Communications in Cryptology IACR CiC


Dates are inconsistent
2 results sorted by publication date
Avishek Majumder, Sayantan Mukherjee
Published 2024-10-07 PDFPDF

Broadcast Encryption (BE) allows a sender to send an encrypted message to multiple receivers. In a typical broadcast encryption scenario, the broadcaster decides the set of users who can decrypt a particular ciphertext (denoted as the privileged set). Gritti et al. (IJIS'16) introduced a new primitive called Broadcast Encryption with Dealership (BrED), where the dealer decides the privileged set. A BrED scheme allows a dealer to buy content from the broadcaster and sell it to users. It provides better flexibility in managing a large user base. To date, quite a few different constructions of BrED schemes have been proposed by the research community.

We find that all existing BrED schemes are insecure under the existing security definitions. We demonstrate a concrete attack on all the existing schemes in the purview of the existing security definition. We also find that the security definitions proposed in the state-of-the-art BrED schemes do not capture the real world. We argue about the inadequacy of existing definitions and propose a new security definition that models the real world more closely. Finally, we propose a new BrED construction and prove it to be secure in our newly proposed security model.

Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Published 2024-10-07 PDFPDF

For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the transition to quantum-safe cryptographic solutions. This necessity is enforced by numerous recognized government bodies around the world, including NIST which initiated the first open competition in standardizing post-quantum (PQ) cryptographic schemes, focusing primarily on digital signatures and key encapsulation/public-key encryption schemes. Despite the current efforts in standardizing PQ primitives, the landscape of complex, privacy-preserving cryptographic protocols, e.g., zkSNARKs/zkSTARKs, is at an early stage. Existing solutions suffer from various disadvantages in terms of efficiency and compactness and in addition, they need to undergo the required scrutiny to gain the necessary trust in the academic and industrial domains. Therefore, it is believed that the migration to purely quantum-safe cryptography would require an intermediate step where current classically secure protocols and quantum-safe solutions will co-exist. This is enforced by the report of the Commercial National Security Algorithm Suite version 2.0, mandating transition to quantum-safe cryptographic algorithms by 2033 and suggesting to incorporate ECC at 192-bit security in the meantime. To this end, the present paper aims at providing a comprehensive study on pairings at 192-bit security level. We start with an exhaustive review in the literature to search for all possible recommendations of such pairing constructions, from which we extract the most promising candidates in terms of efficiency and security, with respect to the advanced Special TNFS attacks. Our analysis is focused, not only on the pairing computation itself, but on additional operations that are relevant in pairing-based applications, such as hashing to pairing groups, cofactor clearing and subgroup membership testing. We implement all functionalities of the most promising candidates within the RELIC cryptographic toolkit in order to identify the most efficient pairing implementation at 192-bit security and provide extensive experimental results.