Communications in Cryptology IACR CiC
Search requires all terms to appear in the result
Search results for Linear layer
  1. Subhadeep Banik, Andrea Caforio, Serge Vaudenay
    Published 2024-04-09 PDFPDF

    The LowMC family of block ciphers was proposed by Albrecht et al. in Eurocrypt 2015, specifically targeting adoption in FHE and MPC applications due to its low multiplicative complexity. The construction operates a 3-bit quadratic S-box as the sole non-linear transformation in the algorithm. In contrast, both the linear layer and round key generation are achieved through multiplications of full rank matrices over GF(2). The cipher is instantiable using a diverse set of default configurations, some of which have partial non-linear layers i.e., in which the S-boxes are not applied over the entire internal state of the cipher.

    The significance of cryptanalysing LowMC was elevated by its inclusion into the NIST PQC digital signature scheme PICNIC in which a successful key recovery using a single plaintext/ciphertext pair is akin to retrieving the secret signing key. The current state-of-the-art attack in this setting is due to Dinur at Eurocrypt 2021, in which a novel way of enumerating roots of a Boolean system of equation is morphed into a key-recovery procedure that undercuts an ordinary exhaustive search in terms of time complexity for the variants of the cipher up to five rounds.

    In this work, we demonstrate that this technique can efficiently be enriched with a specific linearization strategy that reduces the algebraic degree of the non-linear layer as put forward by Banik et al. at IACR ToSC 2020(4). This amalgamation yields new attacks on certain instances of LowMC up to seven rounds.

  2. Jingwen Chen, Qun Liu, Yanhong Fan, Lixuan Wu, Boyun Li, Meiqin Wang
    Published 2024-04-09 PDFPDF

    In recent years, quantum technology has been rapidly developed. As security analyses for symmetric ciphers continue to emerge, many require an evaluation of the resources needed for the quantum circuit implementation of the encryption algorithm. In this regard, we propose the quantum circuit decision problem, which requires us to determine whether there exists a quantum circuit for a given permutation f using M ancilla qubits and no more than K quantum gates within the circuit depth D. Firstly, we investigate heuristic algorithms and classical SAT-based models in previous works, revealing their limitations in solving the problem. Hence, we innovatively propose an improved SAT-based model incorporating three metrics of quantum circuits. The model enables us to find the optimal quantum circuit of an arbitrary 3 or 4-bit S-box under a given optimization goal based on SAT solvers, which has proved the optimality of circuits constructed by the tool, LIGHTER-R. Then, by combining different criteria in the model, we find more compact quantum circuit implementations of S-boxes such as RECTANGLE and GIFT. For GIFT S-box, our model provides the optimal quantum circuit that only requires 8 gates with a depth of 31. Furthermore, our model can be generalized to linear layers and improve the previous SAT-based model proposed by Huang et al. in ASIACRYPT 2022 by adding the criteria on the number of qubits and the circuit depth.