Communications in Cryptology IACR CiC


Dates are inconsistent
4 results sorted by publication date
Aleksei Udovenko
Published 2024-10-07 PDFPDF

This note presents attacks on the lightweight hash function TS-Hash proposed by Tsaban, including a polynomial-time preimage attack for short messages (at most $n/2$ bits), high-probability differentials, a general subexponential-time preimage attack, and linearization techniques.

Sougata Mandal
Published 2024-10-07 PDFPDF

In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric key primitive called the forkcipher, designed for lightweight applications handling short messages. A forkcipher is a keyed function with a public tweak, featuring fixed-length input and fixed-length (expanding) output. They also proposed a specific forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC schemes based on forkciphers have been proposed, catering not only to short messages but also to various purposes such as leakage resilience and cloud security. While forkciphers have proven to be efficient solutions for designing AEAD schemes, the area of forkcipher design remains unexplored, particularly the lack of provably secure forkcipher constructions.

In this work, we propose forkcipher design for various tweak lengths, based on a block cipher as the underlying primitive. We provide proofs of security for these constructions, assuming the underlying block cipher behaves as an ideal block cipher. First, we present a forkcipher, $\widetilde{\textsf{F}}1$, for an $n$-bit tweak and prove its optimal ($n$-bit) security. Next, we propose another construction, $\widetilde{\textsf{F}}2$, for a $2n$-bit tweak, also proving its optimal ($n$-bit) security. Finally, we introduce a construction, $\widetilde{\textsf{F}}r$, for a general $rn$-bit tweak, achieving $n$-bit security.

Shichang Wang, Meicheng Liu, Shiqi Hou, Dongdai Lin
Published 2024-04-09 PDFPDF

At CHES 2017, Banik et al. proposed a lightweight block cipher GIFT consisting of two versions GIFT-64 and GIFT-128. Recently, there are lots of authenticated encryption schemes that adopt GIFT-128 as their underlying primitive, such as GIFT-COFB and HyENA. To promote a comprehensive perception of the soundness of the designs, we evaluate their security against differential-linear cryptanalysis.

For this, automatic tools have been developed to search differential-linear approximation for the ciphers based on S-boxes. With the assistance of the automatic tools, we find 13-round differential-linear approximations for GIFT-COFB and HyENA. Based on the distinguishers, 18-round key-recovery attacks are given for the message processing phase and initialization phase of both ciphers. Moreover, the resistance of GIFT-64/128 against differential-linear cryptanalysis is also evaluated. The 12-round and 17-round differential-linear approximations are found for GIFT-64 and GIFT-128 respectively, which lead to 18-round and 19-round key-recovery attacks respectively. Here, we stress that our attacks do not threaten the security of these ciphers.

Mustafa Khairallah
Published 2024-04-09 PDFPDF

The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security beyond the tag length, and (b) it is possible to have IND-CCA security beyond the tag length in a restricted Encode-then-Encipher framework. In this paper, we address some of the remaining gaps in this area. Our main result is to show that, for a fixed stretch, Pseudo-Random Injection security implies IND-CCA security as long as the minimum ciphertext size is at least as large as the required IND-CCA security level. We also show that this bound is tight and that any AEAD scheme that allows empty plaintexts with a fixed stretch cannot achieve IND-CCA security beyond the tag length. Next, we look at the weaker notion of MRAE security, and show that two-pass schemes that achieve MRAE security do not achieve IND-CCA security beyond the tag size. This includes SIV and rugged PRPs.