scheme is IND-CPA
secure, it is of course less efficient than only needing to perform one Regev-style encryption.
By inspecting Equation (1), one can see that if a1 and s1 are both small elements, they
may be absorbed into the error term and rounded away. Thus, making the assumption
that NCLWE samples of the form (a, b) = (a0 + ua1, (a0 + ua1) · (s0 + us1) + (e0 + ue1))
provide intractable instances of LWE when a1 and s1 have bounded magnitudes, one could
obtain IND-CPA security of a PKE scheme which only requires one round of Regev-style
encryption. Since we could not prove such intractability for these instances, we make no
such claim but leave it as an open problem.

8.3 Operational Complexity
An algorithm was given in [GMLV22] to compute the complexity of the multiplication
φ(a)s, where a and s are algebra elements in an associative CDA and q is unramified in K.
The complexity of this algorithm was estimated at O

(
N logN/d2

)
+ Õ

(
Ndω−2

)
, where ω

is the exponent of matrix multiplication and N = nd2. This is an improvement over that
coming from module elements in the same dimension. We note that such an algorithm
also applies to the nonassociative case, because the algorithm relies on the CDAs being
quotients of skew polynomial rings, as are the algebras of this work [Pum18]. In this
section we provide exposition of our algorithm.

Our multiplication algorithm uses the CRT-style map of (3) to decompose the problem
of multiplying elements of Λq into a number of more tractable multiplications, when q
has ‘good’ ramification properties. We do this by viewing our algebras as quotients of
skew polynomial rings, and so via the CRT we may apply the algorithm of [PW18]1.
We may then invert the CRT to obtain the result of the multiplication. We study the
complexity of this algorithm and compare it to the corresponding complexity of other
algebraically structured LWE instances. Below, ω ∈ [2, 2.373] denotes the exponent of

1We also note the earlier version [PW16].
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matrix multiplication.

Background on Skew Polynomial Rings Let R be a commutative ring with 1 ∈ R, and
let θ be an endomorphism of R. Then we may define a noncommutative ring of polynomials
in an indeterminate u with coefficients in R, by defining addition coefficientwise and defining
multiplication of polynomials in the standard manner, subject to the condition

ux = θ(x)u for all x ∈ R

We denote the ring of such polynomials by R[u, θ], known as a skew polynomial ring, and
note R[u, θ] = {

∑n
i=0 u

ixi : xi ∈ R,n <∞}. We remark that one may define left division
by an element b ∈ R[u, θ], since for all a ∈ R[u, θ], there exists a unique pair k, r ∈ R[u, θ]
such that a = bk + r with deg(r) < d [Ore33]. We will take R = F to be a field from now
on, and θ an automorphism.

Let Fθ be the fixed field of θ, defined Fθ = {x ∈ F : θ(x) = x}. Suppose θ has order d.
Then Fθ[ud] is the largest commutative subring of F[u, θ]. The elements of this subring are
called central and generate two-sided ideals of F[u, θ]. The quotients of F[u, θ] by ideals
generated by central elements are associative rings. If, however, we consider the quotient
of F[u, θ] by monic elements of the form f(u) with coefficients not in Fθ, we may obtain a
nonassociative ring on the set of polynomials of degree less than d [Pum18] by defining
multiplication of a and b as

a · b = ab mod f(u) (2)
where ‘mod’ means we perform left division and take the remainder. We let Fqm [u, θ]<d
denote the set of skew polynomials of degree less than d.

We now focus on quotients of F[u, θ] by (ud−γ)F[u, θ] for γ ∈ F such that θ(γ) 6= γ. As
stated above, from this we obtain a nonassociative ring. In the following, we assume that
we have choices of d and γ which obtain nonassociative division algebras as in [Pum18],
and we thus have (F/Fθ, θ, γ) ∼= F[u, θ]/(ud − γ)F[u, θ] [Pum16; Pum17; BP21]. Thus
quotients of skew polynomial rings yield nonassociative cyclic algebras.

For more on skew polynomials, see [Ore33] or [HKS21, Chapter 8].

Quotients of Natural Orders We now let q ∈ Z be a prime completely split into factors
qi in OK which are inert in OL. Write this as qOK =

∏[K:Q]
i=1 qi, as a product of prime

ideals. We then recall the CRT-style isomorphism

Λq ∼=
[K:Q]∏
i=1

((OL/qiOL) / (OK/qi) , θi, γi) (3)

We may thus use this isomorphism to reduce our problem in Λq to problems in the
factors ((OL/qiOL) / (OK/qi) , θi, γi) on the right hand side of (3) for each i, where
γi = γ mod qiOL and θi is the action of θ modulo qi, which are generalised cyclic algebras.
Since we assumed the qi are inert in OL, qiOL is a prime ideal, say Qi, and we find
OL/qiOL = OL/Qi ∼= Fq[L:K] , while OK/qi ∼= Fq. This gives us

((OL/qiOL) / (OK/qi) , θi, γi) ∼= (Fq[L:K]/Fq, θi, γi), (4)

So we in fact have cyclic algebras over finite fields on the right hand side (not generalised
cyclic algebras). These cyclic algebras may then be interpreted as quotients of skew
polynomial rings Fq[L:K] [u, θi] by an ideal generated by ud − γi, as described above.

We close this section with a discussion of the complexity of the CRT-style map of (3),
when K is a cyclotomic field. We follow [GMLV22, Appendix F]. The isomorphism sends

d−1∑
j=0

ujxj →
n⊗
i=1

d−1∑
j=0

uj (xj mod qiOL)
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Thus the CRT-style map sends each uj-coefficient to its mod qiOL ‘parts’ via the standard
CRT for number fields. The result of [GMLV22, Appendix F5] was that when the qi
are inert in OL, this decomposition can be performed in time O(nd2 log n). The method
for performing this relies on the following observation: since the quotient OL/qiOL is a
vector space over OK/qi, we can decompose an arbitrary OKq basis `1, . . . , `d of OLq into
[K : Q] bases `j = (`1,j , . . . , `n,j) such that each `i,1, . . . , `i,d (of qiOL parts) is a basis of
the vector space basis over OK/qi.

Now take any integral OK -basis `1, . . . , `d of OL. Compute and store the `j mod qiOL,
for each i and j. The CRT-style map then splits each of the ui-coefficients of an element of
Λq into its mod qiOL parts. We store elements of OLq as OK -combinations of the chosen
basis, that is as ` =

∑d
j=1 `jkj for kj ∈ OKq

. We may then split ` ∈ OLq
into its OL/qi

parts in time O(d · n log n), since

d∑
j=1

`jkj mod qiOL =

d∑
j=1

(`j mod qiOL) · (kj mod qiOL)

where the kj mod qi may be computed in time O(n log n) by the standard cyclotomic field
CRT and the `j mod qi mod OL were precomputed. Since we have d ui-coefficients, we
obtain a complexity of O(nd2 log n).

To invert the CRT-style map after performing computations in its range, we must
rewrite the resulting elements (of whatever computations have been performed) in our
chosen basis of the decomposition step. Since OL mod qiOL is a d-dimensional vector
space over OK/qi, we may precompute a suitable change of basis matrix over OK/qi in
time Õ (dω). Since we have to do this for the of n rings, which each have d coordinates,
the total complexity of this is Õ

(
ndω+1

)
.

Thus the complexity of decomposing and inverting via the CRT-style map is

O(nd2 log n) + Õ
(
ndω+1

)
The Puchinger-Wachter-Zeh (PW-Z) Algorithm In [PW16; PW18] the authors give
an algorithm for performing multiplication in skew polynomial rings over finite fields. We
omit the details of their algorithm for brevity; it may be found in [PW18, Algorithm 1]2.
Below we use the algorithm as a black-box, and require only a statement on its complexity:

Theorem 10. [PW18, Theorem 7] Let a, b ∈ Fqm [u, θ]≤s, s
∗ := d

√
s+ 1e. Then c = a · b

can be calculated in O
(
s

3
2

)
field operations, plus the cost of multiplying an s∗ × s∗ with

an s∗ × (s+ s∗) matrix, using [PW18, Algorithm 1].

The authors give a more precise estimate of the asymptotic complexity of their algorithm;
let Mqm(s) denote the complexity of multiplying two skew polynomials from Fqm [u, θ]≤s,
and ω denote the exponent of matrix multiplication.

Corollary 2. [PW18, Corollary 8] One has

Mqm(s) ∈ O (s∗ · (s∗)ω) ⊆ O
(
s

ω+1
2

)
We now combine a number of the above observations. Suppose we have two elements

a, b of ((OL/qiOL) / (OK/qi) , θi, γi). This is isomorphic to (Fq[L:K]/Fq, θi, γi), which in
turn can be realised as the quotient Fq[L:K] [u, θi]/(u

d − γi)Fq[L:K] . There is a natural
inclusion map

ι : Fq[L:K] [u, θi]/(u
d − γi)Fq[L:K] [u, θi] ↪→ Fq[L:K] [u, θi]

2Cf. [PW16, Algorithm 2].
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which takes an element of Fq[L:K] [u, θi]/(u
d−γi)Fq[L:K] [u, θi] and simply drops the quotient

ring structure. This allows us to run algorithms for skew polynomial rings on elements
obtained from quotients of natural orders in nonassociative cyclic algebras. We use this
remark below as the center of our algorithm.

Applying the above to our setting, so taking s = d− 1 and using Corollary 2, we find
that the complexity of the PW-Z algorithm applied to each ring mod qi is O

(
(d− 1)

ω+1
2

)
.

For simplicity we will upper bound this by O
(
d

ω+1
2

)
. Since we must perform this n times,

we have a final complexity of O
(
nd

ω+1
2

)
.

The authors go on to to prove that their multiplication algorithm implies a division
algorithm for skew polynomials of complexity Õ(s

min
(

ω+1
2 ,1.635

)
) for skew polynomials

of degree at most s [PW18, Corollary 10]. With s = d − 1 as above, this becomes

Õ

(
(d− 1)

min
(

ω+1
2 ,1.635

))
. Since this is less (ignoring log factors) than the complexity of

multiplication, we ignore this complexity below, beyond factoring in this log factor into
our analysis.

Our Algorithm We now outline our algorithm. Our method consists of applying the
CRT-style map to our algebra elements a, b to obtain a, b ∈ ((OL/qiOL) / (OK/qi) , θi, γi),
for i = 1, ..., [K : Q]. We then map these images to ι(a), ι(b) ∈ Fq[L:K] [u, θi] as at the end of
the previous section, for each i, and apply the Puchinger-Wachter-Zeh (PW-Z) algorithm
to these images. Taking the output of the PW-Z algorithm and running left division with
respect to (ud − γi)Fq[L:K] [u, θi] yields an element of the nonassociative ring described at
the beginning of this discussion, which is isomorphic to ((OL/qiOL) / (OK/qi) , θi, γi). We
then invert the tuple of products in these latter CDAs under the CRT-style map to obtain
our product in Λq. A step-by-step description may be found in Algorithm 1.

Since the bottlenecks of our algorithm are computing the CRT and performing multi-
plication, we estimate a final complexity of

O(nd2 log n) + Õ
(
ndω+1

)
+ Õ

(
nd

ω+1
2

)
= O(nd2 log n) + Õ

(
ndω+1

)
The complexity of our algorithm is essentially the same as that of [GMLV22, Appendix F],
except we replace its use of the algorithm of [CL17] with the PW-Z algorithm. This is
because we cannot apply the algorithm of [CL17] to our skew polynomial rings, since it
requires γ to fulfill certain conditions which are not met when γ ∈ OL \ OK .

Comparison Between Algebraic Structures In this section we fix the total dimension
of the ambient algebraic structure as an integer N , and compare the complexities of
multiplication in such spaces in such dimensions. We follow [GMLV22, Section 5.3] in the
comparison of these alternatives via the study of the product As over Zq, equipped with
various structures.

1. The ring case: here N = n and we may write As over Zq as multiplication of ring
elements via the left regular representation a · s in Zq[X]/

(
XN + 1

)
. Via CRT

analysis in dimension N described in [LPR13a], the complexity of this multiplication
is dominated by the CRT map, which has time complexity O(N logN), but includes
a coordinatewise multiplication step which requires time O(N).

2. The module case: here the module rank is d, N = nd, and A is a d × d matrix
over Zq[X]/

(
XN + 1

)
. One can compute As by applying the CRT coordinatewise

in dimension n on A and s. This requires d2 + d applications of the CRT, for a
total asymptotic complexity of O

(
d2n log n

)
= O(Nd log(N/d)). There is again a

coordinatewise multiplication step requiring time O(Nd).
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Algorithm 1: Fast multiplication of elements of Λq
Input: Two elements a, b of Λq
Output: The product a · b ∈ Λq

1: Compute the images of a, b under the CRT-style map of (3) in
((OL/qiOL) / (OK/qi) , θi, γi), for each i.

2: Compute isomorphisms OL/qiOL ∼= Fq[L:K] and OK/qi ∼= Fq, for each i.
3: Compute ι(a), ι(b) ∈ Fq[L:K] [u, θi], for each i.
4: Compute ι(a)ι(b) ∈ Fq[L:K] [u, θi] via the PW-Z algorithm, for each i.
5: Compute ι(a) · ι(b) = ι(a)ι(b) mod ud − γi ∈ Fq[L:K] [u, θi]/(u

d − γi)Fq[L:K] [u, θi],
for each i.

6: Compute the image of ι(a) · ι(b) ∈ Fq[L:K] [u, θi]/(u
d − γi)Fq[L:K] [u, θi] in

((OL/qiOL) / (OK/qi) , θi, γi), for each i.
7: Return the inverse of the CRT-style map in Λq on the resulting tuple.

3. The associative cyclic algebra case: here N = nd2 and A is the matrix obtained
from the left regular representation φ(a) of an element a ∈ Λq. In [GMLV22], the
complexity of the multiplication φ(a) · vec(s) was estimated as O

(
N log

(
N/d2

))
+

Õ
(
Ndω−1

)
in the case where q is inert in L [GMLV22, Appendix F5]. Here the

second term comes from the skew polynomial multiplication algorithm of [CL17],
and the first from the CRT map.

4. The nonassociative cyclic algebra case: again we have N = nd2 and A is the matrix
obtained from the left regular representation φ(a) of an element a ∈ Λq. We estimated
our complexity as O(nd2 log n) + Õ

(
ndω+1

)
= O(N logN/d2) + Õ

(
Ndω−1

)
, which

is identical to the associative case. Note that this is not surprising: multiplying two
elements does not require associativity.

8.4 Concrete Algebras for NCLWE

Here we detail a variety of methods to construct nonassociative CDAs from cyclotomic
fields (and their subfields). We pay particular attention to cases when [A : Q] = 3 · 2r for
some r, since [GMLV22] could not give such constructions.

A method to construct nonassociative CDAs was given above: let K = Q(ζm) and
L = Q(ζpm) with gcd(p,m) = 1. Then ζpm /∈ K and L/K is cyclic, so since ζpm does not
lie in a proper subfield of L, by Proposition 2 the algebra (L/K, θ, ζpm) is a nonassociative
CDA. Since [L : K] = p− 1, when p = 3 we have an appropriate degree algebra for the
above PKE scheme. Note we can let γ = ζkpm for any k such that gcd(pm, k) = 1, since
these are primitive pmth roots of unity, and no primitive pmth root of unity lies in a
proper subfield. Moreover, for prime power m = qr we can create extensions by setting p
to be a power of q; that is, p and m do not need to be coprime, but need to be chosen
such that L/K is cyclic. Below is a table of parameters for possible algebras:
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m p [K : Q] [L : K] [A : Q]
128 5 64 4 1024
256 3,4 128 2 512
256 5 128 4 2048
512 3,4 256 2 1024
243 3,4 162 2 648
243 5 162 4 2592
125 3,4 100 2 400
125 5 100 4 1600
625 3,4 500 2 2000
343 3,4 294 2 1176

Table 1: Even Low-degree Nonassociative Algebras

Alternatively, let L = Q(ζpm) = Q(ζ3r·2k), K = Q(ζ3r−1·2k). Then [L : Q] = φ(3r · 2k) =
3r−1 · 2k, [K : Q] = φ(3r−1 · 2k) = 3r−22k, and [L : K] = 3. Note L/K is cyclic, so
A = (L/K, θ, ζ3r·2k) is a nonassociative CDA. Below is a table of parameters for possible
algebras:

m K p L [K : Q] [A : Q]
64 Q(ζ192) 9 Q(ζ576) 64 576
64 Q(ζ576) 27 Q(ζ1728) 192 1728
128 Q(ζ384) 9 Q(ζ1152) 128 1152
128 Q(ζ1152) 27 Q(ζ3456) 384 3456
256 Q(ζ768) 9 Q(ζ2304) 256 2304

Table 2: Cubic-degree Nonassociative Algebras

Now, consider the case when K is strictly contained within a cyclotomic field. The
simplest example of this is A = (Q(ζm)/Q(ζm + ζ−1

m ), θ, ζm), m > 2. For examples
with [A : Q] divisible only by powers of 2 and 3, proceed as follows: set v = 2k, w =
9, Q(ζvw)

+ = Q(ζvw + ζ−1
vw ). Then A = (L/K, θ, γ) = (Q(ζvw)/Q(ζvw)

+, θ, ζvw) has
dimension [L : Q][L : K] = 2φ(v)φ(w) = 2k · 6 = 2k+13. This creates a cyclic division
algebra which has degree divisible by only one power of 3. We can also create algebras
with degree divisible by higher powers of 3. Below is a table of parameters for possible
algebras:

v w L [L : Q] [A : Q]
64 27 Q(ζ1728) 576 1152
128 9 Q(ζ1152) 384 768
128 27 Q(ζ3456) 1152 2304
256 9 Q(ζ2304) 768 1536
512 9 Q(ζ4608) 1536 3072

Table 3: Nonassociative Algebras Over Maximal Real Subfields

Another way of constructing algebras with similar sizes to those above is as follows. Let
p = 7 and m = 2r. Setting L = Q(ζ7·2r ) and K = Q(ζ2r ,

√
−7), [L : K] is cyclic as

Q(
√
−7) is the unique quadratic subfield of Q(ζ7), and we have [L : K] = 3, [K : Q] = 2r,

so [A : Q] = 9 · 2r.
Finally, we give a construction where |γ| 6= 1. This leads to some distortion of the error

in the proof of Lemma 11, but aside from this does not lead to significant complications.
Let K = Q(ζpk), where (p, 7) = 1, and L = Q(ζpk , ζ7 + ζ−1

7 ). Then [L : K] = 3 and
A = (L/K, θ, ζ7 + ζ−1

7 ) is a CDA of degree 9(p − 1)pk−1 over Q. In particular, we can
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construct a degree three extension where p = 2, and K has power of two degree. Below is
a table of parameters for such algebras.

pk [L : Q] [A : Q]
128 192 576
256 384 1152
512 768 2304
243 243 729
125 300 900

Table 4: Nonassociative Algebras of Cubic Degree over Prime-power Cyclotomic Fields

8.5 Attacking NCLWE
Subfield Attacks A form of structured LWE named multivariate LWE (mLWE) [PTP16]
was attacked in [BCV20]. The attack found a homomorphism from the mLWE sample
domain into a subfield, where mLWE is defined over the tensor product of number fields.
If a mLWE sample is defined over Zq[x]/(x2

r1
+ 1)⊗ Zq[x]/(x2

r2
+ 1), 1 < r2 ≤ r1, then

one can map a sample of dimension r1r2 to r2 samples of dimension r1 (see [BCV20]
for details). We argue that NCLWE is immune to this attack for the same reason as
is CLWE. Let A = (L/K, θ, γ) be a nonassociative CDA. Suppose there exists a ho-
momorphism χ : A → L. The restriction of χ to L is an automorphism of L, so χ
must satisfy χ(u) · χ(`) = χ(u`) = χ(θ(`)u) = χ(u) · χ(θ(`)) for any ` ∈ L. However,
this implies χ is not injective on L, and thus there is no homomorphism to a maximal
(or any other) subfield. So our construction is immune from this dimension-reducing attack.

Plain Lattice Attacks Here we provide results from the lattice estimator of the cost
of attacking out constructions, using plain lattice attacks. Here the attacks are run by
ignoring the algebraic structure of the underlying lattice problems. This cost estimate is
obtained by using the lattice estimator3 [APS15] with similar parameters for the secret
and error as Kyber512, but using lattice dimensions from examples in the previous section.
We allow the estimator as many samples as the dimension of the corresponding lattice
problem. We use a value of q completely split in L. The ‘meaning’ of the rop results in
the final column is to give a rough idea of the number of ring operations required to solve
the corresponding LWE instances, and is thus a measure of security. We list the minimum
base-2 logarithms of these rop values over all attacks costed by the estimator.

Table 5: Cost of Plain Lattice Attacks
[A : Q] q min log rop
512 7681 127.5
576 7489 143.7
648 2917 182.9
768 3457 209.9
900 7001 228.5
1024 7681 258.9
1152 3457 319.9
1176 8233 297.5
1536 18433 364.5

3Commit 564470e.
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