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Abstract. Homomorphic encryption for approximate arithmetic allows one to encrypt
discretized real/complex numbers and evaluate arithmetic circuits over them. The
first scheme, called CKKS, was introduced by Cheon et al. (Asiacrypt 2017) and
gained tremendous attention. The enthusiasm for CKKS-type encryption stems from
its potential to be used in inference or multiparty computation tasks that do not
require an exact output.
A desirable property for homomorphic encryption is circuit privacy, which requires
that a ciphertext leaks no information on the computation performed to obtain it.
Despite numerous improvements directed toward improving efficiency, the question
of circuit privacy for approximate homomorphic encryption remains open.
In this paper, we give the first formal study of circuit privacy for homomorphic
encryption over approximate arithmetic. We introduce formal models that allow
us to reason about circuit privacy. Then, we show that approximate homomorphic
encryption can be made circuit private using tools from differential privacy with
appropriately chosen parameters. In particular, we show that by applying an expo-
nential (in the security parameter) Gaussian noise on the evaluated ciphertext, we
remove useful information on the circuit from the ciphertext. Crucially, we show that
the noise parameter is tight, and taking a lower one leads to an efficient adversary
against such a system.
We expand our definitions and analysis to the case of multikey and threshold homo-
morphic encryption for approximate arithmetic. Such schemes allow users to evaluate
a function on their combined inputs and learn the output without leaking anything
on the inputs. A special case of multikey and threshold encryption schemes defines a
so-called partial decryption algorithm where each user publishes a “masked” version
of its secret key, allowing all users to decrypt a ciphertext. Similarly, in this case, we
show that applying a proper differentially private mechanism gives us IND-CPA-style
security where the adversary additionally gets as input the partial decryptions. This
is the first security analysis of approximate homomorphic encryption schemes that
consider the knowledge of partial decryptions. We show lower bounds on the differ-
ential privacy noise that needs to be applied to retain security. Analogously, in the
case of circuit privacy, the noise must be exponential in the security parameter. We
conclude by showing the impact of the noise on the precision of CKKS-type schemes.
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1 Introduction
Fully Homomorphic Encryption (FHE) allows for computations to be performed on
encrypted data. A client encrypts a message m and sends the ciphertext to a server, which,
given a circuit F , returns a ciphertext that decrypts to F (m). The first fully homomorphic
encryption scheme was introduced by Gentry [Gen09b].

FHE has numerous applications in cryptography. Among others, it is used to build
private information retrieval [AMBFK15, ALP+21, ACLS18, GH19, CHK22, MW22,
HHCG+23], secure function delegation [QWW18] and obfuscation schemes [BDGM20,
GP21]. Note, however, that the security of fully homomorphic encryption protects only
the encrypted message and, in particular, does not offer any protection for the server’s
computation. In other words, the ciphertexts that a server returns may completely leak
the circuit F .

Circuit privacy, sometimes called function privacy, is a critical property in FHE, where
the ciphertext produced by the server, computing a circuit F on encrypted data, should not
reveal any information about F , except for the fact that the ciphertext decrypts to F (m).
Circuit private FHE enables semi-honest two-party computation with optimal communica-
tion, requiring only one round of communication, and its communication complexity is
independent of the size of the computation. Furthermore, the ciphertexts produced by the
evaluation process can be reused, making FHE suitable for applications such as private set
intersection [HFH99, Mea86, CLR17], neural network inference [DGBL+16, CdWM+17,
LJLA17, JKLS18, JVC18, BGGJ20, ABSdV19, CDKS19, RSC+19, BGPG20, KS22],
analysis of genomic data [KSK+18, KSK+20, BGPG20], and many more.

Multikey and Threshold Homomorphic Encryption. Extensions of homomorphic
encryption like multikey [LTV12, CM15, BP16, MW16, CZW17, CCS19, CDKS19, AJJM20]
or threshold homomorphic [BGG+18] encryption allow computing on ciphertexts that
come from different parties, but require a subset of secret keys of the different parties to
decrypt the outcome of the computation. In particular, many variants of these schemes
introduce a so-called partial decryption algorithm, in which each party publishes a secret
key capable to “remove an encryption layer” from the evaluated ciphertext. Multikey or
threshold homomorphic encryption schemes seem to be related to circuit private encryption
schemes, as both give us the means to build two-round multiparty computation if the
homomorphic encryption satisfies the right security notion. Namely, whether IND-CPA
holds against an adversary that is given partial decryptions of non-corrupted parties. In
fact, there is a folklore construction ([Sma22]) of a circuit private scheme from a multikey
homomorphic encryption scheme for at least two keys.

Homomorphic Encryption for Approximate Arithmetic. While we have seen
significant advancements in the practical efficiency of fully homomorphic encryption (FHE)
schemes and their circuit private versions, realizing practical instances of neural network
inference, data analysis problems, or collaborative learning is still relatively slow. In their
seminal paper [CKKS17] Cheon et al. noticed that many of these problems do not require
the computation on the encrypted data to be exact. In particular, in many applications,
it is sufficient for the homomorphic computation to return an approximation of F (m).
As a result, they design a homomorphic encryption scheme with a plaintext space of
approximations of real or complex numbers.

Due to its native support of real or complex numbers, CKKS-style schemes are believed
to be the most competitive solutions for private machine learning inference problems, data
analytics, and even training of machine learning models. The focus of researchers is to
make CKKS more efficient and increase its plaintext precision. For example, [CDKS19]
introduces an efficient multikey version of [CKKS17]. However, it is not clear whether the
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application is secure and with respect to which security notion. In particular, [CDKS19]
states the standard IND-CPA definition, but in applications of multikey homomorphic
encryption, we need to make sure that IND-CPA holds even when given partial decryptions.

On the other hand, we may argue that, running an MPC protocol computing the
decryption circuit by inputting the secret keys of all users, can solve the problem. After
all, the solution solves the decryption problem in the case of “exact” homomorphic encryp-
tion, since the MPC protocol reveals nothing aside from the result of the homomorphic
computation. But, unfortunately, in the approximate setting, the decryption gives only an
approximation of the exact result, where the approximation error may carry information
on the plaintexts of other parties. This means that we need to be careful when trying to
apply techniques from the “exact” setting in the approximate setting.

1.1 Our Contributions
In this work, we are the first to formally address the issue of circuit privacy and ciphertext
sanitization for homomorphic encryption over approximate arithmetic. Our contributions
are as follows.

Formal Definitions. We introduce formal definitions that allow us to reason about
circuit privacy for approximate homomorphic encryption. In particular, we expand on some
formalism introduced by Li et al. [LMSS22] with regard to the approximate correctness
of the computation on ciphertexts. After that, we introduce an indistinguishability-
based definition. We note that this is the first indistinguishability-based definition for
circuit/function privacy; previously, all definitions were simulation-based, and this also
applies in the case of “exact” homomorphic encryption. In particular, the simulation-
based definitions imply ours, but ours is more convenient when dealing with approximate
homomorphic computation and showing lower bounds.

Circuit Privacy and Lower Bounds. We give an analysis based on Kullback-Leibler
divergence, showing that applying a differentially private mechanism with appropriate
parameters gives us circuit privacy. In particular, we can use the Gaussian mechanism
to “flood” the approximation errors in a ciphertext. Noise flooding is a known technique,
and in particular, [LMSS22] analyzed it in the context of IND-CPAD-security [LM21]. Our
analysis is inspired by [LMSS22], but we stress that our setting is different in many ways
and comes with its own technical challenges which we discuss in the main body of the
paper when having the right context. Importantly, we show that the applied noise must
be exponential in the security parameter. In particular, we show that, if we apply only a
subexponential noise, then there exists an efficient adversary that breaks circuit privacy
with non-negligible probability.

Multikey and Threshold Approximate Homomorphic Encryption. We give the
first formal study of multikey and threshold homomorphic encryption for approximate
arithmetic. There are constructions of such schemes based on CKKS [CDKS19, KKL+23].
However, none of them addresses the relevant security properties. We introduce definitions
for indistinguishability security, where an adversary obtains partial decryptions. First,
we show that our definitions are meaningful, and multikey and threshold homomorphic
encryption satisfying our security notion imply homomorphic encryption satisfying our
notion of circuit privacy. Then, we give a Kullback-Leibler-divergence-based proof that
applying the Gaussian differential-privacy mechanism in partial decryptions with expo-
nential Gaussian noise is sufficient to satisfy our security notion. On the downside, we
show that the applied noise parameters are tight, and using smaller parameters leads to
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the break of the relevant security property. Our result in this manner is especially relevant
due to the following.

• There is a folklore belief that achieving circuit privacy through multikey (F)HE leads
to better parameters than sanitizing a single-key homomorphic evaluation of the
function. Indeed, multikey (F)HE can be used to construct a circuit-private (F)HE
scheme. The core idea is that the server encrypts the circuit using its own key, while
the client encrypts the query with its respective key. The server then evaluates a
universal circuit over both ciphertexts and returns a partially decrypted result of the
evaluated ciphertext to the client. If multikey or threshold evaluation with partial
decryptions yields a secure MPC protocol, then this approach appears to be sound.
This claim is supported, for instance, by the construction presented in [MW16].
However, we argue that the required parameters remain the same as those dictated by
the noise flooding of a single-key evaluation. The misconception that multikey (F)HE
improves parameter efficiency likely stems from the fact that, in this construction,
the circuit itself is encrypted, creating the impression that it is inherently "secured"
in some way. This perspective often overlooks the critical role of noise flooding in
the partial decryption phase. By omitting explicit discussion of noise flooding, this
narrative may encourage the use of schemes with smaller noise parameters.
Our analysis shows that encrypting the circuit does not significantly reduce the
required flooding noise compared to simply sanitizing a single-key homomorphic
encryption. Furthermore, we conclude that circuit privacy is primarily ensured by
noise flooding with exponential noise, rather than by the mere fact that computation
is performed on a multikey ciphertext. Thus, we resolve the “myth” that multikey
homomorphic computation alone guarantees circuit privacy and instead emphasize
that it is the specific way partial decryptions are implemented that gives us this
property.

• Papers introducing multikey constructions often present parameters that consider
only the correctness of the evaluation and the security of the underlying LWE
encryption. Specifically, the paper introducing MK-CKKS [CDKS19] simply states
to "set the noise flood distribution to have a larger variance than the standard
error distribution." We believe this guidance could lead practitioners to adopt overly
optimistic parameters compared to those required in practice or those commonly
used in the single-key setting. By providing a formal analysis and establishing a
lower bound on the noise, we aim to encourage practitioners to carefully consider
their parameter choices.

1.2 Related Work on Circuit Privacy and Multikey Homomorphic
Encryption

Circuit privacy, or sometimes called function or server privacy, was studied before the first
secure fully homomorphic encryption schemes were proposed [IP07, Gen09a]. There are
two ways to build a circuit private homomorphic encryption scheme. The first is to use
a multiparty computation protocol to compute the decryption circuit on the ciphertext
[IP07, GHV10, CO17]. Another way is to sanitize a ciphertext from any information on the
circuit. In other words, we apply a random process to the ciphertext in order to make its
distribution independent of the circuit. Current approaches to sanitize a ciphertext include
noise flooding [Gen09a], repeated bootstrapping [DS16], and re-randomizing computation
[BDPMW16, Klu22]. Note that all of these mechanisms apply to “exact” homomorphic
encryption. In particular, there is no formal treatment on circuit privacy for approximate
homomorphic encryption [CKKS17].
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Multikey fully homomorphic encryption was first introduced in [LTV12], and the related
concept of threshold homomorphic encryption was introduced in [BGG+18]. For the case
of approximate arithmetic, [CDKS19] gave an efficient construction for the multikey
setting based on [CKKS17]. They propose to use noise flooding for partially decrypting
ciphertexts. However, there is no security proof or even formal definition of what it means
for such encryption scheme to be secure aside of IND-CPA security that does not consider
adversaries with knowledge of partial decryptions. Mukherjee and Wichs [MW16] define a
simulator for partial decryptions in the setting of “exact” GSW [GSW13] encryption to
capture the security properties needed to build multiparty computation protocols. Note
that such a definition often requires that the homomorphic encryption scheme evaluates
the exact circuit, as opposed to approximate. Unfortunately, it is not clear whether we
can use such definitions for approximate homomorphic encryption.

2 Preliminaries
We denote an n dimensional column vector as [f(., i)]ni=1, where f(., i) defines the i-th
coordinate. For brevity, we will also denote as [n] the vector [i]ni=1.For a random variable
x ∈ Z we denote as Var(x) the variance of x, as stddev(x) its standard deviation and as
E(x) its expectation. By Ham(⃗a) we denote the Hamming weight of the vector a⃗, i.e., the
number of non-zero coordinates of a⃗.

We say that an algorithm is PPT if it is a probabilistic polynomial-time algorithm.
We denote any polynomial as poly(.). We denote as negl(λ) a negligible function in
λ ∈ N. That is, for any positive polynomial poly(.) there exists c ∈ N such that for all
λ ≥ c we have negl(λ) ≤ 1

poly(λ) . Given two distributions X, Y over a finite domain D,
their statistical distance is defined as ∆(X,Y ) = 1

2
∑

v∈D |X(v)− Y (v)|. We say that two
distributions are statistically close if their statistical distance is negligible.

Usually, we assume that a probabilistic algorithm Alg(x) chooses its random coins
internally. However, sometimes we write Alg(x; r) to denote that the random coins r $← U
are used as a seed for Alg, and Alg(x; r) is deterministic.

2.1 Homomorphic Encryption
We review the definition of Homomorphic Encryption in the public key setting with a
particular focus on classical and (static) approximate correctness.

Definition 1 (Homomorphic Encryption). We define a homomorphic encryption scheme
HE for a class of circuits L as a tuple of four algorithms HE = (KeyGen, Enc, Eval, Dec)
with the following syntax.

KeyGen(λ)→ (pk, sk): Given a security parameter λ, returns a public key pk and a secret
key sk.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext ct.

Eval(pk, C, ct1, . . . , ctk)→ ct: Given a public key pk, a circuit C ∈ L and ciphertexts
ct1, . . . , ctk, returns a ciphertext ct.

Dec(sk, ct)→ m: Given a secret key sk and a ciphertext ct, returns a message m.

We denote as M the message space, C the ciphertext space and L the class of circuits.

In this paper, we consider different notions of correctness. In particular, we consider the
classical correctness definition and approximate correctness that was recently introduced
in [LMSS22] to reason about approximate homomorphic encryption schemes.
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Definition 2 (Correctness). We say that a homomorphic encryption scheme HE = (KeyGen,
Enc, Eval, Dec) is correct if for all C ∈ L, all m1, . . . ,mk ∈ M, all (pk, sk)← KeyGen(λ)
and for all ct1, . . . , ctk such that mi = Dec(sk, cti) for i ∈ [k], we have that

Pr[Dec(sk, Eval(pk, C, ct1, . . . , ctk)) ̸= C(m1, . . . ,mk)] ≤ negl(λ).

Below we recall the definition of approximate correctness from [LMSS22]. First, however,
we need to formally define the notion of a ciphertext error.

Definition 3 (Ciphertext Error). Let HE = (KeyGen, Enc, Eval, Dec) be an homomorphic
encryption scheme with message space M. Furthermore, let M be a normed space with
norm || · || :M 7→ R≥0. For all public/secret key pairs (pk, sk)← KeyGen(λ), any ciphertext
ct ∈ C and message m ∈M the ciphertext error is defined as

Error(sk, ct,m) = ||Dec(sk, ct)−m||.

We can now introduce the approximate correctness notion for approximate HE schemes.

Definition 4 (Approximate Correctness [LMSS22]). Let HE = (KeyGen, Enc, Eval, Dec)
be a homomorphic encryption scheme with message spaceM⊆ M̃ that is a normed space
with norm || · || : M̃ 7→ R≥0. Let L be the class of circuits, Lk ⊆ L be the subset of circuits
with k input wires, and let Estimate :

⊔
k∈N Lk×Rk

≥0 7→ R≥0 be an efficiently computable
function. We call HE an approximate homomorphic encryption scheme (w.r.t. Estimate)
if for all k ∈ N, for all C ∈ Lk, for all (pk, sk)← KeyGen(λ), if ct1, . . . , ctk and m1, . . . ,mk

are such that Error(sk, cti,mi) ≤ ti, for some t1, . . . , tk ∈ R≥0, then

Error(sk, Eval(pk, C, ct1, . . . , ctk), C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).

To compute Estimate, we only need the circuit C and upper bounds ti on the ciphertext
errors. This means that the function is publicly and efficiently computable without needing
a secret key.

To keep track of the errors when computing on encrypted data, we associate a tag with
every ciphertext. In particular, we define a tagged ciphertext ct = (. . . , t) where t ∈ R≥0 is
an extension of an ordinary ciphertext that also stores t, a provable upper bound estimate
of the ciphertext error. The noise bound is set to tfresh by Enc when a ciphertext ct is
created. After that, the value of ct.t is updated using Estimate every time that a circuit
is homomorphically evaluated on ct.

We also recall the definition of IND-CPA security for HE schemes.

Definition 5 (IND-CPA security game). Let HE = (KeyGen, Enc, Eval, Dec) be a homo-
morphic encryption scheme. We define the IND-CPA game as the experiment ExpIND-CPA

b ,
where b ∈ {0, 1} is a bit and A is an adversary. The experiment is defined as follow:

ExpIND-CPA
b [A](λ) : (pk, sk)← KeyGen(λ),

b′ ← AEb(pk,·,·)(pk),
return b′,

where the adversary has access to an encryption oracle Eb(pk, ·, ·) that takes as input
m0,m1 ∈M and returns Enc(pk,mb).

2.2 The CKKS Approximate HE Scheme
We recall the definition of the CKKS approximate HE scheme following the notation used
in [LMSS22]. A more detailed description of CKKS can be found in [CKKS17].

We denote by R the ring Z[X]/(ΦN (X)) and by RQ the ring ZQ[X]/(ΦN (X)), where
ZQ is the ring of integers modulo Q and ΦN is the N -th cyclotomic polynomial.
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CKKS.KeyGen(λ): Given the security parameter λ choose p ∈ N and Q ∈ N, the ring
R and the noise distribution χ. Sample s ∈ RpQ by sampling each coefficient
uniformly from {−1, 0, 1} and set sk← s. Sample pk.a $← RQ, e $← χ and compute
pk.b ← −sk · pk.a + e. Then sample pk.a′ $← RQ, e′ $← χ and compute pk.b′ ←
−sk · pk.a′ + e′ + sk2.

CKKS.Enc(pk,m ∈ RQ): Choose r ∈ R such that every coefficient (chosen independently)
has probability 1/4 to be 1 and -1, and probability 1/2 to be 0. Sample e0, e1 ← χ.
Set ct.a← rpk.a+ e0, ct.b← rpk.b+ e1 +m and return ct.

CKKS.Eval(pk, C, ct1, . . . , ctk) : The algorithm evaluates the arithmetic circuit C by means
of addition and multiplication:

CKKS.Add(pk, ct0, ct1 ∈ RQ): Set ct.a ← ct0.a + ct1.a , ct.b ← ct0.b + ct1.b and
return ct.

CKKS.Mul(pk, ct0, ct1 ∈ RQ): Set ct.b← ct0.b · ct1.b+ ⌊(ct0.a · ct1.a · pk.b′)/p⌉, and
ct.a← ct0.a · ct1.b+ ct1.a · ct0.b+ ⌊(ct0.a · ct1.a · pk.a′)/p⌉. Return ct.

CKKS.Dec(sk, ct): Return ct.b+ ct.a · sk.

When mentioning a noiseless CKKS encryption Encn, we refer to a ciphertext obtained
as CKKS.Enc(pk,m) where e0 = e1 = 0. This is not a secure encryption but will help us
when describing the rerandomization process in the proof of Theorem 5.

We also recall the basic expressions of noise growth during addition and multiplication
in CKKS.

Lemma 1 (Lemma 3 of [CKKS17]). Let cti = CKKS.Enc(pk,mi) for i ∈ {0, 1} and their
ciphertext error be, respectively, Error(sk, cti,mi) = ei. The ciphertext error of the sum
of both ciphertexts is equal to e0 + e1 and the ciphertext error their product is equal to
m0e1 +m1e0 + e0e1 + emult, where the term emult depends on the parameters of the scheme
and on the two ciphertexts ct0, ct1.

We now give a brief explanation on how the tagged ciphertext and the Estimate
function are handled by the algorithms of the CKKS scheme. CKKS.Enc assigns to the
returned ciphertext an upper bound of the ciphertext error for fresh encryptions. CKKS.Add
and CKKS.Mul follow the noise growth rules of Lemma 1 to assign to the returned ciphertext
a noise estimate. More generally, when homomorphic evaluating a circuit C in CKKS by
computing Eval(pk, C, ct1, . . . , ctk), it is always possible to publicly compute the resulting
noise estimate by combining the two noise growth rules for sum and product using as an
input only the description of C and the noise estimates on the input ciphertexts.

2.3 Probability
A probability ensemble (Pθ)θ is a family of probability distributions parameterized by a
variable θ. The KL Divergence is a useful tool to handle probability distributions. In
particular, it gives us a way to understand how close (or far) are two distributions from
each other.
Definition 6 (KL divergence). Let P and Q be two probability distributions with
common support X. The Kullback-Leibler Divergence between P and Q is D(P||Q) :=∑

x∈X Pr[P = x] ln
(

Pr[P=x]
Pr[Q=x]

)
.

Lemma 2 (Subadditivity of KL divergence for Joint Distributions, Theorem 2.2 of [PW25]).
If (X0,X1) and (Y0,Y1) are pairs of (possibly dependent) random variables, then

D((X0,X1)||(Y0,Y1)) ≤ max
x

D((X1|x)||(Y1||x)) +D(X0,Y0)
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Computing the advantages of adversaries from Subsection 4.3 and from Subsection
5.4 will require the following inequality about the total variation distance between two
Gaussian distributions.

Definition 7 (Gaussian distribution). Let µ ∈ R and σ > 0. The (continuous) Gaussian
of parameters µ, σ (written N (µ, σ2)) is the probability distribution supported on R with
p.m.f. p(x) ∝ exp(−(x− µ)2/2σ2).

Definition 8 (Discrete Gaussian distribution). Let n ∈ Z, n ≥ 1, µ ∈ Zn and σ > 0. The
discrete Gaussian of parameters µ, σ (written NZn(µ, σ2)) is the probability distribution
supported on Zn with p.m.f. p(x) ∝ exp(−∥x− µ∥2/2σ2).

Theorem 1 (Theorem 1.3 of [DMR18]). Let σ0, σ1 > 0. Then

∆(N (µ0, σ
2
0),N (µ1, σ

2
1)) ≥ 1

200 min{1, 40|µ0 − µ1|
σ0

}.

2.4 KL Differential Privacy
In [LMSS22], Li et al. introduce the new notion of Norm Rényi Differential Privacy
by generalizing the notion of Rényi differential privacy [Mir17] to different norms. This
innovative technique aims to address the primary technical challenges encountered when
applying differential privacy in environments with arbitrary norms. Specifically, within the
context of Differential Privacy, the concept of "adjacent" values is commonly assessed using
the Hamming norm, whereas Approximate HE revolves around Euclidean and Infinity
norms. In this paper, we will focus exclusively on the specific instance of this definition
that uses KL divergence.

Definition 9 (Norm KL Diff. Privacy, Definition 14 of [LMSS22]). For t ∈ R≥0, let
Mt : B → C be a family of randomized algorithms, where B is a normed space with norm
|| · || : B → R≥0. Let ρ ∈ R be a privacy bound. We say that the family Mt is ρ-KL
differentially private (ρ-KLDP) if, for all x, x′ ∈ B with ||x− x′|| ≤ t,

D(Mt(x)||Mt(x′)) ≤ ρ.

Definition 10. Let ρ > 0 and n ∈ N. Define the (discrete) Gaussian Mechanism Mt :
Zn → Zn be the mechanism that, on input x ∈ Zn, outputs a sample from NZn(x, t2

2ρIn).

Theorem 2 (Lemma 6, [LMSS22]). For any ρ > 0, n ∈ N, the Gaussian mechanism is
ρ-KLDP.

2.5 Bit security
One of the original motivations of this work was to extend the security analysis beyond the
use of statistical distance in the hope of providing tighter noise bounds and improving the
parameters. Using Rényi divergence when studying decisional problems is an important
technique introduced in [BLR+18], and that has been proved useful in lattice-based
cryptography to obtain a tighter security analysis and to improve the parameters. Finally,
we choose to analyze bit security due to the technical synergies with KL divergence
(Theorem 3) and KL Differential Privacy (Theorem 4).

We briefly recall the notion of bit security from [MW18].

Definition 11 (Indistinguishability Game). Let {D0
θ} and {D1

θ} be two distributions
ensembles. The indistinguishability game is defined as follows: the challenger C chooses
b ← U({0, 1}). At any time after that, the adversary A may send (adaptively chosen)
query strings θi to C and obtain samples ci ← Db

θi
. The goal of the adversary is to output

b′ = b.
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Definition 12 (Bit Security). For any adversary A playing an indistinguishability game
G, we define its

• output probability as αA = Pr[A ≠⊥] and its

• conditional success probability as βA = Pr[b′ = b|A ≠⊥].

where the probabilities are taken over the randomness of the entire indistinguishability
game (including the internal randomness of A). We also define A’s

• conditional distinguishing advantage as δA = 2βA − 1 and

• the advantage of A as advA = αA(δA)2.

The bit security of the indistinguishability game is minA log2
T (A)
advA , where T (A) is the

running time of A.

We can use bit security on the indistinguishability game from Definition 5.

Definition 13 (IND-CPA-security). A homomorphic encryption scheme HE is said to be
λ-bit IND-CPA-secure if, for any adversary A in the IND-CPA security game, we have that
λ ≤ log2

T (A)
advA , where advA is defined as in Definition 12.

Theorem 3. [Theorem 1 of [LMSS22]] Let GP be an indistinguishability game with black-
box access to a probability ensemble Pθ. If GPθ is k-bit secure, and also maxθ D(Pθ||Qθ) ≤
2−k+1, then GQθ is (k − 8)-bit secure.

Theorem 4. [Lemma 5 of [LMSS22]] Let G be the indistinguishability game instantiated
with distribution ensembles {Xθ}θ and {Yθ}θ, where θ ∈ Θ. Let q ∈ N. Then, for any
(potentially computationally unbounded) adversary A making at most q queries to its oracle,
we have that

advA ≤ q

2 max
θ∈Θ

D(Xθ||Yθ).

3 Defining Circuit Privacy for Approximate HE
In this section, we recall the (classic) simulation-based definition of circuit privacy intro-
duced by Gentry [Gen09a]. Then we give our relaxed indistinguishability definition.

We start by stating Gentry’s [Gen09a] simulation-based definition below.

Definition 14 (Circuit Privacy). A homomorphic encryption scheme HE for a class of
circuits L is said to be circuit private if there exists a PPT simulator Sim such that, for
any ct1, . . . , ctk valid ciphertexts,

∆(Sim(pk,mout), Eval(pk, ct1, . . . , ctk, C)) ≤ negl(λ),

where C ∈ L, [mi ← Dec(sk, cti)]ki=1, mout ← C(m1, . . . ,mk) and (pk, sk)← KeyGen(λ).

Definition 14 gives us a very strong privacy guarantee. In particular, the simulator
should produce a ciphertext that is statistically indistinguishable from the homomorphic
computation while obtaining only the outcome of an evaluation. This means that the
evaluation process reveals no information on the circuit aside from the output of the
circuit evaluation. On the other hand, as we discussed in Section 2, homomorphic
encryption for approximate arithmetic introduces errors to the outcome of the evaluation.
Consequently, the output of the computation may depend somehow on the evaluated
circuit. For instance, already the magnitude of the error reveals the size of the circuit or
its topology. Finally, note that the simulation definition implicitly induces a requirement
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that the homomorphic computation is exact. In particular, using mout ← C(m1, . . . ,mk)
to simulate a ciphertext completely ignores the fact that the homomorphic evaluation
is approximate, and that the resulting ciphertext ctres ← Eval(pk, ct1, . . . , ctk) is now
encrypting the message Dec(sk, ctres), that is different from mout. Unfortunately, due to
this correctness requirement, we cannot use such a definition to reason about circuit privacy
for approximate homomorphic encryption. This state of affairs motivates us to state a
relaxed definition of circuit privacy which is sufficient for many applications and gives us a
framework to analyze circuit privacy in the case of approximate homomorphic encryption.

We give our definition below.

Definition 15 (Indistinguishability against Chosen Function Attack). Let HE = (KeyGen,
Enc, Eval, Dec) be a homomorphic encryption scheme for circuits in L. We define the
experiment ExpIND-CFA

b [A], where b ∈ {0, 1} is a bit and A is an adversary. The experiment
is defined as follow:

ExpIND-CFA
b [A](λ) : r, r1, . . . , rn

$← U ,
m1, . . . ,mn, C0, C1, st← A(λ, r, r1, . . . , rn),
(sk, pk)← KeyGen(λ; r),
[cti ← Enc(pk,mi; ri)]ni=1,

ct← Eval(pk, Cb, ct1, . . . , ctn),
b′ ← A(st, ct),
return b′.

where C0, C1 ∈ L and C0(m1, . . . ,mn) = C1(m1, . . . ,mn). The scheme HE is said to be
λ-bit IND-CFA-secure if, for any adversary A, we have that λ ≤ log2

T (A)
advA , where advA is

defined as in Definition 12.

In this definition, the adversary receives the random coins used by the KeyGen and the
Enc algorithms. Therefore, sk,pk and the cti are honestly generated, and the adversary
can compute sk and pk.
Remark 1. The acronym IND-CFA bears a resemblance to the acronym IND-CPA. We want
to emphasize that they are two different security notions. In particular, IND-CFA can be
seen as a computational version of the Circuit Privacy as defined in Definition 14.

4 Circuit Privacy in CKKS
In Subsection 4.1 we present a modification of the CKKS approximate homomorphic
encryption scheme that satisfies indistinguishability circuit privacy as given by Definition 15.
In particular, we show that re-randomized CKKS ciphertexts are circuit private when we
apply an appropriate differential privacy mechanism that floods the ciphertexts noise with
an exponential Gaussian sample. In Subsection 4.2 we show how to choose parameters for
the differential privacy mechanism for the class of circuits that consists of multivariate
polynomials of bounded degree. Finally, in Subsection 4.3, we show that the parameters
are tight. Namely, the Gaussian noise must be exponential in the security parameter, and a
significantly lower noise parameter leads to an efficient adversary against IND-CFA-security.

4.1 IND-CFA-secure CKKS
To get circuit privacy we modify the CKKS.Eval algorithm, which we describe at Algo-
rithm 1. The main idea is to post-process the ciphertext after evaluation. Namely, we
re-randomize the ciphertext with a freshly sampled encryption of zero, and we apply a
proper differential privacy mechanism.
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Note that to run the discrete Gaussian mechanism we need to redefine the Estimate
algorithm such that it outputs an upper bound which depends on a class of circuits instead
of just the noise upper bound for a given circuit. Concretely we estimate the noise tag
as maxC∈L{Estimate(C, tfresh, . . . , tfresh)} for a class of circuits L; we refer to this noise
estimate as Tmax.

Algorithm 1: The modified CKKS evaluation EvalL

Data: A public key pk, circuit C ∈ L, a vector of ciphertexts ct1, . . . , ctk.
begin

ct← Eval(pk, C, ct1, . . . , ctk) ;
ct.t← maxD∈L{Estimate(D, ct1.t, . . . , ctk.t)} ;
ct← CKKS.Add(pk, ct, Enc(pk, 0)) ;
ct.b←Mct.t(ct.b) ;
return ct ;

Theorem 5. Let CKKS = (KeyGen, Enc, Eval, Dec) be the CKKS approximate encryption
scheme, with the normed plaintext space R and estimate function Estimate. Let Mt be a
ρ-KLDP mechanism on R where ρ ≤ 2−λ−7. Then, CKKS with the modified EvalL given
by Algorithm 1 is λ-bit secure in the IND-CFA game for the circuit space L.

Proof. We give a brief overview of the structure of the proof. First, we construct a new
(λ + 8)-bit secure indistinguishability game. After that, we consider the output to any
adversary’s query in this game and in the IND-CFA game, and we study the KL-divergence
between them. In order to bound the KL-divergence, we compute the difference of some
entries in the outputs, upper-bound their norm, and then use subadditivity (Lemma 2)
and differential privacy (Definition 9). Finally, once we have obtained a bound on the
KL-divergence, we can link the bit security of the two games and conclude the proof.

We start by describing the two indistinguishability games.

• G0: the CKKS scheme with the evaluation algorithm given by Algorithm 1 in the
IND-CFA game with circuit space L.

• G1: the original CKKS scheme in a variant of the IND-CFA game where the challenger
returns a fresh noiseless encryption (that we denote as Encn) of the result mres =
C0(m1, . . . ,mk) = C1(m1, . . . ,mk). Furthermore, ct.b is post-processed with a
differential privacy mechanism that uses the same noise tag obtained in the game G0.
More formally, we consider the following experiment:

ExpG1
b [A](λ) : r $← U ,

(sk, pk)← KeyGen(λ; r),
m1, . . . ,mk, C0, C1, st← A(λ; r),
mres ← C0(m1, . . . ,mn),
ct← Encn(pk,mres),
ct.t← max

D∈L
{Estimate(D, tfresh, . . . , tfresh)}+ tfresh,

ct← (ct.a,Mct.t(ct.b)),
b′ ← A(st, ct),
return b′.

We want to compare these two games and, in particular, analyze the ciphertext the
adversary receives from the challenger in each game. In G0, the ciphertext is obtained by
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actually homomorphically evaluating the chosen circuit and then by post-processing it with
the re-randomization and with a differential privacy mechanism on the second component.
In G1, the ciphertext is simulated by encrypting the plaintext result of the evaluation,
without performing any homomorphic evaluation. We will refer to the ciphertexts returned
by G0 and G1, respectively, as ct0 and ct1.

While assuming that ct0.a = ct1.a = a, we compute the norm of the difference between
ct0.b and ct1.b, which are the first components of the ciphertexts before applying the
differential privacy mechanism.

∥ct0.b− ct1.b∥ = ∥(ct0.b+ a · sk)− (ct1.b+ a · sk)∥
= ∥(m+ e0)− (m)∥ = ∥e0∥,

where e0 is the original error of the ciphertext ct0, before post-processing. By definition of
approximate correctness of CKKS we know that the error e0 is smaller than the ciphertext
noise tag ct0.t. Therefore,

∥ct0.b− ct1.b∥ = ∥e0∥ ≤ ct.t

Since we were able to bound ∥ct0.b− ct1.b∥ with ct.t we can now use Definition 9 to bound
their KL divergence after post-processing

D ((Mct.t(ct0.b)|ct0.a = a) || (Mct.t(ct1.b)|ct1.a = a)) ≤ ρ.

We now use Lemma 2 to obtain the following inequality.

D(Mct.t(ct0.b), ct0.a||Mct.t(ct1.b), ct1.a)
≤ max

a
D(Mct.t(ct0.b)|ct0.a = a||Mct.t(ct1.b)|ct1.a = a) +D(ct0.a||ct1.a).

It is easy to show that ct0.a is uniform random in R because we re-randomized it by
adding Enc(pk, 0) to ct. Also ct1.a is uniform random in R because it is obtained as a fresh
encryption. This implies that the KL divergence D(ct0.a||ct1.a) = 0. We have already
shown that ρ is an upper bound for the remaining term, for every a. This means that the
upper bound can be rewritten as follows.

D(Mct.t(ct0.b), ct0.a||Mct.t(ct1.b), ct1.a) ≤ ρ.

Then, since the KL-divergence between these two indistinguishability games is smaller
than a fixed value ρ and provided that ρ/2 ≤ 2−λ−8, we can use Theorem 4 to relate the
bit security of G0 with the bit security of G1 and we obtain that G0 is λ-bit IND-CFA-secure.

Analysis of the post-processing noise. We give an analysis of the precision lost
when modifying the CKKS scheme as in Theorem 5. We instantiate the differential privacy
mechanism from Definition 10 with ρ = 2−λ−7. Considering that the static estimate ct.t
is expressed in the infinity canonical norm and not in the euclidean norm, we obtain
that a Gaussian noise of standard deviation 8

√
n2λTmax is added to each coordinate,

where n is the dimension of the ring. We obtain that the bits of precision lost are
λ/2 + 3 + log2(Tmax) + log2(

√
n).

Parameters for Machine Learning Inference. Tables 1 gives parameters for one
of the most common applications of FHE which benefits from circuit privacy: privacy-
preserving machine learning inference on a model with depth d and width w. For the base
CKKS scheme, we consider parameters such as ring dimension and ciphertext modulus
from [ACC+18]. In particular, we set the ring dimension to be smaller or equal to 215 and
the standard deviation for fresh encryption σfresh to be 3.2.
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Table 1: Bits of additional Gaussian noise added in the modified CKKS of Theorem 5 to
achieve 128-bits IND-CFA-security. We use the estimates on Tmax from subsection 4.2 with
message bound B = 210.

width
w = 1 w = 23 w = 25 w = 28

depth
d = 1 85.50 87.67 89.54 92.50
d = 2 97.08 100.99 104.63 110.51
d = 3 108.08 113.45 118.76 127.53

4.2 Managing and obtaining Tmax

In this section, we will show how to set the noise bound Tmax for the differential pri-
vacy mechanism. Recall that the usual noise estimation algorithm estimates the noise
based on the circuit, which is enough for IND-CPAD-security when post-processing de-
cryption as in [LMSS22]. To obtain circuit privacy, instead, we estimate the noise as
the maximum noise over all circuits in a given class of circuits. In particular, we run
Tmax := maxD∈L{Estimate(D, tfresh, . . . , tfresh)}. Note that the estimation algorithm de-
pends on the class of circuits; hence the evaluation process may still leak some information
on the computation, like the multiplicative depth of the circuit. Below we show how to
estimate the noise tag for the class of multivariate polynomials of degree bounded by some
d ∈ N.

Theorem 6. Let k, d ∈ N. Let C(x1, . . . , xk) be a multivariate polynomial of degree
smaller or equal to d. Let B ∈ N such that ∥mi∥can ≤ B for i ∈ [k], then

Estimate(sk,CKKS.Eval(pk, C, [cti]i∈[k]), C([mi]i∈[k])) = d

(
k + d

d

)
O(Bdtfresh)

where cti ← Enc(pk,mi) for i ∈ [k].

To prove Theorem 6 we need to recall a heuristic on emult. More accurate noise analysis
on CKKS.Eval (like [CCH+24], Heuristic 8) can be found in the literature; although,
considering the scope of this paper and the asymptotical nature of our results, using the
following Heuristic will be enough.

Heuristic 1 (Appendix A.5 of [GHS12]). Let w be the hamming weight of the secret key
sk (i.e., the number of non-zero coordinates of sk) and n be the plaintext ring dimension.
Then emult behaves like a random variable with mean zero and variance O(wn).

Proof. In this proof we denote Estimate(f(x), tfresh) as Est(f(x)). Also we omit the
subscript can when using the canonical norm since it is the only norm used in this proof.

First, we want to prove that Est(xd) = O(dBd−1tfresh) by strong induction. This is
trivially true for d = 1. We now study the statement for d > 1. Est(xd) = Estimate(xa ·
xb) = ∥maeb+mbea+eaeb+emult∥ where ea and eb are, respectively, the resulting errors from
the evaluation of the polynomials xa and xb, with a+ b = d. We can bound this quantity
from above by using the triangular inequality Est(xd) ≤ Ba∥eb∥+Bb∥ea∥+ ∥eaeb + emult∥.
Using the strong inductive hypothesis ∥ea∥ = O(aBa−1tfresh) and ∥eb∥ = O(bBb−1tfresh), we
can rewrite this quantity as Est(xd) = O(BabBb−1tfresh +BbaBa−1tfresh) + ∥eaeb + emult∥.
Since ∥eaeb + emult∥ ≪ Bd−1 we can just conclude that Est(xd) = O(dBd−1tfresh).

We can now extend our study to monomials xi1
1 . . . xik

k . We prove by induction on k

that Est(xi1
1 . . . xik

k ) = O(dBd−1tfresh), where d = i1 + · · ·+ ik. We already showed that



14 On Circuit Private, Multikey and Threshold Homomorphic Encryption

it is true for k = 1. We now study the statement for k > 1. Est(xi1
1 . . . x

ik−1
k−1 · x

ik

k ) =
∥(mi1

1 . . .m
ik−1
k−1 )ek +mik

k ek−1 + ek−1ek + emult∥, where ek−1 and ek are, respectively, the
resulting error from the evaluations of the monomials xi1

1 . . . x
ik−1
k−1 and xik

k . We can
bound this quantity from above by using the triangular inequality Est(xi1

1 . . . xik

k ) ≤
Bi1+···+ik−1∥ek∥+Bik∥ek−1∥+ ∥ek−1ek + emult∥. Using the inductive hypothesis on ek−1
and ek, we can rewrite this quantity as Est(xi1

1 . . . xik

k ) = O(Bi1+···+ik−1ikB
ik−1tfresh +

Bik (i1 + · · ·+ ik−1)Bi1+···+ik−1−1tfresh) + ∥ek−1ek + emult∥. Since ∥ek−1ek + emult∥ ≪ Bd

we can just conclude that Est(xi1
1 . . . xik

k ) = O(dBd−1tfresh) where d = i1 + · · ·+ ik. Finally,
we analyze a generic multivariate polynomial with k variables and degree smaller or equal
to d.

Est(
∑

0≤i1+···+ik≤d
0<i1,...,ik≤d

ai1,...,ik
xi1

1 · . . . · x
ik

k ) ≤ B
(
k + d

d

)
Est(xi1

1 · . . . · x
ik

k )

= B

(
k + d

d

)
O(dBd−1tfresh)

= d

(
k + d

d

)
O(Bdtfresh).

4.3 Tightness of the Differential Privacy Parameters
As shown by Theorem 5, the proposed modified version of CKKS achieves λ-bit IND-CFA-
security by applying a differentially private mechanism on the outcome of the evaluation
algorithm. In practice, we instantiate the differential privacy mechanism by the Gaussian
mechanism with Gaussian noise of variance σmax ← T 2

max
2ρ . Recall that ρ ≤ 2−λ−7 is the

privacy bound for ρ-KL differential privacy (Definition 9), and Tmax is the noise upper
bound for the class of circuits. We show that trying to use an appreciably smaller variance
σs ≪ σmax leads to the existence of an adversary that wins the IND-CFA game with a
non-negligible advantage. In other words, we show that the noise parameters are tight
when using the Gaussian mechanism, and the added Gaussian noise must be exponential
in the security parameter.

Theorem 7. Let σs > 0. Let Evalσs
Ld

be the modified CKKS evaluation given by Algorithm 1
but where the post-processing noise is sampled from the discrete Gaussian NZn(0, σ2

s T
2
maxIn).

Then there exists an adversary A (Algorithm 2) against CKKSσs
Ld

in the IND-CFA-game
such that advA = Ω( 1

σ2
s B2t2

fresh
), where B is an upper bound on the messages norm modulus

and tfresh is the noise tag associated to freshly encrypted messages.

To prove Theorem 7 we need the following inequality that we can derive, for this case,
from Theorem 1.

Lemma 3 (Theorem 1.3 of [DMR18]). Let σ > 0. Then

∆(N (µ0, σ
2),N (µ1, σ

2)) ≥ 1
50
|µ0 − µ1|

σ
.

Again, to prove Theorem 7 we need the following lemma.

Lemma 4. Let d ∈ N. Let B be the plaintext modulus and ct← Enc(pk, B), then

Dec(sk, Eval(xd, ct))−Bd = dBd−1ct.e+ f

where ∥f∥can = O(Bd−1).
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Algorithm 2: Adversary A(λ).
Data: A security parameter λ. The adversary has oracle access to Evalσs

Ld
.

begin
r

$← U ;
r1

$← U ;
(sk, pk)← KeyGen(λ; r);
m← B;
C0 ← xd;
C1 ← xd +Bxd−1 −Bd;
ct← Enc(pk,m; r1);
ctres ← O

Evalσs
Ld

(pk,·,·,ct)(C0, C1);
e0 ← Dec(sk, Eval(C0, ct))−Bd;
e1 ← Dec(sk, Eval(C1, ct))−Bd;
eres ← Dec(sk, ctres)−Bd;
Choose i ∈ {0, . . . , n− 1} such that |e0,i − e1,i| is maximal;
If |eres,i − e0,i| ≤ |eres,i − e1,i| then return 0. Otherwise output 1;

Remark 2 (On the order of operations when evaluating a polynomial). When homomor-
phically evaluating a polynomial, the associated noise growth does not only depend from
the noise of the starting ciphertexts and the polynomial itself. In particular, in CKKS,
another relevant factor is how we write the polynomial as a sequence of CKKS.Add and
CKKS.Mul. For example, computing a polynomial with the double-and-add technique or
computing it directly as x · x · · · · · x results in two different error growths. In this theorem,
we analyze the direct method. Our focus on this method simplifies the derivation of the
lower bound on the noise growth. We specifically consider this case because the primary
objective of this theorem in our paper is to estimate the advantage of Adversary 2 who can
freely choose the order of operations for the homomorphic evaluation of the polynomial.

Proof. We define ed as the left-hand term of the equation, therefore as

ed := Dec(sk, Eval(xd, ct))−Bd.

In the special case of d = 1 we have that e1 = ct.e
We now prove the result by performing an induction on the degree d. This is trivially

true for d = 2, since

Dec(sk, Eval(x2, Enc(pk, B)))−B2 = 2Bct.e+ ct.e2 + emult,

and f := ct.e2 + emult is such that ∥f∥can = O(B).
We now study the statement for d > 2. By computing xd as xd−1 · x, and by using

CKKS noise growth rule (Lemma 1), we obtain that

ed = ed−1B + e1B
d−1 + ed−1e1 + emult.

Using inductive hypothesis we obtain that

ed =
(
(d− 1)Bd−2ct.e+ fd−1

)
·B + ct.eBd−1 +

(
(d− 1)Bd−1ct.e+ fd−1

)
ct.e+ emult

= (d− 1)Bd−1ct.e+Bd−1ct.e+ fd−1B +
(
(d− 1)Bd−1ct.e+ fd−1

)
ct.e+ emult

= dBd−1ct.e+ fd,

where fd := fd−1B +
(
(d− 1)Bd−1ct.e+ fd−1

)
ct.e+ emult and ∥fd∥can = O(Bd−1).



16 On Circuit Private, Multikey and Threshold Homomorphic Encryption

Proof of Theorem 7. We give a brief description of the high-level idea of this proof. First,
the adversary computes the ciphertext errors after the homomorphic evaluation of each
circuit but before the post-processing phase of the challenger. Then, we rewrite each
ciphertext error after the post-processing as a sample of a Gaussian distribution, where mean
and variance only depend from the chosen circuit and variables known by the challenger.
Finally, we compute the statistical distance between the two Gaussian distributions linked
to the two possible circuits and use this distance to obtain a lower bound on the adversary’s
advantage.

The adversary knows e := ct.e, receives the resulting error eres after decrypting the
oracle output and can compute the errors e0 and e1 obtained after the standard CKKS
evaluation of C0 and C1 on ct. The oracle computes ctres as CKKS.Eval(Cb, ct) + esm,
where esm is sampled from NZn(0, σ2

s T
2
maxIn). This means that the adversary sees eres that

is a sample of NZn(eb, σ
2
s T

2
maxIn). Then, the adversary analyzes the polynomial e0−e1 and

chooses i as the component where the difference of the i-th coefficients of the polynomials e0
and e1 is maximal in absolute value. After this, the adversary focuses on the i-th coefficient
of eres. This is a sample of NZ(eb,i, σ

2
s T

2
max). Obtaining that |eres,i − e0,i| < |eres,i − e1,i| is

more likely when b = 0 while if |eres,i − e0,i| ≥ |eres,i − e1,i| it is at least more likely that
b = 1 rather then b = 0. To analyze the adversary’s advantage in distinguishing these
distributions, we first study the total variation distance between them. Computing this
quantity for discrete Gaussians is not an easy task, therefore we will approximate it by
considering their counterparts on the real numbers. By Lemma 3 and Lemma 4 we have
that

∆(N (e0,i, σ
2
s T

2
max),N (e1,i, σ

2
s T

2
max)) ≥ 1

50
|e0,i − e1,i|
σsTmax

= Θ
(
Bd−1|ei|
σsTmax

)
.

Theorem 6 gives us that Tmax = d(d− 1)O(Bdtfresh) and |ei| ≥ 1 with high probability.
We can now rewrite the right hand term of the past equation as Ω( 1

σsBtfresh
). The adversary’s

advantage in the IND-CFA game for this scheme is the square of the total variation distance
we just estimated, therefore Ω( 1

σ2
s B2t2

fresh
).

Theorem 8. If the CKKS scheme with the modified evaluation Evalσs
Ld

is λ-bit IND-CFA-
secure, then σs = Ω(2λ/2/(B2t2fresh)). This implies that one must add at least λ/2 −
log2 Ω̃(B2t2fresh) bits of additional Gaussian noise to the standard CKKS evaluation in order
to achieve IND-CFA security.

Proof. By using the definition of bit security, we know that

λ ≤ log2 O(T (A)
advA

) ≤ log2 O(σ2
sB

2t2fresh);

this immediately implies that σs ≥ 2λ/2/(B2t2fresh) and λ/2− log2 Ω(B2t2fresh) ≤ log2 σs.

5 Threshold FHE and MPC
In Subsection 5.1, we give definitions for threshold homomorphic encryption over ap-
proximate arithmetic. In Subsection 5.2, we give definitions for multikey homomorphic
encryption over approximate arithmetic. In Subsection 5.3 we present a modification of the
MK-CKKS multikey homomorphic encryption scheme that satisfies the indistinguishability
security definition as given by Definition 23. In particular, we show that re-randomized
MK-CKKS ciphertexts and decryption shares does not reveal information about messages
and secret keys of non-corrupted parties when we apply an appropriate differential privacy
mechanism that floods them with an exponential Gaussian sample. Finally, in Subsection
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5.4, we show that the parameters are tight. Namely, the Gaussian noise must be expo-
nential in the security parameter, and a significantly lower noise parameter leads to an
efficient adversary against IND-MKHE-security.

5.1 Threshold Homomorphic Encryption
We base our definition for threshold approximate homomorphic encryption on the definition
introduced by [BGG+18]. We have the same syntax and we have the same indistinguisha-
bility definition as [BGG+18], but we redefine the correctness definition for the case of
approximate arithmetic. Regarding the indistinguishability, we discuss in Remark 3 a
slight strengthening of the definition that lets us construct a meaningful circuit private
homomorphic encryption scheme.

Recall that a monotone access structure A on [n] is a collection A ⊆ P([n]), where
P([n]) contains all subsets of [n], such that whenever we have sets B, C satisfying B ∈ A
and B ⊆ C ⊆ [n] then C ∈ A. The sets in A are called the valid sets and the sets in
P([n]) \ A are called invalid sets.A class of monotone access structures is a collection
S = (A1, . . . ,At) ⊆ P(P([n])) of monotone access structures on [n]. A set S ⊆ [n] is a
maximal invalid share set if S ̸∈ A and for every i ∈ [n] \ S we have that S ∪ {i} ∈ A.

Definition 16 (Threshold Homomorphic Encryption). Let d ∈ N and let Ld be a class of
circuits of multiplicative depth smaller or equal to d. A threshold homomorphic encryption
scheme THE on Ld is a tuple of five algorithms THE = (KeyGen, Enc, Eval, PDec, Combine)
with the following syntax.

KeyGen(λ, d, n,A)→ (pk, sk1, . . . , skn): Given a security parameter λ, the maximal multi-
plicative depth of evaluatable circuits d, the number of parties n, and access structure
A, returns a public key pk and n secret keys sk1, . . . , skn.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext ct.

Eval(pk, C, ct1, . . . , ctk)→ ct: Given a public key pk, a circuit C ∈ Ld and ciphertexts
ct1, . . . , ctk, returns a ciphertext ct.

PDec(ski, ct)→ µ: Given a secret key ski and a ciphertext ct, returns a partial decryption
µ.

Combine({µi}i∈S , ct)→ m: Given a set of partial decryptions {µi}i∈S where S ∈ A, and
a ciphertext ct, returns a message m.

Definition 17 (Threshold Ciphertext Error). Let THE = (KeyGen, Enc, Eval, PDec,
Combine) be a threshold homomorphic encryption scheme with message space M. Fur-
thermore, let M be a normed space with norm || · || :M 7→ R≥0. For all public/secret key
tuples (pk, sk1, . . . , skn)← KeyGen(λ, d, n,A), for any ciphertext ct in the image of Eval
and any message m ∈M the ciphertext error of ct w.r.t. m is defined as

Error(sk1, . . . , skn, ct,m) = ||Combine([PDec(ski, ct)]i∈S)−m||.

Definition 18 (Approximate Correctness). Let us define THE = (KeyGen, Enc, Eval, PDec,
Combine) to be a threshold homomorphic encryption scheme with message space M⊆ M̃
that is a normed space with norm || · || : M̃ 7→ R≥0. Let L be the class of circuits, Lk ⊆ L
be the subset of circuits with k input wires, and let Estimate :

⊔
k∈N Lk ×Rk

≥0 7→ R≥0 be
an efficiently computable function. We call HE an approximate homomorphic encryption
scheme if for all k ∈ N, for all C ∈ Lk, for all (pk, sk1, . . . , skn) ← KeyGen(λ, d, n,A), if
ct1, . . . , ctk andm1, . . . ,mk are such that Error(ski, cti,mi) ≤ ti, for some t1, . . . , tk ∈ R≥0,
and ct← Eval(pk, C, ct1, . . . , ctk), then

Error(sk1, . . . , skk, ct, C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).
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Definition 19 (Ind-secure THE). Let d, n ∈ N and let Ld be a class of circuits of
multiplicative depth smaller or equal to d. Let THE = (KeyGen, Enc, Eval, PDec, Combine)
be a threshold fully homomorphic encryption scheme for a class of access structures S and
circuits in Ld. We define the experiment ExpIND-THE

b [A], where b ∈ {0, 1} is a bit and A is
an adversary. The experiment is defined as follows:

ExpIND-THE
b [A](λ) : A← A(λ, d, n, S),

(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S ̸∈ A and S is a maximal invalid set,

(m(0)
1 , . . . ,m

(0)
k ,m

(1)
1 , . . . ,m

(1)
k ), st← A([ski]i∈S),

[cti ← THE.Enc(pk,m(b)
i )]ki=1,

b′ ← AEval(pk,·,ct1,...,ctk)(st, ct1, . . . , ctn),
return b′.

The Eval(pk, ·, ct1, . . . , ctk) oracle takes as input circuit in Ci ∈ Ld is such that
Ci(m(0)

1 , . . . ,m
(0)
k ) = Ci(m(1)

1 , . . . ,m
(1)
k ). The oracle computes and outputs ctres ←

Eval(pk, Ci, ct1, . . . , ctk) and µj ← PDec(skj , ctres) for all j ∈ [n].
The scheme THE is said to be λ-bit IND-THE-secure if, for any adversary A, we have

that λ ≤ log2
T (A)
advA , where advA is defined as in Definition 12.

5.2 Multikey Homomorphic Encryption
There are many flavors of multikey homomorphic encryption in the literature. Most of the
definitions differ in syntax, but the overall concept is same. The main differences between a
multikey homomorphic encryption scheme and threshold homomorphic encryption schemes
are (1) in MKHE the secret keys are generated by each user separately instead of by a
single setup, (2) messages are encrypted with public keys of each user instead of a master
public key. Consequently, the evaluation algorithm in MKHE “combines” ciphertexts
with respect to different public keys into one ciphertext, whereas in THE the ciphertext is
already combined. Finally, (3) the decryption process in MKHE is a special case of THE
where all secret keys are needed to decrypt the message.

Both primitives, however, share the same interface for decryption. In particular, both
primitives define a partial decryption algorithm PDec. Furthermore, to the best of our
knowledge, all current realizations of these primitives use a flavor of noise flooding to
realize PDec. Hence it makes sense in our paper to investigate multikey homomorphic
encryption together with threshold homomorphic encryption.

Below we give the syntax for multikey homomorphic encryption.

Definition 20 (Multikey Homomorphic Encryption). Let d ∈ N and let Ld be a class of
circuits of multiplicative depth smaller or equal to d. A multikey homomorphic encryption
scheme MKHE on Ld is a tuple of five algorithms MKHE = (KeyGen, Enc, Eval, PDec,
Combine) with the following syntax.

KeyGen(λ, d)→ (pk, sk): Given a security parameter λ, the maximal multiplicative depth
of evaluatable circuits d, the algorithm returns a public key pk and s secret key sk.

Enc(pk,m)→ ct: Given a public key pk and a message m, the algorithm returns a cipher-
text ct.

Eval(pk1, . . . , pkn, C, ct1, . . . , ctn)→ ct: Given a list of public keys pk1, . . . , pkn, a circuit
C ∈ Ld and ciphertexts ct1, . . . , ctn, returns a ciphertext ct.
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PDec(ski, ct)→ µ: Given a secret key ski and a ciphertext ct, returns a partial decryption
µ.

Combine({µi}i∈[n], ct)→ m: Given a set of partial decryptions {µi}i∈[n] and a ciphertext
ct, returns a message m.

Definition 21 (Multikey Ciphertext Error). Let MKHE = (KeyGen, Enc, Eval, PDec,
Combine) be a multikey homomorphic encryption scheme with message space M. Fur-
thermore, let M be a normed space with norm || · || : M 7→ R≥0. For all public/secret
key pairs (pki, ski)← KeyGen(λ) where i ∈ [n], any ciphertext ct in the image of Eval and
message m ∈M the ciphertext error is defined as

Error(sk1, . . . , skn, ct,m) = ||Combine([PDec(ski, ct)]i∈[n])−m||.

Below we give our definition of approximate correctness for multikey homomorphic
encryption. Definition 23 gives our definition for indistinguishability security of multikey
homomorphic encryption. Recall that this is the first security definition for multikey
approximate homomorphic encryption that gives the adversary access to partial decryptions.
Previously [CDKS19], only standard semantic security was considered, and security in the
presence of partial decryptions were omitted.
Definition 22 (Approximate Correctness). Let us define MKHE = (KeyGen, Enc, Eval,
PDec, Combine) to be a multikey homomorphic encryption scheme with message spaceM⊆
M̃ that is a normed space with norm ||·|| : M̃ 7→ R≥0. Let L be the class of circuits, Lk ⊆ L
be the subset of circuits with k input wires, and let Estimate :

⊔
k∈N Lk ×Rk

≥0 7→ R≥0 be
an efficiently computable function. We call HE an approximate homomorphic encryption
scheme if for all k ∈ N, for all C ∈ Lk, for all (pk, sk) ← KeyGen(λ), if ct1, . . . , ctk

and m1, . . . ,mk are such that Error(ski, cti,mi) ≤ ti, for some t1, . . . , tk ∈ R≥0, and
ct← Eval(pk1, . . . , pkk, C, ct1, . . . , ctk), then

Error(sk1, . . . , skk, ct, C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).

Definition 23 (Ind-secure MKHE). Let d ∈ N and let Ld be a class of circuits of
multiplicative depth smaller or equal to d. Let MKHE = (KeyGen, Enc, Eval, PDec,
Combine) be a multikey homomorphic encryption scheme for a class circuits in Ld. We
define the experiment ExpIND-MKHE

b [A], where b ∈ {0, 1} is a bit and A is an adversary.
The experiment is defined as follows:

ExpIND-MKHE
b [A](λ) :

[r′
i

$← U ]i∈[n],

[(ski, pki)← KeyGen(λ, d, r′
i)]i∈[n],

i∗, st1 ← A(pk1, . . . , pkn),

[ri
$← U ]i∈[n],

(m(0)
1 , . . . ,m(0)

n ,m
(1)
1 , . . . ,m(1)

n ), st2 ← A(st1, [ri, r
′
i]i∈[n]\{i∗}),

[cti ← MKHE.Enc(pki,m
(b)
i , ri)]i∈[n],

b′ ← AEval({pki}i∈[n],·,ct1,...,ctn)(st2, cti∗),
return b′.

The Eval({pki}i∈[n], ·, ct1, . . . , ctn) oracle takes as input a circuit Ci ∈ Ld such that
Ci(m(0)

1 , . . . ,m
(0)
n ) = Ci(m(1)

1 , . . . ,m
(1)
n ). The oracle computes and outputs ctres ←

Eval({pki}i∈[n], Ci, ct1, . . . , ctn) and µj ← PDec(skj , ctres) for all j ∈ [n].
The scheme MKHE is said to be λ-bit IND-MKHE-secure if, for any adversary A, we

have that λ ≤ log2
T (A)
advA , where advA is defined as in Definition 12.
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An important question when stating a new security definition is whether the definition
is meaningful in any way. Intuitively it seems that our definition captures what we would
expect from the multikey HE. In particular, the adversary should not be able to distinguish
encryptions even when given all secret keys except one, and given partial decryptions on
evaluated ciphertexts. To give a more formal argument, we show how to use a multikey
homomorphic encryption scheme for two keys to build a homomorphic encryption scheme
with circuit privacy. To do this, we need to recall the definition of universal circuit.

Definition 24 (Universal circuit [Val76]). A universal circuit U takes as inputs a circuit
C (of bounded depth d and width k) and a vector of messages m1, . . . ,mk, and outputs
C(m1, . . . ,mk).

Theorem 9. Let MKHE be a IND-MKHE-secure multikey homomorphic encryption scheme
for n = 2 parties with message space M⊆ Ld. We can build a homomorphic encryption
scheme HE on Ld that is IND-CFA-secure.

Proof. Let MKHE be a multikey homomorphic encryption for n = 2 keys. We build the HE
encryption as follows. The KeyGen and Enc algorithms are the same as in MKHE. We denote
the keys output by the KeyGen algorithm as (sk1, pk1). The evaluation algorithm HE.Eval
on input ct1 ← MKHE.Enc(pk1,m) first samples (pk2, sk2)← KeyGen(λ, d), encrypts the
circuit C as ct2 ← Enc(pk2, C), and evaluates ct ← MKHE.Eval((pk1, pk2), U, ct1, ct2),
where U is a universal circuit that supports the evaluation of circuits in Ld. Finally, the
eval algorithm outputs ct and µ2 ← PDec(sk2, ct).

The decryption algorithm HE.Dec runs ct← MKHE.Eval((pk1, pk2), U , ct1, ct2), µ1 ←
PDec(sk1, ct), and m′ ← Combine({µi}i∈[n], ct). Note that from approximate correctness
of MKHE we have that m′ is close to C(m), what implies that the HE is approximately
correct.

Now we proceed to show circuit privacy. We construct a solver S that uses an adversary
A against IND-CFA of HE to break IND-MKHE. The solver S obtains pk1, pk2 from the
IND-MKHE challenger, and sends i∗ = 2 back. The solver S obtains r1 and r′

1 and
passes both to the adversary. A responds with (m1, . . . ,mk) and C0 and C1, and sends
(m1, . . . ,mk, C0) and (m1, . . . ,mk, C1) to the MKHE challenger. Consequently, S obtains
ct1 and ct2, and queries the Eval oracle on the U circuit and both ciphertexts. Denote the
response of the oracle as µ2. The solver returns µ2 and ct← Eval(pk1, pk2, U, ct1, . . . , ctn)
to A. If A returns a bit b′ the solver outputs it as its solution to the IND-MKHE experiment.

Note that S perfectly follows the IND-MKHE experiment. In particular, we set
(m(b)

1 ,m
(b)
2 ) = (m1, . . . ,mk, Cb). Note that we set m(b)

1 = (m1, . . . ,mk) and m
(b)
2 = Cb.

From the requirement on C0 and C1 imposed by the IND-CFA definition we have that
C0(m1, . . . ,mk) = C1(m1, . . . ,mk), and U(C0,m1, . . . ,mk) = U(C1,m1, . . . ,mk) as re-
quired by the IND-MKHE experiment. To summarize, we have that the simulator S has
advantage advIND-CFA[A](λ) in returning the b′ such that b′ = b and also has a running
time that is similar to the running time of A.

Remark 3 (On threshold homomorphic encryption and circuit privacy). Recall that we
proved that multikey homomorphic encryption for two keys already gives us homomorphic
encryption with indistinguishability circuit privacy. Note that the definition of threshold
homomorphic encryption does not let itself use to build circuit privacy so easily. The
reasons for this are that the common key generation algorithm in Definition 16 returns just
one public key and all secret keys, and we cannot give the random seed to the adversary
to generate its own keys honestly. Similarly, we would need to redefine the IND-THE
experiment and encrypt part of the messages using honestly sampled seeds that are then
passed to the adversary. Note that this modification strengthens the security notion.
However, we are still unable to provide a seed for the key generation algorithm since
IND-THE would be trivially broken. In this case, we would need to introduce a relaxation
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of our indistinguishability circuit privacy definition such that the adversary is given a
secret key instead of a seed.

5.3 Achieving IND-MKHE-security for MK-CKKS
In this subsection we analyze the scheme MK-CKKS from [CDKS19] and show how to
modify it to achieve IND-MKHE-security. We stress that this construction can also be
adapted to other MKHE schemes that share similarities with MK-CKKS. In particular, the
relevant properties we use are: the linearity of the Combine algorithm and the structure
of extended ciphertext in Rk, where all elements except one are uniform random in fresh
encryptions. We present the algorithms of MK-CKKS, but we refer the reader to the
original paper [CDKS19] for a complete description.

MK-CKKS.Setup(λ): Given the security parameter λ, set n ∈ N and Q ∈ N, the ring
R := Rn

Q, the key distribution χ and the noise distribution ψ. Sample a $← Rn
Q

uniformly. Return pp = (n,Q, χ, ψ, a).

MK-CKKS.KeyGen(pp): Sample s← χ. Sample an error e← ψ and compute b = −sa+ e.
Return ((b, a), s) as (pk, sk).

MK-CKKS.Enc(pk,m ∈ RQ): Sample v ← χ and e0, e1 ← ψ. Denoting pk = (b, a), then
compute c0 = vb0 +m+ e0 and c1 = va0 + e1. Return (c0, c1) ∈ R2.

MK-CKKS.Eval({pki}i∈[k], C, ct1, . . . , ctk) : For given ciphertexts cti ∈ Rki+1, we denote
k ≥ maxi∈[k]{ki} the number of parties involved in at least one of the cti. Rearrange
the entries of each cti and pad zeroes in empty entries to generate some ciphertexts
ct∗

i sharing the same secret key sk = (1, sk1, . . . , skk). Then, the algorithm evaluates
the arithmetic circuit C by means of addition and multiplication:

CKKS.Add(ct0, ct1 ∈ Rk+1): Return the entry-by-entry addition ct0 + ct1.
CKKS.Mul({pki}i∈[k], ct0, ct1 ∈ Rk+1): Compute ct = ct1 ⊗ ct2 and return the ci-

phertext ct′ ← Relin(ct, {pki}i∈[k]). The Relin algorithm returns a ciphertext
ct ∈ Rk+1 encrypting m0m1 with an error that follows the noise growth law of
Lemma 5.

MK-CKKS.PDec(sk, ct ∈ Rk+1): Call ct.ai the component of ct associated to the secret
key sk. Return µ = sk · ct.ai. 1

MK-CKKS.Combine({µi}i∈[k], ct ∈ Rk+1): Return m = ct.b+
∑k

i=1 µi.

The estimate function of MK-CKKS is handled similarly to CKKS but with the noise growth
rule of Lemma 5.

While this presentation of MK-CKKS is helpful for describing how the scheme works,
it might not explain in a clear way why MK-CKKS is a MKHE scheme. To see this, first
notice that the KeyGen can be made independently by each party. In fact, we can consider
the output of MK-CKKS.Setup as a common reference string that is used as input for
MK-CKKS.KeyGen. Second, consider the ciphertext space to be the disjoint union

⋃
i≥2Ri.

By doing this, all the ciphertexts in the input/output of MK-CKKS.Eval live in the same
space, so the algorithm satisfies the definition from MKHE.

To simplify the notation, from now on, we are going to refer to the entries of a
ciphertext ct ∈ Rk+1 as (ct.b, ct.a1, . . . , ct.ak). Also, when writing ct.a, we will be referring

1In the original scheme, the partial decryption algorithm already added a smudging noise esm ← ϕ.
Since ϕ is not described in detail, we decided not to include it here so as to simplify the exposition of PDec
in Algorithm 4.
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to (ct.a1, . . . , ct.ak). We now show how to modify the Eval and the PDec algorithm in
MK-CKKS to achieve IND-MKHE-security. The main idea behind Eval′ is to re-randomize
the ciphertext by adding a fresh encryption of zero for each public key pk associated to
ct and then to post-process the component ct.b using an appropriate differential privacy
mechanism MT .

Algorithm 3: The modified evaluation MK-CKKS.Eval′

Data: A set of public keys {pki}i∈[k], circuit C ∈ L, a vector of ciphertexts
ct1 ∈ Rk+1, . . . , ctN ∈ Rk+1.

begin
ctres ← Eval({pki}i∈[k], C, ct1, . . . , ctk) ;
For i = 1 to k: ctres ← CKKS.Add(pk, ctres, Enc(pki, 0)) ;
T ← ctres.t+ tfresh ;
ctres.b←MT (ctres.b);
return ctres ;

Algorithm 4: The modified partial decryption MK-CKKS.PDec′

Data: A secret key sk, a ciphertext ct ∈ Rk+1.
begin

µ←Mct.t(PDec(sk, ct)) ;
return µ ;

Theorem 10. Let MK-CKKS = (Setup, KeyGen, Enc, Eval, PDec, Combine) be the
MK-CKKS multikey homomorphic encryption scheme, with plaintext space R and estimate
function Estimate. Let q ∈ N. Let Mt be a ρ-KLDP mechanism on R where ρ ≤ 2−λ−8/q.
If MK-CKKS.Enc is (λ + 8)-bit secure in the IND-CPA game, then MK-CKKS with the
modified MK-CKKS.Eval′ given by Algorithm 3 and with the modified MK-CKKS.PDec′

given by Algorithm 4 is λ-bit secure in the IND-MKHE game where q is the maximum
amount of oracle queries by the adversary.

Proof. The high-level idea is as in Theorem 5. The main difference between the two proofs
is the structure of the game G1 that has not only to protect the message choice b but also
to guarantee the protection of ski∗ . Also, the output of the adversary’s queries is not a
rLWE ciphertext anymore but it is a couple made by an extended rLWE ciphertext and
a partial decryption share. This makes the tasks of upper-bounding the KL-divergence
somewhat harder.

We start by describing the two indistinguishability games.

• G0: the MK-CKKS scheme with the modified algorithms given by Algorithm 3 and
Algorithm 4 in the IND-MKHE-security game with a bound of maximum q queries.

• G1: the original MK-CKKS scheme in a variant of the IND-MKHE-security game
with a bound of maximum q queries and the modified oracle Eval′. The oracle
Eval′({pki}n

i=1, ·, ct1, . . . , ctn) takes as input a circuit Ci ∈ Ld that satisfies the
equality Ci(m(0)

1 , . . . ,m
(0)
n ) = Ci(m(1)

1 , . . . ,m
(1)
n ), and behaves in the following way.

When writing Encn(pk,m) we denote a noiseless encryption of m. Also, the sums
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among ciphertexts are a shorter notation for CKKS.Add.

Eval′({pki}i∈[n], ·, ct1, . . . , ctn) :

mres ← C(m(0)
1 , . . . ,m(0)

n ),

ctres ← Enc(pki∗ , 0) +
∑

j∈[n]∖{i∗}

Encn(pkj , 0),

ctres.t← Estimate(C, ct1.t, . . . , ctn.t) + (k + 1)tfresh,

µi∗ ←Mctres.t(ctres.b−
∑
j ̸=i∗

skj · ctres.aj),

[µi ← ski · ctres.ai]i ̸=i∗ ,

ctres.b←Mctres.t(ctres.b+mres),
return(ctres, [µi]i∈[n]).

In G0, the ciphertext ctres and the decryption shares µi are obtained by homomorphically
evaluating the circuit C on the input ciphertexts and partially decrypting the resulting ci-
phertext. After computing them, we perform some post-processing with a re-randomization
on ctres and with a differential privacy mechanism on both. In G1, the ciphertext ctres and
the decryption shares µi are simulated, and they do not depend from the input ciphertexts,
from b or from the secret key of the non-corrupted party i∗. ctres, in the final output of G1,
after modifications, is a fresh, random encryption of mres, and the share µi∗ is obtained
without using ski∗ .

To simplify the notation in this proof, we will denote ctG0
res as ct0, ctG1

res as ct1 and ctG0
res.t

as t.
While assuming that ct0.a = ct1.a = a, we compute the norm of the difference between

ct0.b and ct1.b, which are the first components of the ciphertexts before applying the
differential privacy mechanism.

∥ct0.b− ct1.b∥ = ∥(ct0.b+ a · (sk1, . . . , skk))− (ct1.b+ a · (sk1, . . . , skk))∥
= ∥(m+ e0)− (m+ e1)∥ = ∥e0 − e1∥ ≤ t+ tfresh,

We will denote t + tfresh as T for the rest of the proof. Since we were able to bound
∥ct0.b − ct1.b∥ with T , we can now use Definition 9 to bound their KL divergence after
post-processing.

D(MT (ct0.b)|ct0.a = a||MT (ct1.b)|ct1.a = a) ≤ ρ.

We repeat the same reasoning with decryption shares. To simplify the notation in this proof,
we will denote µGb

j with µj,b. While assuming that ct0.b = ct1.b = b and ct0.a = ct1.a = a
are chosen, we compute the norm of the difference between µ0,i∗ and µ1,i∗ , which are the
decryption shares before applying the differential privacy mechanism.

∥µ0,i∗ − µ1,i∗∥ = ∥(ai∗ · ski∗)− (b−
∑
j ̸=i∗

aj · skj)∥ = ∥e0∥ ≤ t.

This implies, thanks to Definition 9, that

D(Mt(µ0,i∗)|(ct0.b = b, ct0.a = a)||Mt(µ1,i∗)|(ct1.b = b, ct1.a = a)) ≤ ρ

From this point forward, we often use the notation Da(X||Y) when referring to D(X|(ct.a =
a)||Y|(ct.a = a)). We now use Lemma 2 to obtain the following inequality.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a)
≤ max

a
Da(Mt(µ0,i∗),MT (ct0.b)||Mt(µ1,i∗),MT (ct1.b)) +D(ct0.a||ct1.a)
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It is easy to show that ct0.ai are uniform random in R for each i ∈ [k] because we
re-randomized each entry by adding Enc(pki, 0) to ct0. This is also true for ct1.ai for each
i ≠ i∗. We can also say that ct1.ai∗ is uniform random in R because it is obtained as a
fresh encryption of 0. This implies that the KL divergence D(ct0.a||ct1.a) = 0. We can
now apply Lemma 2 and obtain the following inequality.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a)
≤ max

b,a
Db,a(Mt(µ0,i∗)||Mt(µ1,i∗)) + max

a
Da(MT (ct0.b)||MT (ct1.b))

We have already shown that ρ is an upper bound for each of these two terms, for every
a and b. This means that the upper bound can be rewritten as follows.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a) ≤ 2ρ

Then, we use Theorem 4 with Xθ defined as a query to the oracle Eval of G0 and Yθ as a
query to the oracle Eval′.

advA ≤ q

2 max
θ∈[q]

D(Xθ||Yθ) ≤ q

2(2ρ) = qρ.

We conclude the proof by studying the bit security of G1. In the first phase of the game
the adversary receives a rLWE encryption of m(b)

i∗ under ski∗ and then receives a fresh
encryption of zero under ski∗ for a polynomial number of times q. This implies that, if
MK-CKKS is (λ+ 8)-bit secure in the IND-CPA game, then G1 is also (λ+ 8)-bit secure.
Provided that qρ ≤ 2−(λ+8), we can finally relate the bit security of G0 with the bit security
of G1, using Lemma 3 and obtain that G0 is λ-bit secure in the IND-MKHE security game
with maximum q oracle queries.

Analysis of the post-processing noise. We give an analysis of the lost precision when
modifying the MK-CKKS scheme as in Theorem 10. We instantiate the differential privacy
mechanism from Definition 10 and ρ = 2−λ−8/q. Considering the output of the Combine
algorithm and that ct.t is expressed in the canonical infinity norm and not in the euclidean
norm, we obtain that a Gaussian noise of standard deviation 27/2

√
qn2λ(ct.t+ ktfresh) and

(k − 1) Gaussian noises of standard deviation 27/2
√
qn2λct.t are added to each coordinate.

The additional bits of precision lost are approximately λ/2 + log2
√
q + log2

√
n+ 7/2 +

log2 k + log2 tfresh.

Parameters for MK-CKKS. Table 2 gives parameters for instantiating MK-CKKS with
k parties and with a bound on the maximum number of queries of q. For the base CKKS
scheme, we consider parameters such as ring dimension and ciphertext modulus from
[ACC+18]. In particular, we set the ring dimension to be smaller or equal to 215 and the
standard deviation for fresh encryption σfresh to be 3.2.

5.4 Tightness of the Differential Privacy Parameters
By Theorem 10, it is possible to achieve λ bits of IND-MKHE-security by post-processing the
outputs from Eval and PDec with a differentially private algorithm. Concretely we choose
the Gaussian mechanism with Gaussian noise of variance σmax ← ct.t2

2ρ , where ρ ≤ 2−λ−8/q

is the privacy bound for ρ-KL differential privacy (Definition 9). We show that, using
an appreciably smaller variance σs ≪ σmax, leads to the existence of an adversary that
wins the IND-MKHE schemes with a non-negligible probability. In other words, we show
that the noise parameters are tight when using the Gaussian mechanism, and the added
Gaussian noise must be exponential in the security parameter.



Kamil Kluczniak, Giacomo Santato 25

Table 2: Bits of additional Gaussian noise added in the modified MK-CKKS of Theorem 10
to achieve 128-bits of IND-MKHE-security.

Number of Parties
k = 2 k = 22 k = 23 k = 25

Max Queries
q = 1 81.13 82.13 83.13 85.13
q = 25 83.64 84.64 85.64 87.64
q = 210 86.14 87.14 88.14 90.14

The adversary that we construct exploits the noise growth in the Eval algorithm. This
noise growth follows the rules of the following lemma.

Lemma 5 (Appendix C.3 of [CDKS19]). Let cti = MK-CKKS.Enc(pk,mi) for i ∈ {0, 1}
and their ciphertext error be, respectively, Error(sk, cti,mi) = ei. The ciphertext error of
the sum of both ciphertexts is equal to e0 + e1 and the ciphertext error of their product is
equal to m0e1 +m1e0 + e0e1 + emult + elin, where the term emult depends on the parameters
of the scheme and on the two ciphertexts.

Algorithm 5: Adversary A(λ).
Data: A security parameter λ. The adversary has oracle access to Evalσs .
begin

pp← Setup(λ, d);
[r′

i
$← U ] ;

[(ski, pki)← KeyGen(pp, r′
i)]i∈[2];

i∗ ← 1;
[ri

$← U ]i∈[2];
(m(0)

1 ,m
(0)
2 ), (m(1)

1 ,m
(1)
2 )← (0, B), (B,B) ;

C ← x1 · x2 −B · x1 ;
ct← Enc(pk1,m

(b)
1 , r1);

c̃t← Enc(pk2,m
(b)
2 , r2);

ẽ← Dec(sk2, ct2)−B ;
ctres, µ1, µ2 ← OEvalσs ({pki}i∈[2], C, ct, c̃t) ;
eres ← Combine(µ1, PDec(sk2, ctres), ctres) ;
Choose I ∈ {0, . . . , n− 1} such that |ẽI | is maximal ;
If |eres,I −BẽI | ≥ |eres,I | then return 0. Otherwise output 1 ;

Theorem 11. Let σs > 0. Let Evalσs and PDecσs be the modified MK-CKKS algorithms
we presented as Algorithm 3 and as Algorithm 4 but where the post-processing noise
are sampled from NZn(0, σ2

s ct.t2In). Let σ be the standard deviation of the underlying
rLWE error. Then there exists an adversary A (Algorithm 5)against MK-CKKSσs in the
IND-MKHE-security game such that advA = Ω

(
1

σ2
s σ2n3

)
.

Proof. The high-level idea is as in the proof of Theorem 7. The main difference between the
two proofs is that the adversary cannot compute the error after the homomorphic evaluation
of the circuit because it depends from the encrypted message of the non-corrupted party.
Nonetheless, using the ring structure of R and the circuit x1x2 −Bx2, we are still able to
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rewrite the error as a sample of a Gaussian distribution where mean and variance only
depend from the encrypted message and variables known by the challenger. Finally, we
compute the statistical distance between the two Gaussian distributions linked to the
two possible messages and use this distance to obtain a lower bound on the adversary’s
advantage.

The adversary knows the exact error ẽ := c̃t.e and obtains the resulting error eres after
post-processing. We denote as e← NZn(0, σ2In) the exact error of ct. Recalling the error
growth rule of MK-CKKS, we can estimate the two possible outputs for b ∈ {0, 1}. The
resulting error after computing x · y is equal to eẽ+mbẽ+Be+ emult. When subtracting
B · x in the evaluation, we also subtract Be from the error and we obtain that the error in
the output of the oracle ctres is eẽ+mbẽ+ emult + e

(1)
sm where the e(1)

sm is the post-processing
noise of Evalσs . When we compute the decryption of ctres using the Combine algorithm,
we obtain that the result is

eres = eẽ+mbẽ+ emult + e(1)
sm + e(2)

sm ,

where e(2)
sm is the post-processing noise of PDecσs . Referring to the i-th coefficient of e and

ẽ as ei and as ẽi, we can rewrite eres as follows.

eres =
n−1∑
i=0

 i∑
j=0

ẽjei−j −
n−1∑
j=i

ẽjen+i−j +mbẽi

xi + emult + e(1)
sm + e(2)

sm

:=
n−1∑
i=0

Eix
i + emult + e(1)

sm + e(2)
sm

The adversary analyzes the polynomial ẽ and chooses I as the component where the
absolute value |ẽI | is maximal. We now focus on the I-th coefficient of eres and, in
particular, on EI . The term EI is an affine combination of {ei}n−1

i=0 that are independently
sampled from NZ(0, σ2) with coefficients that are known to the adversary. This implies
that EI is a sample from the Gaussian NZ(mbẽI ,

∑n−1
i=0 ẽi

2σ2). To estimate the total
variation distance, we assume that emult and elin are significantly smaller than the other
terms (Lemma 5) and that, considering the scope of this paper and the asymptotical
nature of our results, we can omit them; this approximation allows us to express eres,I as a
sample from the following Gaussian distribution.

NZ(mbẽI ,

n−1∑
i=0

ẽi
2σ2 + 2σ2

s ct.t2).

Obtaining that |eres,I −BẽI | < |eres,I | is more likely when b = 1 while, if |eres,I −BẽI | ≥
|eres,I |, it is at least more likely that b = 0 rather than b = 1. To compute the advantage
of this adversary in distinguishing these distributions, we need to compute the total
variation distance between them. Computing this quantity for discrete Gaussian is not
easy; therefore, we will approximate it by considering their counterparts on the real
numbers. We define V :=

√
∥ẽ∥2

2σ
2 + 2σ2

s ct.t2 and use Lemma 3 to obtain the following
lower bound.

∆(N (0, V ),N (BẽI , V )) ≥ 1
50
B|ẽI |√
V

= Θ
(

B|ẽI |√
∥ẽ∥2

2 + 2σ2
s ct.t2

)

The advantage of the adversary in the IND-MKHE game is the square of the total
variation distance we just estimated which is Θ

(
B2|ẽI |2

∥ẽ∥2
2+2σ2

s ct.t2

)
.
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With high probability |ẽI | ≥ 1 and ∥ẽ∥can ≤ σn. This implies that ∥ẽ∥2
2 ≤ σ2n3 and also

that ct.t ≤ O(Bσn3/2) . Putting together all these bounds, we obtain that the advantage
of the adversary is Ω

(
B2

σ4n3+2σ2
s B2σ2n3

)
= Ω

(
1

σ2
s σ2n3

)
.

Theorem 12. If the scheme MK-CKKS with the modified evaluation Evalσs and the
modified partial decryption PDecσs is λ-bit IND-MKHE-secure, then σs = Ω(2λ/2/σn3/2),
i.e. one must add at least λ/2− Ω̃(σn3/2) bits of additional Gaussian noise to the standard
MK-CKKS operations in order to achieve IND-MKHE security.

Proof. By using the definition of bit security, we know that

λ ≤ log2 O(T (A)
advA

) ≤ log2 O(σ2
sσ

2n3).

This means that σs ≥ 2λ/2/(σn3/2) and λ/2− log2 Ω(σn3/2) ≤ log2 σs.

6 Conclusion and Open Problems
In this paper, we introduced formal models for the study of circuit privacy in the FHE
approximate setting. We included the first security analysis for approximate multikey ho-
momorphic encryption and approximate threshold homomorphic encryption that considers
the knowledge of partial decryptions.

We presented a modified version of the CKKS scheme (Theorem 5) that is able to
achieve λ-bit IND-CFA-security by post-processing the ciphertext with λ/2 + Õ(1) bits
of noise. Additionally, we modified the MK-CKKS scheme (Theorem 10) to achieve λ-bit
IND-MKHE-security. We did this by post-processing the ciphertext and the decryption
shares with λ/2 + Õ(1) bits of noise. We proved that these bounds are essentially tight by
providing adversaries for when only λ/2− Ω̃(1) bits of noise are added.

Our work investigates Circuit Privacy for HE schemes in the approximate setting
and sanitizes ciphertexts by applying KL differential privacy mechanisms. It would be
interesting to investigate possible relations between the recent funcCPA-security definition
[AGHV22] and the approximate setting. Another possible direction is to study the impacts
of the new security definitions we introduced on exact schemes, like [CCP+24] did with
IND-CPAD-security.
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A Improving parameters with Relaxed Bit Security
In [LMSS22], Li et al. introduced a relaxation of the bit security definition and showed
how relaxed IND-CPAD can be achieved in approximate HE schemes with less demanding
amounts of noise.

Informally, a primitive is (c, s)-bit secure if, for any adversary A, either A has less than
2−s statistical advantage, or the running time of the attack is at least 2c times greater
than the advantage achieved.

We recall the formal definition of Relaxed Bit Security.

Definition 25 (Relaxed Bit Security, Definition 19 of [LMSS22]). Let G be an indistin-
guishability game. Let advA be the advantage of an adversary A against G, as in Definition
12. We say that the indistinguishability game G is (c, s)-bit secure if, for any adversary A,
either

log2
T (A)
advA ≥ c or log2

1
advA ≥ s.

This definition expresses two different security parameters: a computational one (c)
and a statistical one (s). When choosing s < c, the notion of security becomes more
permissive than standard bit security (Definition 12); however, this relaxation and the
additional allowed statistical attacks can be accurately described and analyzed.

When using statistical techniques on a computational primitive, this finer grained
definition allows to tailor the desired achieved security depending on the application. In
our case, to achieve (c, s)-bits of IND-MKHE-security, the amount of added noise depends
on the statistical parameter s and not on the computational parameter c. This allows us
to decrease the cost of our post-processing phase in Algorithm 3 and 4, saving around
(c− s)/2 bits of Gaussian noise.

Theorem 13. Let MK-CKKS = (Setup, KeyGen, Enc, Eval, PDec, Combine) be the
MK-CKKS multikey homomorphic encryption scheme, with plaintext space R and estimate
function Estimate. Let q ∈ N. Let Mt be a ρ-KLDP mechanism on R. If MK-CKKS.Enc
is λ-bit secure in the IND-CPA game, then MK-CKKS with the modified MK-CKKS.Eval′

given by Algorithm 3 and with the modified MK-CKKS.PDec′ given by Algorithm 4 is
(λ− log2 24, log2(1/ρ)− log2 q − log2 24)-bit secure in the IND-MKHE game where q is the
maximum amount of oracle queries by the adversary.

Proof. The proof in ([LMSS22], Appendix F) can be easily adapted to this theorem just by
considering, as games G0 and G1, the games that we used in the proof of Theorem 10.

Parameters for MK-CKKS with relaxed bit security. We provide concrete parameters
for instantiating MK-CKKS with k parties and a statistical security parameter λs. For
the base CKKS scheme, we consider parameters such as ring dimension and ciphertext
modulus from [ACC+18]. In particular, we set the ring dimension to be smaller or equal
to 215 and the standard deviation for fresh encryption σfresh to be 3.2.

The choice of the appropriate statistical security parameter strongly depends from
the desired application and we refer to ([LMSS22], Subsections 4.4 and 4.5) for a more
in-depth discussion on parameters choice and on Definition 25.
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Table 3: Bits of additional Gaussian noise added in the modified MK-CKKS of Theorem 10
to achieve (128,λs)-bits of IND-MKHE-security, with a bound on the maximum number of
queries of 210.

HH
HHHλs

k 2 22 23 25

128 86.14 87.14 88.14 90.14

112 78.14 79.14 80.14 82.14

96 70.14 71.14 72.14 74.14

80 62.14 63.14 64.14 66.14
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