4 results sorted by publication date
Mixed-Integer Linear Programming (MILP) modeling has become an important tool for both the analysis and the design of symmetric cryptographic primitives. The bit-wise modeling of their nonlinear components, especially the S-boxes, is of particular interest since it allows more informative analysis compared to word-oriented models focusing on counting active S-boxes. At the same time, the size of these models, especially in terms of the number of required inequalities, tends to significantly influence and ultimately limit the applicability of this method to real-world ciphers, especially for larger number of rounds.
It is therefore of great cryptographic significance to study optimal linear inequality descriptions for Boolean functions. The pioneering works of Abdelkhalek et al. (FSE 2017), Boura and Coggia (FSE 2020) and Li and Sun (FSE 2023) provided various heuristic techniques for this computationally hard problem, decomposing it into two algorithmic steps, coined Problem 1 and Problem 2, with the latter being identical to the well-known NP-hard set cover problem, for which there are many heuristic and exact algorithms in the literature.
In this paper, we introduce a novel and efficient branch-and-bound algorithm for generating all minimal, non-redundant candidate inequalities that satisfy a given Boolean function, therefore solving Problem 1 in an optimal manner without relying on heuristics. We furthermore prove that our algorithm correctly computes optimal solutions. Using a number of dedicated optimizations, it provides significantly improved runtimes compared to previous approaches and allows the optimal modeling of the difference distribution tables (DDT) and linear approximation tables (LAT) of many practically used S-boxes. The source code for our algorithm is publicly available as a tool for researchers and practitioners in symmetric cryptography.
Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph. Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for the secure evaluation of “message passing” algorithms, such as the PageRank algorithm. Their protocol's computation and communication complexity are both $\tilde{O}(M\cdot B)$ instead of the $O(M^2)$ complexity achieved by general-purpose MPC protocols, where $M$ denotes the number of nodes and $B$ the (average) number of incoming edges per node. On the downside, their approach achieves only a relatively weak security notion; $1$-out-of-$3$ malicious security with selective abort.
In this work, we show that PageRank can instead be captured efficiently as a restricted multiplication straight-line (RMS) program, and present a new actively secure MPC protocol tailored to handle RMS programs. In particular, we show that the local knowledge of the participants can be leveraged towards the first maliciously-secure protocol with communication complexity linear in $M$, independently of the sparsity of the graph. We present two variants of our protocol. In our communication-optimized protocol, going from semi-honest to malicious security only introduces a small communication overhead, but results in quadratic computation complexity $O(M^2)$. In our balanced protocol, we still achieve a linear communication complexity $O(M)$, although with worse constants, but a significantly better computational complexity scaling with $O(M\cdot B)$. Additionally, our protocols achieve security with identifiable abort and can tolerate up to $n-1$ corruptions.