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Abstract. Diagonally dominant lattices have already been used in cryptography,
notably in the GGH and DRS schemes. This paper further studies the possibility
of using diagonally dominant matrices in the context of lattice-based cryptography.
To this end we study geometrical and algorithmic properties of lattices generated
by such matrices. We prove novel bounds for the first minimum and the covering
radius with respect to the max norm. Using these new results, we propose DRE
(Diagonal Reduction Encryption) as an application example: a decryption failure free
encryption scheme using diagonally dominant matrices and provide an experimental
implementation to prove its suitability as a research direction. The trapdoor neither
uses floating point arithmetic nor polynomial rings, and yet is less than 10 times
slower than other optimised unstructured lattice-based standardisation candidates.
This work could apply to cryptosystems based on the Lattice Isomorphism Problem
as well. As a bonus, we also propose solutions to patch the DRS signature scheme, in
particular using parameters leading to the use of sparse matrices.
Keywords: Diagonally dominance · Euclidean lattices · Algorithmic · Statistical
attacks.

1 Introduction
1.1 Context and motivation
Diagonally dominant matrices. Diagonally dominant matrices have been an inter-
esting object of study for over a century, starting at least from the Lévy-Desplanques
theorem (1881)1, with several links to general matrix theory with research spanning up
to today [Ger31, Bru82, Rum18]. Numerous applications of diagonal dominance can be
found in various fields such as numerical linear algebra [Lim82], Markov chains, graphs
Laplacians, perturbation theory2. On the other hand, lattices generated by diagonally
dominant matrices fitting the Lévy-Desplanques theorem was not investigated. Such
lattices seemed to have found some applications in cryptography on few specific instances
[PSDS18, SPS19b] where in both papers the focus was more the matrix generation than
a study of the resulting lattice. On the other hand, when strict dominance is not re-
quired (i.e. not fitting the Lévy-Desplanques theorem), “large diagonals” saw some uses in
cryptography [GGH97, Mic01, PSW08] as well as in modular arithmetic [BIP04].
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Euclidean lattices. The study of computational problems on lattices in general is also an
old and very studied topic [Min96, CPS82, Bab86]. Classical problems such as computing
a shortest vector – named the Shortest Vector Problem (SVP) – and computing the closest
lattice vector from a target vector – the Closest Vector Problem (CVP) – can be proven
to be NP-hard in the general case [Ajt98, MG12]. As a matter of fact, relaxed version
of these problems stay hard. Notably, even if we authorise exponential preprocessing
computations, the CVP is also NP-hard for small approximation factors [AKKV05]. The
hardness of these problems over Euclidean lattices motivated cryptographers to consider
them as building blocks for cryptographic schemes [GGH97, Reg03], which led to extensive
study of Euclidean lattices in the past decades.

Lattice-based cryptography. The first example of schemes using Euclidean lattices
were using generic lattices and use a trapdoor one-way function whose hardness to
invert is based on the CVP. One can cite the Goldreich-Goldwasser-Halevi (GGH)
scheme [GGH97] or constructions using the plain Learning With Errors (LWE) problem
such as Frodo [BCD+16]. Note that their security can also be linked to the hardness of
the SVP. For efficiency reasons one tends to consider algebraic lattices, meaning lattices
which can be described by means of polynomial rings. Some noticeable constructions
include NTRU [HPS98] and schemes based on the Ring Learning With Errors (Ring-LWE)
or the Module Learning With Errors (Module-LWE) problems. Their security can be
linked to the SVP on the restricted classes of ideal lattices – also called the Ideal Shortest
Vector Problem (Ideal-SVP) – or module lattices – also called the Module Shortest Vector
Problem (Module-SVP). One may wonder whether the additional algebraic structure
can be used to solve the SVP more efficiently. Thus, the study of the Ideal-SVP has
gathered sustained attention in the past few years. First it was shown that the intermedi-
ate problem of recovering short generators of principal ideals can be solved in quantum
polynomial time over cyclotomic fields [CDPR16] and even classical polynomial time
over multiquadratic [BBdV+17] or multicubic fields [LPS20]. Then Cramer, Ducas and
Wesolowski extended the analysis of [CDPR16] to the Ideal-SVP and showed that one
could obtain a subexponential approximation factor in quantum polynomial time [CDW21].
With a slightly different approach, this result can be generalised to all number fields
provided an exponential preprocessing phase [PHS19], which might be an artefact of
the proof if we refer to experimental results obtained in [BLNR22, BR20]. Thus, the
Ideal-SVP seems to be strictly weaker than the SVP. Even though the Ring-LWE
or Module-LWE problems are harder than the Ideal-SVP, there is no guarantee that
algebraic attacks mentioned previously cannot be used to tackle them. If an algebraic
attack is discovered and the current schemes collapse, it is important that research have
started exploring alternatives that would resist those attacks, even if they end up being less
efficient than the current schemes. Beyond the pursuit of science and academic curiosity,
starting research on potential backups is a reasonable safety measure. The NIST seems to
have understood those last points very well: hence, they announced in their standardisation
efforts to be interested in schemes not based on structured lattices [NIS23b]. Thus, studying
other types of trapdoors or constructions is still an interesting and important research
direction, recently explored in at least two NIST submissions: Squirrels [ENST23] or
Hawk [DvW22, DPPvW22] for example. Note, that both of those are signature schemes.

Digital signatures with lattices. In order to build digital signatures schemes with
lattices, one can follow the hash-then-sign paradigm. In this setting, the hash of the
message H(m) is a random vector of the space and a valid signature is then a lattice vector
close to H(m). The security of the scheme is guaranteed as soon as solving the CVP is
hard. The original GGH and NTRU signature schemes were originally following a naive
version of this paradigm, using the so-called Babai round-off algorithm to produce the
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signature. However, Nguyen and Regev successfully used the observation that the difference
between the message and a valid signature lie within the fundamental parallelepiped of the
secret basis to recover the latter [NR06]. Ducas and Nguyen showed that this statistical
attack could be extended to more complex structures than bases, which allowed them to
break potential counter-measures in practice [DN12]. The same kind of attack [LSZ+24]
has recently been applied to break the Peregrine signature scheme [SKLJS22]. In order
to prevent [NR06]’s attack, Gentry, Peikert and Vaikuntanathan [GPV08] proposed a
different signature procedure based on a variant of the Babai round-off algorithm [Kle00].
This so-called “GPV framework” is one of the most popular method to produce secure
signatures and is used in the recently standardised schemes and most of the lattice-based
candidates for standardisation.

The DRS signature scheme and diagonally dominant matrices A less popular
method was also proposed by Plantard, Win and Susilo [PSW08].

They proposed a hash-then-sign procedure based on the infinity norm such that the
signature space lie in a parallelepiped independent of the secret key. This is achieved
using specific matrices of the form B = D + N where D and N are such that the spectral
radius ρ(D−1 ·N) < 1. Then this work has been adapted for DRS, a candidate of the
first round of the NIST call for standardisation [PSDS18], relying on the fact that the
matrices used as lattice bases are diagonally dominant. This allows the γ-Guaranteed
Distance Decoding (GDDγ) to be solved with an algorithm adapted from [PSW08]. This
scheme has known a learning attack by Ducas and Yu [DY21] showing that while the
signature space seems to be indeed independent of the secret basis, a correlation still exists
between the latter and the signature distribution. One has to note that this attack differs
from the previous ones and that it does not break completely the second version of the
scheme [SPS20]. However, it remains a serious attack with around 30 bits of security loss
for the first set of parameters, using 230 signatures only.

Digital encryptions with lattices. On the other hand, statistical leaks tend to be
a non-issue for encryption schemes. Indeed, the owner of the secret key do not need to
send any public data apart from the public key, thus learning attacks like [NR06] do not
apply in this case: [NR06] even states on the first few pages than the encryption version of
GGH is probably still secure. More recent papers makes the same observation. [FKPY22]
reminds for example that while the encryption of GGH is not broken, its security is not
clearly understood. Knapsack problems, which can be considered specialised variants of
lattice problems, also suffer from a bad reputation but recent papers such as [DvW22] do
remind the academic community that not all knapsacks are completely broken. As far
as we know, the encryption concept of GGH is still unbroken as of today. The current
new standard for lattice-based encryption is Kyber [BDK+18], and while the NIST did
not call for additional encryptions, the fact remains that Kyber share a similar structure
to Dilithium [DKL+21], thus a new algebraic attack could affect them both. Novel
encryption schemes, based on non-structured lattices, are thus also interesting.

1.2 Our Contributions
This work is composed of two parts.

1. In Section 3 we improve our theoretical knowledge of diagonally dominant lattices by
giving two new bounds on the key lattice invariants in the context of cryptography
for the max norm, one for the covering radius and one for the first minimum.
More precisely, we start by giving a lower bound on the size of the shortest vector in
infinity norm. Guessing the size of the shortest vector or even an approximation is
known to be NP-hard [Din00], thus we believe providing a tighter upper bound for
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any specific family of lattices is an interesting result in itself if we ever wish to use this
subfamily as a trapdoor for constructing cryptographic schemes, to at least measure
the difference with other (subfamilies of) lattices. Then we give an improved study
of the reduction algorithm of [PSW08] for diagonally dominant matrices and prove a
stronger reduction capability than previously proven for such lattices [SPS19b]. We
also prove that our aforementioned algorithms operate at most a polynomial (in the
dimension and the size of its entries) amount of vector additions or multiplications
by a scalar. Consequently, both results give novel upper and lower bounds on the
size of the covering radius for such lattices.

2. Secondly, using this new results, we are able to provide a decryption failure free
cryptosystem relying on diagonally dominant matrices. It follows a framework close
the GGH encryption schemes [GGH97, dBS15]. We discuss formal security and the
steps to take towards Indistinguishable under Chosen Ciphertext Attack (IND-CCA)
security, using standard techniques or transformations [FO99, Den03]. We also
evaluate the practical security of the scheme using common cryptanalytic techniques
to assess lattice-based constructions, and show that our construction is asymptotically
secure.

We also provide in an appendix a reparametrisation of the Diagonal Reduction Signature
(DRS) signature scheme using the work done on this paper, and further properties and the
behaviour of the reduction algorithms over both generic and particular forms of diagonally
dominant basis.

Conclusion and future works We show that an encryption version of DRS, that we
named DRE, is possible and prove it through theoretical work and implementation. The
experimental implementation shows that while the performance may not match the current
alternative unstructured standard FrodoKem [BCD+16], the order of magnitude are
still relatively close to each other, showing it is possible to have an encryption scheme
based on lattices outside q-ary that do not rely on polynomial rings or floating point
arithmetic. Furthermore, note that the main drawback of diagonally dominant matrices
is that their structure allow for easier attacks on the secret key. This leads to increased
parameter sets, e.g. the dimension, to reach similar security levels. A workaround could
be to apply such matrices to the Lattice Isomorphism Problem (LIP) [DvW22, BGPS23]
framework, where the “good basis” is public. Since the attack vectors on such constructions
are different, see [DPPvW22], considerations such as hiding the underlying lattice are
discarded, which could result in drastically increased efficiency compared to the encryption
scheme we introduced in this paper. Finally using diagonally dominant matrices could be
more conservative than Zn. Indeed, note that the identity matrix is diagonally dominant,
but degenerated since it has no noise.

2 Background
We assume the readers know what is the set of integers Z, the set of integral matrices
with n rows and m columns Mn,m(Z), the determinant, norms and other basics of linear
algebra. Given a matrix B, we will denote by Bi its ith row vector. We will also use the
notation 1n for the all-ones vector [1, . . . , 1] in dimension n.

2.1 Cryptography and security notions
We recall standard security notions related to encryption schemes in asymmetric cryptog-
raphy. In the following, we will write M and C for the sets of plaintexts and ciphertexts,
respectively.
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Definition 1. An encryption scheme is defined by a triplet (KeyGen, Enc, Dec) such that :

• KeyGen takes a security level λ as input, outputs a public/secret key pair (PK , SK).

• Enc takes PK and a plaintext m ∈M as input, outputs a ciphertext c ∈ C.

• Dec takes SK and a ciphertext c ∈ C as input, outputs a plaintext m ∈M.

The encryption scheme is said to be correct if :

∀m ∈M,∀(PK , SK)← KeyGen(λ), Dec(SK , Enc(PK , m)) = m.

Apart from correctness, an encryption scheme can achieve different security guarantees.
Those are determined by attack simulations, commonly seen as “games” where the adversary,
without knowledge of SK , tries to win against the challenger, who owns SK . In all those
games, it is assumed that PK , KeyGen, Enc, Dec are available to all parties.

The first security guarantee is one-wayness, which is really the minimum required
degree of security.

Definition 2 (The One-Way under Chosen Plaintext Attack (OW-CPA) game).

1. Challenger gives c← Enc(PK , m) for m← U(M) to adversary.

2. Adversary wins the game by correctly guessing m.

The scheme is OW-CPA if no Probabilistic Polynomial Time Adversary (PPTA) can win
the game with non-negligible probability.

In order to account for more complex attack scenarii, one needs to introduce more
advanced security notions. The first security upgrade is to let the adversary choose between
two choices.

Definition 3 (The Indistinguishable under Chosen Plaintext Attack (IND-CPA) game).

1. Adversary generates two distinct plaintexts m0, m1 and send them to challenger.

2. Challenger computes c = E(SK , mb) for b ∈ {0, 1}

3. Adversary wins the game by correctly guessing b.

The scheme is IND-CPA if no PPTA can win the game with non-negligible probability.

Finally, one can give more power to the attacker, for example having access to a decryp-
tion oracle before playing the IND-CPA game. This leads to the notion of Indistinguishable
under Chosen Ciphertext Attack (IND-CCA).

Definition 4 (The IND-CCA game).

1. Adversary requests mi = Dec(SK , ci) for any number of chosen ci, to which the
challenger complies. Adversary stores the knowledge.

2. Adversary wins by winning a new IND-CPA game with the knowledge above.

A scheme is IND-CCA if no PPTA can win the game with non negligible probability.

It is possible to prove that a cryptosystem reach any of these three levels directly.
However, it is also frequent to use classical transformations to transform an encryption
scheme into a new one reaching a stronger security level. An important example is the
Fujisaki-Okamoto (F.-O.) [FO99, Den03] transform allowing us to transform a IND-CPA
scheme into a IND-CCA one.
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2.2 Euclidean lattices
We refer readers to [MG12, MR09] for a more complete background of lattice theory.

Definition 5 (Lattice).
We define an integral lattice L as a subgroup of Zn. A basis B of an integral lattice L is a
basis of L as a Z-module, and we denote by L(B) the lattice generated by the rows of a
basis matrix B. We write the determinant (or volume) of the lattice and compute it as
det(L) =

√
det(B ·BT ).

While an integral lattice can potentially have an infinity of basis, there is a standard
shape, unique, computable in polynomial time from any basis and used in almost every
modern lattice-based cryptosystem, which we define below:

Definition 6 (Hermite Normal Form (HNF)).
Let L be a full-rank integral lattice of dimension n and H ∈Mn,n(Z) a basis of L. Then

H is said to be in HNF if, and only if,

∀1 ≤ i, j ≤ d, Hi,j


= 0 if i > j

≥ 0 if i ≤ j

< Hj,j if i < j

In this paper we only consider full-rank integral lattices. In particular, we pay attention
to lattices which HNF have a special form:

Definition 7 (Perfect HNF).
Let H ∈Mn,n(Z) a matrix in HNF. We say H is a perfect HNF if, and only if, it admits

Idn−1 as a submatrix: in other words, there is at most one non-trivial column vector.

While HNF have been considered in cryptography since [Mic01], perfect HNF have
not always been considered since specific popular lattices arising from Learning With
Errors (LWE) [Reg03] or “Number Theory is Really Useful?” (NTRU) [HPS98] cannot
have such shapes (in practical instantiations). Interestingly, if a lattice admits a perfect
HNF as a basis, then it is co-cyclic.

Definition 8 (Co-cyclic lattice).
Let L ⊂ Zn be a full-rank lattice. Then L is co-cyclic if, and only if, Zn/L is cyclic.

For any sufficiently large dimension on any fixed maximal volume, co-cyclic lattices
form a large class of all lattices (≈ 85% [NS16]). Not only those are more numerous, and
likely more directly linked to generic problems beyond cryptography compared to q-ary
lattices, they also benefit from an average-to-worst-case reduction [GINX16].

To each Euclidean lattice are attached important geometrical invariants, i.e. not linked
to a specific representation, which are linked to fundamental problems on lattices. We
consider two of them here, namely the first minima and the covering radius.

Definition 9 (Minima of a lattice). We denote by λ
(l)
k (L) the smallest value r such that a

ball centred in zero and of radius r in norm l contains k linearly independent vectors of L.

Definition 10 (Covering radius). Given a lattice L, we define its covering radius µ(l)(L) as
the smallest value such that for any x ∈ Rn, there exists v ∈ L such that ∥x−v∥l < µ(l)(L).

Note that the previous definitions are dependent on the norm chosen to measure the
ambiant space. Moreover, some relations exist between those quantities. For example, for
any lattice we have 1

2 λ
(2)
1 (L) ≤ µ(2)(L) ≤

√
n

2 λ
(2)
n (L) (See [MG12]).

While many computational problems on lattices exist, we define only the lattice
problems useful for the comprehension of the paper.
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Definition 11 (Approximate Shortest Vector Problem (SVPγ)). Given a basis of a
lattice L of dimension n and an approximation factor γ ∈ R+, find v ∈ L \ {0} such that
∥v∥ ⩽ γ · λ1(L).

Definition 12 (Approximate Closest Vector Problem (CVPγ)). Given a basis of a lattice
L of dimension n, a target vector t ∈ Rn and an approximation factor γ ∈ R+, find v ∈ L
such that ∀w ∈ L, ∥t− v∥ ≤ γ · ∥t−w∥.

The first minimum λ
(l)
1 (L) and the covering radius µ(l)(L) offer some natural bounds to

transform the problem Closest Vector Problem (CVP) in some useful variants, especially
for cryptographic applications.

Definition 13 (γ-Guaranteed Distance Decoding (GDDγ)). Given a lattice L, and a
bound γ ≥ 1, for any target t ∈ Rn find a lattice vector v ∈ L such that ∥t−v∥ < γ ·µ(l)(L).

There exists another variant of CVP; if the first variant, GDDγ , is key for lattice-based
signature schemes, and the second variant below is key for lattice-based encryption schemes.

Definition 14 (Bounded Distance Decoding (BDD)). Given a lattice L, and a bound
α ≤ 1, for any target t ∈ Rn such there exist a vector v ∈ L with ∥t− v∥ < α · λ(l)

1 (L),
find v.

Those problems are usually tackled with the combination of a “good” basis. A “good”
basis is typically one composed of vectors that are as short and as orthogonal as possible: the
better the basis is, the heuristically “easier” is it to solve the aforementioned lattice problems
in general. On the other hand, a “bad” basis is one where the aforementioned problems are
“harder” to solve with. Typically a LLL-reduced [LLL82] or BKZ-reduced [CN11], together
with an appropriate algorithm such as Babai’s round-off or nearest plane algorithms [Bab86].
For example, the approach proposed by Klein [Kle00] for solving BDD for some α. In
general, those “good” basis are obtained with the algorithms of the same name, that takes
any basis as an input and attempt to compute a “reduced” basis (i.e “good” enough).
BKZ-β, where β is a block-size, is the usual reduction algorithm, where (grossly speaking)
β = 2 is LLL, up to n for a HKZ-reduced lattice base. The higher the β, the “better”
is the output basis, but the slower is the algorithm. The heuristic security of lattice-
based schemes, whether based on GDDγ or BDD, is “in general” evaluated on finding an
appropriate β for which we can “break” the lattice-based cryptosystem, and extrapolating
the minimum attack cost as the cost of running BKZ-β.
Remark 1. Note that a CVPγ algorithm can be used as a GDDγ solver as long as the
approximation factor γ ensures that any target has a solution. Remark also that solving
the GDDγ is equivalent to computing a short coset representative of t mod L. We will
often consider algorithms solving this “short coset representative” problem, that we will
call reduction algorithms and write Reduce for a generic algorithm. In this context the
approximation factor γ of Definition 13 will be called the reduction radius.

In this paper, we consider a specific family of “good” lattice bases, allowing us to
tackle the above problems more easily. Thus, we can use them as secret trapdoors for
cryptographic constructions, leaving the HNF of the lattice as a “bad” basis to be the
public key: the HNF as a public key was first proposed by Micciancio [Mic01], where the
“good/bad” basis approach was proposed by [GGH97] which itself is a lattice derivative
from the code-based McEliece [McE78].

Definition 15 (Diagonally Dominant Matrix). Let a matrix B ∈Mn(Z), we write δi(B),

δi(B) = Bi,i −
n∑

j=1
i̸=j

|Bi,j |
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and we will call B diagonally dominant if, and only if,

∀i ∈ J1, nK, δi(B) > 0.

Furthermore, we will call dominance level the quantity ∆(B) def= min δi(B).

It follows from the Lévy-Desplanques theorem that a diagonally dominant matrix is
always full-rank. For clarity reasons, we will mainly consider diagonally dominant matrices
of the form B = D · Idn +N for some fixed D ∈ Z and such that for any i ∈ J1, nK, Ni,i = 0
3. Then, we will call noise level the value ν(B) def= maxi∈J1,nK ∥Ni∥1.

3 Results on fundamental values for diagonally domi-
nant lattices

In this section we analyse diagonally dominant lattices with respect to the max norm.
We improve our knowledge on both the covering radius and the first minimum which are
cryptographically relevant lattice invariants. We present those results in Theorem 1 and
Theorem 2. Moreover, we show that the bound for the covering radius for matrices with
negative noise N can be lowered, but we push back this result in Section B for clarity
purposes.

3.1 Tighter bound on Diagonally Dominant Lattice Covering Ra-
dius

The results proven in this section will prove the following theorem.

Theorem 1. Consider B ∈Mn(Z) a diagonally dominant matrix and L = L(B). There
is an algorithm PSW (Alg. 1) such that for any vector v ∈ Rn, it returns in polynomial time
a vector w respecting

w ≡ v mod L, ∥w∥∞ ⩽ D − ∆(B)
2

i.e.

µ(∞)(L) ⩽ D − ∆(B)
2 .

The proof of this theorem is done by proving an upper bound on the convergence radius
of a reduction algorithm which we will prove to terminate within a polynomial number of
arithmetic operations.

The PSW reduction algorithm was first introduced in [PSW08] and is a known approxi-
mation of Babai’s Round-off algorithm [Bab86] in the case of matrices of the form D−N
where N ·D−1 have a spectral radius lower than 1. It was then used a second time in
cryptography [PSDS18] within the DRS scheme. The algorithm was proven to terminate
with ∥w∥∞ < D in [PSDS18], but did not take into account the leeway ∆(B). A slight
modification of the reduction proof given in [SPS19b] gives us a tighter bound by changing
the loop condition in line 2 of the algorithm to a comparison with a value Ri ⩾ D−δi(B)/2
for every index i. This gives us the modified version, described in Algorithm 1.

3Note however that our results and their proofs can be adapted to the case where B = D + N with D
a general diagonal matrix and N has non-zero diagonal coefficients.
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Algorithm 1 Modified PSW reduction
Require: v ∈ Rn, B a diagonally dominant matrix, a bound vector R ∈ Nn.
Ensure: w ≡ v mod L(B) and ∀i ∈ J1, nK, wi < Ri.

1: w← v
2: while

∨n
j=1(|wj | > Rj) do

3: i← any index such that |wi| > Ri

4: if |wi| ⩾ D then
5: q ← sign(wi) · ⌊|wi| /D⌋
6: else
7: q ← sign(wi) {Extra reduction not in original PSW}
8: end if
9: w← w− q ·Bi {Reduce |wi|}

10: end while
11: return w

Correctness. The following lemma states that for a given R, the algorithm terminates
given that the values of Ri are above a certain bound which varies for each index. Note that
one could remove the reference to the quantities Ri and stick with the smaller D− δi(B)/2.
However we wants to stress that a user can fix at which level Algorithm 1 stops.
Lemma 1 (Tighther bound in PSW-reduction algorithm). For input v ∈ Rn, a diagonally
dominant matrix B and R ∈ Rn

+ such that ∀i ∈ J1, nK, Ri ⩾ D− δi(B)/2, the PSW reduction
(alg. 1) terminates and outputs w ≡ v mod L(B) where ∀i, |wi| ≤ Ri.

Proof. Let S(v, R) def= {i ∈ J1, nK | |vi| > Ri} and f be the function defined on Rn × J1, nK
which acts on w as steps 4-9 of Algorithm 1. Thus, it can be described by f : (w, i) 7→
w− sign(wi) ·

(⌊ wi

D

⌋
+ χ]Ri,D[(wi)

)
·Bi, where χA designates the indicator function of a

given set A. In order to show that Algorithm 1 ends and outputs a correct vector, we will
prove the following:

n∨
j=1

(|wj | > Rj) =⇒ ∀i ∈ S(w, R), ∥f(w, i)∥1 < ∥w∥1 − ε, (1)

for some fixed value ε > 0. First, remark that if the left side of (1) is verified, then f modifies
w. Now let us show that (1) is true. First assume that there exists i ∈ S(w, R) such that
|wi| > D. Then f(w, i)i has the same sign as wi, therefore |f(w, i)i| = |wi|−⌊|wi| /D⌋ ·D.
Moreover, we have

∀j ∈ J1, nK \ {i}, |wj | ⩽ |wj |+
⌊
|wi|
D

⌋
· |Bi,j |,

which gives

∥f(w, i)∥1 ⩽ |f(w, i)i|+
n∑

j=1
j ̸=i

|f(w, i)j | ⩽ |wi| −
⌊
|wi|
D

⌋
·D +

n∑
j=1
j ̸=i

|wj |+
⌊
|wi|
D

⌋
· |Bi,j |.

This leads to

∥f(w, i)∥1 ⩽ ∥w∥1 +
⌊
|wi|
D

⌋
· δi(B) ⩽ ∥w∥1 −

⌊
|wi|
D

⌋
· δi(B) < ∥w∥1 − 1.

Now consider i ∈ S(w, R) such that |wi| < D. Then the signs of wi and f(w, i)i

are different. Moreover, if we write |wi| = Ri + t with t ∈K0, D − RiJ, we obtain
|f(w, i)i| = |Ri −D + t| = D −Ri − t. Therefore, we have

|f(w, i)i| = |wi| − 2(Ri + t) + D.
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Following the same reasoning as before to bound ∥f(w, i)∥1, we have

∥f(w, i)∥1 ⩽ ∥w∥1 − 2(Ri + t) + D + D − δi(B)

and noting that Ri ⩾ D − δi(B)/2 we obtain

∥f(w, i)∥1 ⩽ ∥w∥1 − 2(Ri + t) + 2Ri < ∥w∥1 − 2t.

Since the value ri ∈ [0, 1[ such that ri ≡ wi mod 1 does not change throughout the
algorithm, t can take a finite number of values (at most 2n). Denoting by ϵ the minimal of
those values and taking ε as the minimum between 1 and ϵ, we obtain that (1) is indeed
true.

Algorithm 1 uses a linear memory and does not need to store much more than the size
of the target and the matrix. This is an advantage compared to Babai’s nearest plane
algorithm which needs the GSO or Babai’s rounding-off algorithm which requires a matrix
inverse. Moreover, all computations can be carried out with simple integral arithmetic.

Worst-case complexity. The average time complexity of Algorithm 1 was briefly
experimented in [PSW08], however a proper worst-case analysis was not provided and
does not seem to have been done in the literature. We give a tighter analysis when the
decoding radius Ri is chosen to be the smallest possible and the input vector v is in Zn.

Lemma 2. Let B ∈Mn(Z) be a diagonally dominant matrix and v ∈ Zn, and denote by
b the value 2nD

2nD−∆(B)) . Consider also that for each 1 ⩽ i ⩽ n, Ri is equal to D − δi(B)/2.
An upper bound on the complexity of vector operations done by Algorithm 1 is in

O

(
logb

(
∥v∥1

nD

)
+ nD

)
.

Proof. Let us consider the reduction of ∥w∥1 to count the number of reduction steps, using
the results and the reasoning of Lemma 1.

First assume ∥w∥1 > nD which guarantees ∥w∥∞ > D. Thus, the coefficient q is
greater 1. Denote by w′ the value of the vector after the update in Algorithm 1. Then
∥w∥1 is updated as

∥w′∥1 ⩽ ∥w∥1 − q ·∆(B).

From ∥w∥∞ ⩽ ∥w∥1 ⩽ n∥w∥∞ we obtain q ⩾ ∥w∥1
2nD . Thus, we get

∥w′∥1 ≤ ∥w∥1 −
∥w∥1

2nD
·∆(B) = ∥w∥1 ·

(
2nD −∆(B)

2nD

)
.

If we use this inequality, and we write k the number of steps necessary to reach the
condition ∥w∥1 ⩽ nD, i.e. to reach the second case, using the worst assumptions we
obtain:

∥w∥1 =
(

2nD −∆(B)
2nD

)k

· ∥v∥1 ⩽ nD.

This gives O
(

logb

(
∥v∥1
2nD

))
vector operations to reach ∥w∥1 ⩽ nD.

We can now focus on the case ∥w∥1 ⩽ nD. Note that ∥w∥1 ⩽ nD still do not give us
much information about ∥w∥∞, so we continue our analysis using ∥w∥1.
We proceed by counting the least impactful possible reduction of ∥w∥1 ⩽ nD per step
until ∥w∥1 = 0: each step reduces ∥w∥1 of at least 2t, where t = wi − Ri. Since
wi ∈ Zn, B ∈Mn(Z) and Ri = D− δi(B)/2, we know that t is at least 1/2 so 2t is greater
than 1. Therefore, we upper-bound the amount of loop iterations left by ∥w∥1 ⩽ nD.
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By approximating log(b) = − log(1−∆/2nD) ≈ ∆(B)/2nD and setting ∥v∥1 = nDn

(i.e. each coefficient to an approximation of the determinant), we can obtain the simpler
formula ignoring constants:

O

(
n2D

log(D)
∆(B)

)
In addition, if we set D = n and ∆(B) = 1 as in the different versions of the DRS
scheme [PSDS18, SPS19b, SPS20], we obtain O(n3 log n).
Remark 2. This complexity bound obtained in Lemma 2 is not tight and does not reflect
at all the significantly faster experimental results reported in [PSW08, SPS19b, PSDS18],
which is understandable: the probability to trigger a single least-impactful iteration is
2−(n−1), i.e. as probable as solving a {0, 1}-knapsack problem with n− 1 entries randomly.
However, our result still proves polynomial operation complexity and constant memory
(besides input memory) as far as vector operations (i.e. fixed dimension) are concerned.

3.2 Result on Diagonally Dominant Lattice First Minimum
The strong link between ∆(B) and the quality of reduction modulo L(B) has been described
in the previous section. In this section, we present a second result linking once again ∆(B)
with the first minimum of the underlying lattice. To our knowledge, this is the first result
in this direction. Moreover, as we will see in Section 4, this permits the use of diagonally
dominant matrix for encryption, even avoiding any decryption failure.

Theorem 2. Let B ∈ Mn(Z) be a diagonally dominant matrix with diagonal D. Then
λ

(∞)
1 (L(B)) ⩾ ∆(B).

Proof. Consider l ∈ Zn and write v = l · B. Then write l′ = (|li|)i∈J1,nK. There exists
B′ ∈ Mn(Z) a matrix such that |B′

i,j | = |Bi,j | for any pair (i, j) ∈ J1, nK2, and for all
i ∈ J1, nK, B′

i,i = D and vi = ±(l′ ·B′)i. Thus, B′ is a diagonally dominant matrix such
that δi(B′) = δi(B) for all i ∈ J1, nK. Now let us show that ∥v∥∞ ⩾ ∆(B). First, we
bound the taxicab norm using a classic norm inequality

∥v∥∞ ⩽ ∥v∥1 ⩽ n∥v∥∞. (2)

Then, remark that we have the following:

∥v∥1 =
n∑

j=1
|(l′ ·B′)j | ⩾

∣∣∣∣∣∣
n∑

j=1

n∑
i=1

l′
i ·B′

i,j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

i=1
l′
i

n∑
j=1

B′
i,j

∣∣∣∣∣∣ .

Moreover, for any i ∈ J1, nK, l′
i ⩾ 0 and

∑n
j=1 B′

i,j ⩾ δi(B) > 0, so we have∣∣∣∣∣∣
n∑

i=1
l′
i

n∑
j=1

B′
i,j

∣∣∣∣∣∣ =
n∑

i=1
l′
i

n∑
j=1

B′
i,j ⩾

n∑
i=1

l′
i · δi(B).

Therefore, if k = |{i ∈ J1, nK | li ̸= 0}| we obtain ∥v∥1 ⩾ k ·∆(B).
If k = n then Equation (2) gives

∥v∥∞ ⩾ ∆(B).

Now consider the case with k < n. Without any loss of generality, assume ∀i ∈ J1, kK, li ≠ 0.
Denote by l′′ the tuple (l′

1, . . . , l′
k) and B′′ the top left k × k submatrix of B′. Then B′′ is

diagonally dominant and ∀i ∈ J1, kK, δi(B′′) ⩾ δi(B′) = δi(B). We have

∀i ∈ J1, kK, (l ·B)i = (l′ ·B′)i = (l′′ ·B′′)i.
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Then, since |{i ∈ J1, kK | l′′
i ̸= 0}| = k, we can apply the previous result to l′′ and B′′,

therefore ∥l′′ ·B′′∥∞ ⩾ ∆(B′′) and ∃i0 ∈ J1, kK, |(l′′ ·B′′)i0 | = ∥l′′ ·B′′∥∞. Finally, we get

|(l ·B)i0 | = |(l′ ·B′)i0 | = |(l′′ ·B′′)i0 | ⩾ ∆(B′′) ⩾ ∆(B′) = ∆(B).

4 Diagonally Dominant Matrix Encryption
In this section we will describe an encryption scheme using diagonally dominant matrices,
that we call DRE as a callback to DRS [PSDS18], a signature scheme we mentioned in the
introduction. The following encryption scheme will follow both similar lattice structures
(diagonally dominant matrices) and associated algorithms (variants of [PSW08]). First we
describe in Section 4.1 the general framework of our construction based on a GDDγ solver.
We provide conditions on the matrices used as private keys to ensure the correctness of the
scheme within this framework in Section 4.2. To this end we use the results on λ

(∞)
1 and

µ(∞) proven in Section 3 and summed-up in Theorem 1. Then we give an instantiation of
this general framework in Section 4.3 and discuss security in Sections 4.4 and 4.5.

4.1 General framework
Let us now describe the framework for the encryption scheme we are considering. As
mentioned previously, it is based on the max norm l∞. We fix as parameters (D, n, M) ∈ N3.
Let us denote L the lattice generated by a diagonally dominant matrix B = D · Idn + N.
Let R ∈ R be a radius for which for any c ∈ Zn we can compute a vector m ≡ c ∈ L
s.t. ∥m∥∞ < R. Algorithms 1 and 3 offer us parametrisable radii R directly from a
parametrisable B. Evidently, B is kept as a secret trapdoor as it allows for decryption. Let
M be the upper bound of the max norm of the vector messages we wish to recover, such
that if the vectors associated to the valid messages belong to a setM, thenM⊆ [−M, M ]n.
Here, we consider that each message is associated to a vector m ∈ Zn we wish to recover,
and that the encryption of m is associated to a ciphertext vector c = m + v where
v ∈ L(B). In summary, we consider the following framework:

• The secret key SK = B ∈ Mn(Z) is a diagonally dominant matrix with diagonal
coefficient D, and the public key PK is H = HNF(B).

• The message space is M⊆ J−M, MKn.

• The encryption function will be Encrypt(PK , m) = s ·H + m, with s ∈ Zn.

• The decryption function will be Decrypt(SK , c) = Reduce(B, c), where Reduce is a
GDDγ solver. Its convergence radius will be denoted by R.

4.2 Guaranteeing decryption of valid messages (i.e. correctness)
In order to obtain a correct scheme we need to determine parameters ensuring the
correctness of the decryption. The first condition that they need to satisfy is M ⩽ R so
that Reduce(B, c) is indeed a valid message. Then one needs to ensure unicity, meaning
Reduce(SK , Encrypt(PK , m)) = m. This is satisfied as soon as

R + M ⩽ λ
(∞)
1 (L). (3)

In particular for diagonally dominant matrices, we can use Algorithm 1 for Reduce
and Theorem 1 ensures that Equation (3) is satisfied for matrices B such that

∆(B) >
2
3(D + M), (4)
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PreComp(B)
c← 2α, v← [0, ..., 0, c],P ← {}
while c < det(B)

v← Reduce(v, B)
P ← Append(P, v)
v← 2αv, c← 2αc

return (P)

UsePreComp(c, P)
i← 0, q ←

⌊
c

2α

⌋
, r ← c mod 2α

m← [0, ..., r]
while q ̸= 0

i← i + 1
m← m + Reduce(rP[i])

r ← q mod 2α, q ←
⌊

q

2α

⌋
return m

Figure 1: Generic Large Reduction Preprocessing, with arbitrary binary power base α

which are straightforward to construct. If we focus on matrices with negative noise
only, then we can obtain larger bounds. Indeed, in this case R = D/2 so (3) becomes
λ∞

1 (L) ⩾ D/2 + M which gives ∆(B) > D/2 + M . Thus, we could use smaller dominance
levels for a fixed M or larger message spaces for the same value ∆(B). A fully mono-signed
noise is explored in appendix.

4.3 Instantiation of the encryption scheme
To instantiate our encryption scheme, we first need to fix some public parameters such
that the diagonal coefficient D and the dimension n. We assume the message space is
composed of vectors in M = {−1, 0, 1}n, but we showed earlier that could also be subject
to change. We fix some notations to ease the understanding of the scheme:

• (D, n, c) ∈ N3 are respectively the diagonal value, dimension and ciphertext.

• H, B ∈Mn(Z), and P is rectangular but has n columns.

• IsNotPerfect outputs TRUE anytime the input is not a perfect HNF.

• RDDgen(D, n, ∆(B)) is the random generation of a diagonally dominant matrix of
size n× n which respects the diagonal D and the noise gap ∆(B).

• PreComp takes a diagonally dominant matrix and precompute a set of short coset
representative modulo L(B), produced by PSW2. Those cosets are the ones of the
form [0, . . . , 0, a], with a being large integers.

• UsePreComp uses the above to output a prereduction of the vector [0, . . . , 0, c] modulo
L(B).

Note that PreComp and UsePreComp, that we present briefly in Figure 1, are completely
unnecessary from a theoretical perspective. However we use them in our simple proof-
of-concept implementation to avoid large waiting times (to verify our concept works in
practice), and we thus believe they are worth mentioning. We give below a bit more
detailed description of the whole scheme.

Using those notations, we present a high-level description of the instantiated encryption
scheme in Figure 2.

From an external point of view, our scheme is based on a knapsack problem, such as the
first proposition of Merkle-Hellman [MH78]. The major differences with Merkle-Hellman
lie within the setup, the decryption and the trapdoors. Indeed, both public keys are a
single series of integers but our construction is based on Euclidean lattices which were
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DRE-KeyGen(D, n)
∆(B)← 2(D + 1)/3
H← 0, B← 0
while IsNotPerfect(H)

B← RDDgen(D, n, ∆(B))
H← HNF(B)

P ← PreComp(B)
h← H[1..n, n]
return (PK = h, SK = B,P)

DRE-Encrypt(PK , m)
c← 0
for i ∈ [1, n− 1]

c← c−mi · hi

c← (c + mn) mod hn

return c

DRE-Decrypt(SK , P, c)
∆(B)← 2(D + 1)/3
R← (D −∆(B)/2) · 1n

m← UsePreComp(c,P)
m← Reduce(m, B)
return m

Figure 2: DRE Algorithms

not in the mind of Merkle and Hellman when they proposed their scheme. Note that
the Squirrels [ENST23] submission is also similar, although it is a signature scheme:
a single series of large integers as a public key, although those are decomposed into
small integers through the Chinese Remainder Theorem using a friable determinant. The
concrete security, as we explore in Section 4.5, is measured by the currently best attacks
on knapsacks: lattice-based reduction.

4.3.1 Key generation.

For the secret key, we generate a diagonally dominant matrix with our chosen parameters
(D, n). Since the message space is J−1, 1Kn, following Equation (4), we will fix ∆(B) =
2(D+1)/3. For the public key, we compute the HNF of the secret key, hoping it has perfect
form, i.e. L(B) is a co-cyclic lattice. If not then we discard B and retry4. The public key
is then H = HNF(B) but since it holds a perfect form, only its unique dense column vector
h needs to be sent. We also perform precomputations to ease future decryptions, but in
theory this is not needed.

4.3.2 Encryption.

For the encryption, we just perform a Gaussian Elimination on m using the matrix H.
Because the public key PK = h was enforced to be the last column of a perfect HNF H,
the output of DRE-Encrypt as shown in Figure 2 is the last coefficient of a vector of the
form [0, . . . , 0, c] = m + v with v ∈ L(B). Indeed, if one reduces the vector m with H, as
follows 

m1 . . . . . . mn−1 mn

1 0 . . . 0 h1

0 1 . . . ...
...

... . . . . . . 0
...

0 . . . 0 1 hn−1
0 . . . . . . 0 det(B)


,

using the first n− 1 rows of H, the first vector will be transformed into

[0, . . . , 0, mn −
n−1∑
i=1

mihi] = m−m ·H + mn · [0, . . . , 0, det(B)].

4Or use a permutation to attempt obtaining a perfect HNF as reported in [SPS19a].
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Note that this approach is very similar to the one chose in the Squirrels scheme [ENST23]
recently submitted to the NIST call for proposals for quantum-resistant digital signature
algorithms [NIS23a], and maybe also several HNF-based encryption schemes since [Mic01].

4.3.3 Decryption.

We use Algorithm 1, which we proved to terminate. Note that in our proof-of-concept
implementation, we used precomputations to avoid large integers and save time.

4.4 Formal security
The scheme defined by the algorithms presented in Figure 2 is guaranteed to be correct but
is not secure. Since it is deterministic, it is not even IND-CPA. In the following, we discuss
the path towards IND-CCA security. We first prove that our scheme is OW-CPA relying
on the conjectured hardness of a distinguishing problem, then use classical transformations
to reach IND-CPA then IND-CCA security levels. Note that, for example, from a high-
level point of view, the key encapsulation mechanism Bat [FKPY22] follows essentially the
same steps. The distinguishing problem we consider is relatively unexplored and consists
in distinguishing a HNF of a co-cyclic lattice which is also diagonally dominant from a
HNF of a random co-cyclic lattice.

One-wayness. The first level of security to achieve is one-wayness, i.e. that one
cannot recover a message m given only the public key PK and a random ciphertext
c = DRE-Encrypt(PK , m). See Definition 2 for the formal definition. Obviously, an adver-
sary is allowed to produce as many pairs of plaintext-ciphertext as they want. Since this
corresponds to solving a BDD on a diagonally dominant lattice (from one of its standard
canonical forms), one-wayness is achieved under the conjecture that this problem is indeed
hard to solve. As a matter of fact, one can prove that any advantage in the worst-case
version of the one-wayness problem can be used to obtain an advantage in the recovery of
the secret key. Indeed, any secret vector Bi = D · ei + ni with ∥ni∥1 < D. For a noise
levels ν(B) such as the ones chosen in our final choice of parameters (see §4.6), we get
that with large probability, each coefficient of ni belongs to {−1, 0, 1} so ni belongs to
the message space M. This implies that DRE-Encrypt(PK , D · ei) = DRE-Encrypt(PK , ni)
so that recovering a secret vector can be turned into an instance of the one-wayness
problem. Thus an adversary can turn an algorithm solving the one-wayness problem into
an algorithm recovering the secret key. Note that this observation is backed up by the
analysis of the concrete security done in Section 4.5.

It is classical to base formal security on distinguishing problems. In the case of our
scheme, the path to go seems to be the problem of distinguishing co-cyclic diagonally
dominant lattices from random ones. Indeed, given a perfect HNF from a random co-cyclic
lattice and a perfect HNF from a random diagonally dominant matrix (or close like
Goldreich-Goldwasser-Halevi (GGH)), we are currently unable to distinguish between
the two without recovering the diagonally dominant base. The problem of distinguishing
between random co-cyclic lattices and diagonally dominant lattices (that lie within the
co-cyclic lattices) given their HNF does not seem to have been studied, but we argue that
being able to distinguish lattices with diagonally dominant bases from a random co-cyclic
lattice would break the system, and could finally break GGH after 20 years. Thus, let us
describe how one could show that DRE is OW-CPA with more knowledge on diagonally
dominant lattices. First, let us define the following distinguishing problem.

Definition 16 (Diagonally Dominant Distinguishing Problem (DiagDomD,n,C)). Consider
(D, n) ∈ N and C a class of co-cyclic lattices with dimension n. Then the DiagDomD,n,C
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problem asks on input a matrix H in HNF generated either from DRE-KeyGen or drawn
uniformly from C, to recover the right distribution.

In order to use this problem to build security proofs, one would like to know a class C
such that DiagDomD,n,C is hard. Since the determinant is an efficient sorting criterion,
the class C should consist of lattices whose determinant lies in the range reached by
DRE-KeyGen. Hopefully the determinants of diagonally dominant matrices belong to a
relatively small interval I centered around Dn. Let us assume that this interval and the
precise distribution D are known. Moreover, consider C to be the set of all co-cyclic lattices
whose determinant follows D. Now one has to remark that solving an instance of the
OW-CPA game with DRE is reminiscent of the Group Inhomogeneous Short Integer
Solution (GISIS) problem defined as follows.

Definition 17 (GISISn,∆,β). Given a random co-cyclic lattice L of dimension n such that
detL = ∆ and a uniform s ∈ Z∆, find a vector x such that ∥x∥ ⩽ β and x ·H[1..n, n] ≡
s mod ∆.

Following [GINX16], GISIS is believed to be hard and have been used to build secure
cryptosystems, e.g. Squirrels [ENST23]. Combining the conjectured hardness of both
DiagDomD,n,C and GISIS, one can prove that DRE is OW-CPA. In order to take into
account the fact that the determinant lies in an interval I with distribution D instead
of being fixed, we introduce the GISISn,D,β problem which consists in the average-case
problem where ∆ is drawn uniformly within I following D.

Theorem 3. For any adversary A, there exists two adversaries of roughly the same
running time of A such that Advow-cpa

DRE (A) ⩽ Advdiagdom
D,n,C (A1) + Advgisis

n,D,
√

n(A2).

Proof. One can follow the proof of [FKPY22, Theorem 2]. Let us define two games.

• Game 1 is the standard OW-CPA game for DRE.

• Game 2 differs from Game 1 only in the key generation : Game 2 samples the public
key in C.

To build A1 for the DiagDomD,n,C problem, we use this difference of distribution. On
input H, A1 plays the challenger in Game 1 except setting PK = H and claims that H
is generated by DRE-KeyGen if A wins the game. Following [FKPY22, Theorem 2] we
have that Advdiagdom

D,n,C (A1) = |P(W1)−P(W2)|, where Wi is the random event of A winning
Game i, i = 1, 2. Then, on input a co-cyclic lattice L drawn in C and s ∈ Zdet L, A2
plays the challenger in Game 2 except for setting H = HNF(L). Then one sees that
Advgisis

n,D,
√

n(A2) = P(W2), which allows us to obtain the claimed inequality.

IND-CPA from one-wayness. Assume that the scheme achieve OW-CPA security.
Then, following [DHK+23, FKPY22] one can be made IND-CPA security in the Random
Oracle Model (ROM) with the following transformations of the encryption and decryption
functions :

(m, s, PK , H) 7→ [m⊕H(s)∥DRE-Encrypt(PK , s)]

and
(c1, c2, SK) 7→ H(DRE-Decrypt(SK , c2))⊕ c1,

where s is a random vector and H a hash function modelised as a random oracle.

IND-CPA to IND-CCA Finally, famous transformations permit to reach IND-CCA
security such as the Fujisaki-Okamoto (F.-O.) transform [FO99, Den03].
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4.5 Concrete security
There are several security concerns that one needs to address if planning to build a
cryptosystem. One of them is to ensure that deciphering c into m is not trivial without
the secret key. Heuristically, if c is large enough, the problem of recovering m from c
can be seen as a specific instance of the CVP, which is known to be hard. In practice,
there is currently no better approach that solving this specific instance of CVP, which
experimentally seems to behave exactly like over any other lattice [SPS19b, DY21], at
least according to the estimates from [CN11, ADPS16]. With that in mind, what is left is
the security of the public key. Since [Mic01], it makes sense to provide a basis of L(B) as
a HNF for the public key, however other choices might be possible. It might not even be
necessary to provide a perfect HNF basis of L(B) in the first place. Let us assume the
public key is chosen as another basis of the same lattice: in the last decades, it seemed
that pure key recovery attacks on diagonally dominant matrices [PSDS18, SPS19a] or
close structures [GGH97, MW01] are rather unsuccessful. The weaknesses were mostly on
signature scheme instances [NR06, DN12, DY21] which do not concern this section. Note
that [NR06] also consider that the encryption approach of [GGH97] is still secure, and to
the extent of our knowledge this claim has not been challenged yet despite the public key
not being a HNF.

4.5.1 Key recovery

Naive attack. The most naive attack is to reduce the public key using a BKZ-β algorithm
in order to recover the secret key or a basis with an equivalent quality. As a matter of
fact, we will consider only the complexity of computing one short vector. In the case
of DRS, it amounts to solve the SVPγ for a small constant approximation factor. Note
also that diagonally dominant lattices have unusually short vectors. Indeed, the secret
key B is composed of vectors such that D ⩽ ∥Bi∥2 ⩽

√
2D which is smaller than what is

predicted by the Gaussian heuristic by a factor in O(
√

n). Thus, the situation is similar to
what happens for the Hawk cryptosystem based on the Zn-LIP. Following the analysis
done in [DPPvW22], the required block size β to recover a secret vector should satisfy√

β/n ≈ δ2β−n−1
β with δβ ≈ (β/(2πe))1/2(β−1) which gives β ∈ O(n/2) + o(n).

Attack by BDD-uSVP. Apart from directly reducing the public key, one can use the
fact that B is diagonally dominant. Indeed, each vector of the secret basis is then of the
form D · ei + ni with ∥ni∥1 < D. Then solving a BDD instance with respect to L(B) and
the target vector D · ei would yield the secret vector Bi

5. The cost of such an attack –
without any additional knowledge – can be estimated following [ADPS16, AGVW17]. It
is mentioned in [DY21] that recovering Bi can be done with BKZ-β when√

β/(n + 1) · ∥Bi −D · ei∥ ≈ δ2β−n−1
β ·Dn/(n+1). (5)

Once the smallest block size β that BKZ can use to be potentially successful is fixed,
one can apply the following conservative cost estimation for BKZ-β as used in [FKPY22]:

16(n + 1)20.292β . (6)

Note, that those “generic lattice estimates” were used by the authors of the original
Diagonal Reduction Signature (DRS) submission [SPS19a] and the authors of the current
attacks on DRS [DY21] do not seem to contradict the claims. In particular, [DY21]’s
attack uses the estimates after applying leakage knowledge in order to estimate the efficiency
of their attack. This of course does not constitute a proof that no further attack exists. As

5This method, named Kannan’s embedding [Kan87], applies a reduction on a specially extended lattice
of dimension n + 1, similarly to the naive reduction on the original lattice of dimension n.
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a matter of fact, it would be interesting to see if a new generic attack rises and answers
the long-standing question: can we finally break the GGH encryption scheme concept in
polynomial time? Thus, we have yet to see an attack that exploits the structure even
further beyond the leak: as we stated earlier, the encryption version of GGH is still
unchallenged6, despite using an almost similar structure.

Attack on sparse keys. This previous attack can be eventually generalised if the vector
Bi is reasonably sparse. As sparsity offers more compact keys, this is indeed a property
that one can observe in the parameter we propose in Table 1. If Bi is sparse, for example
with only l values different from 0, then one can guess k number of 0 and then perform the
same attack as previously described. The block βk of the successful BKZ will then respect√

βk/(n− k + 1) · ∥Bi −D · ei∥ ≈ δ2βk−n−k−1
βk

·Dn/(n+1−k). (7)

Obviously, the cost of running BKZ-βk will have to be multiplied by the number of
guesses required to succeed, which leads to:(

n
l

)(
n−k

l

)16(n− k + 1)20.292βk . (8)

Therefore, we will use the k such that the cost of Equation 8 is minimal to evaluate
the security of the secret key.

4.5.2 Message recovery

For message recovery, one needs to compute m from c, where c corresponds to a vector
c ≡m mod L(B). Thus, v = c−m is a lattice vector such that d(c, v) = ∥m∥.

For key recovery, or at least recovery of one vector of the secret matrix7, one needs
to compute Ni from D · ei for any i, where Ni corresponds to a vector Ni ≡ Bi −D ·
ei mod L(B). Clearly due to the sparsity of the non-diagonal elements in our system, it is
easier to recover the very sparse noise vector Ni and thus Bi and the rest of the secret key,
rather than a random message m which likely contains around a half of non-zero elements.

Therefore, the message recovery will be always more costly than the key recovery, if
using the same lattice reduction technique. Since we are not aware of any attack that
performs better on message recovery than key recovery, we consequently assume it will not
be useful to evaluate message recovery security (as its cost will not be lower than the cost
of key recovery attack).

4.6 Parameters and performance for DRE
4.6.1 Parametrisation philosophy

We can obtain parameters for our DRE scheme together with the corresponding security
levels. The latter are evaluated through the concrete cryptanalysis that we describe
in Section 4.5, which provides us with optimal parameters as well. However, we choose to
follow a linear dependency between them in order to simplify the presentation and obtain
an additional margin of security. In the end, for a given security level λ, we have the
following :

• the noise level ν(B) of the secret key is chosen to be 5λ/4;

• the dimension n equals to 12 · δ(B);
6At least after Nguyen’s initial attack and fix [Ngu99].
7In practice, having one short vector helps recover the other short vectors of a short basis.
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• the diagonal coefficient D is then deduced from δ(B) following the conditions
described in Section 4.2.

To get an idea of the data sizes involved, it is important to notice that everything
depends on the lattice volume, i.e its determinant det(L). Using the Hadamard bound,
we can upper-bound the determinant by det(L) ⩽ log2((

√
D2 + ν)n), though in average

we should have det(L) ≈ Dn. Note that tighter bounds exist in the literature, but the
Hadamard bound is easier to use.

• The public key has the size of n det(L).

• The ciphertext has the size of det(L).

• The secret key can be regenerated from the internal data of a DRBG, thus this is at
least λ-bits. Storage of the noise matrix, which lies in {−1, 0, 1}, is also an option.
In the latter case, the extreme sparsity of the matrix could also be leveraged to
store the secret key, but we did not explore this direction. Note that the secret key
needs to be reconstructed to perform the reduction algorithm, which itself is not
fully optimised for the specific structure we have.

To fix the size of the precomputed data, we first need to fix a “granularity” α, in
which we decompose the ciphertext of size det(L) by blocks of α-bits. Each block of the
ciphertext is associated to a reduced vector of size n log2(D) in the worst case. Thus, the
size of the precomputed data can be measured in average to be (log2(detL)/α) · n log2(D)
bits, which size entirely depends on α. Note, that we have arbitrarily chosen α to be 216

in our experiments, leading to a precomputed data size to be higher than both secret
and public key combined. It is not clear what would be the ideal parameters. While
each precomputed vector can indeed have size lower than n log2(D), we did not push the
optimisation in this paper.

4.6.2 Benchmark comparison with FrodoKem

As a proof of concept, we implemented our encryption scheme in order to verify that it could
obtain reasonable performances without aggressive optimisations. Indeed, since it uses
lattices with no polynomial structure, one could wonder how slow a basic implementation of
DRE would be. We provide timings (in number of cpucycles) from our basic implementation
in C, and the associated parameters in Table 1. The tests were performed with a machine
with an Intel(R) Core(TM) i7-10710U CPU with both hyperthreading and turboboost
disabled. We also ran the benchmarks from the FrodoKem[BCD+16] package8 for
comparison. We also provide concrete numbers regarding the sizes of the objects we
manipulate. The code is available online here:

https://codeberg.org/BaguetteInTodai/DiagonalDominantCryptography-CiC2025

The performance numbers of DRE are less than 10 times larger than the ones reported for
the optimised implementation of FrodoKem, a third round NIST candidate. Furthermore,
the code we tested lacks optimisation and is not feature complete: the code is mainly
there to test whether or not the concept algorithmically works in practice and we did not
implement the transformation from one-wayness to IND-CCA. Thus, it does not contain
any additional security properties beyond the simple implementation of the algorithms.
At this development stage, it is unclear whether it could be competitive with FrodoKem.
Note that we did not list the timings of the public keys: we have inconsistent timings,
relying on the FLINT library 9 to compute a HNF, with probabilistic rejection due to

8https://github.com/microsoft/PQCrypto-LWEKE/releases/tag/v1.0
9https://flintlib.org/

https://codeberg.org/BaguetteInTodai/DiagonalDominantCryptography-CiC2025
https://github.com/microsoft/PQCrypto-LWEKE/releases/tag/v1.0
https://flintlib.org/
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Table 1: Parameters for DRE and performance
Security level λ 128 192 256
DRE Dimension n 1920 2880 3840
DRE Noise level 160 240 320
DRE Diagonal D 483 723 963
DRE Encryption (avg cpucycles) 1092671 2358728 4456626
DRE Decryption (avg cpucycles) 18116442 43321208 79389958
FrodoKem Encryption (median cpucycles) 2416197 4546029 7736300
FrodoKem Decryption (median cpucycles) 2342903 4376348 7295394
DRE Max det(L) size (Hadamard, bytes) 2140 3420 4758
DRE Max PK size (bytes) 4108800 9849600 18270720
FrodoKem PK size (bytes) 9616 15632 21520

the fact that not every lattice sampled is co-cyclic: it can take up to several minutes to
compute a single keypair. Optimisation is definitely possible: Squirrels’s latest version
also used a perfect HNF as a public key and reports “only” a few dozens of seconds,
thus we could learn from their implementation if we plan to further optimise this new
encryption cryptosystem.

Key sizes are definitely higher than those of FrodoKem. A tighter cryptanalysis or
a different parametrisation method could maybe reduce the key sizes. Another path to
improve data sizes and performance across the board may be to rely on another type of
cryptographic construction using the decryption capacity of diagonal dominant matrices,
such as a construction based on the Lattice Isomorphism Problem (LIP) [DvW22] or on
compact gadgets [YJW23].
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A Reparametrisation of DRS
We mentioned earlier that the attack on DRS [DY21] has exponential complexity. Thus
in theory, it is possible to reparametrise the original DRS scheme to heuristically restore
security levels through polynomial increase of the mathematical objects used in the scheme.
In this part of the appendix, we provide such a reparametrisation for the most popular
NIST security levels: 128, 192 and 256-bits. We re-use the building blocks of DRE to
achieve such a reparametrisation.

A.1 Quick recap of the DRS scheme and attacks
The signature scheme called DRS was a submission to the first round of the NIST
standardisation process for quantum resistant signature schemes [NIS18], using diagonally
dominant lattices. The main idea of DRS is to follow a framework close the one of
GGH [GGH97] but using the diagonal dominance property to sign within a hypercube
independent of the secret key, hoping to prevent leaking the secret key as in [NR06] for
example. This was first presented by Plantard et al. in [PSW08]. However the original
DRS scheme has been subject to a learning attack from Ducas and Yu [YD18], which was
then extended to the second version of the scheme, the so-called DRSv2 [SPS20]) [DY21].

The main idea behind this learning attack is that a signature s obtained from the
signature algorithm is of the form s = s′ ±Bi, where B is the secret diagonally dominant
matrix and s′ is the vector we have just before the algorithm stops. This relation introduces
a correlation between the coefficients of the row Bi and the ones of s. Then by collecting
lots of signatures and using learning techniques, one can make an educated guess on a key.
Typically, for the ith basis vector, one guesses B′

i which is close to the secret Bi.
In the following, we study a new version of the DRSv2 scheme where we use the same

parameters as for our DRE scheme (see Section 4), except for D which is ν(B) + 1 as
in the previous DRS schemes. In particular, we wish to evaluate the performance of the
attack by Ducas and Yu for these new parameters.

A.2 Learning attack with new parameters
In order to evaluate the performance of their attack for a given dimension n and N samples,
Ducas and Yu introduce the following factor :

r(n, N) = 1
n

n∑
i=1

∥Bi −B′
i∥2

∥Bi −D · ei∥2
.

This factor is deeply related to the complexity of the BDD-uSVP attack with target B′
i

as it quantifies its distance to the secret vector Bi. More precisely, if the learning attack
gives us a given factor r(n, N), we then know that we can safely replace D · ei by a target
vector ti such that ∥ti −Bi∥2 ∼ r(n, N) · ∥D · ei −Bi∥2. Thus, the smaller r(n, N) is, the
easier the subsequent BDD-uSVP procedure is.

In Figure 3 we plotted the factors r(n, N) that we obtained using our new parameters
for the DRS scheme.

One can observe that with the chosen parameters and a fixed N , the factor r(n, N)
seems to be larger when n is increasing. This is different from the original DRSv2 scheme
for which the statistical attack of Ducas and Yu becomes more and more efficient as n
is increasing. Moreover, for all dimensions n the attacks seems to quickly stabilise with
increasing sample size N . Again this is new when compared to the DRSv2 scheme. Finally,
the attack produces almost no improvement for larger dimensions. All of these observations
tend to show that the statistical attack à la Ducas and Yu [DY21] should not have an
important impact on the asymptotic security of the DRS scheme with our new parameters.
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Figure 3: New experimental measures of r(n, N).

A.3 Security analysis
We consider a modified version of the DRSv2 scheme with the parameters as described
above. Since this is the only major modification, we will not describe algorithms in detail.
We focus on analysing its security. We refer to Section 4.5.1 for key recovery attacks
from DRE which will work the same way here. Thus, we only consider more advanced
techniques through statistical analysis.

Original attack. The first statistical attack from Nguyen and Regev [NR06] and its
improvements [DN12, LSZ+24] assume at some point that signatures are of the form
s = [s1, . . . , sn] ·B where the coordinates si are independent one to each other. There is
no evidence that this condition is satisfied by DRS signatures. However, their distribution
may be close to this ideal setting to the point where one can still apply the gradient descent
with success. Moreover, remark that we know broad directions for the secret vectors
Bi. Thus, as mentioned by Nguyen and Regev for the GGH scheme in [NR06], one can
start the descent with well-chosen initial vectors instead of drawing them uniformly on
the unitary sphere. However, our experiments show that this strategy is asymptotically
unsuccessful. Indeed, if s is a vector recovered by a descent, our experiments show that
its distance to the secret key mini∈J1,nK ∥s−Bi∥2 is typically around D. Thus, the best
strategy remains the BDD-uSVP attack on D · ei.

Learning attack from Ducas and Yu. [DY21] The data gathered by our experiments
tend to show that the learning attack from Ducas and Yu is mitigated. But let us look
more precisely into how the new factors r(n, N) translate in terms of security. Recall that
for a given r(n, N), the key recovery can be done by replacing the target vector D · ei by a
vector ti such that ∥ti −Bi∥2 ⩾ r(n, N) · ∥D · ei −Bi∥2. Thus, the complexity is deeply
connected to the distance r(n, N) · ∥D · ei −Bi∥2. In Table 2, for several security levels λ,
we gather the theoretical distance ∥ti −Bi∥2 under which the BDD-uSVP strategy starts
to have a complexity lower than 2λ versus the average distance that we obtained in our
experiments.

Table 2: Targeted versus experimental distances for the learning attack.
Security level λ 32 48 64

Minimal distances for a successful attack 2.03 2.25 2.5
Experimental distances obtained 5.26 7.9 9.28
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DRS-KeyGen(D, n)
∆(B)← D − 1
H← 0, B← 0
while IsNotPerfect(H)

B← RDDgen(D, n, ∆(B))
H← HNF(B)

h← H[1..n, n]
return (PK = h, SK = B)

DRS-Sign(m, SK)
c← GetChallenge(m)
s← Reduce(c, SK)
return s

DRS-Verify(s, m, PK)
c← GetChallenge(m)
v← c− s
for i ∈ [1, n− 1]

vn ← vn − vi · hi

vn ← vn mod hn

if vn = 0 and ∥s∥∞ < D

then return True

else
return False

Figure 4: DRS Algorithms as DRE variant

One can see that the distances that we obtained is way larger than the limit that we
should not pass and this gap is increasing with the security level. Thus, we deem that the
learning attack should have minimal impact on the security of the scheme.

Extending the learning attack. However, one can wonder whether signing with very
close vector reveals other information, such as (potentially approximate) Voronoi cells. This
leads us to consider the setting of the Closest Vector Problem with Preprocessing (CVPP).

Assume that a learning attack à la Nguyen and Regev [NR06, DN12, LSZ+24] allows
us to recover vectors from a hidden parallelotope close to the Voronoi cell. First one may
wonder if this structure is complex enough to hide the secret basis. Indeed, diagonally
dominant matrices have a strong structure allowing for an efficient CVP solver.

Thus, we considered the possibility that the recovered vector could help in solving
CVPγ more efficiently, to the point where one could forge a signature in polynomial time.
As mentioned earlier, this setting is close to the one of CVPP algorithms. We established
in Section C that the average approximation factor reached by Algorithm 1, both for signed
or negative noises, is a small constant. Following [DLdW19] the query phase for solving
such an instance of the Approximate Closest Vector Problem with Preprocessing (CVPPγ)
is exponential for arbitrary lattices. Note that the size of the preprocessed list of lattice
vectors should be (at least) subexponential as well and requires computing the shortest
vectors (up to some approximation factors) of the lattice, among which are the vectors of
the secret basis. Thus, one would certainly recover the secret basis as a by-product of the
query phase. Thus, we deem that forging a signature using (approximate) Voronoi cells or
classical algorithms solving the CVPPγ [DLdW19] is as hard as recovering the secret key.

A.4 DRS as a variant of DRE

A.4.1 Differences with the original DRS description

In figure 4 we describe how DRS can be described as a signing version of DRE, similarly to
how GGHSign is a variant of GGHEncrypt. The differences with the original description
of DRS in [PSDS18, SPS19b] lie mostly in a higher abstraction level and the use of a
HNF, and we do not describe precomputations here as they do not necessarily provide any
advantage. To simplify the description we use a deterministic GetChallenge function that
transforms the message into a target vector to reduce. This is a typical hash-then-sign
approach.
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A.4.2 Choice of the challenge generation

We present two ways to generate the challenge through GetChallenge, i.e. how to
transform the message into an instance of the GDDγ so that the signatory (or the forger)
is ablet to produce a valid signature.

1. We can opt for choosing a random integer modulo the determinant, which has similar
form as an encryption of a ciphertext in DRE, i.e

GetChallenge(m)← c = [0, ..., 0, c].

The signing process then reduces this vector consisting of only one non-zero (but
large) integer and the verification can be simplified by skipping the subtraction v− c
and then checking vn = c at the end of the modular scalar product (which then uses
smaller entries). We can use precomputations for the signing process just like in the
DRE decryption process, but this would still yield a much slower signature for only
a minor increase in verification speed.

2. We can opt for the classic DRS procedure, i.e generate a random vector of large
entries, i.e

GetChallenge(m)← c with c ∈ [−(22 log2(D)), 22 log2(D)]n

then reduce this large vector. This produces a faster signature than the above
method, but verification requires reducing the difference of the vector through the
public key HNF and check that the resulting reduction is the zero vector, which is a
bit more costly than reducing a small vector. n this context, precomputations do not
make sense since the maximum norm of the challenge vector is already quite small.

Both generation methods use the message as a seed for an expander, either through hashing
(SHAKE for example) or using a stream cipher in counter mode (AES256-CTR for example).

A.5 Performances and tested parameters

As in Section 4.6 for DRE, we implemented our version of the DRSv2 scheme using the
same functions as in DRE to verify that its performance remain acceptable. Timings (in
number of cpucycles) can be found in Table 3.

Table 3: Parameters for new DRS and performances (cpucycles)
Security level λ 128 192 256
Dimension n 1760 2640 3520
Noise level 160 240 320
Diagonal D 161 241 321
Signature (avg cpucycles) 8,369,109 17,848,387 31,778,217
Verification (avg cpucycles) 839,933 1,663,577 2,862,856

As a reference, this first proof-of-concept implementation of this new signature scheme
is less than 3 times slower than the one submitted as a candidate for the NIST PQC
standardisation by Squirrels [ENST23], while our verification is less than 6 times slower.
While the code is suboptimal and very basic (and implemented using the first option for
challenge generation using DRE functions), we believe it performs well enough to claim
the approach is somehow still reasonable to be studied.
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B Diagonally Dominant with negative noise
One can obtain better results when considering more specific structures. In this section
we consider diagonally dominant matrices B = D + N where the noise matrix N is such
that ∀(i, j) ∈ J1, nK, Ni,j ⩽ 0.
Lemma 3. The bound on λ∞

1 (L) is tight, i.e. there is B such that λ∞
1 (L(B)) = ∆(B).

Proof. Consider B = D ·Idn +N such that Ni,i+1 = 1−D and Ni,j = 0 whenever j ̸= i+1.
Then the vector v

def= [1, · · · , 1] ·B satisfies the desired equality.

Lemma 4. Consider B a diagonally dominant matrix with negative noise. Then there
is an algorithm – that we will denote by neg-PSW – that reduces any vector v ∈ Rn

+ to an
equivalent vector w ≡ v mod L(B) such that w ∈ [0, D[n.

Proof. Let v be a vector and w def= v − q · Bi for some i ∈ J1, nK. Then remark that if
vi ⩾ qD, we have 0 ⩽ wi < D and wj ⩾ vj for all j ̸= i. Moreover, it is clear that
∥w∥1 = ∥v∥1−q∆(B). Thus, it is clear that the algorithm will stop and that the outputted
vector will lie in the claimed space.

Remark 3. Note that one can easily shift the result to the centred hypercube J−D/2, D/2Jn

so that for any v ∈ Nn there is w ≡ v mod L(B) with w ∈ J−D/2, D/2Jn.
One can note that the reduction radius is smaller (by a factor up to 2) that for generic

diagonally dominant matrices. Moreover, the covering radius does no longer depend on
∆(B) anymore. This could be used when diagonally dominant matrices are used for
cryptography.

C Average quality of reduction
We evaluated experimentally the quality of the approximation factor obtained by Algo-
rithm 1 as a CVPγ solver for small dimensions. To this end we used the CVP solver from
Fpylll [dt23], called with the method CVP.closest_vector(L, t), where L is the lattice
and t is the target vector. From our computations, for a fixed dominance level ∆(B), the
average approximation factor reached by Algorithm 1 is smaller than a constant, seemingly
decreasing with respect to the dimension.

Note that since one is able to recover B from its HNF in exponential time, this
indicates that approximating the CVPP within a small constant factor should be solvable
in polynomial time for diagonally dominant matrices. This contrasts with the situation
over general lattices [AKKV05].

Table 4: Average approximation factor reached for small dimensions and ∆(B) ∈ {1, D/2}.

∆(B) dimension n
10 20 30 40 45 50 55 60

PSW
1 2.91 2.79 2.67 2.61 2.56 2.56 2.51 2.50

D/2 1.55 1.50 1.38 1.43 1.36 1.38 1.36 1.38

neg-PSW
1 1.44 1.26 1.22 1.18 1.15 1.15 1.13 1.14

D/2 1.066 1.028 1.021 1.018 1.010 1.011 1.010 1.009

D Short vectors and reduction algorithms for Column
Diagonally Dominant matrices

In this section we consider Column Diagonally Dominant matrices. A c.d.d. matrix can
be simply defined as the transpose matrix of a diagonally dominant matrix on the rows
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(definition 15). Consequently, we will write ∆T (B) = ∆(BT ).
The overall methodology used in this section is very similar to the one of Section 3.

Again, the results proven in this section can be grouped in the following theorem.

Theorem 4. Consider B ∈ Zn a c.d.d. matrix and L = L(B). Then λ
(∞)
1 (L) ⩾ ∆T (B)

and there is an algorithm, RSR (Alg. 3), running within a polynomial amount of arithmetic
operations such that

∀v ∈ span(L), RSR(v) ≡ v mod L, ∥RSR(v)∥∞ ⩽ D − ∆T (B)
2 .

Consequently, one has µ(∞)(L) ⩽ D − ∆T (B)
2 .

As done previously, the proof of this theorem will be done in two steps: bounding the
minimal size of the shortest vector then bounding the maximal convergence radius of a
reduction algorithm. Note that the acronym RSR stands for RepeatedSingleReduce.

D.1 Specific notations
We will use the following objects and notations.

• For I ⊂ J1, nK, we denote by BI ∈M|I|,|I|(Z) the submatrix of B composed of the
rows and columns of indexes in I. Naturally, if B is a r.d.d/c.d.d matrix, so is BI .

• S∞(l) is the set of positions i given l ∈ Zn such that |li| = ∥l∥∞

• B(I, B) = min
{

max
j∈I
{|(l ·B)j | | ∥l∥∞ = 1, S∞(l) = I}

}
given any set of indexes I.

It is simply min{∥l ·BI∥∞ | l ∈ {−1, 1}|I|}.
We denote B(I, B) by BI when B is implied, and stress that BI ̸= λ1(B).

D.2 Short vectors
First let us study the norm of a shortest vector.

Lemma 5 (Minimal largest value of non-zero combinations). Consider k ∈ Zn \ {0},
j ∈ J1, nK such that |kj | = ∥k∥∞, B be a c.d.d matrix, and v = k · B. Then one has
|vj | ⩾ ∥k∥∞ · δj(BT ).

Proof. Without any loss of generality we can assume vi ≥ 0 and kj > 0. Then

|vi| =
∣∣∣∣∣

n∑
i=1

kiBi,j

∣∣∣∣∣ ⩾ kjD −
n∑

i=1
i̸=j

|kiBi,j | ⩾ kj(D −
n∑

i=1
i̸=j

|Bi,j |) = kjδj(BT ).

This directly implies that λ
(∞)
1 (L(B)) ⩾ ∆T (B). Let us show some additional results

on c.d.d. matrices.

Lemma 6 (Submatrix bound on non-zero combinations). Consider B a c.d.d. matrix,
k ∈ Zn, I = S∞(k) and v = k ·B. Then there is j ∈ I such that |vj | ⩾ B(I, B).

Proof. If k ∈ {−∥k∥∞, 0, ∥k∥∞}n, then there is j ∈ S∞(k) such that |vj | ⩾ ∥k∥∞ ×
B(S∞(k), B). If ∃j1, |kj1 | /∈ {0, ∥k∥∞} with kj1 ̸= 0, one can pick j1 such that |kj1 | ⩾ |kj |
for all j /∈ S∞(k). Consider the vectors k′ and k′′ such that k = k′ + k′′ and

k′
j =

{
sign(kj) · (|k|∞ − |kj1 |), if j ∈ I

0, otherwise.
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Therefore, we also have

k′′
j =

{
sign(kj) · |ks|, if j ∈ I

kj , otherwise.

Remark that for all j ∈ S∞(k) we have sign(k′′
j ) = sign(k′

j) = sign(ki) and |k′′
j | = |k′′|∞.

From what precedes we know that there is j ∈ S∞(k) such that |(k′ ·B)j | ⩾ B(S∞(k), B).
Moreover, S∞(k) ⊂ S∞(k′′) and the signs are the same so sign((k′′ ·B)j) = sign((k′ ·B)j).
Thus we obtain |(k ·B)j | ⩾ B(S∞(k), B).

This gives us the following theorem.

Theorem 5 (Bound by the minimal submatrix). Let B be a c.d.d. matrix. Then
λ

(∞)
1 (L(B)) ⩾ min

I⊆J1,nK
BI .

D.3 Reduction algorithms for c.d.d. matrices
The reduction algorithm Algorithm 1 only concerned r.d.d matrices and is not guaranteed
to terminate on c.d.d matrices. We will propose here a different algorithm relying on the
c.d.d structure. Before we present the full algorithm, we first introduce the core part that
we denote by SingleReduce. It is described in Algorithm 2.

Algorithm 2 SingleReduce

Require: v ∈ Zn, B a c.d.d matrix, Ri ⩾ D − δi(BT )
2 .

Ensure: w ≡ v mod L(B) and ∥w∥∞ ⩽ max(qRi, ∥v∥∞ − q∆T (B)), where q = max{t ∈
N∗ | ∀i ∈ J1, nK, ∥v∥∞ − tRi ⩾ t(δi(BT ))}

1: w ← v, i← 1, s← [0, ...., 0] ∈ {0, 1}n {initialisation vector, index, reduction status}
2: q ← max{t ∈ N∗ | ∀i ∈ J1, iK, ∥v∥∞ − tRi ⩾ t(δi(BT ))}
3: while

∨n
j=1((|wj | > qRj) ∧ (sj = 0)) do

4: if |wi| > qRi and si = 0 then
5: w ← w − q wi

|wi| Bi {Reduce |wi|}
6: si ← 1 {“Update” the reduction status of index i}
7: end if
8: i← (i mod n) + 1 {Enforces i to be within [1, n] and not [0, n− 1]}
9: end while

10: return w

Lemma 7. SingleReduce (Alg. 2) outputs w ∈ Zn verifying the following properties:

1. w ≡ v mod L(B).

2. ∀i ∈ J1, nK, |vi| > qRi =⇒ |wi| < |vi|.

3. ∀i ∈ J1, nK, |vi| ⩽ qRi =⇒ |wi| ⩽ qRi.

Moreover the algorithm performs at most n additions on vectors.

Proof. First, remark that we add or remove at most one time each row vector to the
variable w. This is ensured by the flag vector s. Therefore we add at most n vectors to
w. Write v = w(0), w(1), . . . , w(r) = w the two-by-two distinct values of the variable w
with r ⩽ n. Similarly write s(0), . . . , s(r) the different values taken by s. Fix an index
i ∈ J1, nK. First assume s

(r)
i = 0. Then we know that |w(r)

i | ⩽ qRi and wi satisfies the
claimed properties. Now assume s

(r)
i = 1. Let us denote by k0 the integer such that
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w(k0)
i = w(k0−1)

i ± qD. Without loss of generality we can assume w(0)
i = vi ⩾ 0. First we

consider the case where w(0)
i > qRi. Then for some J ⊂ J1, nK \ {i} we have

w(k0−1)
i = w(0)

i +
∑
j∈J

±qbj,i ⩾ w(0)
i −q(D−δi(BT )) > qRi−q(D−δi(BT )) ⩾ q

δi(BT )
2 > 0

therefore w(k0)
i = w(k0−1)

i − qD. We can write

w(n)
i = w(0)

i − qD +
∑

j∈J1,nK
j ̸=i

±qbj,i > qRi − qD − q(D − δi(BT ) ⩾ −q(D − δi(BT )
2 )

which ensures |w(n)
i | < |w

(0)
i |. Now consider the case where w(0)

i ⩽ qRi. From D− δi(BT )
2 >

D − δi(BT ) we deduce that w(k0−1)
i > 0 and w(k0)

i = w(k0−1)
i − qD. With the same

reasoning as before we can conclude w(n)
i < w(0)

i and w(n)
i > w(k0)

i − qD− q(D− δi(B)) >

−q(D − δi(B)
2 ) which ensures |w(n)

i | ⩽ qRi. Finally, we remark that the results obtained
are independent of the choice of i.

This building block naturally gives us the RSR reduction algorithm, which is guaranteed
to finish given a c.d.d. lattice basis. Theoretically, there is no algorithm that can provide
strictly better bounds on l∞ for every single column diagonally dominant lattice: the
covering radius cannot be lower than half the size of the shortest vector, and for ∆T (B) = D
we do reach this extremity.

Algorithm 3 RSR

Require: v ∈ Zn, B a c.d.d matrix, Ri ⩾ D − δi(B)
2 .

Ensure: w ≡ v mod L(B) and |wi| ≤ Ri.
1: w← v
2: while

∨n
j=1(|wj | > Rj) do

3: w ←SingleReduce(w,B,R).
4: end while
5: return w

Proposition 1. Given a vector v ∈ Zn, R ∈ Zn such that Ri ⩾ D − δi(B)
2 where D, δi(B)

are associated to a c.d.d. matrix B, RSR (Alg. 3) outputs w ∈ Zn verifying the following
properties:

1. w ≡ v mod L(B).

2. ∀i ∈ J1, nK, |wi| ⩽ Ri

Moreover the algorithm performs at most n
⌈
logb

2∥v∥∞
2D+∆T B

⌉
+n additions on vectors, where

b = 2D+∆T B
2D−∆T B .

Proof. Consider ∥v∥∞ such that there is no integer t > 0 such that ∥v∥∞ − tRi ⩾ tδi(B),
i.e. ∥v∥∞ − Ri < δi(B). Then a call to SingleReduce with q = 1 outputs w such that
∥wi∥ ⩽ Ri. Now consider ∥v∥∞ sufficiently large so that q exists. One call to SingleReduce
outputs w such that ∥w∥∞ ⩽ max{qRi, ∥v∥∞−q∆T (B))} ⩽ ∥v∥∞−q∆T (B)) by definition
of q. Thus we get ∥w∥∞ ⩽ ∥v∥∞ · (1−Q), where Q = q ∆T (B)

∥v∥∞
. Clearly Q > 0, and let us

prove that Q < 1. By definition, we have

∥v∥∞ − qRi ⩾ qδi(BT )) =⇒ q

∥v∥∞
⩽

2D + ∆T (B)
2



Lesavourey et al. 35

which gives

Q ⩽
2∆T (B)

2D + ∆T (B) .

Since ∆T (B) > 0 one has 2D + ∆T (B) > 2D, which leads to Q < 2D/2D = 1.

Then, writing a := 1 − 2∆T (B)
2D+∆T (B) = 2D−∆T (B)

2D+∆T (B) one has 0 < 1 − Q < a < 1 and
∥w∥∞ ⩽ a · ∥v∥∞. Consequently, after i calls to SingleReduce, one has ∥w∥∞ ⩽ ai · ∥v∥∞.
Let us find i the number of calls to SingleReduce after which a single call to SingleReduce
with q = 1 will output a well-reduced vector. This is ensured by

∥w∥∞ ⩽ ai · ∥v∥∞ < R + ∆T (B) ⇐⇒ ai ⩽
2D + ∆T (B)

2∥v∥∞

⇐⇒ i ⩾ loga

2D + ∆T (B)
2∥v∥∞

⇐⇒ i =
⌈

loga

2D + ∆T (B)
2∥v∥∞

⌉
⇐⇒ i =

⌈
log1/a

2∥v∥∞

2D + ∆T (B)

⌉
.

Since each call to SingleReduce has at most n vector additions, we get the claimed
worst-case cost.

We want to stress this does not show the algorithm is practically efficient: SingleReduce
might run a quadratic amount of absolute value comparisons on scalars in a single call.
However, the reduction still runs a polynomial amount of vector operations in the dimension
and in the entry size.

Comparison with Babai’s Nearest Plane Unlike the r.d.d. case, we do not have a
measure of ∥bi∥1. However, we estimate that it is possible in the case of c.d.d. to have
rows with very large noise, which might give ∥bi∥1 > 2D and thus a larger worst-case
bound than a r.d.d. for Babai’s nearest plane algorithm.
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