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Abstract. Homomorphic encryption (HE) schemes have gained significant popularity
in modern privacy-preserving applications across various domains. While research on
HE constructions based on learning with errors (LWE) and ring-LWE has received
major attention from both cryptographers and software-hardware designers alike, their
module-LWE-based counterpart has remained comparatively under-explored in the
literature. A recent work provides a module-LWE-based instantiation (MLWE-HE)
of the Cheon-Kim-Kim-Song (CKKS) scheme and showcases several of its advantages
such as parameter flexibility and improved parallelism. However, a primary limitation
of this construction is the quadratic growth in the size of the relinearization keys. Our
contribution is two-pronged: first, we present a new relinearization key-generation
technique that addresses the issue of quadratic key size expansion by reducing it to
linear growth. Second, we extend the application of MLWE-HE in a multi-group
homomorphic encryption (MGHE) framework, thereby generalizing the favorable
properties of the single-keyed HE to a multi-keyed setting as well as investigating
additional flexibility attributes of the MGHE framework.
Keywords: Homomorphic encryption · module lattices · multi-party homomorphic
encryption · multi-key homomorphic encryption

1 Introduction
Homomorphic encryption (HE) offers a novel solution to the predicament of protecting
sensitive data versus processing it in untrusted environments such as a cloud server. By
allowing ‘homomorphic’ evaluation of the client’s data, HE eradicates the server’s need for
a plain view of this data, in other words, the server can operate any arbitrary function
on the encrypted data without needing to decrypt it. Fully homomorphic encryption
(FHE), first introduced by Craig Gentry [Gen09] in 2009, has since evolved with many
lattice-based schemes such as [BV11], [FV12] (BFV), [BGV11] (BGV), [CGGI20] (TFHE)
and [CKKS17, CHK+18] (CKKS), primarily based on the ring learning with errors (RLWE)
problem [LPR10]. Very recently, the authors of [MAM+24] proposed an instantiation of
the CKKS scheme based on the module learning with errors (MLWE) problem [LS15].
Their underlying idea was to be able to fix a base polynomial degree and vary only
the rank of the associated module with respect to the ciphertext modulus so as to
adapt to different parameters required by different applications while complying with the
security requirements of the scheme. The authors termed this design paradigm ‘hardware-
friendly’ as in a hardware implementation, it translates to an optimized architecture design
targeting the fixed polynomial degree and instantiating multiple of these units based on the
dimension of a matrix or a vector of such fixed-degree polynomials as per desired application
parameters. In contrast, RLWE-based hardware accelerators are typically optimized for
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a narrow range of parameters, restricting their usability to specific applications due to
limitations in handling large parameter variations. Their work highlighted several benefits
of an MLWE-based HE scheme such as more possibilities to process each component of
the module element in parallel and independent of each other until an accumulation is
required, and increased flexibility in parameter selection before and during the execution of
homomorphic operations. It also discussed module-specific additional flexibility of dynamic
ciphertext compression in the form of a partial key-switch-like subroutine which they refer
to as ‘rank-reduction’. Since the ciphertext modulus decreases with a decrease in the
multiplicative depth, rank reduction can be used to reduce the module rank proportionately
with respect to the lattice dimension required for maintaining the security at that depth.
A reduction in the module rank results in a decrease in the number of components in each
module ciphertext element which further reduces computation complexity and key sizes in
the subsequent homomorphic evaluations. Moreover, the hardness of the MLWE problem
could offer better security assurances compared to RLWE under various algebraic attacks
on structural lattices [CDW17]. Hence, MLWE-based HE provides scalable security and a
more granular functionality without the need to change the underlying algebra. However, as
noted in [MAM+24], an increased memory requirement posed a major limitation. Due to
the module structure, the number of relinearization keys increase quadratically with respect
to the rank of the module. Therefore, recognizing the potentials of an MLWE-based HE
scheme in the fast-changing security requirements and emerging technologies, in this work,
we propose a tweaked relinearization procedure that reduces the quadratic increase of the
relinearization keys to linear with respect to the module rank. Furthermore, being in its
nascent stage, application of MLWE-based HE in privacy-preserving systems, that is, at a
protocol-level, still remains completely unexplored. We take the first step in this direction
by applying the improved MLWE-based HE in privacy-preserving multi-party computations
(MPC). Hereafter, we use ‘MLWE-HE’ to refer to the construction by [MAM+24].

HE primitives have been applied for new-age privacy-preserving technologies in an
increasingly interconnected landscape, such as in health-care, financial or automotive sectors.
Recently, it has become a driving force behind advanced privacy-preserving applications,
even capable of catering to the privacy requirements of multiple stakeholders in the form
of secure multiparty computation (MPC), which have been explored in works such as
[ZPGS19, FTSH20, CLR17]. Secure MPC enables multiple participants to collaboratively
compute a function on their private inputs without disclosing these inputs to each other.
Moreover, usual MPC protocols often employ a secret-sharing scheme requiring secure
private channels to share secret input data among the parties. This in turn results in
multiple rounds of interaction between parties with communication complexities which
are directly proportional to the number of involved parties. Homomorphic encryption
helps to reduce the number of these interaction rounds among parties [FH96, CDN01] and
eliminates the need for a trusted setup that delegates the secret keys to all parties securely.
The research of HE-based MPC has developed in two directions: the threshold variants
(hereafter, we refer to such schemes as multi-party HE schemes or MPHE) and the multi-key
variants (MKHE). While MKHE schemes face increased computational complexity, they
provide flexibility in the number of parties. MPHE schemes on the other hand behave
like single-keyed HE and hence do not have additional computational complexity but the
number of participating entities is fixed at the setup phase of these schemes. The use
of HE in a multi-party and multi-key setting was investigated in a line of works such
as [AJLA+12, BS23, PLZ24, MTBH21, CDKS19, LTV12]. However, these two directions
are not mutually exclusive and a combined scheme with the functionality of both can benefit
from the best of both worlds. In the most recent work, [KLSW24], the authors explore
this direction and propose a hybrid called multi-group homomorphic encryption scheme
(MGHE) consisting of multiple groups of parties. Thus, a multi-group HE scheme enjoys
the flexibility of a multi-key encryption and the simplicity of a multi-party encryption and



Anisha Mukherjee, Sujoy Sinha Roy 3

hence is beneficial for applications that require interpolation between an MPHE and MKHE
setting. For example, consider a smartphone company that employs encrypted federated
learning to enhance voice recognition and predictive typing features by securely aggregating
encrypted model updates from users’ devices, ensuring that personal data remains private
while still improving the overall user experience. Note that in this digital age, a single
user often has several devices (smartphones, smartwatch) from the same company. In such
a scenario, each user can train the model using threshold/multi-party encryption, whereas
the prediction or aggregation of the encrypted model updates from multiple users can
take place in the server under multi-key encryption. A multi-group setting could ensure
seamless transition between the two encryption techniques. Furthermore, quite recently,
the authors of [Fer23] have showcased how MGHE schemes can be utilized to develop
verifiable multi-party schemes using a replication encoding authenticator, in which the
encryption and decryption functions are replaced by an authentication algorithm and a
verification. This way, the flexibility provided by the multi-group FHE scheme is extended
and modified into a verifiable scheme, that is, such a scheme can support multiple parties
as well as multiple groups of parties on top of safeguarding clients from malicious cloud
servers.

Motivation for designing an MLWE-based MGHE scheme: On one hand, an MLWE-based
HE scheme provides parameter-flexibility, thus allowing hardware-reusability. It also
accommodates the feature of dynamic ciphertext compression which can be considered an
additional layer of flexibility over an RLWE-based HE scheme. On the other hand, a multi-
group HE scheme combines the advantages of the multi-party and multi-key approaches.
Within a group, it employs a multi-party encryption and thus mimics a single-keyed HE
scheme whereas it allows homomorphic evaluation among ciphertexts of different groups
encrypted using their own joint public keys thereby following a multi-key approach. Thus,
in this work, we set out to explore the following possibility: can the scheme-level flexibility
of MLWE-HE (requirement-1) be combined with the protocol-level flexibility of MGHE
(requirement-2) to obtain a multi-group MLWE-based HE that exhibits the advantages of
all of the aforementioned features and incorporates multiple layers of flexibility within the
protocol? Table 1 summarizes the potential features of such a combined scheme.

1.1 Our contributions
We set out to improve and extend the single-key MLWE-HE scheme to support homomor-
phic computations of encrypted data involving multiple owners and discuss interesting
observations about requirement-1 and requirement-2 from Table 1 along the way. Our
contributions are as follows.

• Reduced number of keys for MLWE-HE: We address a major limitation of
the MLWE-based homomorphic encryption scheme proposed in [MAM+24]. In
MLWE-HE, the secret vector is a module element consisting of r polynomials in
the underlying ring, that is, s = (s0, · · · , sr−1), where r is the rank. The size of
relinearization keys grows quadratically with the rank as they are required to contain
the product of every two of the secret polynomials, that is,

∑r−1
i,j=0 si · sj . In this

work, we reduce this growth from O(r2) to O(r) by proposing a different structure
of the relinearization keys.

• MGHE based on MLWE-HE: We construct an MLWE-based multi-group HE
scheme [KLSW24]. A multi-group HE scheme involves multiple groups that come
together to perform homomorphic operations on ciphertexts. Each group internally
consists of several parties. Within each group, an MGHE scheme acts as a MPHE-
based scheme, whereas among groups, it can be seen as an MKHE-based scheme.
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We provide all homomorphic subroutines associated with the MLWE-based MGHE
scheme and also show how to keep the relinearization key sizes linear in the number
of groups instead of quadratic in a multi-group scenario.

• Additional flexibility of MLWE-MGHE: We further show that an MLWE-based
MGHE scheme enjoys additional flexibility due to the module and multi-group
structure. By taking inspiration from MLWE-HE subroutines and the method of
task delegation in a multi-group setting, we show how a multi-party computation
protocol based on MGHE-MLWE can support a dynamic access-structure among
the groups participating in the protocol.

Table 1: Comparison of features. The abbreviations MP, MK, MG and SK refer to the
terms multi-party, multi-key, multi-group and single-key; the suffixes RL or ML mean
these schemes are RLWE or MLWE-based respectively. The symbol → shows availability
of a feature at scheme or protocol levels. ∗ means feature was not explored in [KLSW24].

Scheme/Features MP-RL MK-RL MG-RL MG-ML SK-RL SK-ML

Flexibility → parties × ✓ ×∗ ✓ × ×
Flexibility → groups × × ✓ ✓ × ×

Flexibility → parameters × × × ✓ × ✓
Security assumptions RLWE RLWE RLWE MLWE RLWE MLWE

Organization: In Sec. 2, we provide background related to MLWE-HE and the different
ways HE schemes have been applied in privacy-preserving MPC protocols. Then, we
describe the improved relinearization technique in Sec. 3. Sec. 4 introduces our proposed
MLWE-based multi-group homomorphic encryption scheme, MLWE-MGHE and presents
the flexibility features in Sec. 5. In Sec. 6 we outline the design of an MPC protocol based
on our proposed MGHE scheme. We discuss some constraints related to our proposal in
Sec. 7. We conclude our work and discuss opportunities for future work in Sec. 8.

2 Background
2.1 Notation
Let N ∈ N be a power of two. For a number field K = Q[X]/(ϕ2N (X)) we denote
R = Z[X]/(ϕ2N (X)) as its ring of integers consisting of polynomials modulo the 2N -th
cyclotomic polynomial, ϕ2N (X) = XN + 1. We use r to denote the rank of the R-
module M ⊆ Kr. Also, let Rq = R/qR be the residue ring of R modulo an integer
q. An element of Rq is a polynomial of the form, a(X) =

∑N−1
i=0 aiXi with each of

its coefficients in Zq. The Euclidean norm on the coefficient vector (ai) is denoted
simply by ∥a∥ while the l∞ norm is ∥a∥∞ such that ∥a∥∞ = supi|ai|. The l∞ norm
of a polynomial a under the canonical embedding is denoted by ∥a∥can

∞ . We provide
bounds for the induced error during homomorphic operations with respect to the l∞
norm following [CKKS17, CHK+18, MAM+24]. Unless stated otherwise, we will use q
1 to denote a ciphertext modulus. Plain lowercase names denote polynomials in a ring

1Note that for the example instantiation using CKKS [CKKS17], we use q = pl · q0 to denote the
modulus at any multiplicative level 0 ≤ l ≤ L for a fixed base p, a modulus q0. [MAM+24] uses a slightly
different notation of ql to denote the ciphertext modulus at a level 0 ≤ l ≤ L. In this work, we keep
the notation simpler as we work on the scheme and protocol-level and we do not change or modify the
parameter setup phase of MLWE-HE.
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while bold lowercase names refer to module elements. A matrix is denoted by a bold
uppercase letter. We use the ‘texttt’ or its math-mode equivalent, ‘mathtt’ fonts to
formally denote keys or ciphertexts; we will use the notation of a polynomial or module
element when the context requires explicit reference to the membership information of
the key or ciphertext component. The notation ‘·’ is used as an umbrella term for the
following types of multiplications: polynomial-polynomial, matrix-vector of polynomials,
integer-polynomial or integer-integer multiplications based on the context. The notations
⟨·, ·⟩ and ⊗ are used to explicitly denote inner and tensor products between vectors.

2.2 Overview of an MLWE-based HE construction
An MLWE-based HE scheme involves homomorphic operations over a module M ⊆ Rr

q

over a polynomial ring R of degree N . Thus, the public and secret components are
elements in Rr

q consisting of vectors of polynomials in the base ring. The encryption
procedure and the homomorphic subroutines closely follow the general algorithmic flow of
RLWE-based homomorphic encryption schemes. Homomorphic operations between module
elements consist of several individual operations among polynomials in the underlying ring.
We give a general outline of the CKKS-based example instantiation of the MLWE-HE
scheme [MAM+24] in the following paragraph. Concrete subroutines can be found in the
appendix A.

Let us consider a security parameter λ that determines the choice of the ring degree N
and the module rank r required to securely support a certain size of ciphertext modulus
q. A client uses their secret key, sk = (1, s) ∈ Rr and public key, (b = −A · s + e, A) ∈
Rr

q ×Rr×r
q to encrypt a message m into a ciphertext of the form ct = (c0, c1) ∈ Rq ×Rr

q

through an RLWE-HE-like encryption procedure. The example instantiation of MLWE-HE
in [MAM+24] follows RLWE-based CKKS [CKKS17, CHK+18] and so upon decryption
using sk, the client obtains an approximation of the initial message, that is, (c0 + c1 · s)
(mod q) ≈ m. In the cloud server, ciphertexts, say ct and ct′ can be added or multiplied
based on the application’s requirements. Addition produces another ciphertext of the
same form ctadd ∈ Rq ×Rr

q, while a homomorphic ciphertext-ciphertext multiplication
results in a slightly different form of ciphertext consisting of four components of the
form ctmult = (d0, d1, d2, d3) ∈ Rq × Rr

q × Rr
q × R

r(r−1)/2
q . Such a ciphertext can be

decrypted using (1, s, s ⊗ s) such that module components d2 and d3 are decryptable
using the non-linear secret terms arising from s ⊗ s. Similar to RLWE-based HE, a
relinearization procedure is used to transform ctmult into a two-component ciphertext
ctrelin = (d′

0, d′
1) ∈ Rq ×Rr

q which has a linear decryption complexity with respect to
the secret key sk. Such a transformation requires key-switching or relinearization keys
encrypting special functions of s. The multiplication and relinearization procedure in
MLWE-HE is significantly different from its RLWE-based counterparts because of the
difference in structure of module elements compared to simple polynomials in a ring.
Hence, it is this step that introduces additional computational and memory complexities
in the scheme, which we elaborate in the next paragraph. Apart from the aforementioned
algorithms, intermediate sub-routines such as rescaling and modulus-switch are also
performed to maintain correctness of the result in the modular domain. Finally, after all
such evaluations, the server sends the resultant ciphertext to the client for decryption.
In practical HE implementations, the concept of Residue Number System (RNS) is used
to express the ciphertext modulus q as product of a fixed number of smaller co-prime
moduli qi (that is, q =

∏
i qi) such that all polynomial arithmetic can be efficiently carried

out modulo q′
is instead of a single large modulus q. We provide more details about RNS

decomposition in appendix A.
The drawback of O(r2) relinearization keys: Unlike in RLWE-based CKKS, the rank
r of the module affects the total number of keys in MLWE-HE. Depending on the module
rank r, there are O(r2) non-linear components of ring degree N to be relinearized after a
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ciphertext-ciphertext multiplication. In contrast, in the case of RLWE-HE, only one non-
linear component of polynomial degree N ·r must be relinearized. In the previous paragraph,
we discussed that in MLWE-HE the secret vector is of the form s = (s0, · · · , sr−1) and hence,
we require relinearization keys containing the product of every two of its components,
that is, si · sj , considering that the terms of the form si · sj and sj · si for a pair of
indices (i, j) are absorbed into the same relinearization key. Thus, the total number of
keys would be r·(r+1)

2 relinearization keys with respect to each distinct quadratic secret
component. The total size of relinearization keys in the RNS version of the scheme as
reported in [MAM+24] is equal to r · (r + 1)2 ·L · (L + 1) ·N · log(qi)/2 bits when compared
to 2 · L · (L + 1) ·N · r · log(qi) bits in the RLWE setting, where L denotes the number of
elements in the basis w.r.t the RNS decomposition of the ciphertext modulus q =

∏
i qi.

This results in a quadratic increase in the number of keys proportional to r and therefore
also results in an increased memory consumption compared to RLWE-HE. Note that we
consider the quadratic space complexity corresponding to the r(r + 1)/2 non-linearized
components instead of cubic-in-r (as evident from the aforementioned bit-size) because
one widely-used approach to compress public or relinearization keys is to use seeded-LWE
or its variants. This involves sending and storing a pseudo-random seed that can be
deterministically expanded to obtain the public material (matrix A in case of LWE/MLWE
and polynomial a in case of RLWE), which trivially reduces the size of the keys by a factor
of r. Recently, the authors of [TZF+24] showcased some asymptotic reduction in the size
of relinearization keys. We compare their approach to ours later in Sec. 3. In this paper,
we investigate methods to tweak the relinearization sub-routine in order to reduce the
total size of MLWE relinearization keys even further asymptotically.

2.3 Use of HE in computation protocols with multiple parties
In this section, we give a brief description of the different types of homomorphic encryption
procedures that have been adopted in MPC protocols. Specifically, we distinguish three
different (but not mutually exclusive) directions based on the scheme’s access structure
following [MTBH21]. Let us consider a set P = {P1, P2, · · · , Pk} of k parties that take
part in the protocol. The secret key sk of an HE scheme being used in the protocol will be
a function of k secret keys corresponding to k parties. Let sk = F(s1, · · · , sk) such that
the secret key si belongs to party i in the protocol and 1 ≤ i ≤ k. The access structure
of the scheme is then defined as the set P ⊂ PowerSet(P )) of all such parties that can
collectively reconstruct the secret-key. The homomorphic evaluation sub-routines are
tweaked accordingly to accommodate the access structure. We use the term multi-client
for a collective reference to all the three research directions.

Multi-party homomorphic encryption (MPHE): A threshold or multi-party refers
to a t-of-k or k-of-k access structure respectively, with t < k. In a k-of-k access structure,
all k parties contribute their individual public keys to generate a single shared or joint
public key. In a t-of-k structure however, t out of the total k parties have the ability to
reconstruct the secret key such that a ciphertext can be decrypted using only t out of
the k secret key shares. A multi-party access structure needs to be fixed in the setup
phase of the protocol and requires all parties in P during the decryption phase. Moreover,
the homomorphic evaluation algorithms remain unchanged as they operate on cipher-
texts encrypted with the single joint public key. Such a protocol is described in [MTBH21].

Multi-key homomorphic encryption (MKHE): A multi-key homomorphic encryption
scheme does not need a fixed access structure that is defined at the setup phase. Each
party encrypts their message using their own public keys and the homomorphic evaluations
on the server are adapted to perform operations between ciphertexts encrypted under
different keys. The resultant of such evaluations can be considered to be a ciphertext
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that is encrypted with an on-the-fly secret key with respect to any number of parties that
are actively involved in the computations. Since homomorphic evaluations are performed
among ciphertexts encrypted under different keys, the relinearization or key-switching
algorithm in the multi-key setting has increased space and computational complexities
compared to MPHE. In the following part, we provide some details about the multi-key
multiplication/relinearization algorithms and the improvements proposed by [CDKS19].
Taking inspiration from the multi-key version of TFHE proposed in [CCS19], the authors
of [CDKS19] construct a multi-key versions of CKKS [CKKS17, CHK+18] and BFV
[FV12] with packed ciphertexts. Each party i generates a secret key si and a public key
bi = (−a · si + ei) ∈ Rq using a common public polynomial a. A ciphertext related to k
different parties ct = (c0, · · · , ck) ∈ Rk+1

q is then decrypted under the concatenated secret
(1, s1, · · · , sk) such that m ≈ c0 +

∑k
i=1 ci · si. Thus, the multiplication of two ciphertexts

ct1 and ct2 result in an extended non-linear ciphertext containing encryptions si ·sj , similar
to the MLWE setting. One way proposed by [CDKS19] to generate the relinearization
key with respect to such ciphertexts encrypting si · sj is by multiplying the j-th public
key bj by the i-th evaluation key evki. More specifically, evki is given by the triplet,
evki = (evki0, evki1, evki2) ∈ R3

q such that evki1 is a uniformly randomly polynomial in
Rq, evki0 = −evki1 · si + ei1 + vi · g (where vi is randomly sampled from some suitable
distribution governed by the scheme’s security requirements) and evki2 = vi ·a+ei2 +si ·g,
where g is a gadget vector based on a chosen gadget decomposition as in [CDKS19]. Let
c′

ij refer to the component of the multiplied ciphertext ct′ consisting of the encryption
of the product of secret components si · sj . Now let us consider the multiplication of
suitable bj with c′

ij such that c′′
ij = ⟨g−1(c′

ij), bj⟩. Then the multiplication modulo q of the
components of evki to c′′

ij can be written as follows,

c′′
ij · (evki0, evki1) · (1, si) ≈ vi · c′′

ij , and,

⟨g−1(c′
ij), evki2⟩ · sj ≈ ⟨g−1(c′

ij),−vi · bj + si · sj · g⟩
= −vi · c′′

ij + c′
ij · si · sj .

Observe that adding the two equations together cancels out vi ·c′′
ij giving the required term,

c′
ij · si · sj . It is intuitive to see that a similar scenario during relinearization also arises in

MLWE-HE because of the existence of r polynomials in the secret key. Thus, it is a natural
curiosity to apply the aforementioned improvement technique to MLWE-HE. However,
this solution is not directly applicable in this case because of the different structures of
the public keys in the RLWE-based multi-key setting and MLWE-HE and hence we have
to deviate substantially from the relinearization key structure of [CDKS19]. We discuss
our proposed improvement in Sec. 3.

Multi-group homomorphic encryption (MGHE): In [KLSW24], the authors define
the concept of a multi-group homomorphic encryption (MGHE) setting which essentially
interpolates between MPHE and MKHE. Fig. 1 gives a visual description of MGHE: it
consists of multiple “groups” of parties wherein each group has joint (shared) public and
evaluation keys. In the multi-group setting, we will use lowercase letters in subscript to
indicate scheme components belonging to individual parties and lowercase superscript for
ownership of scheme components in a group. For example, let {I1, I2, · · · , Ik} be the groups
of parties such that I =

⋃
1≤j≤k

Ij . Thus within a group Ij , parties, say P j
i ∈ Ij generate

individual public keys pki which is accumulated to form the joint public key pkj of the
group which is then used to encrypt messages, thereby acting as a multi-party setting. Note
that the public/evaluation keys are shared within the group, but are different across groups.
Thus, there is a multi-key setting among groups wherein ciphertexts encrypted under
different keys can be operated upon using multi-key homomorphic evaluation algorithms.
We elaborate upon the security and correctness notions of the MGHE scheme defined
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in [KLSW24] as we base proofs of security and correctness of our MLWE-based MGHE
scheme on these definitions.

……
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1 , P1
2 , ⋯, P1

i

 𝚙𝚔1
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 𝚙𝚔1
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Figure 1: MGHE emulates MPHE within groups and MKHE among groups

Definition of security of MGHE: Let {I1, I2, · · · , Ik} be sets (groups) of parties such
that I =

⋃
1≤j≤k

Ij . Let A ⊆ I denote the set of adversarial parties and H = I\A. An

MGHE scheme is said to be secure if the advantage of any PPT adversary A in the
following game is negligible:

• The challenger generates a public parameter set pp← Setup(1λ, 1L) with λ being
the security parameter and L being the maximum circuit evaluation level.

• The challenger executes the key generation protocol KeyGen(pp, Ij) for all 1 ≤
j ≤ k. The challenger sends the groups’ public keys pk1, · · · , pkk (and similarly,
relinearization/key-switching keys) and secret key shares of parties in A that is,
{[ski]j : Ai ∈ A, 1 ≤ j ≤ k} to the adversary.

• The adversary chooses messages m0, m1 in the message space M and picks an index
j such that Ij ̸⊆ A, and sends them to the challenger. The challenger samples a
random bit b ∈ {0, 1} and using the public key pkj of Ij , sends Enc(pkj ; mb) back to
the adversary.

• The adversary A then outputs a bit b′. The advantage is defined as |Pr[b = b′]−1/2|.

Thus, the advantage of the adversary A in the above game is negligible when A is unable
to distinguish between the distribution of the encryption of m0 from that of m1.
Definition of correctness of MGHE: Let pp← Setup(1λ, 1L) be the public parameter
set generated as in the security definition before. For 1 ≤ j ≤ k, let pkj ← KeyGen(Ij)
be a public key generated by a set of parties {Pi : Pi ∈ Ij} and ctj ← Enc(pkj ; mj)
be an encryption of a message mj . An MGHE scheme is said to be correct if for any
circuit C : Mk → M with maximum evaluative level is L, the following holds with an
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overwhelming probability in λ:

DistDec
(
{P j

i : Ij ∈ I}; Eval(pk1, · · · , pkk; C, ct1, · · · , ctk)
)

= C(m1, · · · , mk).

where DistDec refers to the ‘distributed decryption’ subroutine. Thus, the correctness of
the MGHE scheme ensures that evaluation, ‘Eval’ of the encrypted data yields the same
result after decryption as that of the evaluation of the circuit on plaintext m1, · · · , mk.

General MPC protocols from M(P/K/G)HE: Using the security and correctness
guarantees of the underlying HE scheme, general MPC protocol constructions can perform
computations in the homomorphic domain. Such a protocol can be endowed with the
desired functionality by specifying the access structure of the HE scheme.

3 Overcoming the drawback: O(r) relinearization keys
As we note from the homomorphic multiplication subroutine provided in Sec. 2.2, ciphertext-
ciphertext multiplication of the form ct · ct′ also results in the intrinsic squaring of the
secret s⊗ s. In [MAM+24], the relinearization operation required distinct relinearization
keys corresponding to each multiplied secret component of the form si · sj , without
considering duplicated entries of (i, j) versus (j, i). We observe that it is not necessary to
generate distinct keys for all such terms. We first explain why the method discussed in
Sec. 2.3 cannot be applied to MLWE-HE and then move on to explain our approach of key
generation and the consequent changes in the relinearization algorithm.

The RLWE-MKHE relinearization technique from Sec. 2.3 cannot be applied to MLWE-
HE because of the difference in the structures of the public keys in RLWE-MKHE and
MLWE-HE. While the public key of each party bi in RLWE-MKHE is an RLWE pair
consisting of the secret key si of parties Pi, in MLWE-HE, the public key b is an MLWE
pair A consisting of the entire secret s = (s0, · · · , sr−1). Thus, b cannot be used as easily
as each bi is utilized for relinearization in an RLWE-MKHE setting.

First attempt: Instead of directly adopting the method from [CDKS19], suppose we
generate two different forms of relinearization keys with a function, f : Rr → Rr

P q of
the secret vector s such that the pair, (b1, b2) consist of r elements in the ring each.
First, we provide a motivation for the structure of (b1, b2) and then we show the need
for certain tweaks to finally obtain a relinearization key consisting of three components
evk = (evk1, evk2, evk3).

Consider the pair, (b1, b2) = (f(s) ⊡ s + e1,−f(s) + e2 + P · s), with the operator
⊡ defined such that each ring component of the module element bi, i ∈ {1, 2} has
the form, (b1i = f(s) · si + e1i, b2i = −f(s) + e2i + P · si)0≤i<r modulo P · q, where
P (λ, q) > 0 is an auxiliary integer chosen as per specifications in [CKKS17, MAM+24].
Then, ⟨(b1j , b2i), (1, sj)⟩ = (f(s) · sj + e1j) + (−f(s) · sj + e2i + P · si · sj) ≈ P · si · sj ,
provides a valid encryption of si · sj for relinearization for 0 ≤ i, j < r.

Concerns with correctness and security: We make two observations about the
structure of the keys: first, to ensure correct decryption after relinearization, the function
f must satisfy associativity such that, dm · (f(s) ⊡ s) = (dm · f(s)) ⊡ s for m ∈ {2, 3}
and we can choose f(s) to be Aevk · s, where Aevk ∈ Rr×r

P q (while taking into account
the correct dimensions of the vector d2 and d3) is the randomly generated public matrix
used in relinearization for associativity to hold. Second, although such a relinearization
key structure solves the problem of quadratic key growth proportional to the rank of the
module, the pair (b1, b2) deviates from a traditional MLWE pair. Specifically, each row of
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the key b1, that is, each b1i can be seen as an RLWE encryption under the ‘smaller’ secret
polynomial si ∈ R instead of an MLWE encryption under the full secret s ∈ Rr and hence
may suffer loss of security and be vulnerable against key recovery attacks by solving the
RLWE problem for each of the smaller degree polynomials si.

Table 2: Sizes (in bits) of relinearization keys for RNS variants of CKKS, [MAM+24] and
this work. Recall that if a single polynomial in MLWE-HE has degree N then its RLWE
equivalent (of comparable security) has degree N · r. For the seeded approach, we exclude
the size of the public seed (polynomial a or matrix A).

LWE variant/approach Unseeded Seeded

RLWE [CHK+18] 2NrL(L + 1) log(qi)/2 NrL(L + 1) log(qi)/2
MLWE [MAM+24] Nr(r + 1)2L(L + 1) log(qi)/2 Nr(r + 1)L(L + 1) log(qi)/2
MLWE [This work] 2Nr2L(L + 1) log(qi)/2 2NrL(L + 1) log(qi)/2

Final modifications: We introduce an additional matrix A′
evk ∈ Rr×r

P q which has been
randomly sampled from a uniform distribution over Rr×r

P q and write the relinearization key
triple modulo P · q as, (evk1, evk2, evk3) = (−A′

evk · s + (Aevk · s) ⊡ s + e1,−Aevk · s +
e2 + P · s, A′

evk). Let us consider the case of r = 2 such that the (non-RNS) relinearized
ciphertext is given by ctrelin = (d′

0, d′
1), corresponding to the non-relinearized ciphertext

ctmult = (d0, d1, d2, d3) ∈ Rq ×R2
q ×R2

q ×Rq with d2 and d3 being the non-linear (in s)
components, as described in Sec. 2.2 with a detailed structure description in Sec. A. Let,
(d′′

0 , d′′
1) denote the relinearized components such that, d′′

0 = d20·evk10+d21·evk11+d3·evk10,
d′′

10 = d20 · (evk20 + evk3[0][0]) + d3 · (evk21 + evk3[0][0]) + d21 · evk3[1][0], and, d′′
11 =

d20 · evk3[0][1] + d21 · (evk21 + evk3[1][1]) + d3 · evk3[0][1], where evk3[i][j] refers to the
i-th entry of the j-th column in the matrix A′

evk. The decryption equation of ctrelin with
respect to (1, s) modulo q can then be written as follows:

d′
0 · 1 + d′

1 · s = (d0 + P −1 · d′′
0) + (d1 + P −1 · d′′

1) · s
≈ d0 + P −1 ·

(
d20 · ((−A′

evk · s)0 + (Aevk · s)0 · s0)
+ d21 · ((−A′

evk · s)1 + (Aevk · s)1 · s1) + d3 · ((−A′
evk · s)0 + (Aevk · s)0 · s0)

)
+ P −1 ·

(
d10 + d20 · ((−Aevk · s)0 + A′

evk[0][0] + P · s0) + d21 ·A′
evk[1][0]

+ d3 · ((−Aevk · s)0 + A′
evk[0][0] + P · s1)

)
· s0

+ P −1 ·
(
d11 + d20 ·A′

evk[0][1] + d21 · ((−Aevk · s)1 + A′
evk[1][1] + P · s1)

+ d3 ·A′
evk[0][1]

)
· s1

≈ d0 + d10 · s0 + d11 · s1 + d20 · s2
0 + d21 · s2

1 + d3 · s0 · s1

These relinearization keys can be generated using alg. 1. The relinearized components
(d′′

0 , d′′
1) take a slightly different form compared to [MAM+24], as shown below:

(d′′
0) =

(
d2 · evk1 +

r−1∑
t=0

d3tt′ · evk1t

)
, t′ > t

(d′′
1t′) =


(

d2t′(evk2t′ + evk3[t′][t′]) +
r−1∑
t=0

d3tt′ (evk3[t][t′]) + d2t(evk3[t][t′])
)

, if t′ > t(
d2t′(evk2t′ + evk3[t′][t′]) +

r−1∑
t=0

d3tt′ (evk2t + evk3[t′][t′]) + d2t(evk3[t][t′])
)

, else
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where t′ < r and d2 and d3 are assumed to have been lifted from q to P · q using the
modulus switching technique [CKKS17, MAM+24]. For better readability, we refrain
from using ‘·’ explicitly to denote the multiplication of d2t′ and d3tt′ with the respective
relinearization keys in the above equation. The relinearization algorithm using the above
equations is given in alg. 2 and the corresponding noise analysis is given in appendix C.
We observe that both evk1 and evk2 consists of r ring polynomials each and thus the
proposed technique reduces the number of relinearization keys from r·(r+1)

2 to, r + r = 2r.
We provide the concrete sizes in Table 2.
Addressing security: We note that the relinearization key triple deviates from traditional
relinearization key structure constructed in [CKKS17] or in [MAM+24]. Therefore, we
provide a security argument by considering MLWE circular security for the relinearization
key, evk = (evk1, evk2, evk3) in the following way: evk3 is just the public matrix A′

evk ∈
Rr×r

P q . Next, each row of the second component evk2 along with the relinearization
matrix Aevk ∈ Rr×r

P q is an MLWE instance under s ∈ Rr that encrypts individual secret
polynomials si for 0 ≤ i < r. Again, each row of evk1 can be considered as an MLWE
instance under s ∈ Rr and the public matrix A′

evk ∈ Rr×r
P q encrypting each row (Aevk·s)i·si

of the term (Aevk · s) ⊡ s for 0 ≤ i < r. We recall that this particular term led to security
loss in the construction described in first attempt as it lacked the additional ‘mask’ A′

evk ·s
required for evk1 to be contained in the module Rr

P q.
In [TZF+24], the authors propose using a partial RNS decomposition (with the number

of RNS moduli being µ < L) and a temporary rank-up during relinearization wherein
the relinearization key is encrypted under a ‘larger’ secret key s||s′ in a module of rank
(r + r′) with a temporary bigger modulus P ′ · q > P · q. Their key structure is of the form
(−Aevk · (s||s′) + e1 + P ′ · s⊗ s, Aevk) ∈ R(1+r′)r(r+1)/2

P ′q . This key structure still consists
of the terms si · sj and hence increases quadratically in r. A direct comparison of the
bit-sizes is not straightforward due to the partial RNS decomposition step, however, using
our technique could also make their sizes grow linearly in r.

In: Secret key, sk = (s0, · · · , sr−1) ∈ Rr, error vectors eevk1 and eevk2 .
In: Public matrices, Aevk, A′

evk ∈ Rr×r
P q

Out: evk = (evk1, evk2, evk3 = A′
evk) ∈ Rr

P q ×Rr
P q ×R

r×r
P q

1: temp1 ← −A′
evk · s

2: temp2 ← Aevk · s
3: for k = 0 to r − 1 do
4: evk1k ← temp1k + temp2k · sk + eevk1k

(mod Pq)
5: evk2k ← −temp2k + eevk2k

+ P · sk (mod Pq)
6: end for

Algorithm 1: EvkGen Algorithm

In: Non-relinearized ciphertext, ctmult = (d0, d1, d2, d3) ∈ Rq ×Rr
q ×Rr

q ×R
r(r−1)/2
q

In: (d′′
0 , d′′

1) ∈ Rq ×Rr
q derived from equations aforementioned in the text.

Out: ctrelin = (c′
0, c′′

1) ∈ Rq ×Rr
q

1: c′
0 ← (d0 + P −1 · d′′

0) (mod q)
2: for k = 0 to r − 1 do
3: c′

1k ← (d1k + P −1 · d′′
1k) (mod q)

4: end for
Algorithm 2: Relinearization Algorithm
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4 Multi-group homomorphic encryption from module
lattices: MLWE-MGHE

In this section, we take a step forward and explore an MLWE-based MGHE scheme. Before
going onto the mathematical nuances of the scheme, we list the main features of such an
approach as a result of applying homomorphic encryption techniques and the underlying
MLWE problem:

• Non-interactive key generation: By virtue of the underlying homomorphic encryption
scheme, joint public keys for groups can be obtained without requiring individual
parties to interact among each other. Moreover, apart from requiring the joint public
key of the group, as explored by works such as [CDKS19, KLSW24], no interaction is
required corresponding to the relinearization keys for the multi-key scheme working
among groups.

• Flexibility in the choice of parameters: As explained in Sec. 1, an MLWE-based HE
scheme allows for a flexible choice of the module rank by fixing a base ring degree.
Moreover, it also allows dynamic parameter management during homomorphic
evaluations through rank reduction which is also inherited in MLWE-MGHE.

• Flexibility in the number of participating entities: In the subsequent part, we also show
how to extend the functionality of rank reduction to offer a dynamic access structure
within groups using a sub-routine similar to rank reduction, thereby proposing a
fulfillment of requirement-2 (Sec. 1).

• Security assurances: As mentioned in works proposing MLWE-based cryptographic
constructions such as [MAM+24, SAB+21, BDK+21], our multi-group homomorphic
encryption scheme also inherits better security reliability compared to its RLWE-
based counterparts.

4.1 A concrete instantiation
Now, we provide details of the MLWE-based MGHE construction. Let us first consider
a groups of parties

⋃
1≤j≤k

Ij such that party P j
i ∈ Ij . MGHE simulates an MPHE-like

environment within each Ij and an MKHE-like environment among the different groups of
parties, Ij . For the sake of brevity of notations, we will denote the public matrices used by
all parties for generating either the public keys or the relinearization/key-switching keys as
A and the error terms mostly with ei (in practice, errors are freshly generated for each key
generation). Discussions on correctness of important subroutines are given in appendix B.

• Setup(1λ, 1L): Given the security parameter λ, generate the public parameter set
pp. The set pp consists of the fixed ring degree N , the rank of the module r, the
maximum multiplicative level L, the ciphertext modulus q, the auxiliary integer P
and the various parameters for secret and error distributions that include certain
fixed hamming weight h, variance σ2 and probability parameter ρ.

• Key generation: Public key generation requires common public matrix A ∈
Rr×r

q that is used by all parties, as per the CRS (common random string) model.
Individual parties P j

i belonging to group index j generate their share of secret
key [si]j via KeyGen.sk() and use it to also generate respective public keys [pki]j
according to the KeyGen.pk() algorithm. Each party generates its relinearization key
triple [(evki1, evki2, evki3)]j and key-switching key tuple [(kski1, kski2)]j following
KeyGen.evk() and KeyGen.ksk() respectively. The key-switching key generation
algorithm is used to facilitate additional operations such as rotation and conjugation.
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Joint keys of a group are generated in KeyGen.jk() by summing up individual public
keys of all the participating parties in the group. All the key generation sub-routines
are provided in Fig. 2.

• Encryption: In a group, a message m is encrypted using the joint public key given
by KeyGen.jk() following the MLWE-based encryption algorithm MLWE.Encpk().
A multi-group ciphertext encrypting messages of multiple groups belonging to the
union

⋃
j Ij of ordered sets {I1, · · · , Ij}1≤j≤k would contain information about the

joint public keys of the ‘multi-group’ set and would accordingly be decrypted by
the joint secret key of the set. The encryption algorithm is given in MGHE.Enc() in
Fig. 3. We use the notation

⋃
j in the superscript to specifically denote that the

number of groups in the union is strictly greater than one. We demonstrate this
further in Section B.

• Ideal decryption and distributed decryption: An ideal decryption algorithm
assumes a global joint secret key for

⋃
j Ij and follows the MLWE.Dec() procedure A.

Distributed decryption is a more feasible real-world scenario where it is assumed that
parties do not communicate to obtain the joint secret key. Each party P j

i ∈ Ij carries
out a partial decryption and sends it to the next before adding a fresh noise with
certain bounds on the variance σ′2 of the noise distribution. This technique known
as smudging has been discussed in [AJLA+12, MTBH21]. The final decrypted result
is an accumulation of the partial decryptions. This method is given in MGHE.Dec()
in Fig. 3.

Multi-group ciphertexts in homomorphic operations: Before formulating the algo-
rithms for homomorphic addition and multiplication operations between multi-group
ciphertexts, we align them according to the strategy followed by [KLSW24]. Consider
homomorphic operations between a multi-group ciphertext ct encrypting the group
secret keys {s1, · · · , sj′} corresponding to the ordered sets {I1, · · · , Ij′} and another
ciphertext ct′ encrypting the group secret keys {s1, · · · , sj′′} corresponding to the
ordered sets {I1, · · · , Ij′′}. Then, we extend both ciphertexts by padding zeroes and
rearranging the position of their components if required, so that both these ciphertexts
are decryptable under the group secret keys {s1, · · · , sj′

, · · · , sj′′} corresponding to
the union of the the two previous ordered sets, that is, {I1, · · · , Ij′}

⋃
{I1, · · · , Ij′′}

with 1 ≤ j′, j′′ ≤ k. In the following algorithms for homomorphic addition and
multiplication, we assume that the ciphertexts have undergone this step already.

• Homomorphic addition: Since addition is a linear operation, it easily extends to
the MGHE setting such that addition of two ciphertexts ct and ct′ results in the
ciphertext ctadd = ct + ct′, as shown in MGHE.Add(), Fig. 4.

• Homomorphic multiplication/evaluation: The underlying algorithmic flow of
homomorphic multiplication in an MGHE setting is similar to that of MLWE.Mult().
The differences arise in the complexity of the actual individual component-level
computations based on the number of participating groups. We discuss this sub-
routine in MGHE.Mult(), Fig. 4.

• Key-switching and relinearization procedures: As explained in the key-
switching and relinearization key generation procedures, in the MGHE setting,
different parties generate their individual key-switching and relinearization keys, and
the linear sum of these individual keys result in joint keys. Since the key-switching
algorithm in MGHE follows MLWE.swk() given in appendix A, we do not reiterate
it again in this section. Instead, we describe the changes to the relinearization
algorithm.
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Key generation for MLWE-based MGHE

KeyGen: Each party P j
i ∈ Ij generates (si, pki, evki, kski) using the following

algorithms with arithmetic done modulo q, the key-switching key and relinearization
key generation done modulo P · q.

– KeyGen.sk():

1. Sample a secret key share si ∈ Rr from a secret distribution similar
to MLWE.KeyGen.sk().

– KeyGen.pk():

1. In: Error vector ei with each error polynomial ei ← DG(σ2), own
secret key si and a common public matrix A shared between all
groups.

2. Out: Individual public keys, pki ← MLWE.KeyGen.pk(A, si) ∈ Rr
q ×

Rr×r
q . Joint public key of the form pkj is a simple sum of the

individual keys. We define this sum formally in KeyGen.jk().
– KeyGen.evk():

1. In: Error vector ei with each error polynomial ei ← DG(σ2), own
secret key si and ui ∈ HWT (h) and common public matrices A,
A′ ∈ Rr×r

P q .
2. Out: Individual relinearization key evki which is a triplet of the

form, (evki1, evki2, evki3) =
(
(−A · si) + ei1,−A · ui + ei2 + P ·

si,−A′ · si + ei3 − P · ui

)
∈ Rr

P q ×Rr
P q ×Rr

P q.
– KeyGen.ksk():

1. In: Error vector ei with each error polynomial ei ← DG(σ2), own
secret key si and a common public matrix A.

2. Out: Individual key-switching key kski which is a pair of the form,
(kski1, kski2) =

(
−A · si + e1i + P · ϕ(si), A

)
∈ Rr

P q ×R
r×r
P q .

– KeyGen.jk():

1. In: Individual public keys, relinearization keys and key-switching
keys of parties,
(pki, (evki1, evki2, evki3), (kski1, kski2)).

2. Out: Joint public and key-switching keys of groups with the form,
(pkj , (evk1, evk2, evk3)j , (ksk1, ksk2)j)
= (

∑
i pki, (

∑
i evki1,

∑
i evki2,

∑
i evki3), (

∑
i kski1,

∑
i kski2)).

Figure 2: Key generation algorithms for MLWE-MGHE.
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Encryption and decryption for MLWE-based MGHE

Enc-Dec: Using joint keys generated from the above-mentioned algorithms, one or
more groups can encrypt message m into a ciphertext (and recover m later) following
the en(de)cryption algorithms given below:

– MGHE.Enc():
if

⋃
j Ij = Ij for some j:

1. In: Joint public key of a group pkj , a message m and error vector e
with each error polynomial ei ← DG(σ2).

2. Out: A ciphertext of the group encrypting message m given by,
ct = (c0, c1)j ∈ Rq ×Rr

q using MLWE.Encpkj ()

else:
1. In: Joint public key pkj of each group in a ‘multi-group’ ordered set
{I1, · · · Ij}, 1 < j ≤ k, a message m and error vector e with each error
polynomial ei ← DG(σ2).

2. Out: A ciphertext of the group encrypting message m given by,
ct = (c0, c1)∪j ∈ Rq ×Rr×j

q using MLWE.Encpkj ().
– MGHE.Dec():

1. In: A general ciphertext, ct = (c0, c1)∪j ∈ Rq × Rr
q, secret key si

of each party Pi ∈ I =
⋃

j Ij , smudging error e′
i sampled from a

distribution DG(σ′2).
2. Intermediate Out: Partial decryptions, µi = (

∑
1≤j≤k

c1
∪j) · si + e′

i.

3. Out: Merged final decryption, m ≈ c0 +
∑
i∈I

µi.

Figure 3: En(de)cryption algorithms for MLWE-MGHE

Synergies and differences with the relinearization key structure in Sec. 3: Using
concepts from relinearization key generation techniques discussed in Sec. 3, we re-
formulate a relinearization procedure for a multi-group setting. However, we list
some distinct challenges that we encounter within the MLWE-MGHE framework
and discuss their work-arounds.
The first observation is that, unlike in the case of single-party (single-key) MLWE-
HE where b1i in our first attempt was encrypted only under the partial secret
polynomial si ∈ R, since each party P j

i in the multi-group case holds a complete
secret key si ∈ Rr, hence we can use the idea from our first attempt pair in
Sec. 3 to generate a relinearization key in the multi-group setting. However, in our
proposed relinearization technique (both first and final) for single-keyed MLWE-
HE, the operation f(s) ⊡ s is not additively homomorphic over all parties, that is,
f(si) ⊡ si + f(si′) ⊡ si′ ̸= f(si + si′) ⊡ (si + si′). To allow additive aggregation,
we change the structure of the keys in the multi-group scenario. Along with si we
generate evki using another vector ui ∈ Rr sampled from the secret distribution
by following [KLSW24] in order to introduce additional randomness and prevent
key-recovery attacks from a linear combination of the relinearization key components.
Second, we note that a homomorphic ciphertext multiplication involves intrinsic
multiplications between public keys with different secret components with respect to
the parties and the groups involved. For instance, in a setting with two groups of
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two parties each, pk1 · pk2 will involve the product of the secret keys of group 1 with
those of group 2. More specifically, using the pre-processing strategy, the common
secret key will contain the union of the secret keys of group 1 and group 2, that is,
sk = (1, (s0 + s1), (s′

0 + s′
1)) = (1, s1, s2) and so homomorphic multiplication results

in products of the form (s0 + s1) · (s′
0 + s′

1). Thus, there must be relinearization
keys that are capable of relinearizing components of the multiplication, si · s′

i′ . At
first glance, this gives the impression that the size of the relinearization keys is
proportional to O(k2Nr), where k denotes the total number of groups. However,
since this problem again boils down to handling terms of the product sk⊗ sk, thus
it can be circumvented by using the proposed relinearization key structure in Fig. 2.
Notice that the joint relinearization keys (evk1, evk2, evk3)1 and (evk1, evk2, evk3)2

of group 1 and group 2 will contain encryptions of (s0 +s1) and (s′
0 +s′

1) respectively
such that relinearization of ctmult can be carried out using (evk1, evk2, evk3)1 and
(evk1, evk2, evk3)2 with sizes proportional to O(kNr). Security of the keys are
discussed in Lemma 1. The number of multiplications, however, remain proportional
to O(k2). We consider the following relinearization components for MGHE.Relin().

d′′
0 =

∑
1≤t≤k

(
d2t · evk1

t · evk3
t
)

+
k−1∑
t=1

d3tt′ · evk1
t′
· evk3

t, t′ > t

d′′
1t′ =


(

d2t′ · (evk1
t′ ·A′ + evk2

t′) +
k−1∑
t=1

d3tt′ · (evk1
t′ ·A′ + evk2

t)
)

, t′ > t(
d2t′ · (evk1

t′ ·A′ + evk2
t′)

)
, otherwise

where 1 ≤ t, t′ < k, with k being the total number of participating groups and d2, d3
are assumed to have been lifted from q to P · q using modulus switching technique.
Note here that the variables t and t′ denote the participating groups. Algorithms
for multi-group addition, multiplication and relinearization are given in Fig. 4. A
demonstration of correctness for the case when k = 2 is given in Sec. B.

4.2 Key homomorphic property of joint keys
A multi-client setting using an HE scheme benefits from the additively homomorphic
property of public and evaluation keys. This is because the individual public keys correctly
add up to the group’s joint key only if they are additively homomorphic. We demonstrate
this property with respect to the structure of MLWE keys used in our proposed MGHE
construction for a group Ij consisting of two parties, which can be trivially extended to
any number of parties.

Theorem 1. Let s1, s2 be two secret keys, A be the common public matrix and e1, e2
two noise values. Also, let pk1 = (A, b1) = KeyGen.pk(A, s1; e1) and pk2 = (A, b2) =
KeyGen.pk(A, s2; e2). Then, KeyGen.jk(A, b1 + b2) = KeyGen.pk(A, s1 + s2; e1 + e2).

Proof. We derive the following equalities to prove our claim:

KeyGen.jk(A, b1 + b2) =
(
A, KeyGen.pk(A, s1; e1) + KeyGen.pk(A, s2; e2)

)
=

(
A, (−A · s1 + e1) + (−A · s2 + e2)

)
=

(
A,−A · (s1 + s2) + (e1 + e2)

)
= KeyGen.pk(A, s1 + s2; e1 + e2)
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Homomorphic subroutines for MLWE-based MGHE
The computationally powerful entity (server) can perform the following homomorphic
operations, MGHE.Eval() on the groups’ encrypted data. All arithmetic is done
modulo q.

• MGHE.Add():

1. In: Ciphertexts ct and ct′.
2. Out: Added ciphertext, ctadd = ct + ct′ = (c0 + c′

0, c1 + c′
1)∪j

following MLWE.Add().

• MGHE.Mult():

1. In: Ciphertexts ct and ct′.
2. Out: Multiplied ciphertext, ctmult = (d0, d1, d2, d3)∪j following

MLWE.Mult().

• MGHE.Relin():

1. In: Multiplied ciphertext ctmult = (d0, d1, d2, d3)∪j , joint relineariza-
tion key (evk1, evk2, evk3)∪j ← Keygen.jk() such that for each party
Pi, (evki1, evki2, evki3)← KeyGen.evk().

2. Out: Relinearized ciphertext, ctrelin = (d′
0, d′

1)∪j such that (d′
0 =

d0 + P −1 · d′′
0 , d′

1
∪j = d1 + P −1 · d′′

1t′) with (d′′
0 , d′′

1t′) as given in the
equations for d′′

0 and d′′
1t′ aforementioned in the text.

Figure 4: Homomorphic operations for MLWE-MGHE

Theorem 2. Let s1, s2 be two secret keys, A, A′ be the common public matrices, and
e1, e2, e3 be the noise values. Also, let (evk11, evk12, evk13) = KeyGen.evk(u1, s1; (e11, e12,
e13)) and (evk21, evk22, evk23) = KeyGen.evk(u2, s2; (e21, e22, e23)). Then, KeyGen.jk((evk11,
evk12, evk13) + (evk21, evk22, evk23)) = KeyGen.evk(u1 + u2, s1 + s2; (e1, e2, e3)).

Proof. Let the parties belong to the group Ij . Then, we can derive the following equalities
to prove our claim:

KeyGen.jk((evk11, evk12, evk13) + (evk21, evk22, evk23)) =
(
KeyGen.evk(u1, s1; (e11, e12, e13))

+ KeyGen.evk(u2, s2; (e21, e22, e23))
)

=
(
(−A · s1) + e11 + ((−A · s2) + e21),

(−A · u1 + e12 + P · s1) + (−A · u2 + e22 + P · s2)
)

(−A′ · s1 + e13 − P · u1) + (−A′ · s2 + e23 − P · u2)
)

=
(
((−A · (s1 + s2) + e11 + e12)),

(−A · (u1 + u2) + (e21 + e22) + P · (s1 + s2))
)
,

(−A′ · (s1 + s2) + (e31 + e32)− P · (u1 + u2))
)

= KeyGen.evk(u1 + u2, s1 + s2; (e1, e2, e3))
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4.3 Security of the proposed MLWE-MGHE scheme

Let, Ij be sets (‘groups’ in MGHE) such that I =
⋃

1≤j≤k

Ij and H = I\A for any set A ⊂ I.

To prove the security of the proposed MGHE scheme based on the definition given in
Sec. 2.3, we consider the following three hybrid games as given in [KLSW24].

• Game 0: This is a real world execution of the security game defined in Sec. 2.3.

• Game 1: It is similar to Game 0, but the challenger samples public keys pki

uniformly at random from Rr
q × Rr×r

q , the evaluation keys (evki1, evki2, evki3)
uniformly at random from Rr

P q×Rr
P q×Rr

P q and the key-switching keys (kski1, kski2)
uniformly at random from Rr

P q ×R
r×r
P q for Pi ∈ H.

• Game 2: It is similar to Game 1, but the challenger encrypts 0 instead of a message
mb.

Lemma 1. With respect to the three games described above, the proposed MGHE-MLWE
scheme is semantically secure under the MLWE security assumption with suitable pa-
rameters (N, r, q, χ), where χ refers to error and secret distributions considered in the
scheme.

Proof. Sketch: Let pki and (evki1, evki2, evki3) be the public and relinearization keys of
party Pi ∈ H. Since pki and evki1 follow the MLWE distribution, so by the definition
of MLWE security, these keys are indistinguishable from a uniform distribution over
Rr

q ×Rr×r
q and Rr

P q ×R
r×r
P q . For the structures of evki2 and evki3, note that they can be

considered as MLWE encryptions of one secret key si under another secret ui and vice versa,
hence we rely on the circular security assumption [ACPS09, BGK11, BHHI10, MTY11],
which is a commonly used notion to assess the security of RLWE or MLWE-based HE
schemes. Similarly, the key-switching keys kski1 is an MLWE encryption of ϕ(si) under the
secret key si with the random matrix kski2. Thus under the above-mentioned assumptions,
Game 0 and Game 1 are computationally indistinguishable.

For the case of Game 1 and Game 2, the adversary sends an index j corresponding
to a group Ij to the challenger, such that the encryption key being used has the form,
pkgame =

∑
Pi∈Ij∩A pki +

∑
Pi∈Ij∩H pki. Since Ij ∩H is non-empty and each public key

pki is uniformly sampled from Rr
q for all Pi ∈ H, hence the sum of the multiple such public

keys also resembles a uniform distribution over Rr
q. Again, under the MLWE assumption,

this implies that either 0 or mb encrypted using such a key would be computationally
indistinguishable from each other. Thus, the advantage for an adversary between Game
1 and Game 2 would be negligible. Hence, finally, the advantage of an adversary in a
real world execution of the MGHE scheme, which is Game 0 will be negligible. Thus, the
proposed MLWE-MGHE scheme possesses semantic security according to the definition in
Sec. 2.3 against semi-malicious corruptions.

5 Flexibility features with different levels of granularity
We recall that in this work we aimed to explore the design of an MLWE-based multi-group
HE scheme that integrates the flexibility of both MLWE-HE and multi-group HE. In this
section, we present a detailed analysis of how the proposed MLWE-MGHE scheme meets
these flexibility requirements, addressing the two objectives outlined at the outset of this
work.
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5.1 Towards requirement-1: flexibility in scheme parameters
A recent work [Sma23] applies hybrid homomorphic encryption (HHE) in the multi-party
setting to show further reduction in the client’s communication costs when compared
to plain HE. Using HHE requires a larger parameter set because before the server can
operate on the encrypted data, it has to spend certain multiplicative levels to perform
the homomorphic decryption of the symmetric circuit. For single-keyed MLWE-HE,
[MAM+24] discussed that dynamic ciphertext compression using rank reduction could be
beneficial in HHE-based applications as the server can drop the module rank and work
with smaller ciphertexts after the homomorphic symmetric decryption. Hence, we extend
this functionality to the multi-group setting in Fig. 5 to complement multi-client HHE.
We demonstrate this in the MGHE.RankRed() algorithm. Note that, for correctness of
evaluations following a rank reduction, each group participating in the computation must
drop the required rank from their ciphertexts.

Parameter flexibility for MLWE-based MGHE
The rank reduction procedure in the multi-group setting, MGHE.RankRed() takes a
group ciphertext ct ∈ Rq ×Rr

q and transforms it into a ciphertext of a reduced rank,
ctred ∈ Rq ×Rr′

q such that r′ < r. Each party segregates secret key components into
s′

i = (s0, · · · , sr′−1)i ∈ Rr′ and s′′
i = (sr′ , · · · , sr−1)i ∈ Rr−r′ and then generates

their rank reduction keys using the following method:
MGHE.KeyGen.RedKey():

1. In: Error vector ei with each error polynomials sampled from DG(σ2), own
secret key si.

2. Out: Individual rank reduction keys (redki1, redki2) using
MLWE.KeyGen.RedKey(), where Ared is also common to all parties according
to the CRS model.

MGHE.RankRed():

1. In: Group ciphertext ct ∈ Rq × Rr
q and joint rank reduction key of the

group redkj = (redk1, redk2)j ← MGHE.KeyGen.jk() where individual
rank reduction keys are generated using MGHE.KeyGen.RedKey().

2. Out: Rank reduced ciphertext, ctred ← MLWE.RankRed(ct, redkj).

Figure 5: Rank reduction algorithm for MLWE-MGHE

5.2 Towards requirement-2: flexibility in access structure
An MGHE scheme allows flexible participation among groups due to the underlying multi-
key access structure. However, within a group, a multi-party access structure requires
participation from a fixed number of parties. We propose a key-switching-like procedure to
also allow additional flexibility in the access structure among parties contained in a group.
As discussed in the previous section, the rank reduction subroutine enables to decrypt
the ciphertext with a secret key of a lower module rank instead of the original key. This
is facilitated via a key-switching-like operation, where the server is given an additional
rank-reduction key using which it can ‘remove’ the desired secret key components without
requiring access to the actual secret key of the client. In a similar way, a flexible access
structure also corresponds to an update or modification of the secret key of the group.
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Thus, we propose the following modifications to the rank reduction algorithm to allow
a flexible access structure among parties. Let s′′ = (st+1 + · · · + sk) ∈ Rr such that
(st+1, · · · , sk) are the secret keys of the parties that want to leave the group. Note that
this procedure requires an additional interaction round through confidential channels. We
define the following formal sub-routine called FlexStruct in Fig. 6 to demonstrate this
functionality.

Access structure flexibility for MLWE-based MGHEconfidential

The flexible access structure procedure in the multi-group setting, takes a group
ciphertext ct ∈ Rq ×Rr

q involving secret key of k parties and transforms it into a
ciphertext, ctflex ∈ Rq ×Rr

q involving encryptions of t parties such that t < k. It
requires secret keys segregated into s′ = (s1+· · ·+st) ∈ Rr and s′′ = (st+1+· · ·+sk) ∈
Rr through confidential channels.

MGHE.FlexKey():

1. In: Error vector ei with each error polynomial sampled from DG(σ2), own
secret key si.

2. Out: The flex key, (flexk1, flexk2)j using MGHE.KeyGen.jk() and MLWE.
KeyGen.RedKey() with Ared ∈ Rr×r

P q .

MGHE.FlexStruct():

1. In: Group ciphertext ct ∈ Rq ×Rr
q and flex key (flexk1, flexk2)j .

2. Out: New ciphertext, ctflex ← MLWE.RankRed
(
(flexk1, flexk2)j

)
.

Figure 6: Flexible access structure algorithms with confidential channels

In [MTBH21], the authors discuss a method to dynamically adjust the number of
participating entities without using confidential channels. We adopt their method in the
following algorithm PublicFlexStruct in Fig. 7 to also enable flexible access structure
using public components and no interaction.
Implementation: We used the currently available SageMath [S+24] implementation of the
MLWE-HE scheme to instantiate a proof-of-concept relinearization with the proposed
approach for single-party setting as well as a multi-group setting with the MGHE sub-
routines discussed in the paper. We ran our implementation2 on a MacBook Air with
Apple M1 chip and macOS Sonoma version 14.6.1. Without considering the time for
key-generation, the modified relinearization technique (for the 1-party 1-group case) has an
increased run-time when compared with [MAM+24]’s relinearization due to the fact that
the number of key-ciphertext multiplications increase, e.g., 6-multiplications in [MAM+24]
versus 9-multiplications in our case for r = 2. We provide some run-time numbers in the
repository. However, note that we refrain from formally mentioning implementation timing
results of our proof-of-concept implementation in this paper as these numbers cannot be
used for reasonable comparison with the highly optimized RLWE-based HE or multi-party
implementations [SEA21, Ins23]. An optimized library that incorporates the single and
multi-client MLWE-HE setting remains an ongoing work.

2https://github.com/anishamukh/MLWE-MGHE.git

https://github.com/anishamukh/MLWE-MGHE.git
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Access structure flexibility for MLWE-based MGHEpublic

Like FlexStruct, this procedure also takes a group ciphertext ct ∈ Rq×Rr
q involving

secret key of k parties and transforms it into a ciphertext, ctflex ∈ Rq ×Rr
q involving

encryptions of t parties such that t < k. The only difference is that it requires the
joint public key pk′ encrypting the secret vector s′ = (s1, · · · , st) for remaining set
of parties P ′ = {P1, · · · , Pt}j in some group Ij . Also let, s′′ = (st+1, · · · , sk) be the
secret keys corresponding to the leaving set of parties P ′′ = {Pt+1, · · · , Pk}j in the
same group Ij .

MGHE.PublicFlexStruct():

1. In: Error terms e0i and e1i with each polynomial sampled from DG(σ2),
public key pk′j of the set P ′ and vector vi with each of its polynomials
sampled from ZO(ρ) as in MLWE.Enc().

2. In: Using MGHE.jk() and secret key si, t + 1 ≤ i ≤ k of parties Pi ∈ P ′′,
the following is computed: (c′′

0 , c′′
1) = MGHE.jk(si · c1 + vi · pk′j [0] + e0i, vi ·

pk′j [1]+e1i)t+1≤i≤k = (s′′ ·c1 +
∑
i

vi ·pk′j [0]+
∑
i

e0i,
∑
i

vi ·pk′j [1]+
∑
i

e1i).

3. In: Group ciphertext ct = (c0, c1) ∈ Rq ×Rr
q.

4. Out: New ciphertext, ctflex = (c0 + c′′
0 , c1 + c′′

1) ∈ Rq ×Rr
q.

Figure 7: Flexible access structure algorithms without confidential channels

6 MPC from MGHE-MLWE
While MPHE and MKHE are both viable options for building an MPC protocol, each
have limitations that restrict their usefulness in certain applications. For example, MPHE-
based MPC protocols require fixed set of parties to generate a shared key. On the other
hand, MKHE schemes are more time and space intensive than MPHE because ciphertexts
expand as they interact with other ciphertexts under different keys. Thus, an MGHE
scheme that integrates the strengths of both these schemes can be used to construct
MPC protocols bestowed with different levels of flexibilities. In the following part, we
discuss the construction of an MPC protocol πC given in Fig. 8 for a polynomial-time
deterministic circuit C based on our MGHE construction along the lines of [KLSW24].
Note that, while the procedure for generating joint public and evaluation keys differ slightly
from [KLSW24], we do not claim novelty in the protocol structure itself as it closely follows
that of [KLSW24].

In HE-based MPC protocols, the evaluation step in Phase III is non-interactive and
does not require any private input from the parties. Thus, it eliminates the need for
non-collusion assumptions required in traditional non-HE MPC applications. As such, the
role of the computing party can either be taken up by a semi-honest cloud server (like we
assumed in the protocol above) or by any one or more of the designated parties in I.

6.1 Security of MPC from semi-malicious setting
We provide a security proof for our proposed MPC protocol in the semi-malicious setting
according to the definitions discussed in [AJLA+12, KLSW24]. We refrain from reiterating
the proof of security of the distributed decryption as it can be directly inferred from
[KLSW24].
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πC: MPC protocol from MGHE

Setup: In this stage, a common public parameter set pp to be used in the key
generation phase is setup based on the security parameter λ of the scheme.
Input: A circuit C :Md →M that evaluates over the input vector x = {x1, · · · , xd}
in the encrypted domain.

Phase I: In the first phase of the protocol, all involved parties Pi ∈ I =
⋃

1≤j≤k

Ij gen-

erate their individual secret and public keys, in the form of (si, pki)← (KeyGen.sk(),
KeyGen.pk()), and broadcast their public keys according to the agreed-upon security
parameters of the scheme. This phase can be considered to be independent from the
rest of the protocol because it is carried out only once, and can be done offline.

Phase II: After all parties have communicated their individual public keys,
corresponding joint keys of the groups Ij can be obtained by adding all individual
keys, that is, pkj ← KeyGen.jk(). A party Pi can use the joint public key
of the group to encrypt the corresponding input xi into a ciphertext ctt ←
MGHE.Enc(xt, pkj) for 1 ≤ t ≤ d, 1 ≤ j ≤ k and broadcasts it to a cloud server
or any third party for homomorphic computation of the circuit. Additionally,
each party generates its individual relinearization keys (evki1, evki2, evki3) ←
KeyGen.evk() and key-switching keys (kski1, kski2) such that the joint keys
computed as, ((evk1, evk2, evk3), (ksk1, ksk2))j ← Keygen.jk(), is then available to
the computational entity.

Phase III: This is the evaluation phase where there is no interaction involved
from the parties as the required key-switching/relinearization components can be
generated by the server using the public material already provided by the parties in
the aforementioned phases. The homomorphic computations take place according
to cteval ← MGHE.Eval(C, ct1, · · · , ctd; pkj , evkj , kskj). After that, the computing
party or the cloud server sends the output of the homomorphic evaluation back
to the parties for them to decrypt it via an interactive distributed decryption protocol.

Final Output: The final output of the protocol is the decrypted result of the
homomorphic evaluation given by, m← MGHE.Dec(I, σ′; cteval) performed in Phase
III.

Figure 8: A multi-party protocol from an MLWE-based multi-group homomorphic scheme
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Theorem 3. Security against semi-malicious adversary: Let C be any deterministic
poly-time function with d inputs and single output. Let the parameters of the scheme
be chosen in a way that they satisfy the general MGHE-MPC constraints and consider
the case that the corresponding MLWE assumptions holds. Then the protocol πC securely
UC-realizes3 the ideal functionality FC in the presence of a static semi-malicious adversary
corrupting n− 1 parties.

Proof. Consider a set Ic of corrupt parties such that |Ic| ≤ n − 1. Let, |Ic| = n − 1
so that there is only one honest party Ph. We describe a simulator S against a static
semi-malicious adversary A as follows:
The simulator, S: Let the simulator sample public key, relinearization and key-switching
keys each from uniform distribution over Rr

q instead of using the MGHE.KeyGen.pk(),
MGHE. KeyGen.evk() and MGHE.KeyGen.ksk() subroutines for the honest party Ph in the
KeyGen() phase. Then in the encryption phase, it encrypts 0 instead of a real messages m
from Ph. As the simulator has access to the inputs and secret keys of all parties except Ph

from the witness tape, the simulator can evaluate the circuit C on ciphertexts ct1, · · · , ctd

and obtain the resulting ciphertext cteval. In addition, it also receives the output message
m from the ideal functionality. Finally, the simulator computes the partial decryption for
the honest party Ph with the assumption that simulated and real partial decryption are
indistinguishable. Next, we define the following hybrid games to prove indistinguishability
of the real and ideal world executions of the protocol.

• REAL(πC,A,Z): This is exactly an execution of the protocol πC in the real world with
environment Z and semi-malicious adversary A.

• HYB1
(πC,A,Z): This corresponds to the real world game REAL(πC,A,Z) except for the

fact that it publishes the simulated partial decryption [KLSW24].

• HYB2
(πC,A,Z): This game is similar to HYB1

(πC,A,Z), except for the fact that the honest
party Ph encrypts 0.

• IDEAL(πC,A,Z): This is the ideal-world execution with simulator S and environment
Z.

On the basis of the games described above, we make the following claims.

• Claim 3.1: REAL(πC,A,Z) ≡ HYB1
(πC,A,Z).

Proof. Since the simulated partial decryption is statistically indistinguishable from
real partial decryption [KLSW24], thus the adversary A learns no extra information
than with a real partial decryption. Hence, the two games mentioned above are also
statistically indistinguishable.

• Claim 3.2: HYB1
(πC,A,Z) ≡ HYB2

(πC,A,Z).

Proof. Note that while HYB1
(πC,A,Z) corresponds to Game 0, HYB2

(πC,A,Z) corresponds
to Game 2 in Sec. 4.3. Thus, they are indistinguishable based on the arguments
presented in the section for indistinguishability of Game 0 and Game 2.

• Claim 3.3: HYB2
(πC,A,Z) ≡ IDEAL(πC,A,Z).

Proof. Again, note here that IDEAL(πC,A,Z) corresponds to Game 1 in Sec. 4.3. Thus,
our claims holds due to the proof of indistinguishability of Game 1 and Game 2 in
Sec. 4.3.

3We work in the standard universal composability framework of Canetti[Can01]
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• Finally, based on Claim 3.1, 3.2 and 3.3, the equivalence of the real world execution
REAL(πC,A,Z) and ideal world execution IDEAL(πC,A,Z) of the protocol holds.

7 Discussion on current constraints of MLWE-MGHE
In the previous sections we highlighted various benefits and flexibility factors of the MLWE-
based MGHE scheme. To keep this discussion comprehensive and fair, in this section, we
also consider the following constraints with respect to our proposed scheme. We note that
these limitations do not arise from our construction, but are either inherited from the
underlying MLWE-HE primitive or are based on MPC-specific scenarios.

• More computations than RLWE-based multi-client proposals: While using an MLWE-
based HE primitive allows to perform computations with ‘smaller’ polynomials, the
number of such computations are higher during homomorphic multiplication than in
RLWE-HE. Thus, even in the multi-client setting, the computational entity (server)
has to perform more polynomial multiplications during a ciphertext-ciphertext multi-
plication for MLWE-MGHE when compared to RLWE-based multi-client proposals.
This computational limitation would, however, not pose a challenge in applications
requiring only an additively homomorphic scheme (such as secure aggregation in en-
crypted federated learning) and an MLWE-MGHE scheme can then be used without
any substantial performance degradation. We mention here a similar but more acute
observation in this context by the author of [Sma23] which emphasizes that network
improvements are inherently limited by physical constraints, while computational
performance continues to grow rapidly. Consequently, FHE-based MPC, which
relies more on computation than communication, is expected to become more useful
than traditional communication-heavy MPC approaches in the long term. In such
a scenario, the varying degrees of flexibility provided by MLWE-MGHE could be
particularly useful.

• Considering more varied threat models: Zero-knowledge proof systems have been
proposed as a way of extending the security model from semi-malicious attackers to
fully malicious or active adversaries as discussed in [KLSW24, RST+22] but their
real-life feasibility needs further research. Works such as [YAZ+19, BLS19, GNS23]
that explore zero-knowledge proofs for lattice-based schemes could significantly
contribute to broaden the scope of study of adversarial models in HE-based MPC
protocols.

8 Conclusion and future work
In this work, we first set out to simplify the relinearization key-generation algorithm for
the MLWE-based variant of the CKKS scheme [MAM+24]. We demonstrated that the
number of relinearization keys can be reduced from O(r2) to O(r) without increasing
the computational complexity of the relinearization algorithm. We then took the first
step to apply the MLWE-HE primitive to the multi-group setting. We extended the
functionalities of the single-keyed MLWE-based CKKS variant and proposed multi-group
sub-routines inspired from a multi-party-like access structure within a group of parties and
multi-key-like access structure among groups. Finally, we presented two levels of flexibility
features of our proposed construction and also discussed a few of its current constraints.
As homomorphic encryption continues to gain traction in emerging privacy-preserving
MPC applications, we hope that this work serves as a motivation for further investigation
of MLWE-based schemes in this context.
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As future work, an in-depth analysis to find the right balance between the module rank
and the error distribution is required to ensure better security bounds without penalizing
efficiency [BJRW23]. This is important because the error propagation and the extent of
the efficiency bottleneck of an MLWE-HE construction are directly linked to the increased
number of computations during homomorphic evaluation. This in turn is dependent on the
rank of the module being chosen during the setup phase. The authors in [MAM+24] also
report observing more precision loss due to increased error propagation during experiments.
Furthermore, in applications that do not require many multiplicative levels and largely rely
on additively homomorphic evaluations (such as secure aggregation in federated learning
discussed in Sec. 1), it would be interesting to measure concrete performance metrics
for MLWE-HE-based constructions versus its RLWE-based counterparts. Since these
applications would not have a large multiplicative depth, MLWE-HE primitives could
benefit from effective parallel processing and smaller individual computations compared to
its RLWE-HE counterparts.
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A MLWE-based HE sub-routines

In this section, we provide a summary of the MLWE-based HE subroutines proposed by
[MAM+24]. In order for notations to be comprehensible, we only reiterate the non-RNS
version of the algorithms.

Key generation and encryption in MLWE-HE
KeyGen: The MLWE.KeyGen() algorithm generates the triples (sk, pk, ksk) using the
following sub-algorithms. We use a general notation A to denote the public matrix
used during public key or key-switching key generations.

KeyGen.sk():

1. Generate a secret key sk = (1, s) such that each secret polynomial si ←
HWT (h) where the HWT (h) is the set of signed binary polynomials
{0,±1}N with Hamming weight h.

KeyGen.pk():

1. In: Error vector e with each error polynomial ei ← DG(σ2) which is a
secret Gaussian distribution with σ > 0, secret key s.

2. Out: Public key of the form, pk = (−A · s + e, A) ∈ Rr
q ×Rr×r

q .

KeyGen.ksk():

1. In: Error vector e with each error polynomial ei ← DG(σ2) which is a secret
Gaussian distribution with σ > 0, secret key s and a function ϕ(s) = s′ of
the initial secret s.

2. Out: Key-switching key of the form, swk = (b, A) = (−A·s+e+P ·s′, A) ∈
Rr

P q ×R
r×r
P q .

KeyGen.RedKey():

1. In: Error vector e with each error polynomial ei ← DG(σ2) which is a
secret Gaussian distribution with σ > 0, secret key s segregated into two
vectors s′ = (s0, · · · sr′−1) ∈ Rr′ and s′′ = (sr′ , · · · , sr−1) ∈ Rr−r′ .

2. Out: Rank reduction key of the form, redk = (b, Ared) = (−Ared · s′ +
ered + P · s′′, Ared) ∈ Rr−r′

P q ×R(r−r′)×r′

P q

MLWE.Encpk():

1. In: Public key pk, a message m, a vector v ∈ Rr
q where each polynomial vi

of is sampled from ZO(0.5) where the distribution ZO(ρ) with 0 ≤ ρ ≤ 1
allows sampling from {0,±1}N , but with probability ρ/2 for each of −1, +1,
and 1 − ρ for zero. It also requires an error polynomial e and an error
vector e′ such that polynomials e, ei ← DG(σ2) which is a secret Gaussian
distribution with σ > 0.

2. Out: A ciphertext of the form, ct = (c0, c1) = (pk·v+(m+e, e′)) ∈ Rq×Rr
q.

MLWE.Decsk():

1. In: Secret key sk, a ciphertext ct.

2. Out: An approximation of the message, m ≈ c0 + c1 · s (mod q0).
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Next, we discuss the homomorphic sub-routines of the MLWE-based HE scheme. We also
discuss the original relinearization procedure and key generation for a comparison with
our improved key generation method given in Sec. 3.

Homomorphic subroutines of MLWE-HE
Following are the homomorphic addition and multiplication sub-routines of the
MLWE-HE scheme. All operations are done modulo q with some exceptions during
the relinearization procedure.

MLWE.Add():

1. In:Two ciphertexts ct and ct′ ∈ Rq ×Rr
q.

2. Out: The ciphertext sum, which is another ciphertext of the form, ctadd =
ct + ct′ = (c0 + c′

0, c1 + c′
1) ∈ Rq ×Rr

q.

MLWE.Mult():

1. In:Two ciphertexts ct and ct′ ∈ Rq ×Rr
q.

2. Out: The multiplied ciphertext ctmult = (d0, d1, d2, d3) ∈ Rq×Rr
q×Rr

q×
Rr(r−1)/2

q of the form,

d0 = c0 · c′
0 d1i = c0 · c′

1i + c′
0 · c1i

d2i = c1i · c′
1i d3ij = c1i · c′

1j + c′
1i · c1j , i < j

where 0 ≤ i ≤ r − 1.

MLWE.Relin():

1. In: Non-relinearized ciphertext ctmult and relinearization key (evk1, evk2) =
MLWE.KeyGen.ksk(Aevk; s, s′ = s⊗ s).

2. Out: The relinearized ciphertext ctrelin = (d′
0, d′

1) =
(
d0 + P −1(d2 ·

evk1[0] + d3 · evk2[0]), d1 + P −1(d2 · evk1[1] + d3 · evk2[1])
)
∈ Rq ×Rr

q

MLWE.RankRed():

1. In: Ciphertext ct ∈ Rq ×Rr
q.

2. Out: Rank-reduced ciphertext ctred = (c′
0, c′

1) ∈ Rq × Rr′

q such that,(
c′

0 = c0 + P −1 · crem · redk[0]
)

and,
(
c′

1 = cred + P −1 · crem · redk[1]
)
,

where, cred = (c1k)0≤k<r′ and crem = (c1j)r′≤j<r, are the ‘reduced’ and the
‘removed’ components of c1.

MLWE.swk():

1. In: Ciphertext ct ∈ Rq ×Rr
q involving secret s, key-switching key swk.

2. Out: Ciphertext ct′ = (c0, 0) + ⌊P −1 · c1 · swk⌉ ∈ Rq ×Rr
q, involving the

new secret ϕ(s) = s′.

Residue Number System (RNS) in homomorphic encryption: Efficient implemen-
tations of RLWE-based homomorphic encryption schemes in the literature often make use
of the Residue Number System to decompose the composite ciphertext modulus into a
product of l (co)primes qi, i.e., q =

∏l−1
i=0 qi. This transforms modulo q arithmetic into

modulo qi arithmetic. Hence, polynomial arithmetic in Rq transforms into arithmetic of
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residue polynomials in Rqi
. This optimization improves efficiency by enabling parallel

processing of small-integer arithmetic operations. [MAM+24] also provides an RNS version
of their subroutines.

B Correctness of the proposed MLWE-MGHE scheme
In Sec. 4, we demonstrated the correctness of key aggregation. Now, we motivate the
correctness of the homomorphic subroutines of MLWE-MGHE using the case where k = 2
groups, which can be trivially extended to a general k. Let pk1 and pk2 be the joint keys
of groups I1 and I2. Given messages m1 and m2, groups I1 and I2 can use their respective
joint encryption keys to obtain respective ciphertexts modulo q using MGHE.Enc():

ct1 = (c0, c1)1 = (v1 · pk1 + m1 + e, v1 ·A + e)
ct2 = (c0, c1)2 = (v2 · pk2 + m2 + e′, v2 ·A + e′)

In MGHE.Enc(), we discussed an alternative case when there are multiple groups involved.
As mentioned in [KLSW24], a multi-group ciphertext can be considered to contain infor-
mation about an ordered set of multiple groups and can be decrypted using an ordered set
of the joint secret keys of the involved groups. Let, I = I1

⋃
I2 be the multi-group set.

The multi-group ciphertext, ct can be written as (c0, c1)∪j = (c1
0 + c2

0, c1
1, c1

2) such that
the decryption would satisfy, c∪j

0 + c1
1 · s1 + c1

2 · s2 ≈ m1 + m2 (mod q). Now consider
the output of the distributed decryption DistDec sub-routine:

c0 +
∑
i∈I

µi = c0 +
∑
i∈I

( ∑
1≤j≤k

c1
∪j

)
· si +

∑
i∈I

e′
i

= c0 +
(
c1

1 · s1 + c1
2 · s2)

+
∑
i∈I

e′
i

≈ m1 + m2 + e + e′

where
∑
i∈I

e′
i = e′.

The correctness of homomorphic addition is quite straightforward, so we discuss
homomorphic multiplication and relinearization next. Let, ctmult = (d0, d1, d2, d3)∪j

be the ciphertext obtained after multiplying two multi-group ciphertexts ct and ct′

encrypting messages m and m′ respectively, and both of which are decryptable under
sk = (1, s = (s1, s2)). For correctness of multiplication and then relinearization, the
following decryption equation modulo q should hold true:

m ·m′ ≈ ((c0 + c1 · s) · (c′
0 + c′

1 · s))

≈ c0c′
0 + c0

∑
1≤j≤k

c′
1

jsj + c′
0

∑
1≤j≤k

c1
jsj +

∑
1≤j,j′≤k

c1
jc′

1
j′

sjsj′

where, ((c0 +c1 ·s) ·(c′
0 +c′

1 ·s)) = ((c1
0 +c2

0 +c1
1 ·s1 +c1

2 ·s2) ·(c′
0

1 +c′
0

2 +c′
1

1 ·s1 +c′
1

2 ·s2))
for k = 2. Also notice that the ciphertext components (d0, d1, d2, d3) indeed follow
a similar structure to those in MLWE.Mult() since here, d2j = c1

j · c′
1

j and d3jj′ =
(c1

j · c′
1

j′
+ c1

j′ · c′
1

j) j ̸= j′. Now, based on the additively homomorphic property of the
group relinearization keys as discussed in Sec. 4.2, we can represent the group keys modulo
P ·q in the following form: (evk1, evk2, evk3)1 =

(
(−A·s1)+e1

1,−A·u1+e1
2+P ·s1,−A′·s1+

e1
3−P ·u1)

and (evk1, evk2, evk3)2 =
(
(−A·s2)+e2

1,−A·u2+e2
2+P ·s2,−A′·s2+e2

3−P ·u2)
.

Using the algorithm for MGHE.Relin() given in Sec. 4, first let us write the following
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decryption equation modulo q for d2 when j = 1:

(d21 · P −1(evk1
2)) · s1 + (d21 · P −1evk1

1) · P −1(evk1
3 + A′ · s1) ≈ d21 · (−A · u1 + P · s1) · s1

+ d21(−A · s1)(−A′s1 − u1 + A′s1) ≈ c1
1 · c′

1
1 · s1 · s1

Similarly, (d22 · P −1(evk2
2)) · s2 + (d22 · P −1evk2

1) · P −1(evk2
3 + A′ · s2) ≈ c1

2 · c′
1

2 · s2 · s2

for j = 2. Finally, for d3 we have the following:

(d312 · P −1(evk1
2)) · s2 + (d312 · P −1evk2

1) · P −1(evk1
3 + A′ · s1) ≈ d312 · (−A · u1 + P · s1) · s2

+ d312(−A · s2)(−A′s1 − u1 + A′s1)

≈ (c1
1 · c′

1
2 + c1

2 · c′
1

1) · s1 · s2

Thus, the joint relinearization keys correctly relinearize the non-linear components d2 and
d3 when multiplied by suitable secret key components sj . Thus, the rest of the linear
decryption equation follows a usual ciphertext decryption in MLWE-HE.

The correctness of MGHE.RankRed() follows directly from the correctness of MLWE.RankRed().
Next, to show how MGHE.FlexStruct() works, let us consider that group I1 consists of
three parties such that parties P1 and P2 stay whereas P3 wants to leave the proto-
col. Then, assuming that the parties interact through confidential channels and using
MGHE.FlexKey() as well as MGHE.KeyGen.jk() gives the flex key as, (flexk1, flexk2)1 =
(−Ared · (s1 + s2) + ered + P · s2, Ared). If ctflex ← MLWE.RankRed() then the decryption
equation modulo q is the following:

c′
0 + c′

1 · (s1 + s2) =
(
c0 + P −1 · c1 · (−Ared · (s1 + s2) + ered + P · s1)

)
+

(
c1 + P −1 · c1 ·Ared

)
· (s1 + s2)

≈ (v1 · (−A · (s1 + s2 + s3)) + m1)
+ P −1 · v1 ·A · (−Ared · (s1 + s2) + ered + P · s1)
+ (v1 · (−A) + P −1 · v1 ·A · (−Ared)) · (s1 + s2)
≈ (v1 · (−A · (s1 + s2)) + m1) + (v1 · (A · (s1 + s2))
≈ c′

0 + c′
1 · (s1 + s2)

which is the desired functionality because the group’s joint secret key reduces to sj = (s1+s2)
after P3 leaves the group.

C Noise estimation of the new relinearization proce-
dure in Sec. 3 and MGHE scheme in Sec. 4

We discuss the noise bounds introduced by the modified relinearization technique along the
lines of [CKKS17], [CHK+18], [CS16] and [MAM+24]. First, we reiterate some information
about the various distributions that the polynomials have been sampled from: let all
sampled coefficients be independent and identically distributed, and let σ2 be the variance
of each such coefficient. Then, a polynomial sampled from a uniform distribution U
over Rq has a variance of q2N/12, a polynomial sampled from the discrete Gaussian
distribution DG(σ2) of mean centered around zero has variance σ2N and a polynomial
sampled from ZO(ρ) has variance ρN . For a distribution HWT (h) over signed binary
integers {0,±1} the variance is just its Hamming weight, h. In the case of a multiplication
of two independent random variables sampled from Gaussian distributions with variances
σ2

1 and σ2
2 , the high-probability bound is set to 16σ1σ2. As a consequence of the law of

large numbers, the high-probability bound on the (ring) canonical embedding norm is
taken to be 6σ.
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Lemma 2. The error introduced by the new relinearization technique is bounded by
Brelin = P −1 · r(r + 1) · 16

√
Nq2

l

12 σ
√

N + 16rσ
√

hN .

Proof. Recall from the expressions of d′′
0 and d′′

1t′ in Sec. 3 that the non-linear ciphertext
components d2 and d3 are multiplied by evaluation keys evk1 and evk2 which also results
in d2 and d3 being multiplied by eevk1 and eevk2 . Also, during decryption, there is an
additional error induced by the terms s · eevk2 with respect to each component of d2 as
well as d3. Consequently, following the error analysis of [MAM+24], the error bound can
be described as follows:

∥Erelin∥can
∞ ≤ P −1 · r(r + 1) · 16

√
Nq2

l

12 σ
√

N + 16rσ
√

hN

C.1 Noise analysis of the MGHE scheme
We provide a noise analysis for the case of k groups such that I =

⋃
1≤j≤k

Ij with each

group consisting of n parties.

Lemma 3. The error induced during encryption procedure MGHE.Enc() is bounded by
Benc

MGHE = 16|I|rσ(N/
√

2 +
√

hN) + 6|I|σ
√

N .

Proof. The group ciphertext encrypted using the joint public key is written as,

ct = (v · pkj + m + e, v ·A + e′)

= (v ·
∑
i∈I

pki + m + e, v ·A + e′)

The ideal decryption of this ciphertext can be written as,

c0 + c1 · s = ((pkj [0] · v + m + e) + (pkj [1] · v + e′) · sj) (mod q)

= (m +
∑
i∈I

ei · v + e +
∑
i∈I

e′
i · si) (mod q)

= (m + |I| ·
r−1∑
i=0

eipk
· vi + e + |I|

r−1∑
i=0

e′
i · si) (mod q)

Let, the overall error be Eenc
MGHE = |I| ·

∑r−1
i=0 eipk

· vi + e + |I| ·
∑r−1

i=0 e′
i · si, then using

the upper bound of encryption noise in MLWE-HE [MAM+24], we obtain the following
expression:

∥Eenc
MGHE∥can

∞ ≤ 16|I|rσ(N/
√

2 +
√

hN) + 6|I|σ
√

N

The error bound after a homomorphic addition and multiplication of two group cipher-
texts will be a somewhat straightforward adoption of the addition and multiplication error
bounds of MLWE-HE [MAM+24]. Next, for the error introduced due to relinearization,
recall from Sec. 4 and Sec. B that the non-linear components d2 and d3 are multiplied
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with the error terms e2
j and e1

j · e3
j . In addition, d2 and d3 are also multiplied with

sj · e2
j and uj · e1

j . There are a total of k(k + 1)/2 non-linear terms dm, m = 2, 3 where
k is the number of groups, and each such non-linear term has r components. Hence we
can give the relinearization error by the following lemma.

Lemma 4. The error introduced in MGHE.Relin() by the given relinearization technique
is bounded by Brelin

MGHE = P −1 ·
(
8r|I|(|I|+ 1)

√
Nq2

l

12 σ
√

N + 32r|I|σ
√

hN
)
.
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