Communications in Cryptology IACR CiC


Dates are inconsistent
7 results sorted by publication date
Editors in chief
Call for papers: IACR Communications in Cryptology Submit a paper Communications in Cryptology is a journal for original research papers which welcomes submissions on any topic in cryptology. This covers all research topics in cryptography and cryptanalysis, including but not limited to foundational theory and mathematics the design, proposal, and analysis of cryptographic primitives a...
Editors in chief
Policy on publication ethics Communications in Cryptology (CiC) is committed to ensuring ethics and quality in research. We therefore expect everyone involved in the journal to follow our principles (see below) and ethics. See the related IACR docs here and here. Duties for Authors Confidentiality You may not ask Editorial Board members for information about your submission befor...
Editors in chief
Frequently asked questions The International Association for Cryptologic Research (IACR) Communications in Cryptology (CiC) was approved by the Membership in the IACR 2022 election and targets publications that advance the field, but with a broader range of contributions than the ones accepted by the IACR flagship or area conferences. What are the main principles of CiC? Low-cost open ...
Décio Luiz Gazzoni Filho, Tomás S. R. Silva, Julio López
Published 2024-07-08 PDFPDF

We present a solution to the open problem of designing a linear-time, unbiased and timing attack-resistant shuffling algorithm for fixed-weight sampling. Although it can be implemented without timing leakages of secret data in any architecture, we illustrate with ARMv7-M and ARMv8-A implementations; for the latter, we take advantage of architectural features such as NEON and conditional instructions, which are representative of features available on architectures targeting similar systems, such as Intel. Our proposed algorithm improves asymptotically upon the current approach based on constant-time sorting networks ($O(n)$ versus $O(n \log^2 n)$), and an implementation of the new algorithm applied to NTRU is also faster in practice, by a factor of up to $6.91\ (591\%)$ on ARMv8-A cores and $12.89\ (1189\%)$ on the Cortex-M4; it also requires fewer uniform random bits. This translates into performance improvements for NTRU encapsulation, compared to state-of-the-art implementations, of up to 50% on ARMv8-A cores and 72% on the Cortex-M4, and small improvements to key generation (up to 2.7% on ARMv8-A cores and 6.1% on the Cortex-M4), with negligible impact on code size and a slight improvement in RAM usage for the Cortex-M4.

Benjamin E. Diamond, Jim Posen
Published 2024-04-09 PDFPDF

A fundamental result dating to Ligero (Des. Codes Cryptogr. '23) establishes that each fixed linear block code exhibits proximity gaps with respect to the collection of affine subspaces, in the sense that each given subspace either resides entirely close to the code, or else contains only a small portion which resides close to the code. In particular, any given subspace's failure to reside entirely close to the code is necessarily witnessed, with high probability, by a uniformly randomly sampled element of that subspace. We investigate a variant of this phenomenon in which the witness is not sampled uniformly from the subspace, but rather from a much smaller subset of it. We show that a logarithmic number of random field elements (in the dimension of the subspace) suffice to effect an analogous proximity test, with moreover only a logarithmic (multiplicative) loss in the possible prevalence of false witnesses. We discuss applications to recent noninteractive proofs based on linear codes, including Brakedown (CRYPTO '23).

Loïc Demange, Mélissa Rossi
Published 2024-04-09 PDFPDF

BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of the NIST's standardization campaign. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the most competitive performance among round 4 candidates, which makes it relevant for future real-world use cases. Analyzing its side-channel resistance has been highly encouraged by the community and several works have already outlined various side-channel weaknesses and proposed ad-hoc countermeasures. However, in contrast to the well-documented research line on masking lattice-based algorithms, the possibility of generically protecting code-based algorithms by masking has only been marginally studied in a 2016 paper by Chen et al. in SAC 2015. At this stage of the standardization campaign, it is important to assess the possibility of fully masking BIKE scheme and the resulting cost in terms of performances.

In this work, we provide the first high-order masked implementation of a code-based algorithm. We had to tackle many issues such as finding proper ways to handle large sparse polynomials, masking the key-generation algorithm or keeping the benefit of the bitslicing. In this paper, we present all the gadgets necessary to provide a fully masked implementation of BIKE, we discuss our different implementation choices and we propose a full proof of masking in the Ishai Sahai and Wagner (Crypto 2003) model.

More practically, we also provide an open C-code masked implementation of the key-generation, encapsulation and decapsulation algorithms with extensive benchmarks. While the obtained performance is slower than existing masked lattice-based algorithms, we show that masking at order 1, 2, 3, 4 and 5 implies a performance penalty of x5.8, x14.2, x24.4, x38 and x55.6 compared to order 0 (unmasked and unoptimized BIKE). This scaling is encouraging and no Boolean to Arithmetic conversion has been used.

Daniel J. Bernstein
Published 2024-04-09 PDFPDF

This paper reviews, from bottom to top, a polynomial-time algorithm to correct $t$ errors in classical binary Goppa codes defined by squarefree degree-$t$ polynomials. The proof is factored through a proof of a simple Reed–Solomon decoder, and the algorithm is simpler than Patterson's algorithm. All algorithm layers are expressed as Sage scripts backed by test scripts. All theorems are formally verified. The paper also covers the use of decoding inside the Classic McEliece cryptosystem, including reliable recognition of valid inputs.