
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 2, 41 pages.

https://doi.org/10.62056/ah893z10k
Check for updates

Round-Efficient Adaptively Secure Threshold
Signatures with Rewinding

Yanbo Chen

University of Ottawa, School of Electrical Engineering and Computer Science, Ottawa, Canada

Abstract. A threshold signature scheme allows distributing a signing key to n users,
such that any t of them can jointly sign, but any t − 1 cannot. It is desirable to prove
adaptive security of threshold signature schemes, which considers adversaries that
can adaptively corrupt honest users even after interacting with them. For a class of
signatures that relies on security proofs with rewinding, such as Schnorr signatures,
proving adaptive security entails significant challenges.
This work proposes two threshold signature schemes that are provably adaptively
secure with rewinding proofs. Our proofs are solely in the random oracle model
(ROM), without relying on the algebraic group model (AGM).
- We give a 3-round scheme based on the algebraic one-more discrete logarithm
(AOMDL) assumption. The scheme outputs a standard Schnorr signature.
- We give a 2-round scheme based on the DL assumption. Signatures output by the
scheme contain one more scalar than a Schnorr signature.
We follow the recent work by Katsumata, Reichle, and Takemure (Crypto 2024)
that proposed the first threshold signature scheme with a rewinding proof of full
adaptive security. Their scheme is a 5-round threshold Schnorr scheme based on the
DL assumption. Our results significantly improve the round complexity.
The protocol by Katsumata, Reichle, and Takemure can be viewed as applying
a masking technique to Sparkle, a threshold Schnorr signature scheme by Crites,
Komlo, and Maller (Crypto 2023). This work shows wider applications of the masking
technique. Our first scheme is obtained by masking FROST, a threshold Schnorr
protocol by Komlo and Goldberg (SAC 2020). The second scheme is obtained by
masking a threshold version of HBMS, a multi-signature scheme by Bellare and Dai
(Asiacrypt 2021).
Katsumata, Reichle, and Takemure masked Sparkle at the cost of 2 additional rounds.
Our main insight is that this cost varies across schemes, especially depending on how
to simulate signing in the security proofs. The cost is 1 extra round for our first
scheme, and is 0 for our second scheme.
Keywords: Threshold Signature · Adaptive Security · Schnorr Signature

1 Introduction
A threshold signature scheme is a protocol for distributing a main secret key to a group
of n users, such that any subgroup of t users can jointly sign under the common public
key using their own secret key shares, while any set of t− 1 users cannot. In recent years,
threshold signatures have attracted significant interest from both academia and industry,
mainly for their wide applications in distributed systems.

A basic security notion for threshold signatures is the static security, where the adversary
decides on which t− 1 users to control before the protocol starts. A more advanced notion
is adaptive security, which allows the adversary to adaptively corrupt at most t− 1 users

E-mail: ychen918@uottawa.ca (Yanbo Chen)

This work is licensed under a “CC BY 4.0” license.
Received: 2025-04-08 Accepted: 2025-06-02

https://doi.org/10.62056/ah893z10k
https://crossmark.crossref.org/dialog/?doi=10.62056/ah893z10k&domain=pdf&date_stamp=2025-06-17
https://orcid.org/0000-0002-5198-6151
mailto:ychen918@uottawa.ca
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

during the execution of the protocol. In particular, the adversary can decide which parties
to corrupt depending on its interaction with the honest users.

Many important signature schemes are proved to be secure based on rewinding in the
random oracle model (ROM). The Schnorr signature scheme is a representative example.
Rewinding-based security reductions face difficulties when considering adaptive adversaries:
rewinding doubles the number of corruptions that the reduction needs to handle. Intuitively,
the reduction thus needs to know up to 2(t − 1) ≥ t secret key shares. In many cases,
these shares allow reconstructing the main secret key, so the reduction cannot embed an
instance of a hard problem in the main public key, as for Schnorr signatures.

Adaptive security for such schemes was first considered by Crites, Komlo, and Maller
[CKM23] who studied the adaptive security of their threshold Schnorr signature scheme
Sparkle. Owing to the above difficulty, their proofs either achieve partially adaptive security,
only allowing the adversary to adaptively corrupt (t− 1)/2 users, or rely on the algebraic
group model (AGM) [FKL18] to bypass rewinding. Bacho, Loss, Tessaro, Wagner, and
Zhu [BLT+24] proposed a scheme with fully adaptive security without the AGM, but
the signatures are modified to support a DDH-based rewinding-free proof. The resulting
signatures are relatively large and not compatible with systems that employ Schnorr
signatures.

Recently, Katsumata, Reichle, and Takemure [KRT24a] proposed an ingenious solution
to prove full adaptive security with rewinding. Their result is a threshold Schnorr signature
scheme with a rewinding-based proof of adaptive security without the AGM. One main
drawback is a 4-round and stateful signing protocol. Specifically, before the protocol runs,
the signing users have to agree on a session identifier that is distinct for each signing, which
requires them to store states that provide information about used identifiers. The authors
also gave a general transformation to convert the scheme into a 5-round and stateless
scheme. More recently, Bacho, Das, Loss, and Ren [BDLR25b] proposed a threshold
Schnorr scheme that improves upon [KRT24a] in several aspects but is still 5-round. In
comparison, most schemes proposed in recent years, which may not be proved to be
adaptively secure without the AGM, are 2 or 3-round. Our main objective is to construct
provably adaptively secure schemes of low round complexity.

1.1 Our Contribution
We propose two new schemes in this work. Both of them are proved to be adaptively
secure with a rewinding proof in the ROM without the AGM.

• In Section 3, we present FROST-Mask, a stateful 2-round scheme based on the
algebraic one-more discrete logarithm (AOMDL) assumption. The resulting signature
is a standard Schnorr signature. The general transformation in [KRT24a] can compile
FROST-Mask into a stateless 3-round scheme.

• In Section 4, we present HBTS-Mask, a stateless 2-round scheme based on the
DL assumption. The resulting signature contains one more scalar than a Schnorr
signature.

We review the masking technique used in the construction by Katsumata, Reichle,
and Takemure [KRT24a] in depth and find wider applications of this technique. Their
construction can be viewed as an application of the masking technique to Sparkle [CKM23].
To get our first scheme, we mask FROST [KG20], a well-known 2-round threshold Schnorr
scheme. For our second scheme, we mask HBTS, a threshold version of 2-round multi-
signature scheme HBMS [BD21].

Our main insight is that the cost of masking varies for different underlying schemes,
particularly depending on how signing is simulated in the security proofs. The cost of

Yanbo Chen 3

Table 1: Comparison between our schemes and existing schemes. We compare whether
they are proved to be secure in the adaptive model, the algebraic assumptions they rely
on, whether the proofs are in the AGM, their round complexity, whether their signing
algorithms are stateful, and the size of their signatures. In column “Adaptive”, “half”
means that the adversary is allowed to adaptively corrupt (t− 1)/2 users (and statically
corrupt the others). We remark that stateful schemes can be turned stateless at the cost
of one extra round. We let ⟨G⟩ and ⟨Zp⟩ denote the size of a group element and a scalar,
respectively.

Scheme Adaptive Assumption AGM Rounds State Sig. Size
[KG20] (FROST) % AOMDL % 2 % 1⟨G⟩ + 1⟨Zp⟩
[TZ23] % DL % 2 % 1⟨G⟩ + 2⟨Zp⟩
[CKM23] (Sparkle) % DL % 3 % 1⟨G⟩ + 1⟨Zp⟩
[CKM23] (Sparkle) half AOMDL % 3 % 1⟨G⟩ + 1⟨Zp⟩
[CKM23] (Sparkle)1 ! AOMDL ! 3 % 1⟨G⟩ + 1⟨Zp⟩
[BLT+24] (Twinkle) ! DDH % 3 % 2⟨G⟩ + 3⟨Zp⟩
[Che25] (Dazzle) ! DDH % 2 % 1⟨G⟩ + 3⟨Zp⟩
[KRT24a] ! DL % 4 ! 1⟨G⟩ + 1⟨Zp⟩
[BDLR25b] (Glacius) ! DDH % 4 ! 1⟨G⟩ + 1⟨Zp⟩
FROST-Mask ! AOMDL % 2 ! 1⟨G⟩ + 1⟨Zp⟩
HBTS-Mask ! DL % 2 % 1⟨G⟩ + 2⟨Zp⟩

masking Sparkle is being stateful and an extra round. For FROST, we only introduce the
state. To mask HBTS, neither of these is required!

Table 1 summarizes our schemes and compares them with existing schemes in the
pairing-free discrete logarithm setting. Previously, only [BLT+24] (Twinkle), [KRT24a],
[BDLR25b] (Glacius) , and [Che25] (Dazzle) were proved to be adaptively secure without
the AGM. Only [KRT24a] and [BDLR25b] produce standard Schnorr signatures, ensuring
compatibility with systems that currently employ Schnorr signatures, a highly desirable
property. Our FROST-Mask also outputs a standard Schnorr signature. While relying
on a one-more assumption, it reduces the number of rounds by 2. Our HBTS-Mask does
not output a standard Schnorr signature, but it only contains one more scalar. Its main
advantage is being 2-round and stateless. Previously, only [Che25] achieved this, while our
HBTS-Mask is based on DL rather than DDH and outputs signatures containing one fewer
scalar.

We also mention two downsides of our schemes. First, as pointed out in [KRT24a],
the masking technique makes signers’ signature shares unverifiable and thus prevents
non-interactive identifiable abort, a functionality that non-interactively traces misbehaving
users that prevent the generation of valid signatures. Except [KRT24a] and our schemes,
all other schemes in Table 1 support non-interactive identifiable abort. Second, the masking
technique also causes FROST to lose the online-offline property. The first round of FROST
can be preprocessed before the signing group and the message are decided. In contrast,
FROST-Mask needs the signing group to be known in the first round to generate masks.

Future Work. Katsumata, Reichle, and Takemure [KRT24a] also gave a lattice-based
version of their threshold Schnorr scheme. We note that the schemes we mask, FROST and
HBMS, both have lattice variants [EKT24, Che23]. We consider finding lattice versions of
FROST-Mask and HBTS-Mask as an interesting direction of future work.

1We note that concurrent works have invalidated this security result of Sparkle. See Section 1.3 for
more details.

4 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

1.2 Technical Overview
The Difficulty of Adaptive Threshold Schnorr with Rewinding.

The Schnorr signature works over a cyclic group G of order p with generator g. The secret
key is a scalar x ∈ Zp, and the public key is its exponentiation X = gx. To sign message µ,
the signer commits randomness r in R := gr, obtains a challenge by hashing c := H(µ, R),
responds with z := r + cx, and finally outputs (R, z) as the signature.

The Schnorr scheme is proved to be secure from the DL assumption in the ROM by
rewinding. After receiving a forgery (R, z), the security proof runs the adversary for a
second time. By reprogramming the random oracle, it expects to receive another forgery
(R, z′), with the same commitment R but responding to a different challenge. These two
related forgeries are used to extract the discrete logarithm of X.

A homomorphic signature scheme can be compiled into a threshold scheme as follows.
The users secret-share the main secret key using Shamir’s t-out-of-n secret sharing, each
holding a share xi. For a group S of t users to jointly sign, each user signs with λS,i · xi as
the secret key to provide a signature share σi, where λS,i is the reconstruction coefficient.
Then using the homomorphism, the signature shares can be combined into a valid signature
σ =

∑
i∈S σi under the main key. Although the Schnorr signature scheme is not strictly

homomorphic, the idea of the above compiler still works.
However, when aiming at adaptive security, the above framework faces a significant

challenge when thresholdizing the Schnorr signature scheme. In this framework, each user
issues Schnorr signatures using λS,i · xi. Even if the “public key share” Xi = gxi is not
made public at the beginning, the signature shares will totally reveal Xi. The public shares
provide binding commitments to the secret key shares: whenever user i gets corrupted,
the reduction must output xi = dloggXi.

The problem arises when the rewinding happens before the adversary A corrupts parties,
but after the public shares are revealed. The former means that A may corrupt different
sets of users in two runs, forcing the reduction to output up to 2(t − 1) ≥ t secret key
shares. The secret key shares have been committed before the rewinding point, so they
must be related in the two runs, and any t of them reconstruct the main secret key x.
Therefore, the reduction has to be able to figure out x = dloggX on its own, so it cannot
embed a DL instance into the public key X.

One-Time Masks to The Rescue.

The above problem occurs because the public key shares are revealed as commitments
to the secret key shares. What if they are never made public, and each user’s signature
share is independent of its secret key share? Then each secret key share xi is independent
of A’s view until user i gets corrupted. Consequently, the security game is statistically
unchanged if we defer the sampling of xi to the corruption of user i. Since at most t− 1
users can be corrupted in the game, we only need to sample t− 1 shares. By the security
of Shamir’s secret sharing, these t− 1 shares are independently, uniformly distributed and
independent of the main secret key x.

Now there is no problem for rewinding! The answer to each corruption query is just a
newly sampled secret key share. For a query made after the rewinding point, the answers
in two runs are sampled independently. The secret key shares output in the second run do
not reconstruct x with those output in the first round, so the reduction does not have to
know x by itself.

Katsumata, Reichle, and Takemure [KRT24a] found that the masking technique, first
used in lattice-based threshold signatures [DKM+24, EKT24] for a different purpose than
adaptive security, can make signature shares independent of their secret key shares. The
t signers generate one-time random masks {∆i}i∈S that sum to 0. Each of them masks
its signature share using the mask and output σi + ∆i = σ̃i. Since the masks sum to

Yanbo Chen 5

0, the signature shares still combine to
∑

i∈S σ̃ =
∑

i∈S σi = σ, but every (t− 1)-subset
of these signatures is uniformly random and leaks no information. The adversary can
get information from honest users’ signature shares only by combining them, and the
information it obtains is no more than a signature σ issued with the main secret key x.
Nothing about secret key shares is leaked.

Moreover, the [KRT24a] showed how to non-interactively generate the masks. For this
purpose, we require every pair of users i and j to share seeds seedi,j and seedj,i. We also
need some distinct information sinf related to each signing session. User k ∈ S generates
the mask as

∆k :=
∑

i∈S\{k}

(H(seedk,i, sinf)− H(seedi,k, sinf)). (1)

It can be verified that
∑

i∈S ∆i = 0, and in the ROM, {∆i}i∈S are (t−1)-wise independently,
uniformly random.

Masking Sparkle, and The Cost.

An immediate challenge in masking threshold Schnorr is the interactive signing protocol.
The users do not output their signature shares in one shot. Instead, two components
of Schnorr signatures are generated separately in a multi-round protocol. The signing
protocol of Sparkle is as follows:

• In the first round, each signer k samples rk ← Zp and computes Rk := grk . It
outputs a hash commitment di := Hcom(k, Rk).2

• In the second round, user k receives other users’ hash commitments and outputs Rk.

• In the third round, user k receives {Ri}i∈S and verifies that they are consistent
with the hash commitments. It computes R :=

∏
i∈S Ri and obtains the challenge

c := Hchal(µ, R). It outputs the response zk := rk + c · λS,k · xk.

• Finally, a combiner receives {zi}i∈S and aggregates them into z :=
∑

i∈S zi. The
threshold signature is σ := (R, z).

The homomorphism needed to combine signature shares holds only when every signer
responds to a common challenge c. Therefore, the protocol lets the users first produce their
commitments and exchange them. They can obtain the common challenge c by hashing
the aggregated commitment R.

To make signature share (Rk, zk) independent of xk, it suffices to mask the response zk.
The masked z̃k then becomes independent of Rk and leaks no information about xk. We
generate the mask ∆k by Eq. (1) using Hmask, where the session information sinf contains
the message µ and the set of commitments {Ri}i∈S . We have successfully hidden secret
key shares. Unfortunately, this is insufficient for adaptive security, as two subtle problems
arise.

So far we argued that secret key shares are statistically hidden. What remains is to
efficiently simulate the security game in the reduction. The problems are about how to
simulate signing without the secret key. Thanks to the masks, we only need to simulate
signatures under the main public key X. Importantly, the signature is issued interactively,
which means that two components of the simulated signature (R∗, z∗) should be produced.
More precisely, the simulator controls honest users in a signing session as follows. It
decides honest users’ commitments with R∗ embedded in. The aggregated commitment
R is determined after the corrupted users also output their commitments. Then the
simulator decides honest users’ responses based on z∗, where (R∗, z∗) is required to be a
signature under X in response to c = Hchal(µ, R). Essentially, this procedure is the same

2We stress the difference between “hash commitment” d and “commitment” R (to randomness r).

6 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

as simulating a single honest user in the unmasked scheme, so the simulation method of
the masked scheme is inherited from the unmasked one.

The simulation method of Sparkle works as follows. The simulator samples a challenge
c and calls the honest-verifier zero-knowledge (HVZK) simulator of Schnorr protocol to
obtain a signature (R∗, z∗), a signature under X responding to c. The simulator has to
make sure Hchal(µ, R) = c even though R is partially decided by the corrupted users. In
the ROM, the hash commitment becomes extractable for the reduction while still hiding in
A’s view. Such properties allow the simulator to know the corrupted users’ commitments
before revealing honest users’ commitments, and therefore know R before the adversary.
Hence, the simulator can program Hchal(µ, R) := c before A queries Hchal(µ, R).

Now we are ready to discuss the two remaining problems. First, corruption not only
leaks the secret key shares, but also secret states in signing sessions, specifically rk. Suppose
that rewinding happens after {Ri}i∈S are all output in a signing session. During the two
runs, A may corrupt more than t different users, so the reduction may need to reveal ri

for all i ∈ S. This means that there is no place to embed R∗ whose discrete logarithm is
unknown.

The solution is to also mask the commitments with another set of one-time masks that
sum to 0. To understand the effect, one can analogize rk to xk, Rk to Xk, and

∏
i∈S Ri

to X. Now Rk as the commitment to rk is never made public before rewinding, and the
masked commitment R̃k is independent of rk. This allows the reduction to defer sampling
rk until user k is corrupted. As a result, randomness ri’s output in the second run do
not reconstruct the discrete logarithm of

∏
i∈S Ri with the randomness ri’s output in the

first run. The reduction does not have to know the discrete logarithm of
∏

i∈S Ri, which
provides a place to embed R∗.

Masking commitments has a cost of turning the scheme stateful. Recall that one-
time masks are generated by hashing some distinct session-specific information sinf. The
distinctness is crucial for ensuring the masks are indeed “one-time”. When masking zk,
the distinctness of sinf is guaranteed by the high entropy of {Ri}i∈S contained in sinf.
However, now we want to mask Rk in the first round, before any protocol message is
output. We require users to agree on a distinct session id sid and use it to generate the
mask. To ensure the distinctness of sid, users have to maintain long-term states across
different challenges.

The second problem is more subtle. Recall that the HVZK simulator prepares a
signature (R∗, z∗) for a predetermined challenge c. However, we will show that adaptive
corruptions make the challenge c not determined before the simulator needs R∗ even with
the help of hash commitments in the first round. We remark a signature under X will be
revealed to A at the moment when a signing session has been consistently completed by all
honest users. This may happen not only following a signing query, but also a corruption
query. Consider the following behavior of A. It lets t users inconsistently finish a signing
session by sending different protocol messages to different honest signers. As a result, the
honest signers saw different aggregated commitments and responded to different challenges
{ci}i∈S . So far A gets no information, because the honest users’ one-time masks were
generated by hashing different sinf and do not sum to 0. However, A then corrupts all
users that participated in the session except one user k. As the only remaining honest
user in the session, it definitely has “consistently completed” the session, and a signature
responding to ck should be revealed. In the above process, multiple candidate challenges
remain until A corrupts t− 1 users, and more importantly remain after the simulator used
R∗ to decide honest users’ commitments. The HVZK simulator fails in such a situation.

The solution is to detect inconsistency in the signing protocol. The users run an
additional echo round after they exchange the hash commitments. In the echo round, the
users authentically exchange what they received from the first round (in fact, it suffices
that each user broadcasts a signature). As a result, A can no longer send inconsistent

Yanbo Chen 7

protocol messages to different honest users, as the inconsistent messages cannot be both
authenticated all honest users in the echo round.

In summary, two problems arise when masking Sparkle. The problems are caused by
the following features of the signature simulator of Sparkle, respectively:

• The simulator embeds R∗ with unknown discrete logarithm into honest users’ com-
mitments.

• The simulator can only respond to a predetermined challenge.

To resolve them, [KRT24a] makes the users stateful and add an echo round, respectively,
resulting in a 4-round stateful protocol.

Masking FROST.

This work explores wider applications of the masking technique. Since we want to improve
on round complexity, masking FROST [KG20, BCK+22], a well-known 2-round threshold
Schnorr scheme, becomes a natural choice. For a set S of users to sign µ, the signing
protocol of FROST works as follows:

• In the first round, each user k samples r1,k, r2,k ← Zp and outputs commitments
R1,k := gr1,k , R2,k := gr2,k .

• In the second round, user k receives protocol messages M = {(R1,i, R2,i)}i∈S . It
hashes µ and M to obtain a combination coefficient b := Hcomb(S, µ,M). Then it
calculates the aggregated commitment R :=

∏
i∈S R1,iR

b
2,i. It obtains the challenge

c := Hchal(µ, R) and outputs a response zk := r1,k + br2,k + c · λS,k · xk.

• Finally, a combiner aggregates the individual responses into z :=
∑

i∈S zi and outputs
the threshold signature as σ := (R, z).

The roadmap toward adaptive security is the same as Sparkle. First, we mask the
responses with one-time masks. As a result, we can reach a statistically indistinguishable
security game where each secret key share xk is sampled only when user k gets corrupted.
Next, the reduction needs to efficiently simulate this game. We need a simulator that
interactively issues signatures under X. The simulation method is inherited from FROST.
Let us review the simulation technique of FROST.

Instead of plain DL, FROST relies on the algebraic one-more discrete-logarithm
(AOMDL) assumption. The AOMDL problem asks to solve q + 1 discrete logarithms
with q calls to oracle DLog that solves the discrete logarithm. By “algebraic”, every
DLog query is required to be represented as a linear combination of the q + 1 input
elements. The simulation of FROST crucially exploits the DLog oracle.

The reduction takes an input element as the main public key X. Let C denote the set
of corrupted users. The simulator decides honest users’ commitments {R1,i}i∈S\C with
R1,∗ embedded in and {R2,i}i∈S\C with R2,∗ embedded in, where R1,∗ and R2,∗ are two
input elements. When the corrupted users also output their commitments, the combining
coefficient b and the challenge c are determined. After that, the simulator decides honest
users’ responses based on z∗, where (R1,∗, R2,∗, z∗) is required to satisfy gz∗ = R1,∗Rb

2,∗Xc,
like a signature share in FROST. The simulator makes a query DLog(R1,∗Rb

2,∗Xc) to
obtain such a response z∗. We remark that in the rewinding-based reduction, the simulator
may have to respond to a different challenge in the second run. The key is that the
reduction takes 2qs + 1 input elements, where qs is the maximum number of signing queries,
Each signing session uses two input elements as R1,∗, R2,∗, and the reduction has two
chances to call dlog, one for each run.

Now let us examine the cost of masking FROST by checking if it also has the features
of Sparkle that causes problems. First, FROST simulator also embeds R1,∗, R2,∗ with

8 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

unknown discrete logarithm into honest users’ commitments. The reduction faces the
problem that during the two runs, all honest users in a signing session may be corrupted and
leak their signing randomness r1,i, r2,i. To resolve this problem, we mask the commitments.
Generating masks in the first round relies on distinct session id and requires users to be
stateful.

In contrast, the second feature of FROST simulator is different from Sparkle. FROST
generates the response z∗ using dlog oracle instead of the HVZK simulator. The oracle
can handle any challenge c, not just a pre-determined one. Therefore, the additional echo
round is not necessary to mask FROST. In conclusion, the only cost is to be stateful!

Masking HBTS.

Can we do even better? We introduce a new DL-based 2-round threshold signature
scheme. The 2-round multi-signature scheme HBMS (which stands for “Hash-Based Multi-
Signature”) [BD21] can be adapted to the following threshold signature scheme, which we
call HBTS:

• In the first round, each user k ∈ S obtains a second generator h := Hgen(µ), samples
rk, yk ← Zp, and outputs commitment Rk := grk hyk .

• In the second round, user k receives {Ri}i∈S and computes the aggregated commit-
ment R :=

∏
i∈S Ri. It obtains challenge c := Hchal(µ, R) and outputs a response

(zk, yk), where zk := rk + c · λS,k · xk.

• Finally, a combiner aggregates the individual responses into z :=
∑

i∈S zi and
y :=

∑
i∈S yi and outputs σ := (R, z, y).

The resulting signature contains one more scalar than a Schnorr signature. It can be
verified by the equation gzhy = RXc.

Let us apply the roadmap toward adaptive security for the third time. We mask the
responses (zk, yk) with one-time masks, which statistically hide xk until user k is corrupted.
We then use the simulation method from HBTS to simulate signatures.

To understand the simulation of HBTS, we point out a connection to the Okamoto
signature scheme [Oka93]. The Okamoto scheme is similar to the Schnorr scheme but
works with two generators g and h. The secret key is (x, w) ∈ Z2

p, and the public key
is X := gxhw. The signer samples r, s ← Zp and computes commitment R := grhs. It
responds to the challenge c := Hchal(µ, R) with (z, y), where z = r + cx and y = s + cw.
The verification is to check whether gzhy = RXc. The important fact for us is that the
Okamoto scheme is witness indistinguishable. Specifically, a public key X corresponds
to many possible secret keys (x, w), while signatures issued with different secret keys are
identically distributed.

In HBTS, each user actually produces an Okamoto signature, with h being message-
specific and (x, 0) as the secret key. The reduction partitions the message space, such that
for some messages, Hgen(µ) = h = X1/w with some known w, while for the remaining
messages, Hgen(µ) = h = ga with known a. The first partition of messages are signable for
the reduction. It uses (0, w) as the secret key to issue an Okamoto signature, which by
the witness indistinguishability, is identical to what an honest user produces using (x, 0).
Forgery on the second partition of messages can be used to find the discrete logarithm of
X.

Signature simulation just does the same thing as normally signing. The simulator
does not have to carefully embed some R∗ into honest users’ commitment. Instead, it
normally generates honest users’ signing randomnesses and commitments. They decide
the randomness and commitment R∗ for the simulator to sign under X. The simulator
decides honest users’ responses based on (z∗, y∗), which it obtains by responding to the
challenge with Okamoto secret key (0, w).

Yanbo Chen 9

Let us examine the cost. The simulator has exactly the same features as a normal
signer: the committed randomness is known, and any challenge can be handled. None of
the two problems come up, and we already reach adaptive security, statelessly and without
extra rounds!

1.3 Related Work
The reader is referred to [KRT24a] and [BDLR25b] for comprehensive reviews of related
work. Here we mention two important topics that we do not focus on in this work.

Robustness and Identifiable Abort. This work does not consider robustness. A
robust threshold signature scheme outputs a valid signature even with malicious users
participating. This property is desirable in some distributed systems but usually requires
higher complexity. See recently proposed robust threshold Schnorr schemes in [RRJ+22,
Sho23, BHK+24, GS24, BLSW24].

Identifiable abort provides a similar functionality: tracing the malicious users that
prevent the protocol from issuing a valid signature. Prior works that we mentioned in
Table 1, except [KRT24a], all support non-interactive identifiable abort, since users output
verifiable signature shares in the protocol. In contrast, signature shares become unverifiable
after masking, so [KRT24a] and this work lose non-interactive identifiable abort.

Distributed Key Generation. This work assumes a trusted dealer for key distribution,
like prior works including [TZ23, CKM23, BLT+24, KRT24a]. In general, the trusted
dealer can be replaced with multi-party computation. Specially designed distributed key
generation for DL-based schemes was studied in [Ped92, CGJ+99, JL00, GJKR07, KMS20,
DYX+22, KGS23].

Concurrent Work. We mention several important concurrent works to appear at Crypto
2025. [CS25, CKK+25] show that new assumptions outside the DL family are necessary for
proving the full adaptive security of several threshold Schnorr signature schemes, including
FROST and Sparkle, thereby invalidating the proof of full adaptive security of Sparkle in
[CKM23]. The assumptions are necessary in the sense that, if they do not hold, then there
exists an efficient attack in the adaptive model. On the positive side, [CKK+25] proves
the full adaptive security of FROST based on their new assumption, together with AOMDL
and the AGM.

We believe that the results of [CS25, CKK+25] further strengthen the line of research
[BLT+24, KRT24a, BDLR25b, Che25], including this work, that construct new adaptively
secure threshold signature schemes following Sparkle. The original motivation was mainly
to avoid interactive assumptions and the AGM. As it turns out, these works also avoid the
additional assumptions, which may be even more important for concrete security.

[BDLR25a] proposes a three-round threshold Schnorr scheme Gargos that is proved
to be adaptively secure without the AGM, like FROST-Mask. The advantages of Gargos
include: support for non-interactive identifiable abort; constant-size secret key shares; and
reliance on DDH rather than the interactive AOMDL. One potential advantage of our
FROST-Mask is that, if non-repeating global state is available, then our scheme can be
made two-round, while Gargos cannot.

[dPKN+25] proposes an efficient interactive identifiable abort protocol for a lattice-
based threshold signature scheme using masking [DKM+24]. This considerably addresses
a main drawback of the masking technique: it makes it harder to trace misbehaving users
who cause the signing protocol to fail. As previously discussed, masked protocols lose
non-interactive identifiable abort. In fact, prior to [dPKN+25], no work had provided any

10 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

q-AOMDLA
GrGen(λ)

1: ctr := 0
2: (G, p, g)← GrGen(1λ)
3: for i ∈ [q + 1] do
4: xi ← Zp

5: Xi := gxi

6: return JA(G, p, g, X1, . . . , Xq+1)DLog = (x1, . . . , xq+1)K

DLog(X, α1, . . . , αq+1)
7: if ctr = q ∨X ̸=

∏q+1
i=1 Xαi

i then
8: return ⊥
9: ctr := ctr + 1

10: return
∑q+1

i=1 αixi

Figure 1: Game q-AOMDLA
GrGen(λ).

mechanism to trace misbehaving users in masked schemes. It would be interesting to study
whether their identifiable abort protocol works in the adaptive model.

2 Preliminaries
Notations. For an integer n, [n] denotes {1, 2, . . . , n}. For vectors of group elements[

X1
X2

]
,
[

Y1
Y2

]
, the multiplication is element-wise:

[
X1
X2

]
·
[

Y1
Y2

]
=
[

X1Y1
X2Y2

]
. For scalar a, the

exponentiation is also element-wise:
[

X1
X2

]a =
[

Xa
1

Xa
2

]
.

Algebraic Assumptions. A group generation algorithm GrGen takes a security param-
eter 1λ as input and outputs a set of group parameters (G, p, g), where G is a cyclic group
of order p, and g is a generator.

Definition 1 (DL). The discrete logarithm (DL) problem is (τ, ε)-hard for group generation
algorithm GrGen if for all algorithm A that runs in time at most τ(λ),

Pr[A(G, p, g, gx) = x : (G, p, g)← GrGen(1λ); x← Zp] ≤ ε(λ).

The algebraic one-more discrete logarithm (AOMDL) problem asks to solve q+1 discrete
logarithms with q calls to the DLog oracle. “Algebraic” means that queries to DLog
oracle are required to be represented as a linear combination of the input elements. This
allows a challenger to efficiently implement the DLog oracle, so the AOMDL assumption
is falsifiable.

Definition 2 (AOMDL). The q-algebraic one-more discrete logarithm (q-AOMDL) problem
is (τ, ε)-hard for group generation algorithm GrGen if for every algorithm A that runs in
time at most τ(λ), Pr[q-AOMDLA

GrGen(λ) = 1] ≤ ε(λ), where the game q-AOMDLA
GrGen(λ) is

defined in Fig. 1.

Shamir’s Secret Sharing. Shamir’s secret sharing scheme [Sha79] allows sharing secrets
over Zp. On input the number of users n < p, the threshold t ≤ n, and the secret x ∈ Zp,
the sharing algorithm Share(n, t, x) sets α0 := x and samples t− 1 other coefficients α1,
. . . , αt−1 ← Zp. It returns the secret shares {xi}i∈[n] where xi =

∑t−1
j=0 αjij . On input

Yanbo Chen 11

forkA(X)
1: ρ← R
2: h1 . . . , hq ← H
3: (I, Y)← A(X, h1, . . . , hq; ρ)
4: if I = 0 then
5: return ⊥
6: h′

I , . . . , h′
q ← H

7: (I ′, Y ′)← A(X, h1, . . . , hI−1, h′
I , . . . , h′

q; ρ)
8: if I ̸= I ′ ∨ hI = h′

I then
9: return ⊥

10: return (I, Y, Y ′)

Figure 2: Algorithm forkA(X) in Lemma 1.

{xi}i∈S where |S| = t, the reconstruction algorithm Rec({xi}i∈S) recovers x by polynomial
interpolation. In particular, x =

∑
i∈S λS,ixi, where the Lagrange coefficient for S is

defined as λS,i =
∏

j∈S,j ̸=i j/(i− j). Shamir’s secret sharing scheme is perfectly secure.

General Forking Lemma. We state the general forking lemma by Bellare and Neven
[BN06].

Lemma 1 (General forking lemma [BN06]). Fix an integer q ≥ 1, a set H of size |H| ≥ 2.
Let A be a randomized algorithm that takes as inputs X, h1, . . . , hq, takes as random coin
tosses from set R, and outputs a tuple (I, Y) where I ∈ {0, . . . , q}, and Y is what we call
“side output”. Let DX be an unspecified distribution. Let

ε = Pr[I ≥ 1 : X ← DX ; h1, . . . , hq ← H; (I, Y)← A(X, h1, . . . , hq)].

Define the forking algorithm forkA with respect to A as in Fig. 2. Let

ε′ = Pr[forkA(X) ̸=⊥: X ← DX].

Then
ε′ ≥ ε(ε

q
− 1
|H|

).

2.1 Threshold Signatures
We define stateful and stateless two-round threshold signature schemes. Text in orange is
only for stateful schemes; text in purple is only for stateless schemes. The key generation
in our syntax is assumed to be trusted but can be implemented by a distributed protocol
in practice. The signing protocol is described by three algorithms that each signer runs
locally. The first stage of signing returns a secret state and a protocol message. After
exchanging protocol messages with each other, each signer runs the second stage of signing
to obtain the second protocol message. The last stage is a combining algorithm that takes
all the previous protocol messages as inputs and outputs the final threshold signature.
The combining algorithm does not take any secret state as input and can be executed
by any designated party. An honest execution of the signing protocol is described as the
procedure Exec in Fig. 3, which we use to define completeness.

Definition 3 (Two-Round Threshold Signature Schemes). A two-round threshold signature
scheme TS consists of the following algorithms:

12 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

Exec(S, {ski}i∈S , µ, sid)
1: for j ∈ S do
2: (stj , msgj)← Sign(S, j, skj , µ, sid)
3: for j ∈ S do
4: msg′

j ← Sign′(S, j, skj , µ, sid, stj , {msgi}i∈S)
5: return σ ← Combine(S, µ, sid, {msgi}i∈S , {msg′

i}i∈S)

Figure 3: Procedure Exec for defining the completeness of threshold signature schemes.

• Setup(1λ) → par: On input the security parameter 1λ, the setup algorithm Setup
outputs global parameters par. All algorithms related to TS implicitly take par as
input.

• KGen(n, t) → (pk, {ski}i∈[n]): On inputs an allowable number of user n and a
threshold t, the key generation algorithm KGen outputs a public key pk and n secret
key shares {ski}i∈[n]. Each secret key share implicitly indicates n and t.

• The signing protocol consists of three algorithms:

– Sign(S, k, skk, µ, sid)→ (st, msg): On inputs a set of signer indices S, a signer
index k, a secret key share skk, a session identifier sid, and a message µ, the
first-round signing algorithm Sign outputs a state st and a protocol message
msg.

– Sign′(S, k, skk, µ, sid, st,M) → msg′: On inputs a set of signer indices S, a
signer index k, a secret key share skk, a session identifier sid, a message µ, a
state st and a set of protocol messages M, the second-round signing algorithm
Sign′ outputs a protocol message msg′.

– Combine(S, µ, sid,M,M′)→ σ: On inputs a set of signer indices S, a message µ,
a session identifier sid, and two sets of protocol messagesM,M′, the combining
algorithm outputs a signature σ.

• Vf(pk, µ, σ)→ 0/1: On inputs a public key pk, a message µ, and a signature σ, the
verification algorithm Vf outputs 0 or 1.

For the completeness, we require that for every n and t that the scheme supports, every
(pk, {ski}i∈[n]) ∈ KGen(n, t), every subset of signers S ⊆ [n] with |S| = t, every messages µ
and every identifier sid, we have

Pr[Vf(pk, µ, σ) = 1 | σ ← Exec(S, {ski}i∈S , µ, sid)] = 1,

where the procedure Exec, modeling an honest execution of TS, is defined in Fig. 3.

Security Model.

We define the adaptive security of two-round threshold signature schemes. The adversary
is given the public parameter, a public key, and oracles that allow corrupting and querying
signatures from the signers. It can concurrently open many signing sessions with each
signer. When the adversary corrupts a signer, it learns not only the secret key share but
also all secret states st the signer output in the first round of each signing session, including
completed sessions. The target of the adversary is to forge a signature σ∗ on a message µ∗

that it has never made signing queries on.
For stateless schemes, we maintain a counter per signer to set up session identifiers

to keep track of signing sessions with the signer. We remark that this identifier appears

Yanbo Chen 13

adp-UFA
TS(λ, n, t)

1: Q := ∅, C := ∅
2: for i ∈ [n] do
3: ctri := 0
4: Ii := ∅
5: par← Setup(1λ)
6: (pk, {ski}i∈[n])← KGen(n, t)
7: (µ∗, σ∗)← ASign,Sign′,Corr(pk)
8: return Jµ∗ /∈ Q ∧ Vf(pk, µ∗, σ∗) = 1K

Corr(k)
9: if |C| ≥ t− 1 then

10: return ⊥
11: C := C ∪ {k}
12: return (skk, {stk,i}i∈[ctrk], {stk,i}i∈Ik

)

Sign(S, k, µ, sid)
13: if k ∈ C∨sid ∈ Ik then

14: return ⊥
15: Q := Q∪ {µ}, Ik := Ik ∪ {sid}
16: ctrk := ctrk + 1
17: sid := ctrk

18: (st, msg)← Sign(S, k, skk, µ, sid)
19: stk,sid := st
20: (Sk,sid, µk,sid) := (S, µ)
21: roundk,sid := 1
22: return msg

Sign′(k, sid,M)
23: if k ∈ C ∨ roundk,sid ̸= 1 then
24: return ⊥
25: (S, µ) := (Sk,sid, µk,sid)
26: msg′ ←

Sign′(S, k, skk, µ, sid, stk,sid,M)
27: roundk,sid := 2
28: return msg′

Figure 4: The adp-UF security for defining the adaptive security of threshold signature
schemes.

in the security game but is not used in the scheme, unlike stateful schemes. For stateful
schemes, a signing query is valid only if adversary provides a distinct session identifier.
We store all previous identifiers for each user to check distinctness.

Our security definition models an adversary that fully controls the channels. In
particular, we do not assume authenticated channels. As the inputs to the second-stage
signing oracle, the adversary decides every protocol message, even on behalf of every honest
party. In fact, honest signers will not realize the signing sessions of other signers. The
adversary need not care about the consistency of protocol messages.

We also do not assume secure erasure. When the adversary corrupts a signer, it learns
all randomness used in the signer’s previous signing sessions. This implicitly requires the
secret state st, output by the first-round signing algorithm Sign, to contain all randomness
used during that session. While this not guaranteed by all schemes, it is true for our
schemes, so we omit the corresponding definitional complication.

Definition 4 (Adaptive Security of Threshold Signature Schemes.). A threshold signature
scheme TS is (qs, τ, ε)-adaptively secure if for every security parameter λ, every adversary
A that makes at most qs = qs(λ) signing queries and is of running time at most τ = τ(λ),
for every allowable n and t, Pr[adp-UFA

TS(λ, n, t) = 1] ≤ ε = ε(λ), where the security game
adp-UF is defined in Fig. 4.

3 FROST-Mask

3.1 Scheme
In this section, we present our stateful two-round threshold Schnorr signature scheme
FROST-Mask. The scheme is described in Fig. 5. With group parameters (G, p, g)
chosen in the setup algorithm, the scheme uses hash functions Hmask : {0, 1}∗ → G2,

14 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

Setup(1λ)
1: (G, p, g)← GrGen(1λ)
2: return (G, p, g)

KGen(n, t)
3: x← Zp

4: X := gx

5: {xi}i∈[n] ← Share(n, t, x)
6: for i ̸= j ∈ [n] do
7: seedi,j ← {0, 1}λ

8: pk := X
9: for i ∈ [n] do

10: ski :=
(xi, {seedi,j , seedj,i}j∈[n]\{i})

11: return (pk, {ski}i∈[n])

Sign(S, k, skk, µ, sid)
12: (xk, {seedk,i, seedi,k}i∈[n]\{k}) := skk

13: r1,k, r2,k ← Zp

14:

[
R1,k

R2,k

]
:=
[

gr1,k

gr2,k

]
15: Φk :=

∏
i∈S\{k} Hmask(S, seedk,i, sid)

·
∏

i∈S\{k} Hmask(S, seedi,k, sid)−1

16:

[
R̃1,k

R̃2,k

]
:=
[

R1,k

R2,k

]
· Φk

17: st := (r1,k, r2,k)
18: msg := (R̃1,k, R̃2,k)
19: return (st, msg)

Sign′(S, k, skk, µ, sid, st,M)
20: (xk, {seedk,i, seedi,k}i∈[n]\{k}) := skk

21: (r1,k, r2,k) := st

22: {msgi}i∈S :=M
23: for i ∈ S do
24: (R̃1,i, R̃2,i) := msgi

25: sinf := (sid, µ,M)
26: b := Hcomb(S, sinf)
27: R :=

∏
i∈S R̃1,iR̃

b
2,i

28: c := Hchal(µ, R)
29: zk := r1,k + br2,k + c · λS,k · xk

30: ∆k :=∑
i∈S\{k} H′

mask(S, seedk,i, sinf)
−
∑

i∈S\{k} H′
mask(S, seedi,k, sinf)

31: z̃k := zk + ∆k

32: return z̃k

Combine(S, sid, µ,M,M′)
33: {msgi}i∈S :=M
34: {msg′

i}i∈S :=M′

35: for i ∈ S do
36: (R̃1,i, R̃2,i) := msgi

37: z̃i := msg′
i

38: sinf := (sid, µ,M)
39: b := Hcomb(S, sinf)
40: R :=

∏
i∈S R̃1,iR̃

b
2,i

41: c := Hchal(µ, R)
42: z :=

∑
i∈S z̃i

43: return (R, z)

Vf(pk, µ, σ)
44: X := pk
45: (R, z) := σ
46: c := Hchal(µ, R)
47: return Jgz = RXcK

Figure 5: FROST-Mask.

Yanbo Chen 15

H′
mask : {0, 1}∗ → Zp, Hcomb : {0, 1}∗ → Zp, Hchal : {0, 1}∗ → Zp. Based on Shamir’s secret

sharing scheme, FROST-Mask supports all practical choices of (n, t). It is rather direct
to verify the completeness of FROST-Mask. Note that in an honestly executed signing
session,

∏
i∈S Φi = [1

1
], and

∑
i∈S ∆i = 0, and therefore

∏
i∈S R̃1,iR̃

b
2,i =

∏
i∈S R1,iR

b
2,i,∑

i∈S z̃i =
∑

i∈S zi.
As shown in [KRT24b], such a stateful scheme can be generically transformed into a

stateless one with one more round. In the additional round at the beginning of the signing
protocol, each signer samples a random string. The concatenation of those strings plays
the role of the session identifier.

3.2 Security
Theorem 1. If 2qs-AOMDL is (τaomdl, εaomdl)-hard for GrGen, then FROST-Mask is
(qs, τuf, εuf)-adaptively secure in the random oracle model against any adversary that makes
at most qh hash queries in total, where essentially τaomdl ≈ 2τuf, and

εaomdl ≥
1
q

(ε2
uf −

n4 + qh

2λ−1)− 4q2 + 1
p

,

where q = qs + qh + 1.

Proof (Part I). Assume that an adversary A (qs, τuf, εuf)-breaks the adp-UF of FROST-
Mask making at most qh hash queries in total. The first part of this proof contains a series
of hybrid games. Let G0 be the security game adp-UFA

FROST-Mask(λ, n, t). Let εi denote
the winning probability of A in Gi. We will end up with a game that can be simulated
by a reduction that solves AOMDL. We provide the pseudocode description and a quick
checklist of these games in Section A.

We make the variables used in the signing oracles global, so they can be referenced in
other oracle calls. We rename them to avoid ambiguity. Specifically:

• We rename the variables
[r1,k

r2,k

]
,
[

R1,k

R2,k

]
,
[

R̃1,k

R̃2,k

]
, and Φk referenced in Sign(S, k, µ, sid)

to
[rS,sid,1,k

rS,sid,2,k

]
,
[

RS,sid,1,k

RS,sid,2,k

]
,
[

R̃S,sid,1,k

R̃S,sid,2,k

]
, and ΦS,sid,k, respectively. Since for every user,

each session has a distinct sid, the added index (S, sid) eliminates ambiguity.

• We rename the variables b, c, zk, z̃k, and ∆k referenced in Sign′(k, sid,M) to bS,sinf ,
cS,sinf , zS,sinf,k, z̃S,sinf,k, and ∆S,sinf,k, where sinf is the one referenced in the same
oracle call, i.e. sinf = (sid, µ,M) where µ = µS,sid. Similarly, the added index
(S, sinf) is distinct for every user.
We need to be careful with b and c. They are renamed to bS,sinf and cS,sinf , where the
index does not contain k. Hence, those referenced in Sign′(k, sid,M) for different k
may become the same global variables. We need to ensure that they do not conflict.
This is true, because b and c is determined by (S, sinf): b is the hash of (S, sinf),
and then c can be computed from sinf and b. In Sign′(k, sid,M) with different k, as
long as (S, sinf) is the same, then b and c have the same value, so renaming them to
bS,sinf and cS,sinf does not cause conflict.

We will use the terms “define” and “initialize” interchangeably for variables. At some
point in the proof, we will define a variable but only assign it a pending value ?. A variable
with a pending value should be distinguished from an undefined one.

Defer Sampling the Seeds.

The purpose of the first several games is to defer sampling the seeds.

16 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

G1. In this game, we ensure the distinctness of seeds. After generating the seeds
{seedi,j}i̸=j∈[n], G1 aborts if the seeds are not distinct. The probability that G1 aborts is
at most n4/2λ, so

ε1 ≥ ε0 −
n4

2λ
.

G2. In this game, we modify how values are assigned to fresh hash queries to Hmask and
H′

mask and introduce two families of indexed global variables eS,sid,i,j and dS,sinf,i,j . Initially
eS,sid,i,j and dS,sinf,i,j are undefined. When eS,sid,i,j or dS,sinf,i,j is referenced for the first
time, the game initializes it to a uniformly random value. They are only referenced for the
assignment to fresh hash queries, which we change to the following:

• When a fresh query in the form of Hmask(S, sid, seedi,j) is made (internally by the
game or externally by A), program Hmask(S, sid, seedi,j) := eS,sid,i,j .

• When a fresh query in the form of H′
mask(S, sinf, seedi,j) is made (internally by the

game or externally by A), program H′
mask(S, sinf, seedi,j) := dS,sinf,i,j .

Recall that it has been ensured by G1 that the seeds are distinct, so from seedi,j being
queried, G2 can indeed determine the corresponding (i, j).

In this game, eS,sid,i,j and dS,sinf,i,j are just intermediate variables for programming
the random oracle. The change in this game is invisible to A, so

ε2 = ε1.

G3. This game changes the way that the signing oracles calculate the mask ΦS,sid,k and
∆S,sinf,k. In response to query Sign(S, k, µ, sid), we replace

ΦS,sid,k :=
∏

i∈S\{k}

(Hmask(S, sid, seedk,i)/Hmask(S, sid, seedi,k))

with
ΦS,sid,k :=

∏
i∈S\{k}

(eS,sid,k,i/eS,sid,i,k).

In response to query Sign′(k, sid,M) with signer group S, we replace

∆S,sinf,k :=
∑

i∈S\{k}

(H′
mask(S, sinf, seedk,i)− H′

mask(S, sinf, seedi,k))

with
∆S,sinf,k :=

∑
i∈S\{k}

(dS,sinf,k,i − dS,sinf,i,k).

The signing oracles do not make internal hash queries to calculate the masks. We remark
that if some eS,sid,i,j (resp. dS,sinf,i,j) is referenced for the first time here, it will be uniformly
sampled, while the corresponding Hmask(S, sid, seedi,j) (resp. H′

mask(S, sinf, seedi,j)) will
not be programmed at this time. Still it will be programmed to Hmask(S, sid, seedi,j) :=
eS,sid,i,j (resp. H′

mask(S, sinf, seedi,j) := dS,sinf,i,j) when it is queried. The change in this
game is invisible to A, so

ε3 = ε2.

Yanbo Chen 17

G4. In this game, seeds are not sampled in the setup phase. Instead, G4 only samples
seedi,j when it has to be output for the corruption of user i or j. The game still aborts
when some seeds collide.

G3 has made the signing oracles not make Hmask and H′
mask queries, and therefore

not use any seed. G3 differs from G4 only if A queries some seedi,j to Hmask or H′
mask

before user i or j is corrupted. In this case G3 programs some eS,sid,i,j or dS,sinf,i,j to the
random oracle, while G4 programs a uniform value since seedi,j has not been generated.
The probability that A queries a seed that has not been output is at most qh/2λ, so

ε4 ≥ ε3 −
qh

2λ
.

Defer Sampling Secret Key Shares.

The purpose of the following games is to defer the sampling of secret key shares to the
corresponding corruption query. This is made possible by masking responses.

G5. So far, ∆S,sinf,k is only defined in Sign′ for uncorrupted user k. In this game, we ad-
ditionally initialize ∆S,sinf,k when answering H′

mask(S, sinf, seedk,i) or H′
mask(S, sinf, seedi,k)

if user k is corrupted. Same as in Sign′, it is initialized to ∆S,sinf,k :=
∑

S\{k}(dS,sinf,k,i −
dS,sinf,i,k), and also recall that dS,sinf,i,j will be initialized to a uniformly random value
when it is referenced for the first time here.

We note that this change is invisible to A: ∆S,sinf,k initialized in H′
mask will never be

referenced. Its initialization just causes some related dS,sinf,i,j being initialized, from the
same distribution as in G4.

ε5 = ε4.

G6. In this game, we reverse the order of generating ∆S,sinf,k and dS,sinf,i,j , both in Sign′

and H′
mask. Instead of setting ∆S,sinf,k :=

∑
S\{k}(dS,sinf,k,i−dS,sinf,i,k), we directly sample

∆S,sinf,k from its distribution. Then we initialize those dS,sinf,i,j that are related to ∆S,sinf,k
and undefined.3 The initialization of dS,sinf,i,j is modified accordingly: they are uniformly
sampled under the constraint that ∆S,sinf,k =

∑
i∈S\{k}(dS,sinf,k,i−dS,sinf,i,k). Equivalently,

all but one undefined dS,sinf,i,j are uniformly sampled, and then the last one is determined
by the constraint.

Now we specify how to initialize ∆S,sinf,k:
• If ∆S,sinf,i has been initialized for all i ∈ S \ {k}, set ∆S,sinf,k := −

∑
i∈S\{k} ∆S,sinf,i.

• Else, uniformly sample ∆S,sinf,k.
To show that G6 is identical to G5, it suffices to show that the above initialization of

∆S,sinf,k indeed follows its distribution in G5. Below we analyze this distribution in G5.
If ∆S,sinf,i has been initialized for all i ∈ S\{k}, then dS,sinf,i,j for all i ̸= j ∈ S has been

initialized. One can verify that ∆S,sinf,k is determined by ∆S,sinf,k = −
∑

i∈S\{k} ∆S,sinf,i,
since∑

i∈S
∆S,sinf,i =

∑
i∈S

∑
j∈S\{i}

(dS,sinf,i,j − dS,sinf,j,i) =
∑

i ̸=j∈S

dS,sinf,i,j −
∑

i̸=j∈S

dS,sinf,j,i = 0.

In the other case, there exists some j such that ∆S,sinf,k and ∆S,sinf,j are both undefined.
We claim that this implies dS,sinf,k,j and dS,sinf,j,k are both undefined. Therefore, ∆S,sinf,k :=∑

i∈S\{k}(dS,sinf,k,i − dS,sinf,i,k) is uniformly random, since dS,sinf,k,j and dS,sinf,j,k will be
referenced for the first time and uniformly sampled.

To see the claim, note that G5 only references dS,sinf,i,j when
3We say dS,sinf,i,j is related to ∆S,sinf,k if dS,sinf,i,j appears in the equation ∆S,sinf,k =∑
S\{k}(dS,sinf,k,i − dS,sinf,i,k), i.e., (i, j) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k}.

18 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

• initializing ∆S,sinf,i or ∆S,sinf,j ;

• or programming H′
mask(S, sinf, seedi,j).

For the second case, since seedi,j has been generated, user i or j must be corrupted. Hence,
G5 must assure at least one of ∆S,sinf,i or ∆S,sinf,j has been initialized when A first queries
H′

mask(S, sinf, seedi,j), before it is programmed. Therefore, dS,sinf,i,j only get referenced
for or after the initialization of ∆S,sinf,i or ∆S,sinf,j . Now in our claim, we have ∆S,sinf,k
and ∆S,sinf,j both undefined, so dS,sinf,k,j and dS,sinf,j,k have never been referenced and
initialized.

In conclusion, we have
ε6 = ε5.

G7. In this game, we change the way to initialize ∆S,sinf,k in the case that ∆S,sinf,i has
been initialized for all i ∈ S \{k}. In G6 it is calculated as ∆S,sinf,k := −

∑
i∈S\{k} ∆S,sinf,i.

Our goal is to avoid referencing ∆S,sinf,i if user i is uncorrupted. It will reference the secret
key shares, while we also eusure that it only references xi for corrupted user i.

Here user k can be corrupted or uncorrupted. We first discuss the case that k is
corrupted. Note that if i is uncorrupted, ∆S,sinf,i could only be initialized in the signing
oracle, and it holds that

∆S,sinf,i = z̃S,sinf,i − zS,sinf,i = z̃S,sinf,i − (rS,sid,1,i + bS,sinf · rS,sid,2,i + cS,sinf · λS,i · xi),

for the sid contained in sinf. By substituting into ∆S,sinf,k = −
∑

i∈S\{k} ∆S,sinf,i the above
equation, we can instead calculate ∆S,sinf,k by

∆S,sinf,k = −
∑

i∈S\C

(z̃S,sinf,i − (rS,sid,1,i + bS,sinf · rS,sid,2,i + cS,sinf · λS,i · xi))

−
∑

i∈S∩C\{k}

∆S,sinf,i

=
∑

i∈S\C

(rS,sid,1,i + bS,sinf · rS,sid,2,i) + cS,sinf(x−
∑

i∈S∩C
λS,i · xi)

−
∑

i∈S\C

z̃S,sinf,i −
∑

i∈S∩C\{k}

∆S,sinf,i.

(2)

For the second equation, we used the reconstruction of Shamir’s secret sharing x =∑
i∈S λS,ixi.
For uncorrupted user k, we do a similar substitution and get

∆S,sinf,k = −
∑

i∈S\C\{k}

(z̃S,sinf,i − (rS,sid,1,i + bS,sinfrS,sid,2,i + cS,sinf · λS,i · xi))

−
∑

i∈S∩C
∆S,sinf,i

=
∑

i∈S\C\{k}

(rS,sid,1,i + brS,sid,2,i) + cS,sinf(x−
∑

i∈S∩C∪{k}

λS,i · xi)

−
∑

i∈S\C\{k}

z̃S,sinf,i −
∑

i∈S∩C
∆S,sinf,i.

(3)

This game just uses alternative ways to calculate ∆S,sinf,k = −
∑

i∈S\{k} ∆S,sinf,i. The
change is invisible, so

ε7 = ε6.

Yanbo Chen 19

G8. For any honest user k, ∆S,sinf,k can only be initialized in the signing oracle. Since
sinf contains sid, and each signing session has a distinct (S, sid), we know that (S, sinf) are
distinct across different signing sessions for a single user. Therefore, each honest user k
must initialize a ∆S,sinf,k (instead of referencing an already defined one) in each signing
session.

In this game, we swap the order of initializing ∆S,sinf,k and generating masked response
z̃S,sinf,k in the signing oracle. In G7, we first initialize ∆S,sinf,k and then compute z̃S,sinf,k :=
zS,sinf,k + ∆S,sinf,k. Now in G8, we first sample z̃S,sinf,k from its distribution and then
compute ∆S,sinf,k := z̃S,sinf,k − zS,sinf,k.

Let us specify how to sample z̃S,sinf,k. There are two cases. If there is some i ∈ S \ {k}
such that ∆S,sinf,i is undefined, then ∆S,sinf,k here is uniformly random. Hence, we
uniformly sample z̃S,sinf,k.

Else, for all i ∈ S \{k}, ∆S,sinf,i has been initialized. In this case, ∆S,sinf,k is determined
by Eq. (3). We have

z̃S,sinf,k = zS,sinf,k + ∆S,sinf,k

= rS,sid,1,k + bS,sinf · rS,sid,2,k + cS,sinf · λS,k · xk

+
∑

i∈S\C\{k}

(rS,sid,1,i + bS,sinf · rS,sid,2,i) + cS,sinf(x−
∑

i∈S∩C∪{k}

λS,i · xi)

−
∑

i∈S\C\{k}

z̃S,sinf,i −
∑

i∈S∩C
∆S,sinf,i

=
∑

i∈S\C

(rS,sid,1,i + bS,sinf · rS,sid,2,i) + cS,sinf(x−
∑
S∩C

λS,i · xi)

−
∑

i∈S\C\{k}

z̃S,sinf,i −
∑

i∈S∩C
∆S,sinf,i,

(4)

where sid in contained in sinf.
This game just changes the order of generating variables while keeps the distributions,

which is invisible to A. Hence,
ε8 = ε7.

G9. Recall that G7 and G8 has ensured that the generation of ∆S,sinf,k and z̃S,sinf,k does
not reference any ∆S,sinf,i for uncorrupted user i. Now ∆S,sinf,k only affects the view of
A by constraining the initialization of related dS,sinf,k,i and dS,sinf,i,k, which occurs right
after the initialization of ∆S,sinf,k. Moreover, since G6, dS,sinf,i,j is invisible to A until
programmed into H′

mask(S, sinf, seedi,j), which can happen only after the generation of
seedi,j when user i or j is corrupted.

Therefore, we can defer the calculation of ∆S,sinf,k := z̃S,sinf,k − zS,sinf,k and the
initialization of related dS,sinf,k,i and dS,sinf,i,k from the signing oracle to the corruption of
k. In particular, ∆S,sinf,k is still initialized in the signing oracle, but to a pending value
∆S,sinf,k :=?. Only when user k gets corrupted, it is set to ∆S,sinf,k := z̃S,sinf,k − zS,sinf,k,
and we initialize related dS,sinf,k,i and dS,sinf,i,k that have not been initialized. We note
that dS,sinf,k,i and dS,sinf,i,k may be initialized for the corruption of i rather than k if i
is corrupted earlier than k. Changing the time of initializing variables dS,sinf,i,j does not
change their distributions: they are still uniformly distributed under the constraint of
related ∆S,sinf,i, whose distributions are the same as in G8.

The modification in this game is invisible for A, so

ε9 = ε8.

20 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

G10. Note that response zS,sinf,k is only referenced when calculating ∆S,sinf,k := z̃S,sinf,k−
zS,sinf,k, which was just deferred to the corruption of user k. It suffices to also defer the
calculation of zS,sinf,k := rS,sid,1,k + bS,sinf · rS,sid,2,k + cS,sinf · λS,k · xk until the corruption
of user k, just before calculating ∆S,sinf,k. It holds that

ε10 = ε9.

G11. Note that secret key share xk is only referenced when being output for the corruption
of k, for calculating zS,sinf,k, and in Eqs. (4) and (5). The calculation of zS,sinf,k was just
deferred to the corruption of user k, and Eqs. (4) and (5) only reference xi for corrupted
user i ∈ S ∩ C. Thus, it suffices to defer the sampling of xk until user k gets corrupted,
just before the calculation of zS,sinf,k. Since at most t− 1 users can be corrupted, by the
security of Shamir’s secret sharing, it suffices to sample xk uniformly. It holds that

ε11 = ε10.

Defer Sampling Committed Randomness.

The purpose of the following games is to defer the sampling of randomness rS,sid,1,k,
rS,sid,2,k until the corruption of user k. This is made possible by masking commitments.

G12. Like G5, we additionally initialize ΦS,sid,k when answering Hmask(S, sid, seedk,i) and
Hmask(S, sid, seedi,k) for corrupted user k. It is initialized to

∏
i∈S\{k}(eS,sid,k,i/eS,sid,i,k),

where eS,sid,k,i and eS,sid,i,k are uniformly sampled if they are referenced for the first time.
ΦS,sid,k initialized in Hmask will never be referenced and does not change the distributions
of eS,sid,i,j . Hence, this change is invisible to A.

ε12 = ε11.

G13. Like G6, we initialize ΦS,sid,k by sampling directly from its distribution, then
we initialize those related eS,sid,k,i and eS,sid,i,k under the constraint that ΦS,sid,k =∏

i∈S\{k}(eS,sid,k,i/eS,sid,i,k). Specifically, we initialize ΦS,sid,k as follows:

• If ΦS,sid,i has been initialized for all i ∈ S \ {k}, set ΦS,sid,k :=
∏

i∈S\{k} Φ−1
S,sid,i.

• Else, uniformly sample ΦS,sid,k.

The same argument as in G6 can show that G13 is identical to G12, so

ε13 = ε12.

G14. Like G7, we change the way to initialize ΦS,sid,k when ΦS,sid,i has been defined for
all i ∈ S \ {k}. The goal is to avoid referencing ΦS,sid,i if user i is uncorrupted.

User k can be corrupted or uncorrupted. We first discuss the case that k is corrupted.
For any uncorrupted user i, ΦS,sid,i could only be initialized in the signing oracle and used
to mask the commitment, which satisfies

[
R̃S,sid,1,i

R̃S,sid,2,i

]
=
[

RS,sid,1,i

RS,sid,2,i

]
· ΦS,sid,i. Substitute this

equation into ΦS,sid,k =
∏

i∈S\{k} Φ−1
S,sid,i, and we get

ΦS,sid,k =
∏

i∈S\C

(
[
R̃S,sid,1,i

R̃S,sid,2,i

]
/

[
RS,sid,1,i

RS,sid,2,i

]
)−1 ·

∏
i∈S∩C\{k}

Φ−1
S,sid,i. (5)

For uncorrupted user k, the substitution gives

ΦS,sid,k =
∏

i∈S\C\{k}

(
[
R̃S,sid,1,i

R̃S,sid,2,i

]
/

[
RS,sid,1,i

RS,sid,2,i

]
)−1 ·

∏
i∈S∩C

Φ−1
S,sid,i. (6)

Yanbo Chen 21

We solely change the way to calculate ΦS,sid,k when it is already determined. The
change is invisible to A, so

ε14 = ε13.

G15. The security game ensures that each session has a distinct (S, sid), so an honest user k
must initialize a ΦS,sid,k (instead of reference an already defined one) in each signing session.
Like G8, in this game we swap the order of initializing ΦS,sid,i and generating masked
commitment

[
R̃S,sid,1,k

R̃S,sid,2,k

]
. In G14, we initialize ΦS,sid,k and then compute

[
R̃S,sid,1,k

R̃S,sid,2,k

]
:=[

RS,sid,1,k

RS,sid,2,k

]
· ΦS,sid,k. Now in G15, we first sample

[
R̃S,sid,1,k

R̃S,sid,2,k

]
from its distribution and then

compute ΦS,sid,k :=
[

R̃S,sid,1,k

R̃S,sid,2,k

]
/
[

RS,sid,1,k

RS,sid,2,k

]
.

There are two cases. If there is some i ∈ S \ {k} such that ΦS,sid,i is undefined, then
ΦS,sid,k here is uniformly random. Hence, we uniformly sample

[
R̃S,sid,1,k

R̃S,sid,2,k

]
.

Else, for all i ∈ S \ {k}, ΦS,sid,i has been initialized. In this case, ΦS,sid,k is determined
by Eq. (3). Hence, we have[
R̃S,sid,1,k

R̃S,sid,2,k

]
=
[
RS,sid,1,k

RS,sid,2,k

]
·ΦS,sid,k =

∏
i∈S\C

[
RS,sid,1,i

RS,sid,2,i

]
·

∏
i∈S\C\{k}

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1

·
∏

i∈S∩C
Φ−1

S,sid,i.

(7)
We just swapped the order of generating variables while keeping the distributions,

which is invisible. Thus,
ε16 = ε15.

G16. Recall that G14 made the initialization of ΦS,sid,k not reference any ΦS,sid,i for
uncorrupted user i. G15 made the generation of

[
R̃S,sid,1,k

R̃S,sid,2,k

]
not reference ΦS,sid,k. Now

ΦS,sid,k only affects the view of A by constraining the initialization of related eS,sid,k,i and
eS,sid,i,k, which occurs right after the initialization of ΦS,sid,k. Moreover, eS,sid,i,j is invisible
to A until programmed into Hmask(S, sid, seedi,j), which can happen only if user i or j is
corrupted. Like G9, it suffices to defer the calculation of ΦS,sid,k :=

[
R̃S,sid,1,k

R̃S,sid,2,k

]
/
[

RS,sid,1,k

RS,sid,2,k

]
and the initialization of related eS,sid,k,i and eS,sid,i,k from the signing oracle to the
corruption of user k or i. Specifically, ΦS,sid,k is still initialized in the signing oracle,
but to a pending value ΦS,sid,k :=?. Only when user k gets corrupted, it is set to
ΦS,sid,k :=

[
R̃S,sid,1,k

R̃S,sid,2,k

]
/
[

RS,sid,1,k

RS,sid,2,k

]
, and then the related eS,sid,k,i and eS,sid,i,k are initialized.

This is an invisible change, and we have

ε16 = ε15.

G17. Commitment
[

RS,sid,1,k

RS,sid,2,k

]
is only referenced in Eqs. (5) and (7) and when calculating

ΦS,sid,k :=
[

R̃S,sid,1,k

R̃S,sid,2,k

]
/
[

RS,sid,1,k

RS,sid,2,k

]
. The calculation of ΦS,sid,k was just deferred until user k

gets corrupted. Eqs. (5) and (7) only need the product
∏

i∈S\C

[
RS,sid,1,i

RS,sid,2,i

]
. Therefore, it

suffices to defer the calculation of single
[

RS,sid,1,k

RS,sid,2,k

]
:=
[

grS,sid,1,k

grS,sid,2,k

]
until user k is corrupted.

In Eqs. (5) and (7) we directly calculate the product by

∏
i∈S\C

[
RS,sid,1,i

RS,sid,2,i

]
:=
[

g

∑
i∈S\C

rS,sid,1,i

g

∑
i∈S\C

rS,sid,2,i

]
.

22 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

Specifically, we replace Eqs. (5) and (7) with

ΦS,sid,k =
[

g

∑
i∈S\C

rS,sid,1,i

g

∑
i∈S\C

rS,sid,2,i

]
·
∏

i∈S\C

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1

·
∏

i∈S∩C\{k}

Φ−1
S,sid,i, (8)

[
R̃S,sid,1,k

R̃S,sid,2,k

]
=
[

g

∑
i∈S\C

rS,sid,1,i

g

∑
i∈S\C

rS,sid,2,i

]
·

∏
i∈S\C\{k}

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1

·
∏

i∈S∩C
Φ−1

S,sid,i, (9)

respectively. This change is invisible, and

ε17 = ε16.

G18. In G17, the committed randomness
[rS,sid,1,k

rS,sid,2,k

]
is only referenced

• to calculate individual commitment
[

RS,sid,1,k

RS,sid,2,k

]
;

• to calculate individual response zS,sinf,k;

• to calculate
∏

i∈S\C

[
RS,sid,1,i

RS,sid,2,i

]
in Eqs. (8) and (9);

• in Eqs. (2) and (4).

Recall that the calculation of individual commitment and response have been deferred
until user k gets corrupted in G10 and G17, respectively. In Eqs. (2), (4), (8) and (9), we
only need the sum

∑
i∈S\C

[rS,sid,1,i
rS,sid,2,i

]
.

In this game, we make the following change. When (S, sid) is queried to Sign for the
first time, we uniformly sample

[rS,sid,1,∗
rS,sid,2,∗

]
. This is the sum

∑
i∈S\CS,sid

[rS,sid,1,i
rS,sid,2,i

]
that we

pre-sample here, where CS,sid is the current set of corrupted users.
When user i ∈ S \ CS,sid is corrupted, we sample

[rS,sid,1,i
rS,sid,2,i

]
. We will specify how to

sample them later. When we need
∑

i∈S\C
[rS,sid,1,i

rS,sid,2,i

]
in Eqs. (2), (4), (8) and (9), since

these can only occur after
[rS,sid,1,∗

rS,sid,2,∗

]
are sampled, we have CS,sid ⊆ C, and thus we can

calculate it as ∑
i∈S\C

[
rS,sid,1,i

rS,sid,2,i

]
=

∑
i∈S\CS,sid

[
rS,sid,1,i

rS,sid,2,i

]
−

∑
i∈S∩C\CS,sid

[
rS,sid,1,i

rS,sid,2,i

]

=
[
rS,sid,1,∗
rS,sid,2,∗

]
−

∑
i∈S∩C\CS,sid

[
rS,sid,1,i

rS,sid,2,i

]
.

Specifically, Eqs. (2), (4), (8) and (9) are replaced with the following Eqs. (10) to (13),
respectively:

∆S,sinf,k = rS,sid,1,∗ + bS,sinf · rS,sid,2,∗ + cS,sinf · x

−
∑

i∈S∩C\CS,sid

(rS,sid,1,i + bS,sinf · rS,sid,2,i)− cS,sinf ·
∑

i∈S∩C
λS,i · xi

−
∑

i∈S\C

z̃S,sinf,i −
∑

i∈S∩C\{k}

∆S,sinf,i

(10)

z̃S,sinf,k = rS,sid,1,∗ + bS,sinf · rS,sid,2,∗ + cS,sinf · x

−
∑

i∈S∩C\CS,sid

(rS,sid,1,i + bS,sinf · rS,sid,2,i)− cS,sinf
∑

i∈S∩C
λS,i · xi

−
∑

i∈S\C\{k}

z̃S,sinf,i −
∑

i∈S∩C
∆S,sinf,i

(11)

Yanbo Chen 23

ΦS,sid,k =
[
grS,sid,1,∗

grS,sid,2,∗

]
·

∏
i∈S∩C\CS,sid

[
grS,sid,1,i

grS,sid,2,i

]−1
·
∏

i∈S\C

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1

·
∏

i∈S∩C\{k}

Φ−1
S,sid,i

(12)[
R̃S,sid,1,k

R̃S,sid,2,k

]
=
[
grS,sid,1,∗

grS,sid,2,∗

]
·

∏
i∈S∩C\CS,sid

[
grS,sid,1,i

grS,sid,2,i

]−1
·

∏
i∈S\C\{k}

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1

·
∏

i∈S∩C
Φ−1

S,sid,i.

(13)
It remains to specify how to sample

[rS,sid,1,i
rS,sid,2,i

]
when user i ∈ S \ CS,sid gets cor-

rupted. It should be uniformly random under the constraint of the pre-sampled sum, i.e.∑
S\CS,sid

[rS,sid,1,i
rS,sid,2,i

]
=
[rS,sid,1,∗

rS,sid,2,∗

]
. Equivalently, for all but the last i ∈ S \ CS,sid,

[rS,sid,1,i
rS,sid,2,i

]
is uniformly sampled. The last one is determined by the constraint. Moreover, since A
can corrupt at most t− 1 users, it is impossible that all users in S are corrupted, so the
last

[rS,sid,1,i
rS,sid,2,i

]
is never referenced. Hence, we always uniformly sample

[rS,sid,1,i
rS,sid,2,i

]
when user

i ∈ S \ CS,sid gets corrupted.
The change is invisible to A, so

ε18 = ε17.

Collect everything together, and we have

ε18 ≥ ε0 −
N4 + qh

2λ
.

The remaining part of this proof is a reduction that solves the 2qs-AOMDL problem by
simulating G18 for the adversary and applying the general forking lemma. The reduction
is similar to the one for FROST [BCK+22].

Proof (Part II). The reduction B takes 2qs + 1 group elements as inputs. We first show
how a wrapper W takes these group elements and simulate G18 for A. The main structure
of the reduction will then be applying the general forking lemma [BN06] to W.

W takes group elements U , V1,1, V2,1, . . . , V1,qs , V2,qs as inputs. It simulates G18 for A
using these group elements as follows:

• It sets the target public key X as the first input element. Hence, the secret key x is
the unknown discrete logarithm of this element.

• Whenever a fresh (S, sid) is queried to Sign,
[rS,sid,1,∗

rS,sid,2,∗

]
should be sampled. Here, W

takes two unused input elements as
[

RS,sid,1,∗
RS,sid,2,∗

]
=
[

grS,sid,1,∗

grS,sid,2,∗

]
. Hence, rS,sid,1,∗ and

rS,sid,2,∗ are the unknown discrete logarithms of these elements.

Now we specify how W simulates G18 when those unknown values x, rS,sid,1,∗, and
rS,sid,2,∗ are referenced, which only occurs in Eqs. (10) to (13).

• In Eqs. (12) and (13),
[rS,sid,1,∗

rS,sid,2,∗

]
is referenced in the form of

[
grS,sid,1,∗

grS,sid,2,∗

]
, i.e.

[
RS,sid,1,∗
RS,sid,2,∗

]
,

which is known by W.

• In Eqs. (10) and (11), the unknown part is rS,sid,1,∗ +bS,sinf ·rS,sid,2,∗ +cS,sinf ·x. Other
terms in the equations are (publicly) known. W queries RS,sid,1,∗ ·R

bS,sinf
S,sid,2,∗ ·XcS,sinf

to DLog to obtain the unknown part.

For each Hcomb(S, sinf) query with returned value b, we say Hchal(µ, R) is its resulting
query if sinf parses into (sid, µ, {(R̃1,i, R̃2,i)}i∈S), and R =

∏
i∈S R̃1,iR̃

b
2,i. The Hchal query

made in Sign′ is always the resulting query to the Hcomb query just made. W does the
following in addition:

24 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

• When A makes a query Hcomb(S, sinf), before returning b, W internally makes the
resulting Hchal query.

To fit in the syntax specified in Lemma 1, W takes h1, . . . , hq as inputs and assigns
them to Hchal in order. If the simulated G18 outputs 1, i.e., A outputs a valid forgery on a
message that has never been queried to Sign, then W returns I such that hI was assigned
to Hchal(µ∗, R∗) that corresponds to the forgery. If the game aborts, or A does not output
a valid forgery, then W returns I = 0. For simplicity, we do not specify the side output Y .
We just note that Y can contain all internal variables of W that B needs.

Reduction B runs forkW(inp) as specified in Lemma 1, with inp being its input group
elements.4 If forkW returns non-⊥, then B gets two valid forgeries (R∗, z∗) and (R∗, z′

∗)
satisfying gz∗ = R∗Xc∗ and gz′

∗ = R∗Xc′
∗ , with the same commitment R∗ but different

challenges c∗ ≠ c′
∗. It then extracts the discrete logarithm of the first input element, i.e.

the secret key, as x := (z∗ − z′
∗)/(c∗ − c′

∗).
What remains is to extract the discrete logarithms of other input elements, i.e. those[rS,sid,1,∗

rS,sid,2,∗

]
. For each such a pair, W makes at most one DLog query to obtain

rS,sid,1,∗ + bS,sinf · rS,sid,2,∗ + cS,sinf · x, rS′,sid′,1,∗ + b′
S′,sinf′ · rS′,sid′,2,∗ + c′

S′,sinf′ · x

in each of the two executions, respectively. We note that here
[rS,sid,1,∗

rS,sid,1,∗

]
=
[rS′,sid′,1,∗

rS′,sid′,1,∗

]
are

the discrete logarithms of the same pair of input elements — the same pair may correspond
to different (S, sid) in two executions. Here, B already knows x, so the answers to such
queries constitute two equations with two unknown rS,sid,1,∗ and rS,sid,2,∗. B can solve
them to obtain

[rS,sid,1,∗
rS,sid,1,∗

]
if bS,sinf ̸= b′

S′,sinf′ . If W did not make such a query in one or
both executions, then B can make the remaining queries to get enough equations. If W
made such a query in both executions, and (bS,sinf , cS,sinf) = (b′

S,sinf , c′
S′,sinf′), then these

two queries are repeated and only count as one, so B can also make one more query to get
enough equations. The only bad case is bS,sinf = bS′,sinf′ and cS,sinf ̸= cS′,sinf′ , where two
distinct queries have been made but only provide one equation.

We claim that if the returned values of Hcomb in the two executions are all distinct
(except that those whose assignment is before the forking point must be identical), then
this bad case never happens. These values are not distinct only with probability at most
4q2/p. To prove this claim, bS,sinf and cS,sinf are the answers to a Hcomb query and its
resulting Hchal query. Recall that W makes the resulting query internally. Therefore,
the value cS,sinf is assigned at the latest right after the assignment to bS,sinf in an atomic
operation (so the forking point cannot be in between). If bS,sinf = b′

S′,sinf′ , then they are the
answers to the same query made before the forking point. Hence, their resulting queries
must also be the same and made before the forking point, so cS,sinf ̸= cS′,sinf′ is impossible.

By Lemma 1, and taking account of the above bad event, B solves (2qs + 1)-AOMDL
with the stated probability.

4 HBTS-Mask
4.1 Scheme
In this section, we present our stateless two-round threshold signature scheme HBTS-Mask.
The scheme is described in Fig. 6. With group parameters (G, p, g) chosen in the setup
algorithm, the scheme uses hash functions Hmask : {0, 1}∗ → Z2

p, Hgen : {0, 1}∗ → G,
Hchal : {0, 1}∗ → Zp. It supports all practical choices of (n, t). To see the completeness
of HBTS-Mask, note that in an honestly executed signing session,

∑
i∈S ∆i = [0

0], and
therefore

∑
i∈S
[

z̃i
ỹi

]
=
∑

i∈S [zi
yi].

4More formally, B also runs a subroutine that handles the DLog queries of W by forwarding them to
the DLog oracle of B, and the forking is applied to W plus this subroutine with DLog considered inside.

Yanbo Chen 25

Setup(1λ)
1: (G, p, g)← GrGen(1λ)
2: return (G, p, g)

KGen(n, t)
3: x← Zp

4: X := gx

5: {xi}i∈[n] ← Share(n, t, x)
6: for i ̸= j ∈ [n] do
7: seedi,j ← {0, 1}λ

8: pk := X
9: for i ∈ [n] do

10: ski :=
(xi, {seedi,j , seedj,i}j∈[n]\{i})

11: return (pk, {ski}i∈[n])

Sign(S, k, skk, µ)
12: (xk, {seedk,i, seedi,k}i∈[n]\{k}) := skk

13: h := Hgen(µ)
14: rk, yk ← Zp

15: Rk := grk hyk

16: st := (rk, yk)
17: msg := Rk

18: return (st, msg)

Sign′(S, k, skk, µ, st,M)
19: (xk, {seedk,i, seedi,k}i∈[n]\{k}) := skk

20: (rk, yk) := st
21: {msgi}i∈S :=M

22: for i ∈ S do
23: Ri := msgi

24: R :=
∏

i∈S Ri

25: c := Hchal(µ, R)
26: zk := rk + c · λS,k · xk

27: sinf := (µ,M)
28: ∆k :=∑

i∈S\{k}(Hmask(S, seedk,i, sinf)
−Hmask(S, seedi,k, sinf))

29:
[

z̃k
ỹk

]
:= [zk

yk] + ∆k

30: return (z̃k, ỹk)

Combine(S, µ,M,M′)
31: {msgi}i∈S :=M
32: {msg′

i}i∈S :=M′

33: for i ∈ S do
34: Ri := msgi

35: (z̃i, ỹi) := msg′
i

36: R :=
∏

i∈S Ri

37: c := Hchal(µ, R)
38: [z

y] :=
∑

i∈S
[

z̃i
ỹi

]
39: return (R, z, y)

Vf(pk, µ, σ)
40: X := pk
41: (R, z, y) := σ
42: h := Hgen(µ)
43: c := Hchal(µ, R)
44: return Jgzhy = RXcK

Figure 6: HBTS-Mask.

26 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

4.2 Security
Theorem 2. If DL is (τdl, εdl)-hard for GrGen, then HBTS-Mask is (qs, τuf, εuf)-adaptively
secure in the random oracle model against any adversary that makes at most qh hash
queries, where essentially τdl ≈ 2τuf, and

εdl ≥
1

16qs2q
(ε2

uf −
N4 + qh

2λ−1 − 2qs

p
)− 3

4qsp
εuf,

where q = qs + qh + 1.

Proof (Part I). The first part of the proof is virtually the same as the proof of Theorem 1
until G11. We do not need G12 to G18 here since the commitments are not masked. While
we largely omit this part, the pseudocode description and a quick checklist of the games is
provided in Section B. We highlight two main differences from the proof of Theorem 1.

First, recall that in the proof of Theorem 1, we globalize the variables in Sign and
Sign′. In this proof, we only globalize the variables in Sign′. Specifically, we rename
the variables rk, yk, c, zk, z̃k, ỹk, and ∆k referenced in Sign′(k, sid,M) to rS,sinf,k,
yS,sinf,k, cS,sinf , zS,sinf,k, z̃S,sinf,k, ỹS,sinf,k, and ∆S,sinf,k, respectively, where S = Sk,sid and
sinf = (µk,sid,M). The indexing ensuring unambiguous reference to these variables in
other oracle calls. Similarly to the proof of Theorem 1, note that the index of cS,sinf does
not include k. This does not cause ambiguity, since sinf uniquely determines c referenced
in Sign′. Note that in this proof, Sign is never modified and hence remains the same as
in the original adp-UF game.

Second, a minor difference is that, since sinf does not contain sid, the distinctness of
sinf relies on the distinctness of M, which comes from the entropy of Rk rather than from
the distinctness of sid. Thus, an additive loss of qs

2/p is introduced in G8. We end up with

ε11 ≥ ε0 −
N4 + qh

2λ
− qs

2

p
.

Similar to Eqs. (2) and (4), we have the following two crucial equations in G11 which cor-
respond to the initialization of ∆S,sinf,k for the last k ∈ S in Hmask and Sign′, respectively.
These are the only places where x is referenced.

∆S,sinf,k =
∑

i∈S\C

[
rS,sinf,i
yS,sinf,i

]
+ cS,sinf ·

([
x
0

]
−
∑

i∈S∩C

[
λS,i · xi

0

])

−
∑

i∈S\C

[
z̃S,sinf,i
ỹS,sinf,i

]
−

∑
i∈S∩C\{k}

∆S,sinf,i.

(14)

[
z̃S,sinf,k
ỹS,sinf,k

]
=
∑

i∈S\C

[
rS,sinf,i
yS,sinf,i

]
+ cS,sinf ·

([
x
0

]
−
∑

i∈S∩C

[
λS,i · xi

0

])

−
∑

i∈S\C\{k}

[
z̃S,sinf,i
ỹS,sinf,i

]
−
∑

i∈S∩C
∆S,sinf,i.

(15)

Proof (Part II). In the second part of the proof, we construct a reduction that uses the
adversary to solve DL. We want to embed the DL input group element into the target
public key, but the reduction cannot calculate Eqs. (14) and (15) without knowing the
secret key x. Therefore, we need to define more hybrid games.

Yanbo Chen 27

G12. We first introduce some internal queries. When A makes a Hchal query on message
µ, the game makes an internal query Hgen(µ). The total number of fresh Hgen(µ) queries
is at most q.

In this game, when a message µ is queried to Hgen for the first time, we flip a coin
coin(µ) with probability ρ = qs/(qs + 1) to be 1 and 1− ρ = 1/(qs + 1) to be 0. This game
aborts if A queries a message µ to Sign with coin(µ) = 0 or outputs µ∗ with coin(µ∗) = 1
at the end. Note that Sign and the verification of the forgery both make internal Hgen
queries, so the coin must be defined. Since these coins are independent of the view of A
until the game aborts for this reason, we have

ε12 = ρqs(1− ρ)ε11 ≥
1

4qs
· ε11.

G13. In this game, we answer each fresh query Hgen(µ) based on coin(µ). If coin(µ) = 1,
we sample wµ ← Z∗

p and let the answer h := X1/wµ . If coin(µ) = 0, we sample aµ ← Zp

and let the answer h := gaµ . Each answer h in G13 is at most 1/p away from the answer
in G12 in statistical distance. Thus, we have

ε13 ≥ ε12 −
q

p
.

G14. In this game, Eqs. (14) and (15) are replaced with the following equations, respec-
tively.

∆S,sinf,k =
∑

i∈S\C

[
rS,sinf,i
yS,sinf,i

]
+ cS,sinf ·

([
0

wµ

]
−
∑

i∈S∩C

[
λS,i · xi

0

])

−
∑

i∈S\C

[
z̃S,sinf,i
ỹS,sinf,i

]
−

∑
i∈S∩C\{k}

∆S,sinf,i.

(16)

[
z̃S,sinf,k
ỹS,sinf,k

]
=
∑

i∈S\C

[
rS,sinf,i
yS,sinf,i

]
+ cS,sinf ·

([
0

wµ

]
−
∑

i∈S∩C

[
λS,i · xi

0

])

−
∑

i∈S\C\{k}

[
z̃S,sinf,i
ỹS,sinf,i

]
−
∑

i∈S∩C
∆S,sinf,i.

(17)

That is, [x
0] is simply replaced with

[0
wµ

]
for the µ contained in sinf. We note that the

game calculates these equations only if µ has been queried to Sign, and the game aborts
if coin(µ) = 0. Therefore, such wµ must exist. Our reduction will execute G14 for A. We
claim that

ε14 = ε13.

We prove this claim through additional hybrid games. We will modify G13 and G14
in parallel while keeping the view of A unchanged. We will end up with G13,3 and G14,3,
which turn out to be exactly the same game. We note that the following games are not
efficiently executable. This is not a problem since no reduction needs to execute them.

G13,1 (resp. G14,1). In this game, Sign directly generates Rk ← Zp and set rk and yk

to ?, which denotes being pending. They remain to be pending when they are globalized
to rS,sinf,k and yS,sinf,k in Sign′. They are uniformly sampled conditioned on Rk = grk hyk

for the corresponding Rk and h when being referenced elsewhere, specifically:
• In Eqs. (14) and (15) (resp. Eqs. (16) and (17)); and

• When being output as the secret state of user k in Corr(k).
One can verify that rk and yk are independent of the view of A until being referenced in
these places. Thus, G13,1 (resp. G14,1) is identical to G13 (resp. G14).

28 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

G13,2 (resp. G14,2). In this game, we directly sample the sum
∑

i∈S\C
[rS,sinf,i

yS,sinf,i

]
in Eqs. (14)

and (15) (resp. Eqs. (16) and (17)) conditioned on g

∑
i∈S\C

rS,sinf,i
h

∑
i∈S\C

yS,sinf,i =∏
i∈S\C Ri for the corresponding h and Ri. Since not all users in S \ C will be cor-

rupted later, the sum sampled here will not constraint the individual ri, yi sampled in
Corr(i). That is, they are still uniformly sampled condition on grihyi = Ri.

G13,3 (resp. G14,3). In this game, in Eqs. (14) and (15) (resp. Eqs. (16) and (17)), we
replace

∑
i∈S\C

[
rS,sinf,i
yS,sinf,i

]
+ cS,sinf ·

[
x
0

] resp.
∑

i∈S\C

[
rS,sinf,i
yS,sinf,i

]
+ cS,sinf ·

[
0

wµ

]
with uniformly random [α

β] conditioned on gαhβ =
∏

i∈S\C RiX for corresponding h and
Ri. Given the distribution of

∑
i∈S\C

[rS,sinf,i
yS,sinf,i

]
and the fact that gx = X (resp. hwµ = X),

this modification does not change the view of A.
Note that G13,3 has exactly the same description as G14,3. We therefore conclude that

the views of A in G13 and G14 are identical, and ε14 = ε13.
Now we define a wrapper W that follows the syntax defined in Lemma 1. W takes a

group element X and h1, . . . , hq as inputs. It executes G14 for A with X being the target
public key and assigning h1, . . . , hq to Hchal. If A wins in G14, W returns I such that hI

was assigned to Hchal(µ∗, R∗) that corresponds to the forgery. Otherwise it returns I = 0.
We assume that the unspecified side output contains all the internal information that our
reduction needs.

On input X, the reduction B runs forkW(X) as specified in Lemma 1. If forkW
returns non-⊥, then B gets two valid forgeries (R∗, z∗, y∗) and (R∗, z′

∗, y′
∗) satisfying

gz∗hy∗ = R∗Xc∗ and gz′
∗hy′

∗ = R∗Xc′
∗ , with the same h and R∗ but different challenges

c∗ ̸= c′
∗. We have the same h because since the forgeries in two executions correspond

to the same Hchal(µ∗, R∗) query, then it also corresponds to the same Hgen(µ∗) query.
Moreover, the assignment to Hgen(µ∗) is earlier than the forking point Hchal(µ∗, R∗),
which is ensured by the internal queries introduced in G12. Also note that h has a
known discrete logarithm aµ∗ . Therefore, B can compute the discrete logarithm of X as
x = (z∗ + aµ∗y∗ − z′

∗ − aµ∗y′
∗)/(c∗ − c′

∗).

Acknowledgment
We would like to thank Andrej Bogdanov and the reviewers of PKC 2025 for their valuable
feedback on an earlier version. We would like to thank the reviewers of CiC 2025 for their
helpful comments.

References
[BCK+22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano

Tessaro, and Chenzhi Zhu. Better than advertised security for non-interactive
threshold signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 517–550. Springer,
Cham, August 2022. doi:10.1007/978-3-031-15985-5_18.

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the
HBMS scheme. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages 650–678. Springer,
Cham, December 2021. doi:10.1007/978-3-030-92068-5_22.

https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1007/978-3-030-92068-5_22

Yanbo Chen 29

[BDLR25a] Renas Bacho, Sourav Das, Julian Loss, and Ling Ren. Adaptively secure three-
round threshold schnorr signatures from DDH. Cryptology ePrint Archive,
Paper 2025/1009, 2025. URL: https://eprint.iacr.org/2025/1009.

[BDLR25b] Renas Bacho, Sourav Das, Julian Loss, and Ling Ren. Glacius: Threshold
schnorr signatures from DDH with full adaptive security. In Serge Fehr and
Pierre-Alain Fouque, editors, EUROCRYPT 2025, Part II, volume 15602 of
LNCS, pages 304–334. Springer, Cham, May 2025. doi:10.1007/978-3-031
-91124-8_11.

[BHK+24] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal
Rabin. SPRINT: High-throughput robust distributed Schnorr signatures.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part V,
volume 14655 of LNCS, pages 62–91. Springer, Cham, May 2024. doi:
10.1007/978-3-031-58740-5_3.

[BLSW24] Renas Bacho, Julian Loss, Gilad Stern, and Benedikt Wagner. HARTS:
High-threshold, adaptively secure, and robust threshold Schnorr signatures.
In Kai-Min Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part III,
volume 15486 of LNCS, pages 104–140. Springer, Singapore, December 2024.
doi:10.1007/978-981-96-0891-1_4.

[BLT+24] Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi
Zhu. Twinkle: Threshold signatures from DDH with full adaptive security.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part I,
volume 14651 of LNCS, pages 429–459. Springer, Cham, May 2024. doi:
10.1007/978-3-031-58716-0_15.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006. doi:10.1145/1180405.1180453.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal
Rabin. Adaptive security for threshold cryptosystems. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 98–115. Springer, Berlin,
Heidelberg, August 1999. doi:10.1007/3-540-48405-1_7.

[Che23] Yanbo Chen. DualMS: Efficient lattice-based two-round multi-signature with
trapdoor-free simulation. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 716–747. Springer,
Cham, August 2023. doi:10.1007/978-3-031-38554-4_23.

[Che25] Yanbo Chen. Dazzle: Improved adaptive threshold signatures from DDH. In
Tibor Jager and Jiaxin Pan, editors, PKC 2025, Part III, volume 15676 of
LNCS, pages 233–261. Springer, Cham, May 2025. doi:10.1007/978-3-031
-91826-1_8.

[CKK+25] Elizabeth Crites, Jonathan Katz, Chelsea Komlo, Stefano Tessaro, and Chen-
zhi Zhu. On the adaptive security of FROST. Cryptology ePrint Archive,
Paper 2025/1061, 2025. URL: https://eprint.iacr.org/2025/1061.

[CKM23] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive Schnorr
threshold signatures. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 678–709. Springer,
Cham, August 2023. doi:10.1007/978-3-031-38557-5_22.

https://eprint.iacr.org/2025/1009
https://doi.org/10.1007/978-3-031-91124-8_11
https://doi.org/10.1007/978-3-031-91124-8_11
https://doi.org/10.1007/978-3-031-58740-5_3
https://doi.org/10.1007/978-3-031-58740-5_3
https://doi.org/10.1007/978-981-96-0891-1_4
https://doi.org/10.1007/978-3-031-58716-0_15
https://doi.org/10.1007/978-3-031-58716-0_15
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/978-3-031-38554-4_23
https://doi.org/10.1007/978-3-031-91826-1_8
https://doi.org/10.1007/978-3-031-91826-1_8
https://eprint.iacr.org/2025/1061
https://doi.org/10.1007/978-3-031-38557-5_22

30 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

[CS25] Elizabeth Crites and Alistair Stewart. A plausible attack on the adaptive
security of threshold schnorr signatures. Cryptology ePrint Archive, Paper
2025/1001, 2025. URL: https://eprint.iacr.org/2025/1001.

[DKM+24] Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem,
Thomas Prest, and Markku-Juhani O. Saarinen. Threshold raccoon: Practical
threshold signatures from standard lattice assumptions. In Marc Joye and
Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS,
pages 219–248. Springer, Cham, May 2024. doi:10.1007/978-3-031-58723
-8_8.

[dPKN+25] Rafael del Pino, Shuichi Katsumata, Guilhem Niot, Michael Reichle, and
Kaoru Takemure. Unmasking TRaccoon: A lattice-based threshold signature
with an efficient identifiable abort protocol. Cryptology ePrint Archive, Paper
2025/849, 2025. URL: https://eprint.iacr.org/2025/849.

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris
Kokoris-Kogias, and Ling Ren. Practical asynchronous distributed key gener-
ation. In 2022 IEEE Symposium on Security and Privacy, pages 2518–2534.
IEEE Computer Society Press, May 2022. doi:10.1109/SP46214.2022.983
3584.

[EKT24] Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure. Two-round
threshold signature from algebraic one-more learning with errors. In Leonid
Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926
of LNCS, pages 387–424. Springer, Cham, August 2024. doi:10.1007/978-3
-031-68394-7_13.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Cham,
August 2018. doi:10.1007/978-3-319-96881-0_2.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20(1):51–83, January 2007. doi:10.1007/s00145-006-0347-3.

[GS24] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key
generation. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part V, volume 14655 of LNCS, pages 370–400. Springer, Cham, May 2024.
doi:10.1007/978-3-031-58740-5_13.

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryp-
tography: Introducing concurrency, removing erasures. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 221–242. Springer, Berlin,
Heidelberg, May 2000. doi:10.1007/3-540-45539-6_16.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr
threshold signatures. In Orr Dunkelman, Michael J. Jacobson, Jr., and Colin
O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 34–65. Springer,
Cham, October 2020. doi:10.1007/978-3-030-81652-0_2.

[KGS23] Chelsea Komlo, Ian Goldberg, and Douglas Stebila. A formal treatment of
distributed key generation, and new constructions. Cryptology ePrint Archive,
Report 2023/292, 2023. URL: https://eprint.iacr.org/2023/292.

https://eprint.iacr.org/2025/1001
https://doi.org/10.1007/978-3-031-58723-8_8
https://doi.org/10.1007/978-3-031-58723-8_8
https://eprint.iacr.org/2025/849
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1007/978-3-031-68394-7_13
https://doi.org/10.1007/978-3-031-68394-7_13
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-031-58740-5_13
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2023/292

Yanbo Chen 31

[KMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asyn-
chronous distributed key generation for computationally-secure randomness,
consensus, and threshold signatures. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1751–1767. ACM
Press, November 2020. doi:10.1145/3372297.3423364.

[KRT24a] Shuichi Katsumata, Michael Reichle, and Kaoru Takemure. Adaptively secure
5 round threshold signatures from MLWE/MSIS and DL with rewinding.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII,
volume 14926 of LNCS, pages 459–491. Springer, Cham, August 2024. doi:
10.1007/978-3-031-68394-7_15.

[KRT24b] Shuichi Katsumata, Michael Reichle, and Kaoru Takemure. Adaptively secure
5 round threshold signatures from MLWE/MSIS and DL with rewinding.
Cryptology ePrint Archive, Report 2024/1033, 2024. URL: https://eprint
.iacr.org/2024/1033.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. In Ernest F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 31–53. Springer, Berlin, Heidelberg, August 1993.
doi:10.1007/3-540-48071-4_3.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of
LNCS, pages 129–140. Springer, Berlin, Heidelberg, August 1992. doi:
10.1007/3-540-46766-1_9.

[RRJ+22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Do-
minique Schröder. ROAST: Robust asynchronous Schnorr threshold sig-
natures. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 2551–2564. ACM Press, November 2022.
doi:10.1145/3548606.3560583.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979. doi:10.1145/3591
68.359176.

[Sho23] Victor Shoup. The many faces of Schnorr. Cryptology ePrint Archive, Report
2023/1019, 2023. URL: https://eprint.iacr.org/2023/1019.

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes
from linear hash functions. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 628–658. Springer,
Cham, April 2023. doi:10.1007/978-3-031-30589-4_22.

A Figures for Proof of Theorem 1
In Figs. 7 to 12, we provide the pseudocode description of the games in part I of the proof
of Theorem 1. For readability, we avoid putting all hybrid games together. Instead, we
organize Sign (Fig. 9) using conditional branches, each covering a subset of the games:
G0–G12, G13–G14, and G15–G18. We use a similar strategy for Sign′ (Fig. 10). Oracles
Hmask and H′

mask (Figs. 11 and 12) are rewritten multiple times to reflect the changes across
the games. In some places, we use informal description like “Initialize related dS,sinf,i,j
conditioned on ∆S,sinf,k” to simplify the presentation. The precise formulation of such

https://doi.org/10.1145/3372297.3423364
https://doi.org/10.1007/978-3-031-68394-7_15
https://doi.org/10.1007/978-3-031-68394-7_15
https://eprint.iacr.org/2024/1033
https://eprint.iacr.org/2024/1033
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://eprint.iacr.org/2023/1019
https://doi.org/10.1007/978-3-031-30589-4_22

32 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

statements is provided in Fig. 8. We omit Hcomb and Hchal, since they remain unchanged
throughout the hybrid game sequence.

We provide a quick checklist that outlines the modifications made in each hybrid game.

• G1: Check the distinctness of seeds.

• G2: Introduce intermediate variables dS,sinf,i,j and eS,sid,i,j for Hmask(S, sid, seedi,j)
and H′

mask(S, sinf, seedi,j).

• G3: Reference the intermediate variables instead of calling Hmask and H′
mask in Sign

and Sign′, respectively.

• G4: Defer sampling the seeds until the corresponding user is corrupted.

• G5: Initialize ∆S,sinf,k when answering H′
mask(S, sinf, seedk,i) or H′

mask(S, sinf, seedi,k)
for corrupted user k.

• G6: Reverse the order of generating ∆S,sinf,k and those related dS,sinf,i,j .

• G7: Avoid referencing ∆S,sinf,i and xi for uncorrupted user i when initialize ∆S,sinf,k.

• G8: Reverse the order of generating ∆S,sinf,k and z̃S,sinf,k in Sign′.

• G9: Defer the calculation of ∆S,sinf,k and the initialization of those related dS,sinf,i,j
from Sign′ to Corr(k).

• G10: Defer the calculation of zS,sinf,k from Sign′ to Corr(k).

• G11: Defer the generation of secret key shares until the corresponding user is
corrupted.

• G12: Initialize ΦS,sid,k when answering Hmask(S, sid, seedk,i) or H′
mask(S, sid, seedi,k)

for corrupted user k.

• G13: Reverse the order of generating ΦS,sid,k and those related eS,sid,i,j .

• G14: Avoid referencing ΦS,sid,i for uncorrupted user i when initialize ΦS,sid,k.

• G15: Reverse the order of generating ΦS,sid,k and
[

R̃S,sid,1,i

R̃S,sid,2,i

]
in Sign.

• G16: Defer the calculation of ΦS,sid,k and the initialization of those related eS,sid,i,j

from Sign to Corr(k).

• G17: Directly calculate
∏

i∈S\C

[
RS,sid,1,i

RS,sid,2,i

]
without calculating each

[
RS,sid,1,i

RS,sid,2,i

]
.

• G18: Pre-sample the sum of
[rS,sid,1,i

rS,sid,2,i

]
over uncorrupted users when (S, sid) is queried

to Sign for the first time, and defer the generation of each
[rS,sid,1,i

rS,sid,2,i

]
until the

corresponding user is corrupted.

B Figures for Proof of Theorem 2
In Figs. 13 to 16, we provide the pseudocode description of the games in part I of the proof
of Theorem 2. We omit Sign, Hgen, and Hchal, as they remain unchanged throughout the
hybrid game sequence. The pseudocode description of the games defined in part II of the
proof are not included here.

We provide a quick checklist that outlines the modifications made in each hybrid game.

• G1: Check the distinctness of seeds.

Yanbo Chen 33

adp-UFA
FROST-Mask

1: Q := ∅, C := ∅
2: (G, p, g)← GrGen(1λ)
3: x← Zp

4: X := gx

5: {xi}i∈[n] ← Share(n, t, x) ▷ G0–G10
6: for i ̸= j ∈ [n] do ▷ G0–G3
7: seedi,j ← {0, 1}λ ▷ G0–G3
8: if ∃(i, j) ̸= (i′, j′) : seedi,j = seedi′,j′ then ▷ G1–G3
9: Game Abort ▷ G1–G3

10: pk := X
11: for i ∈ [n] do
12: ski := (xi, {seedi,j , seedj,i}j∈[n]\{i})
13: (µ∗, σ∗)← ASign,Sign′,Corr,Hmask,Hcomb,Hchal (pk)
14: return Jµ∗ /∈ Q ∧ Vf(pk, µ∗, σ∗) = 1K

Figure 7: Setup in proof of Theorem 1.

• G2: Introduce intermediate variables dS,sinf,i,j for Hmask(S, sinf, seedi,j).

• G3: Reference the intermediate variables instead of calling Hmask in Sign′.

• G4: Defer sampling the seeds until the corresponding user is corrupted.

• G5: Initialize ∆S,sinf,k when answering Hmask(S, sinf, seedk,i) or Hmask(S, sinf, seedi,k)
for corrupted user k.

• G6: Reverse the order of generating ∆S,sinf,k and those related dS,sinf,i,j .

• G7: Avoid referencing ∆S,sinf,i and xi for uncorrupted user i when initialize ∆S,sinf,k.

• G8: Reverse the order of generating ∆S,sinf,k and
[

z̃S,sinf,k

ỹS,sinf,k

]
in Sign′.

• G9: Defer the calculation of ∆S,sinf,k and the initialization of those related dS,sinf,i,j
from Sign′ to Corr(k).

• G10: Defer the calculation of zS,sinf,k from Sign′ to Corr(k).

• G11: Defer the generation of secret key shares until the corresponding user is
corrupted.

34 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

Corr(k)
1: if |C| ≥ t− 1 then
2: return ⊥
3: C := C ∪ {k}
4: for i ∈ [n] \ {k} do ▷ G4–G18
5: if i /∈ C then ▷ G4–G18
6: seedk,i, seedi,k ← {0, 1}λ ▷ G4–G18
7: if ∃(i, j) ̸= (i′, j′) : seedi,j = seedi′,j′ ̸=⊥ then ▷ G4–G18
8: Game Abort ▷ G4–G18
9: xk ← Zp ▷ G11–G18

10: for sid ∈ Ik do ▷ G9–G18
11: S := Sk,sid ▷ G9–G18
12: rS,sid,1,k, rS,sid,2,k ← Zp ▷ G18
13: stk,sid := (rS,sid,1,k, rS,sid,2,k) ▷ G18

14:

[
RS,sid,1,k

RS,sid,2,k

]
:=
[

g
rS,sid,1,k

g
rS,sid,2,k

]
▷ G17–G18

15: ΦS,sid,k :=
[

R̃S,sid,1,k

R̃S,sid,2,k

]
/

[
RS,sid,1,k

RS,sid,2,k

]
▷ G16–G18

16: Initialize related eS,sid,i,j conditioned on ΦS,sid,k ▷ G16–G18
17: if roundk,sid = 2 then ▷ G9–G18
18: sinf := sinfk,sid ▷ G9–G18
19: zS,sinf,k := rS,sid,1,k + bS,sinf · rS,sid,2,k + cS,sinf · λS,k · xk ▷ G10–G18
20: ∆S,sinf,k := z̃S,sinf,k − zS,sinf,k ▷ G9–G18
21: Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k ▷ G9–G18
22: skk := (xk, {seedk,i, seedi,k}i∈[n]\{k}) ▷ G4–G18
23: return (skk, {stk,sid}sid∈Ii

)

Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k
24: Let i∗ be the smallest number in S \ {k} such that dk,i =⊥
25: for (i′, j′) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k} \ {(k, i∗)} do ▷ Sample all but one
26: if dS,sinf,i′,j′ =⊥ then
27: dS,sinf,i′,j′ ← Zp

28: dS,sinf,k,i∗ := ∆S,sinf,k −
∑

i∈S\{k}\{i∗} dS,sinf,k,i +
∑

i∈S\{k} dS,sinf,i,k ▷ Calculate the last one

Initialize related eS,sid,i,j conditioned on ΦS,sid,k

29: Let i∗ be the smallest number in S \ {k} such that eS,sid,k,i =⊥
30: for (i′, j′) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k} \ {(k, i∗)} do ▷ Sample all but one
31: if eS,sid,i′,j′ =⊥ then
32: eS,sid,i′,j′ ← G2

33: eS,sid,k,i∗ := ΦS,sid,k ·
∏

i∈S\{k}\{i∗} e−1
S,sid,k,i

·
∏

i∈S\{k} eS,sid,i,k ▷ Calculate the last one

Figure 8: Corr in proof of Theorem 1.

Yanbo Chen 35

Sign(S, k, µ, sid)
1: if k ∈ C ∨ sid ∈ Ik then
2: return ⊥
3: Q := Q∪ {µ}
4: Ik := Ik ∪ {sid}
5: rS,sid,1,k, rS,sid,2,k ← Zp ▷ G0–G17

6:

[
RS,sid,1,k

RS,sid,2,k

]
:=
[

g
rS,sid,1,k

g
rS,sid,2,k

]
▷ G0–G16

7: if CS,sid =⊥ then ▷ (S, sid) is queried for the first time, G18
8: rS,sid,1,∗, rS,sid,2,∗ ← Zp ▷ G18
9: CS,sid := C ▷ G18

G0–G12
10: ΦS,sid,k :=

∏
i∈S\{k}(Hmask(S, sid, seedk,i)/Hmask(S, sid, seedi,k)) ▷ G0–G2

11: for (i′, j′) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k} do ▷ Initialize for the first reference, G3–G12
12: if eS,sid,i′,j′ =⊥ then ▷ G3–G12
13: eS,sid,i′,j′ ← G2 ▷ G3–G12
14: ΦS,sid,k :=

∏
i∈S\{k}(eS,sid,k,i/eS,sid,i,k) ▷ G3–G12

15: [
R̃S,sid,1,k

R̃S,sid,2,k

]
:=
[

RS,sid,1,k

RS,sid,2,k

]
· ΦS,sid,k ▷ G0–G14

G13–G14
16: if ∃i ∈ S \ {k} : ΦS,sid,k =⊥ then ▷ G13–G18
17: ΦS,sid,k ← G2 ▷ G13–G14
18: else ▷ G13–G18
19: ΦS,sid,k :=

∏
i∈S\{k} Φ−1

S,sid,i
▷ G13

20: ΦS,sid,k :=
∏

i∈S\C\{k}(
[

R̃S,sid,1,i

R̃S,sid,2,i

]
/

[
RS,sid,1,i

RS,sid,2,i

]
)−1 ·

∏
i∈S∩C Φ−1

S,sid,i
▷ Eq. (6), G14

21:

[
R̃S,sid,1,k

R̃S,sid,2,k

]
:=
[

RS,sid,1,k

RS,sid,2,k

]
· ΦS,sid,k ▷ G12–G14

22: Initialize related eS,sid,i,j conditioned on ΦS,sid,k ▷ G13–G15

G15–G18
23: if ∃i ∈ S \ {k} : ΦS,sid,i =⊥ then ▷ G13–G18

24:

[
R̃S,sid,1,k

R̃S,sid,2,k

]
← G2 ▷ G15–G18

25: else ▷ G13–G18

26:

[
R̃S,sid,1,k

R̃S,sid,2,k

]
:=
∏

i∈S\C

[
RS,sid,1,i

RS,sid,2,i

]
·
∏

i∈S\C\{k}

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1
·
∏

i∈S∩C Φ−1
S,sid,i

▷ Eq. (7),
G15–G16

27:

[
R̃S,sid,1,k

R̃S,sid,2,k

]
:=

[
g

∑
i∈S\C

rS,sid,1,i

g

∑
i∈S\C

rS,sid,2,i

]
·
∏

i∈S\C\{k}

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1
·
∏

i∈S∩C Φ−1
S,sid,i

▷ Eq. (9),

G17

28:

[
R̃S,sid,1,k

R̃S,sid,2,k

]
=
[

g
rS,sid,1,∗

g
rS,sid,2,∗

]
·
∏

i∈S∩C\CS,sid

[
g

rS,sid,1,i

g
rS,sid,2,i

]−1

·
∏

i∈S\C\{k}

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1
·
∏

i∈S∩C Φ−1
S,sid,i

▷ Eq. (13), G18

29: ΦS,sid,k :=
[

R̃S,sid,1,k

R̃S,sid,2,k

]
/

[
RS,sid,1,k

RS,sid,2,k

]
▷ G15

30: Initialize related eS,sid,i,j conditioned on ΦS,sid,k ▷ G13–G15
31: ΦS,sid,k :=? ▷ G16–G18

32: stk,sid := (rS,sid,1,k, rS,sid,2,k)
33: msg := (R̃S,sid,1,k, R̃S,sid,2,k)
34: (Sk,sid, µk,sid) := (S, µ)
35: roundk,sid := 1
36: return msg

Figure 9: Sign in the proof of Theorem 1.

36 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

Sign′(k, sid,M)
1: if k ∈ C ∨ roundk,sid ̸= 1 then
2: return ⊥
3: (S, µ) := (Sk,sid, µk,sid)
4: {msgi}i∈S :=M
5: for i ∈ S do
6: (R̃1,i, R̃2,i) := msgi
7: sinf := (sid, µ,M)
8: bS,sinf := Hcomb(S, sinf)
9: R :=

∏
i∈S R̃1,iR̃

b
2,i

10: cS,sinf := Hchal(µ, R̃)
11:

zS,sinf,k := rS,sid,1,k + bS,sinf · rS,sid,2,k + cS,sinf · λS,k · xk ▷ G0–G9

G0–G5
12: ∆S,sinf,k :=

∑
i∈S\{k} H′

mask(S, sinf, seedk,i)−
∑

i∈S\{k} H′
mask(S, sinf, seedi,k) ▷ G0–G2

13: for (i′, j′) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k} do ▷ Initialize for the first reference, G3–G5
14: if dS,sinf,i′,j′ =⊥ then ▷ G3–G5
15: dS,sinf,i′,j′ ← Zp ▷ G3–G5
16: ∆S,sinf,k :=

∑
i∈S\{k}(dS,sinf,k,i − dS,sinf,i,k) ▷ G3–G5

17:
z̃S,sinf,k := zS,sinf,k + ∆S,sinf,k ▷ G0–G7

G6–G7
18: if ∃i ∈ S \ {k} : ∆S,sinf,i =⊥ then ▷ G6–G18
19: ∆S,sinf,k ← Zp ▷ G6–G7
20: else ▷ G6–G18
21: ∆S,sinf,k := −

∑
i∈S\{k} ∆S,sinf,i ▷ G6

22: ∆S,sinf,k :=
∑

i∈S\C\{k}(rS,sid,1,i + bS,sinf · rS,sid,2,i) + cS,sinf(x−
∑

i∈S∩C∪{k} λS,i · xi)
−
∑

i∈S\C\{k} z̃S,sinf,i −
∑

i∈S∩C ∆S,sinf,i ▷ Eq. (3), G7

23: z̃S,sinf,k := zS,sinf,k + ∆S,sinf,k ▷ G5–G7
24:

Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k ▷ G6–G8

G8–G18
25: if ∃i ∈ S \ {k} : ∆S,sinf,k =⊥ then ▷ G6–G18
26: z̃S,sinf,k ← Zp ▷ G8–G18
27: else ▷ G6–G18
28: z̃S,sinf,k :=

∑
i∈S\C(rS,sid,1,i + bS,sinf · rS,sid,2,i) + cS,sinf · (x−

∑
S∩C λS,i · xi)

−
∑

i∈S\C\{k} z̃S,sinf,i −
∑

i∈S∩C ∆S,sinf,i ▷ Eq. (4), G8–G17

29: z̃S,sinf,k := rS,sid,1,∗ + bS,sinf · rS,sid,2,∗ + cS,sinf · x
−
∑

i∈S∩C\CS,sid
(rS,sid,1,i + bS,sinf · rS,sid,2,i)− cS,sinf

∑
i∈S∩C λS,i · xi

−
∑

i∈S\C\{k} z̃S,sinf,i −
∑

i∈S∩C ∆S,sinf,i ▷ Eq. (11), G18

30: ∆S,sinf,k := z̃S,sinf,k − zS,sinf,k ▷ G8
31: ∆S,sinf,k :=? ▷ G9–G18
32: Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k ▷ G6–G8

33: sinfk,sid := sinf
34: roundk,sid := 2
35: return z̃S,sinf,k

Figure 10: Sign′ in the proof of Theorem 1.

Yanbo Chen 37

Hmask(S, sid, seed) ▷ G0–G1
1: if Tmask(S, sid, seed) =⊥ then
2: Tmask(S, sid, seed)← G2

3: return Tmask(S, sid, seed)

Hmask(S, sid, seed) ▷ G2–G11
4: if Tmask(S, sid, seed) =⊥ then
5: if ∃i ̸= j ∈ S : seed = seedi,j then
6: eS,sid,i,j ← G2

7: Tmask(S, sid, seed) := eS,sid,i,j

8: else
9: Tmask(S, sid, seed)← G2

10: return Tmask(S, sid, seed)

Hmask(S, sid, seed) ▷ G12
11: if Tmask(S, sid, seed) =⊥ then
12: if ∃i ̸= j ∈ S : seed = seedi,j then
13: for k ∈ {i, j} do
14: for (i′, j′) ∈ {(k, i)}S\{k} ∪ {(i, k)}i∈S\{k} do ▷ Initialize for the first reference
15: if eS,sid,i′,j′ =⊥ then
16: eS,sid,i′,j′ ← G2

17: ΦS,sid,k :=
∏

i∈S\{k}(eS,sid,k,i/eS,sid,i,k)
18: Tmask(S, sid, seed) := eS,sid,i,j

19: else
20: Tmask(S, sid, seed)← G2

21: return Tmask(S, sid, seed)

Hmask(S, sid, seed) ▷ G13–G18
22: if Tmask(S, sid, seed) =⊥ then
23: if ∃i ̸= j ∈ S : seed = seedi,j then
24: for k ∈ {i, j} do
25: if ΦS,sid,k =⊥ then
26: if ∃i ∈ S \ {k} : ΦS,sid,i =⊥ then
27: ΦS,sid,k ← G2

28: else
29: ΦS,sid,k :=

∏
i∈S\{k} Φ−1

S,sid,i
▷ G13

30: ΦS,sid,k :=
∏

i∈S\C(
[

R̃S,sid,1,i

R̃S,sid,2,i

]
/

[
RS,sid,1,i

RS,sid,2,i

]
)−1

·
∏

i∈S∩C\{k} Φ−1
S,sid,i

▷ Eq. (5), G14–G16

31: ΦS,sid,k :=

[
g

∑
i∈S\C

rS,sid,1,i

g

∑
i∈S\C

rS,sid,2,i

]
·
∏

i∈S\C

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1

·
∏

i∈S∩C\{k} Φ−1
S,sid,i

▷ Eq. (8), G17

32: ΦS,sid,k :=
[

g
rS,sid,1,∗

g
rS,sid,2,∗

]
·
∏

i∈S∩C\CS,sid

[
g

rS,sid,1,i

g
rS,sid,2,i

]−1
·∏

i∈S\C

[
R̃S,sid,1,i

R̃S,sid,2,i

]−1
·
∏

i∈S∩C\{k} Φ−1
S,sid,i

▷ Eq. (12), G18
33:
34: Initialize related eS,sid,i,j conditioned on ΦS,sid,k

35: Tmask(S, sid, seed) := eS,sid,i,j

36: else
37: Tmask(S, sid, seed)← G2

38: return Tmask(S, sid, seed)

Figure 11: Hmask in the proof of Theorem 1.

38 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

H′
mask(S, sinf, seed) ▷ G0–G1

1: if T ′
mask(S, sinf, seed) =⊥ then

2: T ′
mask(S, sinf, seed)← Zp

3: return T ′
mask(S, sinf, seed)

H′
mask(S, sinf, seed) ▷ G2–G4

4: if T ′
mask(S, sinf, seed) =⊥ then

5: if ∃i ̸= j ∈ S : seed = seedi,j then
6: dS,sinf,i,j ← Zp

7: T ′
mask(S, sinf, seed) := dS,sinf,i,j

8: else
9: T ′

mask(S, sinf, seed)← Zp

10: return T ′
mask(S, sinf, seed)

H′
mask(S, sinf, seed) ▷ G5

11: if T ′
mask(S, sinf, seed) =⊥ then

12: if ∃i ̸= j ∈ S : seed = seedi,j then
13: for k ∈ {i, j} do
14: for (i′, j′) ∈ {(k, i)}S\{k} ∪ {(i, k)}i∈S\{k} do ▷ Initialize for the first reference
15: if dS,sinf,i′,j′ =⊥ then
16: dS,sinf,i′,j′ ← Zp

17: ∆S,sinf,k :=
∑

i∈S\{k}(dS,sinf,k,i − dS,sinf,i,k)
18: T ′

mask(S, sinf, seed) := dS,sinf,i,j

19: else
20: T ′

mask(S, sinf, seed)← Zp

21: return T ′
mask(S, sinf, seed)

H′
mask(S, sinf, seed) ▷ G6–G18

22: if T ′
mask(S, sinf, seed) =⊥ then

23: if ∃i ̸= j ∈ S : seed = seedi,j then
24: for k ∈ {i, j} do
25: if ∆S,sinf,k =⊥ then
26: if ∃i ∈ S \ {k} : ∆S,sinf,i =⊥ then
27: ∆S,sinf,k ← Zp

28: else
29: (sid, µ,M) := sinf
30: ∆S,sinf,k := −

∑
i∈S\k

∆S,sinf,i ▷ G6

31: ∆S,sinf,k :=
∑

i∈S\C(rS,sid,1,i + bS,sinf · rS,sid,2,i) + cS,sinf(x−
∑

i∈S∩C λS,i · xi)
−
∑

i∈S\C z̃S,sinf,i −
∑

i∈S∩C\{k} ∆S,sinf,i ▷ Eq. (2), G7–G17

32: ∆S,sinf,k := rS,sid,1,∗ + bS,sinf · rS,sid,2,∗ + cS,sinf · x
−
∑

i∈S∩C\CS,sid
(rS,sid,1,i + bS,sinf · rS,sid,2,i)− cS,sinf ·

∑
i∈S∩C λS,i · xi

−
∑

i∈S\C z̃S,sinf,i −
∑

i∈S∩C\{k} ∆S,sinf,i ▷ Eq. (10), G18

33: Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k
34: T ′

mask(S, sinf, seed) := dS,sinf,i,j

35: else
36: T ′

mask(S, sinf, seed)← Zp

37: return T ′
mask(S, sinf, seed)

Figure 12: H′
mask in the proof of Theorem 1.

Yanbo Chen 39

adp-UFA
HBTS-Mask

1: Q := ∅, C := ∅
2: (G, p, g)← GrGen(1λ)
3: x← Zp

4: X := gx

5: {xi}i∈[n] ← Share(n, t, x) ▷ G0–G10
6: for i ̸= j ∈ [n] do ▷ G0–G3
7: seedi,j ← {0, 1}λ ▷ G0–G3
8: if ∃(i, j) ̸= (i′, j′) : seedi,j = seedi′,j′ then ▷ G1–G3
9: Game Abort ▷ G1–G3

10: pk := X
11: for i ∈ [n] do
12: ski := (xi, {seedi,j , seedj,i}j∈[n]\{k})
13: (µ∗, σ∗)← ASign,Sign′,Corr,Hmask,Hgen,Hchal (pk)
14: return Jµ∗ /∈ Q ∧ Vf(pk, µ∗, σ∗) = 1K

Figure 13: Setup in proof of Theorem 2.

Corr(k)
1: if |C| ≥ t− 1 then
2: return ⊥
3: C := C ∪ {k}
4: for i ∈ [n] \ {k} do ▷ G4–G11
5: if i /∈ C then ▷ G4–G11
6: seedk,i, seedi,k ← {0, 1}λ ▷ G4–G11
7: if ∃(i, j) ̸= (i′, j′) : seedi,j = seedi′,j′ ̸=⊥ then ▷ G4–G11
8: Game Abort ▷ G4–G11
9: xk ← Zp ▷ G11

10: for sid ∈ [ctrk] do ▷ G9–G11
11: if roundk,sid = 2 then ▷ G9–G11
12: sinf := sinfk,sid
13: zS,sinf,k := rS,sinf,k + cS,sinfλS,kxk ▷ G10–G11

14: ∆S,sinf,k :=
[

z̃S,sinf,k
ỹS,sinf,k

]
−
[zS,sinf,k

yS,sinf,k

]
▷ G9–G11

15: Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k ▷ G9–G11
16: skk := (xk, {seedk,i, seedi,k}i∈[n]\{k}) ▷ G4–G11
17: return (skk, {stk,sid}sid∈[ctri])

Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k
18: Let i∗ be the smallest number in S \ {k} such that dk,i =⊥
19: for (i′, j′) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k} \ {(k, i∗)} do ▷ Sample all but one
20: if dS,sinf,i′,j′ =⊥ then
21: dS,sinf,i′,j′ ← Z2

p

22: dS,sinf,k,i∗ := ∆S,sinf,k −
∑

i∈S\{k}\{i∗} dS,sinf,k,i +
∑

i∈S\{k} dS,sinf,i,k ▷ Calculate the last one

Figure 14: Corr in proof of Theorem 2.

40 Round-Efficient Adaptively Secure Threshold Signatures with Rewinding

Sign′(k, sid,M)
1: if k ∈ C ∨ roundk,sid ̸= 1 then
2: return ⊥
3: (S, µ) := (Sk,sid, µk,sid)
4: {msgi}i∈S :=M
5: for i ∈ S do
6: Ri := msgi
7: R :=

∏
i∈S Ri

8: sinf := (µ,M)
9: (rS,sinf,k, yS,sinf,k) := stk,sid ▷ Global variables

10: cS,sinf := Hchal(µ, R)
11:

zS,sinf,k := rS,sinf,k + cS,sinfλS,kxk ▷ G0–G9

G0–G5
12: ∆S,sinf,k :=

∑
i∈S\{k} Hmask(S, sinf, seedk,i)−

∑
i∈S\{k} Hmask(S, sinf, seedi,k) ▷ G0–G2

13: for (i′, j′) ∈ {(k, i)}i∈S\{k} ∪ {(i, k)}i∈S\{k} do ▷ Initialize for the first reference, G3–G5
14: if dS,sinf,i′,j′ =⊥ then ▷ G3–G5
15: dS,sinf,i′,j′ ← Z2

p ▷ G3–G5
16: ∆S,sinf,k :=

∑
i∈S\{k}(dS,sinf,k,i − dS,sinf,i,k) ▷ G5

17: [
z̃S,sinf,k
ỹS,sinf,k

]
:=
[zS,sinf,k

yS,sinf,k

]
+ ∆S,sinf,k ▷ G5–G7

G6–G7
18: if ∃i ∈ S \ {k} : ∆S,sinf,i =⊥ then ▷ G6–G11
19: ∆S,sinf,k ← Z2

p ▷ G6–G7
20: else ▷ G6–G11
21: ∆S,sinf,k := −

∑
i∈S\{k} ∆S,sinf,i ▷ G6

22: for i ∈ S \ C \ {k} do ▷ G7–G18
23: ∆S,sinf,k :=

∑
i∈S\C\{k}

[rS,sinf,i
yS,sinf,i

]
+ cS,sinf([x

0]−
∑

i∈S∩C∪{k}

[
λS,ixi

0

]
)

−
∑

i∈S\C\{k}

[
z̃S,sinf,i
ỹS,sinf,i

]
−
∑

i∈S∩C ∆S,sinf,i ▷ G7

24:

[
z̃S,sinf,k
ỹS,sinf,k

]
:=
[zS,sinf,k

yS,sinf,k

]
+ ∆S,sinf,k ▷ G5–G7

25:
Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k ▷ G6–G8

G8–G11
26: if ∃i ∈ S \ {k} : ∆S,sinf,k =⊥ then ▷ G6–G11

27:

[
z̃S,sinf,k
ỹS,sinf,k

]
← Z2

p ▷ G8–G11

28: else ▷ G6–G11

29:

[
z̃S,sinf,k
ỹS,sinf,k

]
:=
∑

i∈S\C

[rS,sinf,i
yS,sinf,i

]
+ cS,sinf([x

0]−
∑

S∩C

[
λS,ixi

0

]
)

−
∑

i∈S\C\{k}

[
z̃S,sinf,i
ỹS,sinf,i

]
−
∑

i∈S∩C ∆S,sinf,i ▷ Eq. (15), G8–G11

30: ∆S,sinf,k :=
[

z̃S,sinf,k
ỹS,sinf,k

]
−
[zS,sinf,k

yS,sinf,k

]
▷ G8

31: ∆S,sinf,k :=? ▷ G9–G11
32: Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k ▷ G6–G8

33: sinfk,sid := sinf
34: roundk,sid := 2

35: return
[

z̃S,sinf,k
ỹS,sinf,k

]

Figure 15: Sign′ in the proof of Theorem 2.

Yanbo Chen 41

Hmask(S, sinf, seed) ▷ G0–G1
1: if Tmask(S, sinf, seed) =⊥ then
2: Tmask(S, sinf, seed)← Z2

p
3: return Tmask(S, sinf, seed)

Hmask(S, sinf, seed) ▷ G2–G4
4: if Tmask(S, sinf, seed) =⊥ then
5: if ∃i ̸= j ∈ S : seed = seedi,j then
6: dS,sinf,i,j ← Z2

p
7: Tmask(S, sinf, seed) := dS,sinf,i,j

8: else
9: Tmask(S, sinf, seed)← Z2

p
10: return Tmask(S, sinf, seed)

Hmask(S, sinf, seed) ▷ G5
11: if Tmask(S, sinf, seed) =⊥ then
12: if ∃i ̸= j ∈ S : seed = seedi,j then
13: for k ∈ {i, j} do
14: for (i′, j′) ∈ {(k, i)}S\{k} ∪ {(i, k)}i∈S\{k} do ▷ Initialize for the first reference
15: if dS,sinf,i′,j′ =⊥ then
16: dS,sinf,i′,j′ ← Z2

p

17: ∆S,sinf,k :=
∑

i∈S\{k}(dS,sinf,k,i − dS,sinf,i,k)
18: Tmask(S, sinf, seed) := dS,sinf,i,j

19: else
20: Tmask(S, sinf, seed)← Z2

p
21: return Tmask(S, sinf, seed)

Hmask(S, sinf, seed) ▷ G6–G11
22: if Tmask(S, sinf, seed) =⊥ then
23: if ∃i ̸= j ∈ S : seed = seedi,j then
24: for k ∈ {i, j} do
25: if ∃i ∈ S \ {k} : ∆S,sinf,i =⊥ then
26: if ∆S,sinf,k =⊥ then
27: ∆S,sinf,k ← Z2

p

28: else
29: ∆S,sinf,k := −

∑
i∈S\k

∆S,sinf,i ▷ G6

30: ∆S,sinf,k =
∑

i∈S\C

[rS,sinf,i
yS,sinf,i

]
+ cS,sinf · ([x

0]−
∑

i∈S∩C

[
λS,i·xi

0

]
)

−
∑

i∈S\C

[
z̃S,sinf,i
ỹS,sinf,i

]
−
∑

i∈S∩C\{k} ∆S,sinf,i ▷ Eq. (14), G7–G11

31: Initialize related dS,sinf,i,j conditioned on ∆S,sinf,k
32: Tmask(S, sinf, seed) := dS,sinf,i,j

33: else
34: Tmask(S, sinf, seed)← Z2

p
35: return Tmask(S, sinf, seed)

Figure 16: Hmask in the proof of Theorem 2.

	Introduction
	Our Contribution
	Technical Overview
	Related Work

	Preliminaries
	Threshold Signatures

	FROST-Mask
	Scheme
	Security

	HBTS-Mask
	Scheme
	Security

	References
	Figures for Proof of thm:frost
	Figures for Proof of thm:hbts

