Communications in Cryptology IACR CiC


Dates are inconsistent
3 results sorted by publication date
Ji Luo
Published 2024-07-08 PDFPDF

Traitor tracing schemes [Chor–Fiat–Naor, Crypto ’94] help content distributors fight against piracy and are defined with the content distributor as a trusted authority having access to the secret keys of all users. While the traditional model caters well to its original motivation, its centralized nature makes it unsuitable for many scenarios. For usage among mutually untrusted parties, a notion of *ad hoc* traitor tracing (naturally with the capability of broadcast and revocation) is proposed and studied in this work. Such a scheme allows users in the system to generate their own public/secret key pairs, without trusting any other entity. To encrypt, a list of public keys is used to identify the set of recipients, and decryption is possible with a secret key for any of the public keys in the list. In addition, there is a tracing algorithm that given a list of recipients’ public keys and a pirate decoder capable of decrypting ciphertexts encrypted to them, identifies at least one recipient whose secret key must have been used to construct the said decoder.

Two constructions are presented. The first is based on functional encryption for circuits (conceptually, obfuscation) and has constant-size ciphertext, yet its decryption time is linear in the number of recipients. The second is a generic transformation that reduces decryption time at the cost of increased ciphertext size. A matching lower bound on the trade-off between ciphertext size and decryption time is shown, indicating that the two constructions achieve all possible optimal trade-offs, i.e., they fully demonstrate the Pareto front of efficiency. The lower bound also applies to broadcast encryption (hence all mildly expressive attribute-based encryption schemes) and is of independent interest.

Ky Nguyen, David Pointcheval, Robert Schädlich
Published 2024-07-08 PDFPDF

Decentralized Multi-Client Functional Encryption (DMCFE) extends the basic functional encryption to multiple clients that do not trust each other. They can independently encrypt the multiple plaintext-inputs to be given for evaluation to the function embedded in the functional decryption key, defined by multiple parameter-inputs. And they keep control on these functions as they all have to contribute to the generation of the functional decryption keys. Tags can be used in the ciphertexts and the keys to specify which inputs can be combined together. As any encryption scheme, DMCFE provides privacy of the plaintexts. But the functions associated to the functional decryption keys might be sensitive too (e.g. a model in machine learning). The function-hiding property has thus been introduced to additionally protect the function evaluated during the decryption process.

In this paper, we provide new proof techniques to analyze a new concrete construction of function-hiding DMCFE for inner products, with strong security guarantees: the adversary can adaptively query multiple challenge ciphertexts and multiple challenge keys, with unbounded repetitions of the same tags in the ciphertext-queries and a fixed polynomially-large number of repetitions of the same tags in the key-queries. Previous constructions were proven secure in the selective setting only.

Dan Boneh, Benedikt Bünz, Ben Fisch
Published 2024-04-09 PDFPDF

A verifiable delay function (VDF) is an important tool used for adding delay in decentralized applications. This paper surveys and compares two beautiful verifiable delay functions, one due to Pietrzak, and the other due to Wesolowski, In addition, we provide a new computational proof of security for one of them, present an attack on an incorrect implementation of the other, and compare the complexity assumptions needed for both schemes.