Communications in Cryptology IACR CiC
Search requires all terms to appear in the result
Search results for Public-Key Cryptography
  1. Akira Takahashi, Greg Zaverucha
    Published 2024-04-09 PDFPDF

    Verifiable encryption (VE) is a protocol where one can provide assurance that an encrypted plaintext satisfies certain properties, or relations. It is an important building block in cryptography with many useful applications, such as key escrow, group signatures, optimistic fair exchange, and others. However, the majority of previous VE schemes are restricted to instantiation with specific public-key encryption schemes or relations. In this work, we propose a novel framework that realizes VE protocols using zero-knowledge proof systems based on the MPC-in-the-head paradigm (Ishai et al. STOC 2007). Our generic compiler can turn a large class of zero-knowledge proofs into secure VE protocols for any secure public-key encryption scheme with the undeniability property, a notion that essentially guarantees binding of encryption when used as a commitment scheme. Our framework is versatile: because the circuit proven by the MPC-in-the-head prover is decoupled from a complex encryption function, the work of the prover is focused on proving the encrypted data satisfies the relation, not the proof of plaintext knowledge. Hence, our approach allows for instantiation with various combinations of properties about the encrypted data and encryption functions. We then consider concrete applications, to demonstrate the efficiency of our framework, by first giving a new approach and implementation to verifiably encrypt discrete logarithms in any prime order group more efficiently than was previously known. Then we give the first practical verifiable encryption scheme for AES keys with post-quantum security, along with an implementation and benchmarks.

  2. Gabrielle De Micheli, Nadia Heninger
    Published 2024-04-09 PDFPDF

    Side-channel attacks targeting cryptography may leak only partial or indirect information about the secret keys. There are a variety of techniques in the literature for recovering secret keys from partial information. In this work, we survey several of the main families of partial key recovery algorithms for RSA, (EC)DSA, and (elliptic curve) Diffie-Hellman, the classical public-key cryptosystems in common use today. We categorize the known techniques by the structure of the information that is learned by the attacker, and give simplified examples for each technique to illustrate the underlying ideas.

  3. Loïs Huguenin-Dumittan, Serge Vaudenay
    Published 2024-04-09 PDFPDF

    Proving whether it is possible to build IND-CCA public-key encryption (PKE) from IND-CPA PKE in a black-box manner is a major open problem in theoretical cryptography. In a significant breakthrough, Gertner, Malkin and Myers showed in 2007 that shielding black-box reductions from IND-CCA to IND-CPA do not exist in the standard model. Shielding means that the decryption algorithm of the IND-CCA scheme does not call the encryption algorithm of the underlying IND-CPA scheme. In other words, it implies that every tentative construction of IND-CCA from IND-CPA must have a re-encryption step when decrypting.

    This result was only proven with respect to classical algorithms. In this work we show that it stands in a post-quantum setting. That is, we prove that there is no post-quantum shielding black-box construction of IND-CCA PKE from IND-CPA PKE. In the type of reductions we consider, i.e. post-quantum ones, the constructions are still classical in the sense that the schemes must be computable on classical computers, but the adversaries and the reduction algorithm can be quantum. This suggests that considering quantum notions, which are stronger than their classical counterparts, and allowing for quantum reductions does not make building IND-CCA public-key encryption easier.

  4. Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin Varner, Bas Westerbaan
    Published 2024-04-09 PDFPDF

    X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is secure when used as a pseudorandom function. The first result is proved in the ROM, whereas the second one holds in the standard model. Loosely speaking, this means X-Wing is secure if either X25519 or ML-KEM-768 is secure. We stress that these security guarantees and optimizations are only possible due to the concrete choices that were made, and it may not apply in the general case.

  5. Aurélien Dupin, Simon Abelard
    Published 2024-04-09 PDFPDF

    The problem of Broadcast Encryption (BE) consists in broadcasting an encrypted message to a large number of users or receiving devices in such a way that the emitter of the message can control which of the users can or cannot decrypt it.

    Since the early 1990s, the design of BE schemes has received significant interest and many different concepts were proposed. A major breakthrough was achieved by Naor, Naor and Lotspiech (CRYPTO 2001) by partitioning cleverly the set of authorized users and associating a symmetric key to each subset. Since then, while there have been many advances in public-key based BE schemes, mostly based on bilinear maps, little was made on symmetric cryptography.

    In this paper, we design a new symmetric-based BE scheme, named $\Sigma\Pi$BE, that relies on logic optimization and consensual security assumptions. It is competitive with the work of Naor et al. and provides a different tradeoff: the bandwidth requirement is significantly lowered at the cost of an increase in the key storage.