Communications in Cryptology IACR CiC
Search requires all terms to appear in the result
Search results for IND-CCA
  1. Loïs Huguenin-Dumittan, Serge Vaudenay
    Published 2024-04-09 PDFPDF

    Proving whether it is possible to build IND-CCA public-key encryption (PKE) from IND-CPA PKE in a black-box manner is a major open problem in theoretical cryptography. In a significant breakthrough, Gertner, Malkin and Myers showed in 2007 that shielding black-box reductions from IND-CCA to IND-CPA do not exist in the standard model. Shielding means that the decryption algorithm of the IND-CCA scheme does not call the encryption algorithm of the underlying IND-CPA scheme. In other words, it implies that every tentative construction of IND-CCA from IND-CPA must have a re-encryption step when decrypting.

    This result was only proven with respect to classical algorithms. In this work we show that it stands in a post-quantum setting. That is, we prove that there is no post-quantum shielding black-box construction of IND-CCA PKE from IND-CPA PKE. In the type of reductions we consider, i.e. post-quantum ones, the constructions are still classical in the sense that the schemes must be computable on classical computers, but the adversaries and the reduction algorithm can be quantum. This suggests that considering quantum notions, which are stronger than their classical counterparts, and allowing for quantum reductions does not make building IND-CCA public-key encryption easier.

  2. Mustafa Khairallah
    Published 2024-04-09 PDFPDF

    The size of the authentication tag represents a significant overhead for applications that are limited by bandwidth or memory. Hence, some authenticated encryption designs have a smaller tag than the required privacy level, which was also suggested by the NIST lightweight cryptography standardization project. In the ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD schemes in this situation. These papers show that (a) online AE cannot provide IND-CCA security beyond the tag length, and (b) it is possible to have IND-CCA security beyond the tag length in a restricted Encode-then-Encipher framework. In this paper, we address some of the remaining gaps in this area. Our main result is to show that, for a fixed stretch, Pseudo-Random Injection security implies IND-CCA security as long as the minimum ciphertext size is at least as large as the required IND-CCA security level. We also show that this bound is tight and that any AEAD scheme that allows empty plaintexts with a fixed stretch cannot achieve IND-CCA security beyond the tag length. Next, we look at the weaker notion of MRAE security, and show that two-pass schemes that achieve MRAE security do not achieve IND-CCA security beyond the tag size. This includes SIV and rugged PRPs.

  3. Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin Varner, Bas Westerbaan
    Published 2024-04-09 PDFPDF

    X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is secure when used as a pseudorandom function. The first result is proved in the ROM, whereas the second one holds in the standard model. Loosely speaking, this means X-Wing is secure if either X25519 or ML-KEM-768 is secure. We stress that these security guarantees and optimizations are only possible due to the concrete choices that were made, and it may not apply in the general case.