Communications in Cryptology IACR CiC


Dates are inconsistent
6 results sorted by publication date
Qian Guo, Erik Mårtensson, Adrian Åström
Published 2024-10-07 PDFPDF

The Module Learning With Errors (MLWE)-based Key Encapsulation Mechanism (KEM) Kyber is NIST's new standard scheme for post-quantum encryption. As a building block, Kyber uses a Chosen Plaintext Attack (CPA)-secure Public Key Encryption (PKE) scheme, referred to as Kyber.CPAPKE. In this paper we study the robustness of Kyber.CPAPKE against key mismatch attacks.

We demonstrate that Kyber's security levels can be compromised if having access to a few mismatch queries of Kyber.CPAPKE, by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in Kyber.CPAPKE.

We further propose an adaptive method to enhance parallel mismatch attacks, initially proposed by Shao et al. at AsiaCCS 2024, thereby significantly reducing query complexity. This method combines the adaptive attack with post-processing via lattice reduction to retrieve the final secret key entries. Our method proves its efficacy by reducing query complexity by 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber1024.

Furthermore, this approach has the potential to improve multi-value Plaintext-Checking (PC) oracle-based side-channel attacks and fault-injection attacks against Kyber itself.

Seongtaek Chee, Kyung Chul Jeong, Tanja Lange, Nari Lee, Alex Pellegrini, Hansol Ryu
Published 2024-10-07 PDFPDF

We analyze Layered ROLLO-I, a code-based cryptosystem published in IEEE Communications Letters and submitted to the Korean post-quantum cryptography competition. Four versions of Layered ROLLO-I have been proposed in the competition. We show that the first two versions do not provide the claimed security against rank decoding attacks and give reductions to small instances of the original ROLLO-I scheme, which was a candidate in the NIST competition and eliminated there due to rank decoding attacks. As a second contribution, we provide two efficient message recovery attacks, affecting every security level of the first three versions of Layered ROLLO-I and security levels 128 and 192 of the fourth version.

Marcel Tiepelt, Christian Martin, Nils Maeurer
Published 2024-04-09 PDFPDF

Transitioning from classically to quantum secure key agreement protocols may require to exchange fundamental components, for example, exchanging Diffie-Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly, the corresponding security proof can no longer rely on the Diffie-Hellman assumption, thus invalidating the security guarantees. As a consequence, the security properties have to be re-proven under a KEM-based security notion.

We initiate the study of the LDACS key agreement protocol (Edition 01.01.00 from 25.04.2023), which is soon-to-be-standardized by the International Civil Aviation Organization. The protocol's cipher suite features Diffie-Hellman as well as a KEM-based key agreement protocol to provide post-quantum security. While the former results in an instantiation of an ISO key agreement inheriting all security properties, the security achieved by the latter is ambiguous. We formalize the computational security using the systematic notions of de Saint Guilhem, Fischlin and Warinshi (CSF '20), and prove the exact security that the KEM-based variant achieves in this model; primarily entity authentication, key secrecy and key authentication. To further strengthen our “pen-and-paper” findings, we model the protocol and its security guarantees using Tamarin, providing an automated proof of the security against a Dolev-Yao attacker.

Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin Varner, Bas Westerbaan
Published 2024-04-09 PDFPDF

X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is secure when used as a pseudorandom function. The first result is proved in the ROM, whereas the second one holds in the standard model. Loosely speaking, this means X-Wing is secure if either X25519 or ML-KEM-768 is secure. We stress that these security guarantees and optimizations are only possible due to the concrete choices that were made, and it may not apply in the general case.

Loïc Demange, Mélissa Rossi
Published 2024-04-09 PDFPDF

BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of the NIST's standardization campaign. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the most competitive performance among round 4 candidates, which makes it relevant for future real-world use cases. Analyzing its side-channel resistance has been highly encouraged by the community and several works have already outlined various side-channel weaknesses and proposed ad-hoc countermeasures. However, in contrast to the well-documented research line on masking lattice-based algorithms, the possibility of generically protecting code-based algorithms by masking has only been marginally studied in a 2016 paper by Chen et al. in SAC 2015. At this stage of the standardization campaign, it is important to assess the possibility of fully masking BIKE scheme and the resulting cost in terms of performances.

In this work, we provide the first high-order masked implementation of a code-based algorithm. We had to tackle many issues such as finding proper ways to handle large sparse polynomials, masking the key-generation algorithm or keeping the benefit of the bitslicing. In this paper, we present all the gadgets necessary to provide a fully masked implementation of BIKE, we discuss our different implementation choices and we propose a full proof of masking in the Ishai Sahai and Wagner (Crypto 2003) model.

More practically, we also provide an open C-code masked implementation of the key-generation, encapsulation and decapsulation algorithms with extensive benchmarks. While the obtained performance is slower than existing masked lattice-based algorithms, we show that masking at order 1, 2, 3, 4 and 5 implies a performance penalty of x5.8, x14.2, x24.4, x38 and x55.6 compared to order 0 (unmasked and unoptimized BIKE). This scaling is encouraging and no Boolean to Arithmetic conversion has been used.

Fabio Campos, Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, Thom Wiggers
Published 2024-04-09 PDFPDF

In this work, we assess the real-world practicality of CSIDH, an isogeny-based non-interactive key exchange. We provide the first thorough assessment of the practicality of CSIDH in higher parameter sizes for conservative estimates of quantum security, and with protection against physical attacks.

This requires a three-fold analysis of CSIDH. First, we describe two approaches to efficient high-security CSIDH implementations, based on SQALE and CTIDH. Second, we optimize such high-security implementations, on a high level by improving several subroutines, and on a low level by improving the finite field arithmetic. Third, we benchmark the performance of high-security CSIDH. As a stand-alone primitive, our implementations outperform previous results by a factor up to 2.53×.

As a real-world use case considering network protocols, we use CSIDH in TLS variants that allow early authentication through a NIKE. Although our instantiations of CSIDH have smaller communication requirements than post-quantum KEM and signature schemes, even our highly-optimized implementations result in too-large handshake latency (tens of seconds), showing that CSIDH is only practical in niche cases.