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Abstract. We present Boomy, a multivariate polynomial commitment scheme
enabling the proof of the evaluation of multiple points, i.e., batch opening. Boomy is
the natural extension of two popular protocols: the univariate polynomial commitment
scheme of Kate, Zaverucha and Goldberg [KZG10] and its multivariate counterpart
from Papamanthou, Shi and Tamassia [PST13]. Our construction is proven secure
under the selective security model. In this paper, we present Boomy’s complexity
and the applications on which it can have a significant impact. In fact, Boomy is
perfectly suited to tackling blockchain problems by greatly improving data availability
sampling and shrinking existing challenges. We also present special lower-complexity
cases that occur frequently in practical situations.

1 Introduction
Polynomial commitment schemes, whether univariate or multivariate, are a key component
in modern cryptography. They allow a prover to convince a verifier (with overwhelming
probability) that a polynomial of bounded degree evaluates at a given value or a given
point, and this without revealing the polynomial itself. To do that, the prover engages
their polynomial through a commitment. They can later generate a proof of one or several
evaluations of the same polynomial. Given the proof and the commitment, the verifier is
then able to enforce the correct evaluation of the committed polynomial.

Polynomial commitment schemes must satisfy several key properties to ensure their
security and usability:

1. Correctness: A commitment scheme is correct if, for any polynomial committed
by an honest prover, the verification algorithm accepts the proof generated by the
honest prover with overwhelming probability.

2. Polynomial Binding: The binding property ensures that a prover cannot change
the committed polynomial after the commitment phase. This means that once a
commitment is made, the prover is bound to the polynomial and cannot produce a
valid proof for a different polynomial using the same commitment.

3. Evaluation Binding: This property ensures that the prover cannot produce a valid
proof for an incorrect evaluation of the polynomial. In other words, the prover is
bound to the correct evaluations of the committed polynomial.

4. Computational Hiding: The hiding property ensures that the commitment does not
reveal any information about the polynomial itself. This is crucial for maintaining
the privacy of the polynomial while still allowing for verification of its evaluations.
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Univariate polynomial commitment protocols are used rather regularly for their simplic-
ity and performance. They are relatively easy to set up and often offer better computation
and communication complexities than their multivariate counterparts. However, univariate
polynomial commitment schemes are flexibility-limited: they cannot efficiently repre-
sent certain complex data types or mathematical relationships. Multivariate polynomial
commitments are the answer to this shortcoming of univariate protocols.

Polynomial commitment schemes are beneficial to many applications such as building
zero-knowledge protocols [Dam98], secret sharing [KZG10] or confidential cryptographic
transactions [HBHW16].

One notable application of polynomial commitment schemes is in the construction of
SNARKs (Succinct Non-Interactive Arguments of Knowledge). SNARKs allow a prover
to demonstrate the validity of a statement without revealing any information beyond the
truth of the statement. They are characterized by several key properties forming their
name:

• Succinct: Communications are tiny compared to the length of the computation.
The verifier complexity is in O(log n), with n being the witness’ size.

• Non-Interactive: There are little to no interactions (no rounds of interactions)
between the prover and the verifier, often just a setup phase and a small message
from the prover to the verifier.

• Argument: An argument is a type of proof where the verifier is only protected
against a computationally limited prover. This means that with unlimited resources
it is possible to forge a false argument. However, this is statistically impossible for
a PPT adversary. This is called computational soundness, as opposed to perfect
soundness. Perfect soundness, which is reserved for proofs, means that the protocol is
resistant to any kind of adversary and it is impossible to forge invalid proofs. In other
words, the security of an argument system relies on computational assumptions. That
means, given sufficient computational resources, a malicious prover could potentially
convince the verifier of a false statement. As opposed, a proof is a stronger notion
where the verifier is convinced of the validity of a statement with absolute certainty,
without relying on computational assumptions. In this document, we will often
use the term proof instead of argument even if it is not resistant to every kind of
opponent.

• of Knowledge: A prover cannot construct a proof or an argument without knowing
the witness. Formally, for any prover who can produce a valid argument, there exists
an extractor able to extract a witness from the statement. Informally, the prover
cannot create a proof or argument of a statement, even if it is true, without knowing
the underlying reason. This property is also called knowledge-soundness.

Our contribution, the Boomy protocol, extends the capabilities of polynomial commit-
ment schemes to multivariate polynomials and batch openings. This advancement can
lead to improvement in specific cases for applications like verifiable computation and data
availability sampling, where efficient and secure verification of complex computations is
essential.

1.1 Related Works and Contribution
The first polynomial commitment scheme proposed in 2010 [KZG10], allowed a prover
to convince a verifier of the evaluation of a committed univariate polynomial at one or
more points. Later, [PST13] built on this work, introducing multivariate polynomials but
for single point openings, forging fresh avenues for new verifiable computation schemes.
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Figure 1: Boomy’s positioning relative to other works.

Boomy is the natural continuation of these schemes, generalizing multivariate polynomial
commitments to a batch of evaluation points as presented below in Figure 1.

Since 2013, other works have suggested multivariate polynomial commitments in
different security models and with different cryptographic assumptions. We followed the
same approach as in [KZG10] and based Boomy on pairing-friendly groups. Other works have
proposed schemes in the random oracle model [Lee21] or based on the discrete logarithm
problem [BBB+18]. This enables protocols of multivariate polynomial commitments that
either support proof using a transparent setup like [Lee21] and [BBB+18] or do not require
any setup [XZS22]. This last article is potentially post-quantum since it is only based on
hash functions. All of these improvements are made to the detriment of the proof size
and/or the opening and verification complexities. Even though it is not post-quantum,
Boomy has either better complexity or better compatibility: for instance, the work of
[Lee21] is a very good candidate for SNARKs for its efficiency but is limited to multilinear
polynomials (of degree at most one in each variable).

Multivariate polynomial commitments have proven to be of genuine interest to the
field of verifiable computation. Using the results of [PST13], the authors of [CHM+20]
introduced one of the first universal Succinct Non-interactive Arguments of Knowledge
(universal SNARK or SNORK) based on multivariate polynomial commitments in parallel
with [GWC19] which uses univariate polynomials. Recently, [CBBZ23] proposed a new
version of [XZS22] based on pairing-friendly fields that can only commit multi-linear
polynomials but accelerates the work presented in [GWC19].

In this paper we propose a multivariate polynomial commitment supporting batch
opening, which is defined in [KZG10] as the opening of several evaluation points at once.
We based our technique on [PST13] by extending and generalizing their scheme using the
Gröbner bases theory. This new approach also allows the description and interpretation of
their scheme from new perspectives. We study the complexity of this scheme, which we
have called Boomy, both in the general case and in the special case where points are all
distinct in at least one dimension. Both complexities are summarized in Table 1 below.
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Table 1: Complexity of the Boomy protocol for k openings of a multivariate polynomial
in F[X1, . . . , Xn] of degree bounded by di in each variable Xi. d denotes the maximum
number of terms in the polynomial: d :=

∏n
i=1 di. Lines commit, opening and verification

present the complexity of their computations, with G+
i and G×

i respectively denoting
addition and scalar multiplication in Gi, F× denoting multiplications in F, P denoting
the pairing operation, |B| the size of the Gröbner basis, ||P || and ||R|| being respectively
the product of the maximum coefficients in each variable of the polynomial and of the
remainder of the division. These notations are detailed in Section 2.

general case special case

pk size dG1 dG1

vk size (kn)G1, (kn)G2 kG1, (k + n)G2

proof size |B|G1 nG1

commit size 1G1 1G1

commit (d− 1)G+
1 , dG×

1 (d− 1)G+
1 , dG×

1

opening
O(|B|d log d log||P ||+nk3)F×, O(nk log k+

O(|B|·d)G+
1 , nd log d log||P ||)F×,

O(|B|·d)G×
1 O(nd)G+

1 , O(nd)G×
1

verification

O(|B|d log d log||R||+nk3)F×, O(nk log k)F×,

O(kn)G+
1 , O(kn)G×

1 , kG+
1 , (k + 1)G×

1 ,

O(|B|·kn)G+
2 , O(nk)G+

2 ,

O(|B|·kn)G×
2 , (|B|+1)P O(nk)G×

2 , (n + 1)P

We note that the complexity of Boomy is better than the complexity consisting of doing
k openings with the protocol in [PST13] and aggregating them using a uniformly random
linear combination as in [BDFG20]. To our knowledge, Boomy is the first proposal of a
protocol allowing the batch opening of a multivariate polynomial based on pairing-friendly
groups, paving the way for new applications in the field of verifiable computation.

While the Boomy protocol extends the capabilities of polynomial commitment schemes
to multivariate polynomials and batch openings, it also has several limitations:

• Complexity: The complexity of the Boomy protocol, especially in the general case, can
be significantly higher than that of univariate schemes. This is due to the increased
complexity of handling multivariate polynomials and the need to compute Gröbner
bases.

• Post-Quantum Security: Boomy is not post-quantum secure. Advancements in
quantum computing could potentially compromise the security of the protocol.

• Trusted Setup: The protocol requires a trusted setup phase, where certain parameters
are generated and distributed. This setup phase can be a point of failure or a target
for attacks. However, the trusted setup can be built using a multi-party computation
protocol with the ceremony of the powers of tau, enhancing its security.

We first introduce preliminaries in Section 2 and present the intuition, the construction,
the proof of security and the complexity of Boomy in Section 3. We then analyze special
cases in Section 4. In Section 5, we explore the potential impact Boomy can have on
different applications like verifiable computation or proof of data availability.
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2 Preliminaries
2.1 Notations
Throughout this paper, λ will denote the security parameter, F a finite field of super-
polynomial size λω(1) and (G1,G2,GT ) groups of the same size λω(1) that allow the
construction of a non-degenerate pairing function e : G1 × G2 → GT computable in
polynomial time over λ. G1,G2 and GT will be written additively.

It will be implicitly assumed that before all else, an algorithm is executed to output
(F,G1,G2,GT , e, G1, G2, GT ) given λ as input, such that G1 and G2 are uniformly randomly
chosen generators of G1 and G2 respectively, with e(G1, G2) = GT a generator of GT .

These generated parameters are also implicitly given as inputs for every algorithm. All
adversaries will be supposed probabilistic polynomial time (PPT) algorithms. negl(λ) will
denote the set of all negligible functions over λ, i.e., all functions lower than 1/p(λ) for all
polynomials p evaluated in λ.

Finally, we will abbreviate vectors with bold letters (e.g., X := [X1, . . . , Xn]), the
cardinality of a set using the absolute value symbols, elements of the group Gi : i ∈ {1, 2, T}
by using [α]i = α·Gi and will often write the non-zero integer-set up to n as [n] := {1, . . . , n}.
We will also use bold notation for ideals I and algebraic affine varieties V.

Table 2: Notations used in the paper

Notation Description
λ Security parameter
F Finite field of super-polynomial size λω(1)

(G1,G2,GT ) Groups of the same size λω(1) that allow the construction
of a non-degenerate pairing function e

e : G1 ×G2 → GT Pairing function computable in polynomial time over λ
G1, G2, GT Generators of G1, G2, and GT respectively

[α]i Element α ·Gi in group Gi

X Vector of variables [X1, . . . , Xn]
|·| Cardinality of a set
I Ideal in a polynomial ring

V(f1, . . . , fs) Affine variety defined by polynomials f1, . . . , fs

I(V) Ideal of polynomials that vanish on the variety V
LT (f) Leading term of the polynomial f

B Gröbner basis of an ideal
cm Commitment of a polynomial
π Proof of the evaluation of a polynomial
vk Verifier key
pk Prover key

2.2 Algebraic Geometry
In this Section, we present a few properties of algebraic geometry that will be useful
throughout the rest of this article. We refer the reader to [CLOS94] for a more detailed
introduction and more details or proofs on monomial ordering, Gröbner bases and algebraic
affine varieties.

Definition 1. For any field F and a set of polynomials f1, . . . , fs ∈ F[X], V(f1, . . . , fs) =
{a ∈ Fn|fi(a) = 0 for all 1 ≤ i ≤ s} is an affine variety. It can either be defined from the
polynomials f1, . . . , fs (or the ideal that they generate) or directly from the zeros.
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Definition 2. The ideal I(V) of an affine variety V is the Ideal of F[X] that includes all
polynomials that vanish on V.

Note that if F is not an algebraically closed field, for V = V(f1, . . . , fs), it is possible
that ⟨f1, . . . , fs⟩ ⊊ I(V).

Definition 3. From [FG06], for f1, . . . , fm ∈ F[X1, . . . , Xn] in a vanishing polynomial
ideal I(V) = {a1, . . . , ak}, f1, . . . , fm is a Gröbner basis of I if and only if∣∣∣∣∣

{
Xα :=

n∏
i=1

Xαi
i : αi ∈ N and LT (fj) ∤ Xα, 1 ≤ j ≤ m

}∣∣∣∣∣ = k

Where LT denotes the leading term of the polynomial, i.e., the term with the highest power
of the highest monomial (according to the chosen monomial ordering) of this polynomial.

Definition 4. Given a monomial ordering <, and a Gröbner basis B = {f1, . . . , fs} of an
ideal I ⊆ F[X1, . . . , Xn], for any P ∈ F[X] there is a unique R ∈ F[X] such that:

• no term of R is divisible by any leading term of fi, 1 ≤ i ≤ m

• ∃G ∈ I such that P = G + R

Following this definition, R is the unique remainder that is the result of the division of
P by B independently of the order of the polynomials in the division.

Definition 5. A Gröbner basis B is reduced if and only if, for all elements P of B,
their leading coefficient is 1 and they are irreducible by the other elements, i.e., all their
monomials are not in the ideal ⟨LT (B\{P})⟩. Any non-empty polynomial ideal has a
unique reduced Gröbner basis.

2.3 Cryptographic Assumptions
Boomy’s security, like [PST13], relies on the discrete logarithm (DL), the l-Diffie-Hellman
(l-DL) and the l-Strong Bilinear Diffie-Hellman (l-SBDH) [GMC07] assumptions.

Definition 6. DL Assumption. For any τ
$← F∗. Given the tuple ([1]1, [τ ]1) ∈ G2

1 and
for every PPT adversary A, Pr[A([1]1, [τ ]1) = τ)] = negl(λ).

Definition 7. l-DL Assumption. For any τ
$← F∗. Given the tuple

([1]1, [τ ]1, . . . , [τ l]1) ∈ Gl+1
1 and for every PPT adversary A,

Pr
[
A([1]1, [τ ]1, . . . , [τ l]1) = τ

]
= negl(λ).

Definition 8. l-SBDH Assumption. For any τ
$← F∗. Given the tuple

([1]1, [τ ]1, . . . , [τ l]1) ∈ Gl+1
1 and for every PPT adversary A,

Pr
[
A([1]1, [τ ]1, . . . , [τ l]1) =

(
c,

[
1

τ+c

]
T

)]
= negl(λ) for any c ∈ F\{−τ}.

2.4 Multivariate Polynomial Commitment for Multiple Points
We define a multivariate polynomial commitment for multiple points (MPC_MP) as a
scheme which follows our extension of the definition given by [KZG10]. More precisely, we
expand their definition to several variables and on a batch of evaluation points.

Definition 9. A MPC_MP consists of four algorithms: Setup, Commit, Open and Verify
such that:
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• Setup(d, k): generates a verifier key vk and a prover key pk. The prover key can
be used to commit, or to open on a set containing at most k evaluation points, a
multivariate polynomial of degree at most di in variable Xi. The verifier key is used
in the verification of an opening generated with pk.

• Commit(P, pk): deterministically generates a polynomial commitment cm of the
polynomial P using the prover key pk.

• Open(P, k, (ai)i∈[k], pk): generates the proof π of the evaluation of P ∈ F[X1, . . . , Xn]
at the k points (ai)i∈[k] using pk (with ai = [ai,1, . . . , ai,n]).

• Verify(k, (ai)i∈[k], z, π, cm, vk): verifies that indeed ∀i ∈ [k], zi = P (ai), i.e., z are
the correct evaluations of the polynomial P at (ai), P being represented indirectly
by its commitment cm. It outputs accept if it holds and reject otherwise.

Definition 10. A MPC_MP scheme is considered secure if these four properties (correct-
ness, polynomial binding, evaluation binding and hiding) hold:

• Correctness: For all P ∈ F[X] of degree at most di in variable Xi, and for all
(ai)i∈[k] ∈ (Fn)k:

Pr

 (pk, vk)← Setup(d, k)
cm← Commit(P, pk)

π ← Open(P, k, (ai), pk)
: Verify(k, (ai), (P (ai)), π, cm, vk) = Accept

 = 1

• Polynomial Binding: For all PPT adversary A:

Pr


(pk, vk)← Setup(d, k), (cm, P (X), P ′(X))← A(pk) :

Commit(P (X), pk) = cm ∧
Commit(P ′(X), pk) = cm ∧

P (X) ̸= P ′(X)

 = negl(λ)

• Evaluation Binding: For all PPT adversary A, it is selectively secure if:

Pr


(ai)← A(), (pk, vk)← Setup(d, k), (cm, z, π, z′, π′)← A(pk) :

Verify(k, (ai), z, π, cm, vk) = Accept ∧
Verify(k, (ai), z′, π′, cm, vk) = Accept ∧

∃i ∈ [k] : zi ̸= z′
i

 = negl(λ)

else it is adaptively secure if:

Pr


(pk, vk)← Setup(d, k), (cm, (ai), z, π, z′, π′)← A(pk) :

Verify(k, (ai), z, π, cm, vk) = Accept ∧
Verify(k, (ai), z′, π′, cm, vk) = Accept ∧

∃i ∈ [k] : zi ̸= z′
i

 = negl(λ)

• Computational Hiding: For all polynomial P ∈ F[X], given at most d := (
∏

i di)−
1 proven evaluation points distributed over one or more batches, a PPT adversary A
cannot determine the value of a new evaluation point with probability more than
negl(λ).
In other words, if (pk, vk)← Setup(d, k), cm← Commit(P, pk) and given k points
(ai)i∈[k] such that k < d, even if a PPT adversary A has access to several batch
openings proving those k evaluations, accepted by Verify, they cannot determine
P (α) with probability more than negl(λ) for all α that are not in the given set of
evaluation points.
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3 The Boomy protocol
3.1 Intuition
In [PST13], a prover wants to prove that a chosen polynomial P ∈ F[X1, . . . , Xn] evaluates
to z at point a = (a1, . . . , an). To do that, the authors based their protocol on the fact
that the polynomial P can be divided by several quotients that nullify at this point a.
They proved that

∀i ∈ [n],∃Qi ∈ F[X],∃r ∈ F : P (X) =
n∑

i=1
Qi(X) · (Xi − ai) + r (1)

This can be explained by observing that the polynomial reduction of a polynomial
P ∈ F[X1, . . . , Xn] by the polynomial (X1 − a1) leads to a remainder polynomial in
F[X2, . . . , Xn] and thus, that the successive reduction by all the polynomials (Xi − ai), for
i ∈ [n], leads to a constant remainder r which is equal to P (a).

In the univariate case, to define batch openings of points a = (a1, . . . , ak), [KZG10]
divides the polynomial P by

∏k
i=1(X − ai) and shows that the remainder polynomial (of

degree lower than k) is the Lagrange polynomial interpolation of the points ((a1, P (a1)), . . . ,
(ak, P (ak))). This polynomial can thus be rebuilt by the verifier from the given evaluation
points.

To extend this scheme to the multivariate case, it is thus necessary to define some
divisor polynomials built from the points (a1, . . . , ak) (with ai = [ai,1, . . . , ai,n]) that lead
to a remainder polynomial that can be rebuilt by the verifier from the points and their
evaluations.

To have a unique remainder, the natural extension of univariate polynomial division to
the multivariate case is defined by the Gröbner bases theory [CLOS94]. The polynomials
of the Gröbner basis then play the role of the divisor, the reduction operation corresponds
to the polynomial pseudo-division and the corresponding affine algebraic variety is equal
to the set composed of the common roots of the basis.

From the Gröbner basis theory, the underlying reason explaining why the construction
of [PST13] works is that the polynomials fi(X) := Xi−ai define an affine algebraic variety
which is exactly {a}. Moreover, they also form the reduced Gröbner basis of the Ideal
generated by (fi), since each of them is of degree 1 in a different variable and their leading
coefficient is 1. The remainder of the reduction of P by (fi) is then a constant polynomial
always equal to P (a).

To generalize their protocol over a batch of points (ai)i∈[k], we reused the reason cited
above to construct a set of polynomials that defines an affine algebraic variety that equals
{ai : i ∈ [k]}. To make the remainder unique, we computed the reduced Gröbner basis B
of the ideal of the affine variety generated by this set of polynomials. This generalizes Eq.
1 as

P (X) =
n∑

i=1
Qi(X) ·Bi(X) + R(X)

The verifier has to recover R(X) from the evaluations points, which is not trivial with
more than one point. To do that, we propose computing one possible interpolation of
the batch of points. Since the reduction of P or of any other interpolation of the points
(ai, P (ai))i∈[k] in F[X]

/
⟨B⟩ is equal to R, the verifier only has to reduce their interpolated

polynomial by the ideal ⟨B⟩ to recover R.

3.2 Main Protocol
For a multivariate polynomial P (X) ∈ F[X1, . . . , Xn] of degree at most di in variable Xi,
a prover wants to convince a verifier, except with probability less than negl(λ), that for a
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chosen set of k points (ai) ∈ (Fn)k,

P (ai) = zi for i ∈ [k]

Below, we present the Boomy protocol composed of these four algorithms:

• Setup(d, k): uniformly randomly choose τ
$← Fn. Output pk := {[

∏n
i=1 ταi

i ]1 : αi ∈
[di]} and vk := {[

∏n
i=1 ταi

i ]1 : αi ∈ [k]} ∪ {[
∏n

i=1 ταi
i ]2 : αi ∈ [k]}.

• Commit(P, pk): return cm := [P (τ )]1.

• Open(P, k, (ai)i∈[k], pk):

1. Compute the reduced Gröbner basis B of the ideal of the affine algebraic variety
composed of (ai)i∈[k].

2. Reduce the polynomial P with each Bi to recover the “quotients” Qi and the
“remainder” R such that

P (X) =
|B|∑
i=1

(Bi(X) ·Qi(X)) + R(X)

3. Compute and return the proof π := ([Qi(τ )]1)i∈[|B|] composed of each “quotient”
evaluated in τ .

• Verify(k, (ai)i∈[k], z, π, cm, vk):

1. Compute the reduced Gröbner basis B of the ideal of the affine algebraic variety
composed of (ai)i∈[k].

2. Compute by interpolation a polynomial R′(X) such that R′(ai) = zi for any
i ∈ [k]. Recover R(X) by reducing R′(X) with B. Evaluate R and each Bi in
τ to obtain [R(τ )]1 and [Bi(τ )]2.

3. Accept if:

e(cm− [R(τ )]1 , [1]2) =
|B|∑
i=1

e(πi, [Bi(τ )]2)

otherwise reject.

Theorem 1. The Boomy protocol is a selectively secure multivariate polynomial commitment
scheme (as defined in Section 2.4) under the assumptions presented in Section 2.3.

A proof of Theorem 1 is provided in the next Section 3.3.
Note that since the reduced Gröbner basis is unique for a given ideal, its computation

can be avoided by the verifier if provided by the prover or another entity. Then, the verifier
still needs to verify that the proposed basis B actually has all of its elements Bi in the
ideal of the affine variety (ensuring that Bi(aj) = 0 for all i ∈ [|B|] and for all j ∈ [k]) and
that it is a reduced Gröbner basis using Definitions 3 and 5 of Section 2.2.

3.3 Security Analysis
In this section, we prove that Boomy’s construction is secure under the selective security
model and explain why its security can also be proven in the algebraic group model
of [FKL18]. To prove the polynomial binding, the evaluation binding and the hiding
properties, we will build a reduction S that can break a given l-SBDH, l-Dl or DL problem
in PPT with probability more than negl(λ) if it has access to an adversary A that can
break one of these properties in PPT with probability more than negl(λ).
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3.3.1 Correctness:

The correctness directly follows from the reduction of P by the reduced Gröbner basis B
giving quotients Qi and remainder R.

Accept← Verify() ⇐⇒ e(cm− [R(τ )]1, [1]2) =
|B|∑
i=1

e(πi, [Bi(τ )]2)

⇐⇒ e([P (τ )]1 − [R(τ )]1, [1]2) =
|B|∑
i=1

e([Qi(τ )]1, [Bi(τ )]2)

⇐⇒ [P (τ )−R(τ )]T =
|B|∑
i=1

[Bi(τ ) ·Qi(τ )]T

⇐⇒ P (τ ) ≡

 |B|∑
i=1

Bi(τ ) ·Qi(τ )

 + R(τ ) mod ord(GT )

3.3.2 Polynomial Binding:

The reduction S first crafts the trusted setup of Boomy using the elements ([1]1, [t]1, . . . , [tl]1)
of the l-SDH problem. It can do this by uniformly randomly picking ri and si in F and
fixing τi := ri · t+si for all i ∈ {1, . . . , n}. Since each τi is a polynomial in t, S can craft vk
and pk without knowing t. This construction is indistinguishable from uniformly randomly
picking τi as the distribution of ri · t + si follows a uniform distribution. Indeed, when
ri = 0, τi is equal to si which was uniformly randomly picked. When ri ̸= 0, then ri ∗ t is
also uniform because the multiplication by a fixed non-zero element in a finite field (here t)
is a bijection. Adding si uniformly drawn does not change the distribution. Suppose that
a PPT adversary A can craft P (X) and Q(X) such that P ̸= Q and [P (τ )]1 = [Q(τ )]1,
then we have:

[P (τ )]1 − [Q(τ )]1 = [P (τ )−Q(τ )]1 = [(P −Q)(τ )]1 = [0]1

It follows that τ is a non-trivial root of the polynomial P −Q. The simulator recovers
the polynomials P and Q from A and computes P −Q which is a non-zero polynomial in
F[X1, . . . , Xn]. S crafts the polynomial Z(X) := (P −Q)(X) by replacing each variable Xi

with ri ·X +si. According to Lemma 2.1 of [BFL20], since P −Q is a non-zero multivariate
polynomial in F[X] of a total degree d and that Z(X) ∈ (F [r1, . . . , rn, s1, . . . , sn])[X] is
define as Z(X) = P (r1X + s1, . . . , rnX + sn), then the coefficient of maximal degree of
Z is a polynomial in F [r1, . . . , rn] of degree d. Then Z is not the zero polynomial with
overwhelming probability. Then, we have Z(t) = (P −Q)(τ ) = 0. S can recover t in PPT
with a probability equal to that of A minus a negligible quantity in lambda by factorizing
Z [VZGG13], breaking the l-DL assumption.

3.3.3 Evaluation Binding:

The reduction S first asks the adversary A to commit on the challenge point (ai)i∈[k]
at which it will forge a valid batch opening containing at least one incorrect evaluation.
Suppose that the incorrect evaluation happens at least at aη with the false value z′

η

for the rest of the proof. S then crafts the trusted setup of Boomy using the elements
([1]1, [t]1, . . . , [tl]1) of the l-SBDH problem. It can do this by uniformly randomly picking
ri and si in F that verify aη,i = ri · aη,1 + si and fixing τi := ri · t + si for i ∈ [n]\{η} and
τη = t. Since each τi is a polynomial in t, S can craft vk and pk without knowing t. Once
again, this trusted setup is indistinguishable from one generated with Setup because each τi
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is uniformly randomly picked for the same reasons as above and because we supposed that
t comes from the l-SBDH problem setup. S then calls A to recover cm, π, π′, z, z′, (ai)i∈[k]
in PPT with probability more than negl(λ) such that both Verify(k, (ai)i∈[k], z, π, cm)
and Verify(k, (ai)i∈[k], z′, π′, cm) output Accept and z ̸= z′. We will use B to denote the
elements of the Gröbner basis used during the Boomy protocol, R(X) and R′(X) to denote
the remainders of the reduction of the interpolated polynomial of (ai, zi) and (ai, z′

i) by B.
Since the verification holds, we have

e(cm− [R(τ )]1, [1]2) =
|B|∑
i=1

e(πi, [Bi(τ )]2)

e(cm− [R′(τ )]1, [1]2) =
|B|∑
i=1

e(π′
i, [Bi(τ )]2)

S defines δ(X) := R′(X)−R(X) ̸= 0 (because R′(aη)−R(aη) = z′
η − zη ̸= 0). It follows

that

e(cm− [R(τ )]1, [1]2)− e(cm− [R′(τ )]1, [1]2) =
|B|∑
i=1

(e(πi, [Bi(τ )]2)− e(π′
i, [Bi(τ )]2))

⇐⇒ e([R′(τ )]1 − [R(τ )]1, [1]2) =
|B|∑
i=1

e(πi − π′
i, [Bi(τ )]2)

⇐⇒ e([δ(τ )]1, [1]2) =
|B|∑
i=1

e(πi − π′
i, [Bi(τ )]2)

(2)

But since Bi ∈ I(V({ai, i ∈ [k]})) ⊆ I(V({aη})), ∀i ∈ [|B|],∀j ∈ [n],∃Qi,j(X) ∈
F[X1, . . . , Xn] such that Bi(X) :=

∑n
j=1(Xj−aη,j) ·Qi,j(X), S can do the same with δ(X)

but δ /∈ I(V({aη})) so that δ will have a remainder different from the zero polynomial.
Since the quotients are all degree 1 in each variable, the remainder will be in F. So,
∀j ∈ [n],∃Dj(X) ∈ F[X] such that δ(X) :=

∑n
j=1(Xj − aη,j) ·Dj(X) + d. With d ∈ F\{0}.

Eq. 2 can be rewritten, replacing π and π′ by [p]1 and [p′]1 respectively, as n∑
j=1

(τj − aη,j) ·Dj(τ ) + d


T

=

 |B|∑
i=1

(pi − p′
i) ·

n∑
j=1

(τj − aη,j) ·Qi,j(τ )


T

⇐⇒ [d]T =

 n∑
j=1

(τj − aη,j) ·

−Dj(τ ) +
|B|∑
i=1

(pi − p′
i) ·Qi,j(τ )


T

⇐⇒ [d]T =

(t− aη,1) ·
n∑

j=1
rj

−Dj(τ ) +
|B|∑
i=1

(pi − p′
i) ·Qi,j(τ )


T

⇐⇒
[

1
t− aη,1

]
T

=

d−1 ·
n∑

j=1
rj ·

−Dj(τ ) +
|B|∑
i=1

(pi − p′
i) ·Qi,j(τ )


T

⇐⇒
[

1
t− aη,1

]
T

= d−1 ·
n∑

j=1
rj ·

e([−Dj(τ )]1, [1]2) +
|B|∑
i=1

e(πi − π′
i, [Qi,j(τ )]2)



(3)

Therefor, S can break the l-SBDH problem returning
(
−aη,1,

[
1

t−aη,1

]
T

)
in PPT using

Eq. 3 with the same probability as A.
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Note that contrary to Section 3.3.2, the adversary A can derive information from the
fact that aη,i is derived using the same value ri and si than τi. Moreover, the embedding
degree of t and aη,1 is known to the adversary which could potentially reveal information.
However, even if the adversary’s solution has been influenced, as long as they provide
the correct information cm, π, π′, z, z′, (ai)i∈[k] that meet the required conditions, the
simulator S can still break the t-SBDH problem.

3.3.4 Computational Hiding:

The reduction S can solve the discrete logarithm (DL) problem ([1]1, [α]1) by interacting
with an adversary A capable of breaking the computational hiding property. To achieve this,
S first generates the trusted setup of the Boomy protocol by selecting τ

$← Fn uniformly
at random to obtain the verification key vk and the proving key pk. Next, S chooses k
evaluations (ai, zi)i ∈ [k] of a polynomial P such that for all j > 1, ai, j = 0, focusing on
the first variable X1. The key assumption is that P (0) = α, where α is the solution to
the DL problem. P is then a polynomial of degree at most k. Note that the polynomial
P cannot be computed directly by the simulator S without knowledge of α but using
Lagrange interpolation over the X1 variable, S can construct the commitment of P from
[zi]i∈[k] and [α]1. At this point, S uses the fact that P (X) is only involving X1 to compute
one proof for each ai individually (so each batch contains one element). In this case, the
Gröbner basis of proof associated to the point ai is exactly the polynomials Xj − ai,j .
Since P is only involving X1 and that j > 1, ai, j = 0, the simulator can compute easily the
proof for each point. The simulator then generates P ′(X) as the Lagrange interpolation
over the X1 variable. This polynomial is computable and verifies P (X) = P ′(X)(X1 − α).
For each point ai, the proof is then[

P (τ )− P (ai)
τ1 − ai,1

]
1

=
[

P (τ1)− P (ai,1)
τ1 − ai,0

]
1

=
[

P (τ1)
τ1 − ai,0

]
1
−

[
P (ai,1)
τ1 − ai,0

]
1

= [P ′(τ1)]1 − [P ′(ai,1)]1 = [P ′(τ1)]1 − [zi]1

S provides the necessary proofs and the commitment of P to the adversary A. With non-
negligible probability, A outputs the polynomial P in polynomial time. Finally, S recovers
α by evaluating P at 0, thus solving the DL problem with non-negligible probability in
polynomial time." This version makes the construction of the polynomial P clearer by
breaking down the steps of Lagrange interpolation and the role of the KZG commitment
more explicitly.

3.3.5 Note on the Algebraic Group Model

Note that these proofs can be done in the Algebraic Group Model (AGM) presented in
[FKL18] through the proof of the knowledge soundness property and the “real pairing
check" described in [GWC19]. Instead, the adversary A in this model for our protocol is
an algebraic adversary if it’s a PPT algorithm under Boomy’s trusted setup (pk, vk) and if
for i ∈ 1, 2, whenever A outputs an element of e ∈ Gi, it also outputs a vector v such that
e =< v, pki >. The correctness, the polynomial binding and the hiding properties have the
same proof in this model under the same assumptions. The evaluation binding holds if the
knowledge soundness also holds. Indeed, since Verify outputted Accept for the evaluation
of a polynomial P at (ai) to false values z′ represented by the polynomial R′(X) (the
remainder of the reduction), the adversary in the AGM can produce polynomials Qi(X)
such that

e([P (τ )]1 − [R′(τ )]1, [1]2) =
|B|∑
i=1

e([Qi(τ )]1, [Bi(τ )]2)
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Then the probability of success of this "real pairing" verification is bounded by the
probability of success of the ideal check: P (X)−R′(X) ≡

∑|B|
i=1 Qi(X) ·Bi(X). But since

z′ is not the real value of P on (ai), we have P (ai)− z′
i ̸= 0 for at least one i ∈ [k]. This

means that P (X)− R′(X) /∈ ⟨B⟩ (the ideal of the affine algebraic variety of the points)
which implies that ̸∃ Qi ∈ F[X], such that P (X)−R′(X) =

∑|B|
i=1 Qi(X) ·Bi(X), which

contradicts the ideal check. This proves that the knowledge soundness holds and then that
the Boomy protocol is secure in the AGM.

3.4 Complexity Analysis
In this section, we analyze the complexity of Boomy. In the case where n = 1, it is clear
that our scheme is equivalent to [KZG10] and in the case where n ≥ 1 and k = 1, it
is equivalent to [PST13]. In those cases, we then have the same complexity as in the
equivalent scheme.

In the following, we show the complexity evaluations of Boomy for a polynomial P of
bounded degree di in each variable Xi. d :=

∏
i∈[n] di is the maximum number of terms in

P . k denotes the maximum number of points supported during the Open algorithm.
The prover key pk is composed of elements enabling the commitment and proof of

polynomials of maximum degrees di in variable Xi. Hence, its size is d elements of G1.
The verifier key, however, enables the verification of proofs produced with pk. It results
that vk has to support the computation of the evaluation of the Gröbner basis and of the
polynomial that is interpolating the remainder. Since all those polynomials are at most of
degree k in each variable in accordance with Definition 3 of Section 2.2, vk is composed
of kn elements of G1 for the evaluation of the remainder and kn elements of G2 for the
evaluation of the polynomials of the Gröbner basis.

The proof is composed of the evaluations of the Gröbner basis B and is thus of size
|B| elements of G1 while the commitment is the evaluation of P which is only one element
of G1.

The computation complexity of the commitment is reduced to the evaluation of P
in G1. Since P is composed of at most d terms, it is necessary to do at most d scalar
multiplications in G1 and d− 1 additions in G1.
The opening is composed of several steps:

• The computation of the reduced Gröbner basis of the ideal of the affine algebraic
variety. This can be done in O(nk3) multiplications in F using algorithms evoked in
[FG06].

• The reduction of P by the Gröbner basis. It can be bounded by O(|B|·d log d log||P ||)
multiplications in F with ||P || being the product of the maximum coefficients of P
in each variable [VDH17].

• The evaluation of the quotients using pk. Since the quotients are of degree bounded
by the degree of P , they require fewer than |B|·d scalar multiplications in G1 and
fewer than |B|(d− 1) additions in G1.

The verification is composed of the following steps:

• The computation of the reduced Gröbner basis of the ideal of the affine algebraic
variety. This can be done in O(nk3) multiplications in F using algorithms evoked in
[FG06].

• One interpolation of the remainder using the evaluation points. This can be done in
O(nk log k) multiplications in F.
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• The reduction of the computed remainder by the Gröbner basis. This can be bounded
by O(|B|·d log d log||R||) multiplications in F with ||R|| being the product of the
maximum coefficients of the remainder in each variable.

• The evaluation of the remainder using vk. This can be done in fewer than kn scalar
multiplications in G1 and fewer than kn − 1 additions in G1 because the remainder
is of degree bounded by k in each variable.

• The evaluation of the polynomials of the Gröbner basis using vk. This can be done in
fewer than |B|·kn scalar multiplications in G2 and fewer than |B|·(kn − 1) additions
in G2.

• The |B|+1 evaluation of the pairing function.

The complexity of Boomy is summarized in Table 3 below where, in the lines commit
computation, opening computation and verification computation, G+

i and G×
i denote addi-

tion and scalar multiplication (in additive notation) in Gi, and F× denotes multiplications
in F. We denote the complexity of the pairing operation with P.

Table 3: Complexity of Boomy in the general case

Complexities
pk size dG1

vk size (kn)G1, (kn)G2

proof size |B|G1

commit size 1G1

commit computation (d− 1)G+
1 , dG×

1

opening computation
O(|B|d log d log||P ||+nk3)F×,
O(|B|·d)G+

1 , O(|B|·d)G×
1

verification computation
O(nk log k + |B|d log d log||R||+nk3)F×,
O(kn)G+

1 , O(kn)G×
1 , O(|B|·kn)G+

2 ,
O(|B|·kn)G×

2 , (|B|+1)P

Note that trusted setups of univariate polynomial commitments can be computed using
a multi-party protocol, reinforcing their security by distributing the knowledge of the
secret among multiple entities. An adversary would have to corrupt every participant
to recover the secret τ of the trusted setup [KMSV21]. Moreover, univariate polynomial
commitments setups can be adapted and reused without a loss of security for the Boomy
protocol, as proposed for [PST13] by the authors of [ZBK+22]. This directly enables the
use of trusted setups generated from multi-party protocols without the need to redo the
heavy computation associated.

It is also important to see that the verifier can ask the prover for the reduced Gröbner
basis directly. In this case, the verifier still needs to verify the basis provided using
the Buchberger criterion [Buc76] or Definition 3. This does not improve the asymptotic
complexity but it may be more efficient in practice.
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4 Special Cases
4.1 Cartesian Product
First, recall that a Cartesian Product of n set Si, i ∈ [n] is defined by the set {(a1, . . . , an)|∀i ∈
[n], ai ∈ Si}. Then, when the points (a) of the affine algebraic variety form a Cartesian
product the computation of the reduced Gröbner basis is nearly free: it is the n univariate
polynomials that vanish on the corresponding dimension on each point. For example, the
evaluation of the ith polynomial would be 0 on the ith coordinate of each point in the
Cartesian product. More precisely, if we suppose that we want to construct the polynomials
defining V := {ai ∈ Fn : i ∈ [k]}, we must first calculate the n polynomials that define the
n algebraic affine varieties in each dimension independently: ∀i ∈ [n], Si := {aj,i;∀j ∈ [k]}
and fi(Xi) :=

∏
aj,i∈Si

(Xi − aj,i). Those polynomials together define the affine algebraic
variety of the Cartesian product formed by each tuple that has each coordinate in common
with any ai.

Theorem 2. The polynomials fi(Xi) :=
∏

aj,i∈Si
(Xi − aj,i) such that ∀i ∈ [n], Si :=

{aj,i;∀j ∈ [k]}, form the reduced Gröbner basis of the ideal of V := {ai ∈ Fn : i ∈ [k]}.

Proof. Firstly, it is easy to see that for all i ∈ [n], fi ∈ I(V) since each fi vanishes
on all points by construction. (f1, . . . , fn) form a Gröbner basis based on Definition 3
of Section 2.2. If the points form a Cartesian product with γi different coordinate in
dimension i, then |V|=

∏n
i=1 γi and deg(fi) = γi. Since each fi is of degree γi in variable

Xi and is univariate, we have exactly
∏n

i=1 γi different monomials that are not divisible by
every LT (fi) = Xγi

i . Then, (f1, . . . , fn) is a Gröbner basis of I(V). It is also the reduced
one since we directly see that their leading coefficient is 1 and that the monomials of fi

which only contains Xi are not reducible by the others that do not contain Xi.

By forming the Cartesian product of sets of points, we can define polynomials that
vanish on these points, enabling efficient verification of evaluations at multiple points
simultaneously efficiently because the number of elements in the Gröbner basis is exactly
the number of sets defining the Cartesian product.

4.2 Points Distinct in One Dimension
In the case where, for a given dimension m, all of the m-coordinates of the evaluation
points are different, the proof can be reduced to n elements. The computation of the
reduced Gröbner basis can also be simplified because it can be obtained by only computing
Lagrange polynomial interpolations in one dimension. This case may occur in many
applications enabling drastic reductions in verifier and prover computations.

Theorem 3. For any dimension n, for any set of points {ai ∈ Fn : i ∈ [k]} such that
∃m ∈ [n] : ∀(i, j) with i ̸= j we have ai,m ̸= aj,m, we can build the reduced Gröbner basis
of the ideal of the variety {ai ∈ Fn : i ∈ [k]} only using Lagrange polynomial interpolations.

Proof. Let n ∈ N, fix V := {ai ∈ Fn : i ∈ [k]} such that ∃m ∈ [n] : ∀(i, j), i ̸= j ⇒ ai,m ̸=
aj,m. Let I(V) denote the ideal of the polynomials vanishing at the points of V. As
[CLOS94] did with two variables, using Lagrange polynomial interpolations, we compute
the n− 1 intermediate polynomials hi(Xm) for each i ̸= m:

hi(Xm) :=
k∑

u=1
au,i

∏
v ̸=u

Xm − av,m

au,m − av,m

Let f(Xm) :=
∏k

i=1(Xm − ai,m).
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First, let us show that:

I(V) =⟨X0 − h0(Xm), X1 − h1(Xm), . . . , Xm−1 − hm−1(Xm),
f(Xm), Xm+1 − hm+1(Xm), . . . , Xn − hn(Xm)⟩

1. It is straightforward to prove the inclusion ⟨X0 − h0(Xm), X1 − h1(Xm), . . . ,
Xm−1−hm−1(Xm), f(Xm), Xm+1−hm+1(Xm), . . . , Xn−hn(Xm)⟩ ⊆ I(V). Indeed,
f(Xm) vanishes by construction at {ai,m : i ∈ [k]}. This is also the case for any
Xi − hi(Xm) at {aj,i : j ∈ [k]} because ∀j ∈ [k], hi(aj,m) = aj,i.

2. Using the monomial ordering X1 > · · · > Xm−1 > Xm+1 > · · · > Xn > Xm,
the leading term of Xi − hi(Xm) is Xi for all i ̸= m and the leading term of
f(Xm) is Xk

m. It follows that the cardinality of the set of monomials not divisible
by the leading term of those polynomials is k. Using Definition 3 of Section 2.2,
B := {Xi − hi(Xm) : i ∈ [k]\{m}} ∪ {f(Xm)} is a Gröbner basis of I(V).

3. Once again, each element’s leading coefficient is 1 by construction. The monomials of
f(Xm) are powers of Xm making them not divisible by any polynomial in the ideal of
the other variables generated by the leading terms of Xi−hi(Xm) for all i ̸= m. The
monomials of Xi − hi(Xm) can be powers strictly lesser than k of Xm or Xi, they
can therefore not be divided by any polynomial of ⟨X0, . . . , Xi−1, Xi+1, . . . , Xn, Xk

m⟩.
It follows that the Gröbner basis is also the reduced Gröbner basis.

Corollary 1. The remainder of any P ∈ F[X1, . . . , Xn] by the reduction of B is a
polynomial in one variable.

Proof. This proposition is trivial since in the previous construction, the leading terms
of the polynomials of the Gröbner basis B are Xi when i ̸= m and Xk

m, therefore the
remainder is composed of the monomials 1, Xm, . . . , Xk−1

m .

It follows that the remainder R(X) can be directly computed once again using a
Lagrange polynomial interpolation in variable Xm. In this case, the interpolated polynomial
is already the remainder of its reduction by B making this step of computation unnecessary
and the verifier key vk reducible to only k elements. The complexity is summarized in
Table 4 below.

5 Applications

5.1 Verifiable Computation
Verifiable computations are being used more and more in several fields, such as cloud
computing to ensure the correct behavior of an external server [YYV17], or blockchain
to improve scalability [TSH22]. Verifiable computation is the main area of application
of [PST13], as far as we know. This is a very special case of multivariate polynomial
commitment, as the programs that are verified are often represented as a series of univariate
quadratic polynomials [GWC19]. It can therefore also be represented as a bivariate
polynomial where the degree of one of its two variables is at most two [CBBZ23]. We
believe that Boomy can be applied to these techniques to build proofs of several evaluation
points at the same time, enabling new ways to make proof aggregations, accelerating their
protocols, reducing their communication complexity, or opening new gate customization
possibilities.
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Table 4: Complexity of Boomy when the evaluation points form a Cartesian product or
when they are distinct on at least one dimension.

Complexities
pk size dG1

vk size kG1, (k + n)G2

proof size nG1

commit size 1G1

commit computation (d− 1)G+
1 , dG×

1

opening computation
O(nk log k + nd log d log||P ||)F×,

O(nd)G+
1 , O(nd)G×

1

verification computation
O(nk log k)F×, kG+

1

(k + 1)G×
1 , O(nk)G+

2 ,
O(nk)G×

2 , (n + 1)P

5.2 Data Availability Sampling

One of the main challenges in blockchain is the scalability issue. To address this issue,
[ASBK21] proposes making light clients able to verify the availability and authenticity of
block data. They based their approach on the proof of erasure codes, more exactly, on two-
dimensional (or more) Reed-Solomon codes to make data availability sampling [HASW25].
Later, the Ethereum blockchain planned to make this protocol a core component of their
sharding protocol and create a new transaction metadata type called blobs [But22] based on
polynomial commitments. However, they switched their paradigm from the fraud proofs of
[ASBK21] to validity proofs, i.e., using polynomial commitments. The proto-Danksharding
upgrade of the blockchain is based on the commitment protocol in [KZG10] enabling each
line to be committed as a univariate polynomial. The two-dimensional encoded data can
then be verified in batches of 16 evaluations of the same raw called samples, deriving the
commitments of the extended lines using the homomorphic properties of the [KZG10]
polynomial commitment. Each validator of the blockchain, that acts as the light clients
described in [ASBK21], will then have to verify two rows and two columns of encoded data
as shown in Figure 2.

We claim that their scheme can benefit from Boomy in that it would reduce the size
of communications, one of the new challenges that have emerged following Ethereum’s
sharding proposal.

Indeed, by considering the block of data as one single bivariate polynomial, Boomy
reduces the size of the commitment to only one element instead of 256 per block. This
improves the main blockchain storage from 256 blob commitments per shard to only
one per shard. Concretely, Boomy would reduce the total commit size stored definitively
on the blockchain from 512 kB to 2 kB for each Ethereum slot (every 12 seconds). It
is fully backward compatible because it is also possible to verify that Boomy’s unique
commitment is linked to [KZG10]’s commitment of a specific blob using two pairings.
Indeed, denoting Pi the univariate polynomial in variable Y of the blob on the ith row,
its [KZG10] commitment cmi, and supposing that we evaluate the bivariate polynomial
over natural integers in Z /256Z × Z /4096Z , ordered lexicographically, we then have the
following:
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First Reed-Solomon
 extension

Second Reed-Solomon
 extension

256 samples of 16 elements each

Original block of data Example of what a
validator could verify

Figure 2: Ethereum’s Danksharding.

P (X, Y ) = Qi(X, Y )(X − i) + Pi(Y )
⇐⇒ P (τ1, τ2) = Qi(τ1, τ2)(τ1 − i) + Pi(τ2)
⇐⇒ P (τ1, τ2) ·GT − Pi(τ2) ·GT = Qi(τ1, τ2)(τ1 − i) ·GT

⇐⇒ e(cm− cmi, [1]2) = e([Qi(τ1, τ2)]1, [τ1]2 − [i]2)

Using this property, Boomy is fully backward compatible with the current Ethereum
protocol. Using the correct monomial ordering and the Cartesian special case, the Boomy’s
proof of one sample would be composed firstly (the first quotient polynomial) of the
[KZG10]’s polynomial commitment for the same blob’s row and secondly of the same proof
(the second quotient polynomial) as the proof of the [KZG10] protocol.

Boomy’s trusted setup would need to be bigger but still largely acceptable (roughly the
size of only one non-encoded block of blobs).

Actually, a sample enables the verification of a part of a given blob and does not integrate
elements from different blobs of the block. Seeing the block as a bivariate polynomial,
Boomy also opens new possibilities on the distribution of the elements of the samples. It is
also possible to have different sample distributions among the validators as in the manner
described in [BN23]. This enables a more flexible approach for a better distribution of the
data in the network reducing the number of required online validators to reconstruct the
data from shards, improving the overall security [BN23], and cutting down communication
complexity, tackling the major network challenges posed by sharding [KAR+23].

Note that Boomy could have the same benefits for Verifiable information dispersal
(VID) [Rab89, CT05] systems, rather similar to data availability sampling, which encode
the data to ensure a secure and valid distribution among peers.
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6 Conclusion
In conclusion, the Boomy protocol presents a notable advancement in the field of polynomial
commitment schemes. By extending the capabilities of existing protocols to multivariate
polynomials and batch openings, Boomy addresses some of the limitations of univariate
schemes and could contribute to the efficiency of various protocols.

One of the most promising applications of Boomy is in data availability sampling,
where it can significantly enhance the scalability and security of blockchain technologies.
By enabling efficient verification of multiple data points simultaneously, Boomy reduces
communication complexity and improves the overall performance of data availability
checks. This makes it a valuable tool for ensuring the integrity and availability of data in
decentralized systems.

While Boomy shows potential, further research and real-world testing are necessary to
fully understand its strengths and limitations. Its integration with SNARKs and other
zero-knowledge proof systems suggests that it could play a role in enhancing efficiency in
blockchain technologies and verifiable computations. Future work may explore optimiza-
tions and extensions of the Boomy protocol to address emerging challenges in the field of
cryptography.
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