Communications in Cryptology IACR CiC


Dates are inconsistent
9 results sorted by publication date
Editors in chief
Call for papers: IACR Communications in Cryptology Submit a paper Communications in Cryptology is a journal for original research papers which welcomes submissions on any topic in cryptology. This covers all research topics in cryptography and cryptanalysis, including but not limited to foundational theory and mathematics the design, proposal, and analysis of cryptographic primitives a...
Sebastian Kolby, Divya Ravi, Sophia Yakoubov
Published 2024-10-07 PDFPDF

YOSO MPC (Gentry et al., Crypto 2021) is a new MPC framework where each participant can speak at most once. This models an adaptive adversary’s ability to watch the network and corrupt or destroy parties it deems significant based on their communication. By using private channels to anonymous receivers (e.g. by encrypting to a public key whose owner is unknown), the communication complexity of YOSO MPC can scale sublinearly with the total number N of available parties, even when the adversary’s corruption threshold is linear in N (e.g. just under N/2). It was previously an open problem whether YOSO MPC can achieve guaranteed output delivery in a constant number of rounds without relying on trusted setup. In this work, we show that this can indeed be accomplished. We demonstrate three different approaches: the first two (which we call YaOSO and YOSO-GLS) use two and three rounds of communication, respectively. Our third approach (which we call YOSO-LHSS) uses O(d) rounds, where d is the multiplicative depth of the circuit being evaluated; however, it can be used to bootstrap any constant-round YOSO protocol that requires setup, by generating that setup within YOSO-LHSS. Though YOSO-LHSS requires more rounds than our first two approaches, it may be more practical, since the zero knowledge proofs it employs are more efficient to instantiate. As a contribution of independent interest, we introduce a verifiable state propagation UC functionality, which allows parties to send private message which are verifiably derived in the “correct” way (according to the protocol in question) to anonymous receivers. This is a natural functionality to build YOSO protocols on top of.

Aron van Baarsen, Marc Stevens
Published 2024-10-07 PDFPDF

Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection.

In this paper we consider several settings in which parties take part in multiple Circuit-PSI executions with the same input set, and aim to amortize communications and computations. To that end, we build up a new framework for Circuit-PSI around generalizations of oblivious (programmable) PRFs that are extended with offline setup phases. We present several efficient instantiations of this framework with new security proofs for this setting. As a side result, we obtain a slight improvement in communication and computation complexity over the state-of-the-art semi-honest Circuit-PSI protocol by Bienstock et al. (USENIX '23). Additionally, we present a novel Circuit-PSI protocol from a PRF with secret-shared outputs, which has linear communication and computation complexity in the parties' input set sizes, and is able to realize a stronger security notion. Lastly, we derive the potential amortizations over multiple protocol executions, and observe that each of the presented instantiations is favorable in at least one of the multiple-execution settings.

Benjamin Hansen Mortensen, Mathias Karsrud Nordal, Martin Strand
Published 2024-10-07 PDFPDF

Vessels can be recognised by their navigation radar due to the characteristics of the emitted radar signal. This is particularly useful if one wants to build situational awareness without revealing one's own presence. Most countries maintain databases of radar fingerprints but will not readily share these due to national security regulations. Sharing of such information will generally require some form of information exchange agreement.

However, all parties in a coalition benefit from correct identification. We use secure multiparty computation to match a radar signal measurement against secret databases and output plausible matches with their likelihoods. We also provide a demonstrator using MP-SPDZ.

Thomas Attema, Aron van Baarsen, Stefan van den Berg, Pedro Capitão, Vincent Dunning, Lisa Kohl
Published 2024-07-08 PDFPDF

Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph. Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for the secure evaluation of “message passing” algorithms, such as the PageRank algorithm. Their protocol's computation and communication complexity are both $\tilde{O}(M\cdot B)$ instead of the $O(M^2)$ complexity achieved by general-purpose MPC protocols, where $M$ denotes the number of nodes and $B$ the (average) number of incoming edges per node. On the downside, their approach achieves only a relatively weak security notion; $1$-out-of-$3$ malicious security with selective abort.

In this work, we show that PageRank can instead be captured efficiently as a restricted multiplication straight-line (RMS) program, and present a new actively secure MPC protocol tailored to handle RMS programs. In particular, we show that the local knowledge of the participants can be leveraged towards the first maliciously-secure protocol with communication complexity linear in $M$, independently of the sparsity of the graph. We present two variants of our protocol. In our communication-optimized protocol, going from semi-honest to malicious security only introduces a small communication overhead, but results in quadratic computation complexity $O(M^2)$. In our balanced protocol, we still achieve a linear communication complexity $O(M)$, although with worse constants, but a significantly better computational complexity scaling with $O(M\cdot B)$. Additionally, our protocols achieve security with identifiable abort and can tolerate up to $n-1$ corruptions.

Charles Bouillaguet, Julia Sauvage
Published 2024-04-09 PDFPDF

Biscuit is a recent multivariate signature scheme based on the MPC-in-the-Head paradigm. It has been submitted to the NIST competition for additional signature schemes. Signatures are derived from a zero-knowledge proof of knowledge of the solution of a structured polynomial system. This extra structure enables efficient proofs and compact signatures. This short note demonstrates that it also makes these polynomial systems easier to solve than random ones. As a consequence, the original parameters of Biscuit failed to meet the required security levels and had to be upgraded.

Yehuda Lindell
Published 2024-04-09 PDFPDF

In a multiparty signing protocol, also known as a threshold signature scheme, the private signing key is shared amongst a set of parties and only a quorum of those parties can generate a signature. Research on multiparty signing has been growing in popularity recently due to its application to cryptocurrencies. Most work has focused on reducing the number of rounds to two, and as a result: (a) are not fully simulatable in the sense of MPC real/ideal security definitions, and/or (b) are not secure under concurrent composition, and/or (c) utilize non-standard assumptions of different types in their proofs of security. In this paper, we describe a simple three-round multiparty protocol for Schnorr signatures that is secure for any number of corrupted parties; i.e., in the setting of a dishonest majority. The protocol is fully simulatable, secure under concurrent composition, and proven secure in the standard model or random-oracle model (depending on the instantiations of the commitment and zero-knowledge primitives). The protocol realizes an ideal Schnorr signing functionality with perfect security in the ideal commitment and zero-knowledge hybrid model (and thus the only assumptions needed are for realizing these functionalities).

In our presentation, we do not assume that all parties begin with the message to be signed, the identities of the participating parties and a unique common session identifier, since this is often not the case in practice. Rather, the parties achieve consensus on these parameters as the protocol progresses.

Subhadeep Banik, Andrea Caforio, Serge Vaudenay
Published 2024-04-09 PDFPDF

The LowMC family of block ciphers was proposed by Albrecht et al. in Eurocrypt 2015, specifically targeting adoption in FHE and MPC applications due to its low multiplicative complexity. The construction operates a 3-bit quadratic S-box as the sole non-linear transformation in the algorithm. In contrast, both the linear layer and round key generation are achieved through multiplications of full rank matrices over GF(2). The cipher is instantiable using a diverse set of default configurations, some of which have partial non-linear layers i.e., in which the S-boxes are not applied over the entire internal state of the cipher.

The significance of cryptanalysing LowMC was elevated by its inclusion into the NIST PQC digital signature scheme PICNIC in which a successful key recovery using a single plaintext/ciphertext pair is akin to retrieving the secret signing key. The current state-of-the-art attack in this setting is due to Dinur at Eurocrypt 2021, in which a novel way of enumerating roots of a Boolean system of equation is morphed into a key-recovery procedure that undercuts an ordinary exhaustive search in terms of time complexity for the variants of the cipher up to five rounds.

In this work, we demonstrate that this technique can efficiently be enriched with a specific linearization strategy that reduces the algebraic degree of the non-linear layer as put forward by Banik et al. at IACR ToSC 2020(4). This amalgamation yields new attacks on certain instances of LowMC up to seven rounds.

Akira Takahashi, Greg Zaverucha
Published 2024-04-09 PDFPDF

Verifiable encryption (VE) is a protocol where one can provide assurance that an encrypted plaintext satisfies certain properties, or relations. It is an important building block in cryptography with many useful applications, such as key escrow, group signatures, optimistic fair exchange, and others. However, the majority of previous VE schemes are restricted to instantiation with specific public-key encryption schemes or relations. In this work, we propose a novel framework that realizes VE protocols using zero-knowledge proof systems based on the MPC-in-the-head paradigm (Ishai et al. STOC 2007). Our generic compiler can turn a large class of zero-knowledge proofs into secure VE protocols for any secure public-key encryption scheme with the undeniability property, a notion that essentially guarantees binding of encryption when used as a commitment scheme. Our framework is versatile: because the circuit proven by the MPC-in-the-head prover is decoupled from a complex encryption function, the work of the prover is focused on proving the encrypted data satisfies the relation, not the proof of plaintext knowledge. Hence, our approach allows for instantiation with various combinations of properties about the encrypted data and encryption functions. We then consider concrete applications, to demonstrate the efficiency of our framework, by first giving a new approach and implementation to verifiably encrypt discrete logarithms in any prime order group more efficiently than was previously known. Then we give the first practical verifiable encryption scheme for AES keys with post-quantum security, along with an implementation and benchmarks.