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Abstract. We construct the following cryptographic primitives with unconditional
security in a bounded-key model:

• One-time public-key encryption, where the public keys are pure quantum states
• One-time signatures, where the verification keys are pure quantum states.

In our model, the adversary is given a bounded number of copies of the public key.
We present efficient constructions and nearly-tight lower bounds for the size of the
secret keys.
Our security proofs are based on the quantum coupon collector problem, which was
originally studied in the context of learning theory. The quantum coupon collector
seeks to learn a set of strings (coupons) when given several copies of a superposition
over the coupons. We make novel connections between this problem and cryptography.
Our main technical ingredient is a family of coupon states, with randomized phases,
that come with strong hardness properties. Our analysis improves on prior work
by (i) showing that the number of quantum states needed to learn the entire set of
coupons is identical to the number of random coupons needed in the classical coupon
collector problem. (ii) Furthermore we prove that this result holds for a randomly
chosen set of coupons, whereas prior work only lower-bounded the number of coupon
states required to learn the worst-case set of coupons.

1 Introduction
The classical coupon collector seeks to learn a set of strings X, given access to many random
samples from X. A fundamental result in probability theory shows that in expectation,
O(K logK) samples are sufficient, where K = |X|. [ABC+20] defines a quantum version
of the coupon collecor problem, which asks how many copies of the following “coupon
state”

|ψX⟩ := 1√
|X|
·
∑
x∈X

|x⟩

are sufficient to learn all the elements of X. [ABC+20] show that in some parameter
regimes, the quantum coupon collector cannot do better than a classical coupon collector,
specifically the quantum coupon collector requires Θ(K logK) copies of |ψX⟩.

[ABC+20]’s analysis of the coupon state is weaker than we desire for our cryptographic
applications, and our solution requires a significant reworking of the quantum coupon
collector problem. [ABC+20] proves that there exists a set of coupons X that is hard for
the adversary to learn, whereas we need an average-case guarantee, that a random X is
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hard to learn. Also [ABC+20] only says that it is hard for the adversary to learn all of X,
whereas we need to show that there are some coupons about which the adversary has no
information.

Crytography with Bounded Number of Keys. We consider the setting where the
adversary is given a bounded number of copies of the public key.

This model is natural in many situations, for example in the bounded corruption setting
where the adversary can only compromise a bounded number of verifiers (for signatures) or
encryptors (for PKE). Furthermore, there may only be a bounded number of total verifiers
or encryptors. For example, with digital signatures, a signed contract or a credential may
need to be verified by an authority and there may only be a bounded number of such
verifying authorities.

While a number of works have studied building basic cryptographic primitives, such as
signatures and encryption, in the quantum setting, generally the public keys are required
to be classical. This is because classical public keys can be distributed easily: they can
be copied, published on a website, and stored by any interested party. We argue that
quantum public keys can also be distributed to the interested parties, but it is important
that the public keys be pure states so that they can be authenticated using the swap test.

Our results We construct the following cryptographic primitives in the bounded-key
model:

• One-time public-key encryption, where the public keys are pure quantum states.

• One-time signatures, where the verification keys are pure quantum states.

Furthermore, our template yields new constructions of unconditionally-secure one-way state
generators (OWSG). All of our constructions are unconditionally secure if the adversary
is given T -many copies. Furthermore, the public keys are pure states. Note that in the
classical setting, these primitives are trivially ruled out by basic information-theoretic
principles.

In our constructions, the length of the public key (the quantum state) grows as O(log T ),
and the length of the secret key grows as O(T log T ). We prove that the secret key length
is nearly tight, as there are attacks that break security when the length of the secret key
grows as o(T ).

Our main technical ingredient is a new variant of the quantum coupon collector problem,
with randomized phases.

Definition 1 (Quantum Coupon Collector Problem, Informal).

1. The challenger samples a vector of random phases p← FK
M , where M > T .

2. The challenger prepares T copies of

|ψX,p⟩ := 1√
K

∑
k∈[K]

|xk⟩ · e
2πi
M ·pk

and sends them to the adversary.

3. The adversary outputs a guess X ′ for X, and they win the game if X = X ′.

We then show that this version of the quantum coupon collector problem is directly
equivalent to the classical coupon collector problem. We formalize this equivalence with
a simulation-based argument. Recall that in the classical coupon collector problem, the
challenger samples T elements of X independently and sends them to the adversary.
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Theorem 1 (Equivalence of Quantum and Classical Coupon Collectors, Informal). For any
X and any adversary A for the quantum coupon collector game, there exists an adversary
A′ for the classical coupon collector game that receives T random samples from X and
simulates the output of A in the quantum coupon collector game.

Likewise, for any X and any adversary A′ for the classical coupon collector game, there
exists an adversary A for the quantum coupon collector game that simulates the output of
A′ in the classical coupon collector game.

This improves over the work of [ABC+20] in several ways. First, we prove that the
classical and quantum versions of the coupon collector problem are equally hard, whereas
[ABC+20] showed a gap in certain parameter regimes, where the quantum coupon collector
can do better than the classical coupon collector. Second, our result allows us to lower-
bound the number of coupon states required for an average-case X, whereas [ABC+20]’s
bound only holds for the worst-case X. This means that we can define a distribution over X
such that it is hard on average to learn X (given a bound on the number of coupon states),
which is a necessary step for building cryptographic primitives. Finally, when T < K, we
can show that there exists a coupon string in X about which the quantum coupon collector
has no information. Such a strong claim is enabled by the simulation-based equivalence to
the classical coupon collector problem.

1.1 The Adversary Model
Here we discuss in more detail our adversary model and the motivation behind it.

In our model, the attacker is given a bounded number of copies of the public key, and
each key consists of a classical component and a pure quantum state. The attacker is
computationally unbounded and can act arbitrarily on their copies of the keys.

We also assume that one copy of the public key is honestly delivered to the encryp-
tion/verification algorithm. This is analogous to assuming a public key infrastructure
(PKI) in the classical setting that correctly distributes the public keys; otherwise there
would exist trivial man-in-the-middle attacks.

A similar model was previously introduced in [BGHD+23] for quantum public-key
encryption. The differences are that their attacker was computationally bounded but
receives an unbounded (but polynomial) number of keys.

Next, it is important that our public key be a pure state because it enables a method
of authenticating the key via the swap test [BCWdW01]. The scenario, which is also
discussed in [BGHD+23], is that multiple copies of the public key are sent to different
certificate authorities (CAs). The encryptor can request copies of the public-key from
different CAs and test (via a swap test) whether the copies are indeed identical. The
guarantee is that, as long as at least one CA is honest, the malicious CAs will be caught
with a constant probability. As a result, it is not necessary to trust every CA, as long as
some of the CAs are honest. In contrast, if the key were a classical mixture, this test could
reject even if the PKIs were all honest.

As observed in [MY22], if we allow the public-key to be a mixed state (in fact, even a
classical mixture), then there exist trivial constructions of quantum public-key encryption.
This is a strong indication that allowing mixed states would not faithfully model the
security intended for encryption.

Finally, akin to recent works [KMNY24, MW23], one could consider a stronger security
model, where only the classical component of the public key is authenticated. Unfortunately,
it was also shown in [KMNY24, MW23] that in this model unconditional security is
impossible, even if the adversary is given a single copy of the public key. Therefore, the
model that we consider in this work is tight, in the sense that information-theoretic security
is possible, and the notion of security is strong enough to be meaningful.
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The Case of One-Time Signatures. We note that for the case of one-time signatures,
we are not aware of any trivial construction, even if we allow the key to be a mixed
state. For instance, one could consider the scheme where the public keys are a classical
mixture of one-time MACs (which one can build information theoretically [CW77]), and
the verification is just a one-time MACs verification. In this case an attacker would be able
to forge a signature for a copy of the key that they are given, violating any meaningful
notion of security.

1.2 The Limitations of Existing Techniques
Pseudorandom States With Proofs of Destruction. [BBSS23] studies a similar
notion of random phase states, although their notion of security is weaker in several
respects.

[BBSS23] define a pseudorandom state that resembles our coupon states: the set of
coupons (to use our terminology) is pseudorandom, as is the phase given to each coupon.
Their main technical theorem (lemma 6) is similar in spirit to our main theorem (theorem 4)
since it involves showing that T copies of the pseudorandom state are indistinguishable
from a superposition over permutations of T random strings.

Our work is different in several respects. First, [BBSS23] works in the setting of
computational security, whereas our work focuses on the information theoretic setting.

Second, our theorem 4 proves a stronger claim – that indistinguishability holds for any
fixed coupon set – whereas [BBSS23]’s lemma 6 shows that indistinguishability holds over
a randomly chosen coupon set.

Third, in [BBSS23]’s constructions of one-time signatures, MACs, and symmetric-key
encryption, they only consider adversaries that interact classically with the pseudorandom
states after they have been measured. The adversaries don’t get access to the quantum
states themselves.

In contrast, we prove security against adversaries that get (quantum) access to the
coupon states. This is necessary in our notion of public-key encryption, for instance, where
the encryptor must have access to the quantum public keys in order to authenticate them
using the swap test.

T -designs. T -designs have the potential to provide information-theoretic security in
the bounded-key setting. However, it is not clear how to use a general T -design to build
one-time PKE. Our construction of PKE uses the fact that measuring the coupon state in
the computational basis yields a string that can be used to encrypt a message.

In addition, we prove that our constructions have nearly optimal key sizes, whereas we
do not know how to prove a similar statement for general T-designs.

2 Technical Overview

2.1 The Quantum Coupon Collector Problem
[ABC+20] studied a quantum version of the coupon collector problem and showed that
the quantum coupon collector cannot do better than a classical coupon collector in certain
parameter regimes. This negative result has an optimistic interpretation for cryptography:
to prove security against a quantum adversary that collects coupons, it suffices to consider
a classical adversary. However, our cryptographic applications (one-way state generators,
signatures, and encryption) require stronger hardness results than the ones from [ABC+20].
We overcome this limitation by defining a new version of the quantum coupon collector
problem and proving that in this version, there is a direct equivalence between classical
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and quantum coupon collectors.

In the classical coupon collector problem, the coupon collector receives T coupon
strings, sampled randomly from a set X, and the coupon collector tries to learn all of X.
In the quantum coupon collector problem, as defined in [ABC+20], the coupon collector
receives T copies of the coupon state, defined as follows:

|ψX⟩ := 1√
|X|
·
∑
x∈X

|x⟩

A trivial strategy is for the quantum coupon collector to measure each copy of |ψX⟩ in
the computational basis to get a randomly sampled coupon x← X, and then to apply a
classical coupon collector strategy. [ABC+20] showed that in certain parameter regimes,
such a strategy is asymptotically optimal, meaning a quantum coupon collector cannot do
significantly better than a classical one. We state their result formally below:

Definition 2 ([ABC+20]’s Quantum Coupon Collector Problem).

• Parameters: Let D be a domain of strings of size N . Let K be the number of strings
in the coupon state. Let T be the number of copies of the coupon state given to the
coupon collector. T is a function of N and K.

• Challenge: The challenger chooses X, a subset of D of size K. The challenger sends
|ψX⟩⊗T to the quantum coupon collector.

• Response: The quantum coupon collector, playing some strategy A, outputs a guess
X ′ for X.

• Success Probability: For each possible challenge X, let pX be the probability that
the coupon collector guesses correctly: pX = Pr

[
X ← A

(
|ψX⟩⊗T

)]
. Next, let pmin

be the worst-case success probability, over all challenges X:

Let pmin = min
X⊂D:|X|=K

pX

Theorem 2 (Theorem 5 in [ABC+20]). Let K ≤ N/2. In order for A to succeed with
worst-case success probability pmin = Ω(1), it is necessary to have T = Ω(K logK) copies
of |ψX⟩.

One could hope to use [ABC+20]’s result to construct cryptographic primitives in
which a bounded number of public states (the coupon states) are given to an adversary.
For instance, the function mapping X → |ψX⟩ could serve as a one-way state generator if
it is hard for an adversary, given a bounded number of copies of |ψX⟩, to learn X.

However, we find that [ABC+20]’s analysis of the coupon state is weaker than we desire
for our cryptographic applications. First, [ABC+20] proves worst-case hardness, whereas
we would need hardness to hold for a randomly sampled X. Also [ABC+20] only says that
it is hard for the adversary to guess all K coupons, whereas we want to say that there are
some coupons about which the adversary has no information; this is particularly useful
for our encryption scheme.

Our version of the quantum coupon collector problem: To overcome these issues,
we consider a different version of the quantum coupon collector problem in which the
coupon state includes random phases, and we define and prove a stronger, simulation-style,
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notion of security. In our version, the quantum coupon collector receives T copies of the
following state:

|ψX,p⟩ := 1√
K

∑
k∈[K]

|xk⟩ · e
2πi
M ·pk

where p ← FK
M is a vector of random phases, and the modulus M is > T . Informally,

we prove that for any X, and any adversary that receives |ψX,p⟩⊗T , there is a simulator
that simulates the output of A given T classical samples from X. This shows a direct
equivalence between the quantum and classical coupon collectors. Also, note that this
claim holds for all X (including for an average-case X). Now we will state the claim
formally.

We consider the following quantum game, in which the the coupon state includes
random phases p.
Definition 3 (Q(X,T,A)).

1. Let X = {x1, . . . , xK}, where K = |X|. Next, let M be some arbitrary number > T .

2. The challenger samples p← FK
M .

3. The challenger prepares T copies of |ψX,p⟩ and sends them to the adversary.

4. The adversary runs A
(
|ψX,p⟩⊗T

)
. The output of A is the output of the experiment

Q.
We also consider a similar game in which the adversary receives T classical samples

from X.
Definition 4 (C(X,T,A′)).

1. Let X = {x1, . . . , xK}, where K = |X|.

2. The challenger samples y← XT and sends y to the adversary.

3. The adversary runs A′(y). The output of A′ is the output of the experiment C.
Theorem 3. For any X, any T , and any quantum adversary A for Q, there is a quantum
adversary A′ for C such that the output distributions of Q(X,T,A) and C(X,T,A′) are
identical.

Likewise, for any X, any T , and any adversary A′ for C, there is an adversary A for
Q such that the output distributions of Q(X,T,A) and C(X,T,A′) are identical.

It is necessary for us to modify [ABC+20]’s quantum coupon collector problem in
order to prove that the quantum and classical coupon collectors have the same success
probability. In fact, this is not always true for [ABC+20]’s version. [ABC+20] show that
when N −K = O(1), a quantum coupon collector needs only Θ(K) copies of |ψX⟩ to guess
X with high probability, whereas a classical coupon collector needs Θ(K logK) classical
coupon samples.

Proof Sketch: We will sketch the proof of theorem 3. First, we consider the mixture of
|ψX,p⟩⊗T over all p:

ρX := Ep←FK
M

(
|ψX,p⟩ ⟨ψX,p|⊗T

)
Then we show that ρX is equal to another mixed state:

σX := Ey←XT |Sy⟩ ⟨Sy|

where |Sy⟩ is a state that can be computed from y. Finally, the adversary in C can generate
the state σX and simulate any adversary for Q. Likewise, any adversary in Q can simulate
C: they measure |ψX,p⟩⊗T in the computational basis to get a random y← XT and then
simulate an adversary for C.



Vipul Goyal, Giulio Malavolta, Bhaskar Roberts 7

Parallel Repetition: This equivalence between classical and quantum coupon collectors
holds under parallel repetition. Let us repeat the base scheme J times. The quantum
coupon collector receives (∣∣ψX1,p1

〉
⊗ · · · ⊗

∣∣ψXJ ,pJ

〉)⊗T

where for each j ∈ [J ], Xj is a set of K coupon strings, and pj ← FK
M is a set of random

phases. Next, the classical coupon collector receives (y1, . . . ,yJ ), where each yj is sampled
randomly from

(
Xj
)T .

Analogously to theorem 3, we can show that the output of the quantum coupon collector
can be simulated given classical samples from XT , and vice versa. The proof comes down
to showing that

ρX1 ⊗ · · · ⊗ ρXJ = σX1 ⊗ · · · ⊗ σXJ

2.2 One-Time Public Key Encryption
In our notion of one-time public key encryption, the public key is a quantum state |pk⟩
that can encrypt a message, and it is consumed by the encryption algorithm. The scheme
is secure if an adversary that is given T copies of |pk⟩ cannot distinguish which of two
messages the challenger encrypted.

Construction: The public key is a tuple of J coupon states. To encrypt a message, the
encryption algorithm measures |pk⟩ in the computational basis to get a string of random
coupons. Then they compute the parity of this string, and use the parity to mask the
message bit.

For simplicity, we will present the construction with only one component (J = 1). The
actual construction uses J = λ to amplify the adversary’s advantage down to negl(λ). Also,
we will let the message m be a single bit.

Let the public key be a coupon state:

let |pk⟩ = |ψX,p⟩

where p← FK
M is a set of random phases, and X is a set of K coupon strings. Furthermore,

for each k ∈ [K], let the corresponding coupon string be xk = (k,wk), for a random bit
wk.

To encrypt a message, the encryption algorithm measures |ψX,p⟩ in the computational
basis to get a random coupon xk = (k,wk). Then it outputs

ct = (m⊕ wk, k)

Next, the decryption algorithm is given X as part of the secret key. To decrypt a
message, it uses k to look up xk = (k,wk) and then it unmasks the message bit to obtain

m′ = m⊕ wk ⊕ wk = m

Security Proof: Theorem 3 enables us to give a simple security proof for the encryption
scheme. Rather than give the adversary (|ψX,p⟩)⊗T , we will give them random samples
y ← XT , and by theorem 3 these two hybrids are equivalent. In the first hybrid, it is
hard to prove security directly because (|ψX,p⟩)⊗T encodes information about all the
strings in X. However, in the second hybrid, if there is some x = (k,w) ∈ X that was not
sampled for y, then the adversary has no information about w. Then m⊕w is completely
uncorrelated with m from the adversary’s perspective.

The security proof would be more complicated if we used the type of hardness result
given in [ABC+20]. That result says that it is hard for the adversary to guess all the strings
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in X, but it does not rule out the possibility that the adversary knows some information
about every string in X. Our security proof would have to extract from the adversary the
coupon string that was used to encrypt the message. In our proof, this is not necessary.

2.3 One-Time Signatures
We also construct a one-time signature scheme with quantum public keys. It is secure
against computationally unbounded quantum adversaries, as long as they receive a bounded
number of copies of the public key. Our construction is based on Lamport’s one-time
signature construction ([KL14]) but uses a one-way state generator in place of a one-way
function.

One-way state generators (OWSGs) are analogous to one-way functions except the
output of the function is a quantum state. In the bounded-key setting, the security
guarantee is that an adversary given a bounded number of copies of StateGen(k) cannot
guess k, except with negligible probability. Our construction of a OWSG scheme and the
security proof are given in section A. Essentially, we show that the function that generates
a coupon state can serve as a OWSG. Constructions with similar guarantees have appeared
in recent works, such as [ABF+23], and we only report this scheme for completeness.

2.4 Lower Bound on the Secret Key Length
In all of our constructions, the bit length of the secret key grows as O(T log T ) 1. It is
natural to wonder whether we can do better: could the bit length of the secret key be
some function o(T )? In fact that is not possible because the scheme would be insecure.
The proof uses shadow tomography in a similar spirit to [BGHD+23]. However, unlike
[BGHD+23], our impossibility result also holds when the adversary is given copies of a
mixed state ρ, rather than just a pure state.

Also note that the length of |pk⟩ given to the adversary grows as O(log T ) 1, which is
much slower than T .

Proof Sketch: The proof is similar for all of our primitives, so we will just describe how
it works for encryption.

In the encryption security game, the adversary receives T copies of ρsk, the public
key that was generated from the challenger’s secret key sk. The public keys allow the
adversary to encrypt messages. Next, let K be the set of possible secret keys. For every
sk′ ∈ K, the adversary will estimate the probability that sk′ correctly decrypts a message
that was encrypted using ρsk. Clearly sk itself will decrypt the message with overwhelming
probability. Next the adversary will select the sk′ with the highest estimated success
probability. Even if sk′ ̸= sk, sk′ will still decrypt the challenger’s ciphertext with high
probability, which gives the adversary non-negligible advantage in the security game.

This attack only works if the adversary can estimate the success probability for every
possible sk′, and the limiting factor is T . This is where the shadow tomography algorithm
of [HKP20] is useful. It allows the adversary to estimate the success probability for all
sk′ ∈ K given some T ∗ = Θ(log |K|) number of copies of ρsk.

Finally, the bit length of the secret key is ≥ log |K|. In order to prevent the attack
described above, we need to ensure that log |K| ̸= o(T ).

3 Quantum Coupon Collector
We will consider a quantum version of the coupon collector problem in which Alice chooses
a superposition over K strings (coupons) and gives Bob T copies of the state. Bob’s goal

1This holds when λ and the message length are fixed.
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is to output all K symbols (to collect all the coupons). A trivial strategy is for Bob to
measure his states in the computational basis and then apply a classical strategy. In this
case, he is effectively playing the classical coupon collector game. In fact, we will show
that this trivial strategy is optimal. So the quantum coupon collector problem is equally
hard as the classical coupon collector problem

The proof techniques we develop here will be useful in subsequent security proofs,
although we won’t directly reduce security to the quantum coupon collector problem.
Rather, our security games take a similar form: Bob receives T copies of a coupon state,
and he will try to learn some information about the coupons. The techniques from this
section allow us to show that any information Bob can learn from the coupon states is
something he can learn from T randomly sampled classical coupons. The latter situation
is easier to analyze, and this allows us to complete our security proofs.

Definition 5 (Parameters).

• λ is the security parameter.

• T is the number of copies of the coupon state given to the adversary.

• K is the number of coupon strings. K is some poly(λ, T ).

• M is the modulus of the phase. We require that T < M .

• J is the number of times we repeat the base scheme in parallel.

Definition 6 (Coupon States).

1. X = {x1, . . . , xK} is a set of strings (coupons) such that each entry xk is the symbol
k concatenated with a λ-bit string wk

2. Let X be the set of all possible X-values.

2. For a given X, let y ∈ XT be a tuple of T samples from X. Let Y(X) = XT be
another name for the sample space of y.

3. p = (p1, . . . , pK) ∈ FK
M is a tuple of K phases. Let P = FK

M , the sample space of p.

4. Let the coupon state |ψX,p⟩ be defined as follows:

|ψX,p⟩ := 1√
K

∑
k∈[K]

|xk⟩ · e
2πi
M ·pk

In contrast, the coupon states of [ABC+20] set p = 0, so e 2πi
M ·pk = 1 for all k.

We will repeat the coupon scheme in parallel J times. For each j ∈ [J ], let Xj =
{xj

1, . . . , x
j
K} ∈ X .

Next, we will consider a generalization of the quantum coupon collector game in
which the adversary receives several coupon states and their output is the output of the
experiment.

Definition 7 (Q(X1, . . . , XJ , T,A)).

1. Let M be some arbitrary number > T .

2. For each j ∈ [J ]:
2The reason we concatenate k with wk, rather than using wk alone, is to enable the decryption of

ciphertexts in our PKE construction. The message will be masked by a random coupon. The ciphertext
needs to include the coupon’s index so that the decryptor (who has a description of the coupon set) can
determine which coupon is masking the message.
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(a) The challenger samples pj ← P.
(b) The challenger prepares T copies of

∣∣ψXj ,pj

〉
and sends them to the adversary.

3. The adversary runs A on the inputs from the challenger. The output of A is the
output of the experiment.

We will compare Q to a similar game C in which the adversary receives classical samples.

Definition 8 (C(X1, . . . , XJ , T,A′)).

1. For each j ∈ [J ], the challenger samples yj ← Y
(
Xj
)

and sends yj to the adversary.

2. The adversary runs A′ on the inputs from the challenger. The output of A′ is the
output of the experiment.

Theorem 4. For any J and any inputs for Q, (X1, . . . , XJ , T,A), there is a quan-
tum adversary A′ for C such that the output distributions of Q(X1, . . . , XJ , T,A) and
C(X1, . . . , XJ , T,A′) are identical.

Likewise, for any J and any inputs for C, (X1, . . . , XJ , T,A′), there is a quan-
tum adversary A for Q such that the output distributions of Q(X1, . . . , XJ , T,A) and
C(X1, . . . , XJ , T,A′) are identical.

3.1 Proof of theorem 4
Mixtures over p and y: For any X ∈ X , we will define ρX to be a mixture over
p-values, and σX to be a mixture over y-values. Then we’ll show that ρX = σX .

•
Let ρX = Ep←P

[(
|ψX,p⟩ ⟨ψX,p|

)⊗T
]

• Let Q : Y(X) → FK
M compute the multiplicity of each xk in y, mod M . More

formally, for any y ∈ Y(X), and any k ∈ [K],

Q(y)k = the number of entries of y that contain xk mod M

For technical reasons, we mod by M , but since M > T , we don’t need to concern
ourselves with wraparound.

• Let Sy = {y′ ∈ Y(X) : Q(y) = Q(y′)}. Equivalently, Sy is the set of all tuples y′
that result from permuting of the entries of y. Therefore, Sy can be computed from
y.

• Let |Sy⟩ be the uniform superposition over the elements of Sy:

|Sy⟩ = 1√
|Sy|

·
∑

y′∈Sy

|y′⟩

• Finally, let
σX = Ey←Y(X) |Sy⟩ ⟨Sy|

Lemma 1. For any X, ρX = σX .

Proof.
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•

σX = 1
KT
·
∑

y∈XT

1
|Sy|

·
∑

y′,y′′∈Sy

|y′⟩ ⟨y′′|

= 1
KT
·

∑
y′,y′′∈XT

|y′⟩ ⟨y′′| · 1Q(y′)=Q(y′′)

ρX = E
p←FK

M

[
(|ψX,p⟩ ⟨ψX,p|)⊗T

]
= 1
KT
· E

p←FK
M

∑
y′,y′′∈XT

|y′⟩ ⟨y′′| · e 2πi
M ·⟨p,Q(y′)⟩ · e− 2πi

M ·⟨p,Q(y′′)⟩

= 1
KT
·

∑
y′,y′′∈XT

|y′⟩ ⟨y′′| · E
p←FK

M

e
2πi
M ·⟨p,Q(y′)−Q(y′′)⟩

= 1
KT
·

∑
y′,y′′∈XT

|y′⟩ ⟨y′′| · 1Q(y′)=Q(y′′) lemma 2

= σX

Lemma 2. For any y′,y′′ ∈ XT ,

E
p←FK

M

e
2πi
M ·⟨p,Q(y′)−Q(y′′)⟩ = 1Q(y′)=Q(y′′)

Proof.

• Let v = Q(y′)−Q(y′′) ∈ FK
M . If v = 0, then ⟨p,v⟩ = 0 for all p. Therefore,

E
p
e

2πi
M ·⟨p,v⟩ = E

p
e0 = 1

• On the other hand, if v ̸= 0, then ⟨p,v⟩ is uniformly distributed. More precisely, for
any a ∈ FM ,

Pr
p←FK

M

[⟨p,v⟩ = a] = 1
M

• Finally, if v ̸= 0, then

E
p←FK

M

e
2πi
M ·⟨p,v⟩ = E

a←FM

e
2πi
M ·a = 0

Hybrids: We’ll use the following sequence of hybrids to transform Q into C without
changing the output distributions of adjacent hybrids. Any changes from the previous
hybrid are shown in red.

• G0(X1, . . . , XJ , T,A) is Q:

1. Let M be some arbitrary number > T .
2. For each j ∈ [J ]:

(a) The challenger samples pj ← P.
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(b) The challenger prepares the state:(∣∣ψXj ,pj

〉 〈
ψXj ,pj

∣∣)⊗T

and sends it to the adversary.
3. The adversary runs A on the inputs from the challenger. The output of A is

the output of the experiment.

• G1(X1, . . . , XJ , T,A):

1. Let M be some arbitrary number > T .
2. For each j ∈ [J ]:

(a) (omitted)
(b) The challenger prepares the state:

ρXj = E
pj←P

[(∣∣ψXj ,pj

〉 〈
ψXj ,pj

∣∣)⊗T
]

and sends it to the adversary.
3. The adversary runs A on the inputs from the challenger. The output of A is

the output of the experiment.

• G2(X1, . . . , XJ , T,A):

1. (omitted)
2. For each j ∈ [J ]:

(a) The challenger prepares the state:

σXj = E
yj←Y(Xj)

(∣∣Syj

〉 〈
Syj

∣∣)
and sends it to the adversary.

3. The adversary runs A on the inputs from the challenger. The output of A is
the output of the experiment.

• G3(X1, . . . , XJ , T,A):

1. For each j ∈ [J ]:
(a) The challenger samples yj ← Y(Xj).
(b) The challenger prepares the state:∣∣Syj

〉 〈
Syj

∣∣
and sends it to the adversary.

2. The adversary runs A on the inputs from the challenger. The output of A is
the output of the experiment.

• G4(X1, . . . , XJ , T,A′) is C:

1. For each j ∈ [J ], the challenger samples yj ← Y(Xj) and sends yj to the
adversary.

2. The adversary runs A′ on the inputs from the challenger. The output of A′ is
the output of the experiment.

Claim. The output distributions of G0, G1, G2, and G3 are identical.
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Proof. First, G0 and G1 are equivalent. In G0, each pj is only used to generate the state( ∣∣ψXj ,pj

〉 〈
ψXj ,pj

∣∣ )⊗T , so equivalently, the challenger could send the adversary a mixture
over pj-values, which is ρXj .

Next, G1 and G2 are equivalent because ρXj = σXj , for all j ∈ [J ].
Next, G2 and G3 are equivalent. In G3, each yj is only used to prepare the state∣∣Syj

〉 〈
Syj

∣∣, so equivalently, the challenger could prepare the mixture over yj-values, which
is σXj .

Claim. Fix any choice of (J,X1, . . . , XJ , T ).
Next, for any adversary A for G3, there exists an adversary A′ for G4 such that the

output distributions of G3(X1, . . . , XJ , T,A) and G4(X1, . . . , XJ , T,A′) are identical.
Likewise, for any adversary A′ for G4, there exists an adversary A for G3 such that the

output distributions of G3(X1, . . . , XJ , T,A) and G4(X1, . . . , XJ , T,A′) are identical.

Proof. In either hybrid, the adversary can simulate the other hybrid.
First, in G4, A′ is given yj . The algorithm uses yj to generate

∣∣Syj

〉
, and then it

applies A. Furthermore, the output distribution of A′ in G4 is the same as the output
distribution of A in the simulation of G3.

Second, in G3, A is given
∣∣Syj

〉
. The algorithm measures the state in the computational

basis to get a string y′j ∈ Syj , and then it applies A′. Note that y′j is sampled uniformly
at random from Y(Xj), over the randomness of sampling yj and measuring

∣∣Syj

〉
. Likewise

in G4, the distribution of yj is uniform over Y(Xj). In summary, A (in G3) can correctly
simulate A′ (in G4), and the output distribution is the same in both cases.

3.2 The Quantum Coupon Collector Game
Definition 9 (Quantum Coupon Collector Game, QCC).

1. (a) Alice samples K coupon strings X ← X .
(b) Alice samples K phases p← P.
(c) Alice prepares T copies of the coupon state, |ψX,p⟩⊗T , and sends it to Bob.

2. Bob sends Alice X ′, which is his guess for X.

3. Alice checks whether X = X ′. If so, the output of the game is 1, and otherwise the
output is 0.

A trivial way for Bob to learn partial information about X is by measuring the state
from Alice in the computational basis to get T independently sampled coupons. It turns
out that there is no better strategy for Bob. Let us state this idea more formally.

Below is the classical coupon collector game, in which Alice sends Bob T random
coupons. All changes from QCC are shown in red:

Definition 10 (Classical Coupon Collector Game, CCC).

1. (a) Alice samples K coupon strings X ← X .
(b) Alice samples y← XT and sends y to Bob.

2. Bob sends Alice X ′, which is his guess for X.

3. Alice checks whether X = X ′. If so, the output of the game is 1, and otherwise the
output is 0.

Let val(QCC) be the maximum Pr[QCC → 1], over all strategies of Bob. val(CCC) is
defined analogously.
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Theorem 5. val(QCC) = val(CCC).

Proof. We will use theorem 4 with J = 1. For any X that Alice samples, and any strategy
A that Bob uses in QCC, there is a strategy A′ that Bob can use in CCC such that A and
A′ output X ′ from the same distribution. Then the probability that X = X ′ is the same
in both hybrids. Therefore, val(QCC) ≤ val(CCC).

Using a similar argument, we can also show that val(QCC) ≥ val(CCC), which implies
that val(QCC) = val(CCC).

4 One-Time Public Key Encryption
Definition 11 (One-Time Public Key Encryption with Quantum Public Keys). Let λ ∈ N
be the security parameter, and let T ∈ N bound the number of copies of the public key.
Let the message length, N , be some poly(λ). A one-time public-key encryption scheme
with quantum public keys is a tuple of the following QPT algorithms:

SKGen(1λ, 1T )→ sk: Outputs a random secret key sk← K, where K is the keyspace.

PKGen(sk)→ |pk⟩: Outputs a pure state |pk⟩, which serves as the public key.

Enc(|pk⟩ ,m): Given as input the public key |pk⟩ and a message m ∈ {0, 1}N , it outputs
a ciphertext ct. This function may consume the state |pk⟩.

Dec(sk, ct): Given the secret key sk and a ciphertext ct, it outputs a plaintext m′ ∈ {0, 1}N .

We require that the scheme satisfies correctness and CPA security, defined below. In
our version of security, the adversary gets a bounded number of copies of the public key
|pk⟩.

Definition 12 (Correctness). There exists a negligible function ϵ(λ) such that for any
λ, T ∈ N and any m ∈ {0, 1}N ,

Pr

Dec(sk, ct) = m :
sk← SKGen(1λ, 1T )
|pk⟩ ← PKGen(sk)

ct← Enc(|pk⟩ ,m)

 ≥ 1− ϵ(λ)

Definition 13 (CPA Security Experiment, CPA_Exp).

1. The challenger runs SKGen(1λ, 1T ) to obtain sk. Then they run PKGen(sk) for T + 1
times to obtain |pk⟩⊗T +1. Then they send the adversary T of those copies |pk⟩⊗T .

2. The adversary sends the challenger two messages (m0,m1) ∈ {0, 1}N × {0, 1}N .

3. The challenger samples a bit b ← {0, 1} and computes ct ← Enc(|pk⟩ ,mb). Then
they send ct to the adversary.

4. The adversary outputs a guess b′ for b. The output of the experiment is 1 (win) if
b = b′ and 0 (lose) otherwise.

Definition 14 (CPA security). The encryption scheme is CPA-secure if for every T ∈ N,
there exists a negligible function ϵT (λ) such that for any quantum adversary running in
unbounded time, and any λ ∈ N, Pr[CPA_Exp = 1] ≤ 1

2 + ϵT (λ).
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4.1 Construction
Definition 15 (Parameters).

• λ is the security parameter.

• T is the number of copies of the state given to the adversary.

• N is the number of bits of the message. N can be any poly(λ), determined when
SKGen is run.

• J = λ is the number of components of the state for each message bit.

• K = 2T is the number of strings (coupons) per component.

• M = T + 1 is the modulus of the phase.

• Let X = {x1, . . . , xK} be a set of strings such that each element xk is the symbol k
concatenated with a single bit wk. Let X be the set of all such X-values.

• We will also use the definitions of p,P, and |ψX,p⟩ given in definition 6.

Algorithm 1 SKGen(1λ, 1T )
1: For each j ∈ [J ] and each n ∈ [N ]:

Sample Xj,n ← X .
Sample pj,n ← P.

2: Let sk = (Xj,n,pj,n)∀j∈[J],n∈[N ], and output sk.

Algorithm 2 PKGen(sk)
1: Prepare and output the following state:

|pk⟩ :=
⊗

j∈[J],n∈[N ]

∣∣ψXj,n,pj,n

〉

Algorithm 3 Enc(|pk⟩ ,m)
1: Measure |pk⟩ in the computational basis. For each j ∈ [J ] and each n ∈ [N ], the

measured value is a sample xj,n = (kj,n, wj,n)← Xj,n. Note that kj,n is a uniformly
random value from [K], and wj,n = wj,n

kj,n is the corresponding string.
2: For each n ∈ [N ], let mn be the nth bit of m. Then compute a ciphertext bit:

cn := mn ⊕
⊕
j∈[J]

wj,n

3: Output the following:

ct :=
[
(cn)∀n∈[N ],

(
kj,n

)
∀j∈[J],n∈[N ]

]
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Algorithm 4 Dec(sk, ct)

1: Parse sk as (Xj,n,pj,n)∀j∈[J],n∈[N ], and parse ct as
[
(cn)∀n∈[N ],

(
kj,n

)
∀j∈[J],n∈[N ]

]
.

2: For each n ∈ [N ] and j ∈ [J ], use kj,n and Xj,n to look up wj,n = wj,n
kj,n .

3: For each message bit n ∈ [N ], compute a plaintext bit:

m′n := cn ⊕
⊕
j∈[J]

wj,n

4: Let m′ = (m′1, . . . ,m′N ), and output m′.

Theorem 6. The above construction of one-time public key encryption satisfies correctness
(definition 12).

Proof. In Enc(|pk⟩ ,m), we measure |pk⟩ in the computational basis to get samples xj,n =
(kj,n, wj,n)← Xj,n for each j, n.

In Dec(sk, ct), we are given kj,n and Xj,n, so we can look up xj,n = (kj,n, wj,n). Then

m′n = cn ⊕
⊕
j∈[J]

wj,n = mn ⊕
⊕
j∈[J]

wj,n ⊕
⊕
j∈[J]

wj,n

= mn

Therefore Dec [sk,Enc (|pk⟩ ,m)] = m.

Theorem 7. The above construction of one-time public key encryption is CPA-secure
(definition 14).

4.2 Proof of Theorem 7 (Security)
Hybrids: Consider the following sequence of hybrids, which transforms the security
game into a classical game that is simpler to analyze. Any changes from the previous
hybrids are shown in red.

• G0 is the security game of definition 13 using the construction of section 4.1:

1. For each j ∈ [J ] and each n ∈ [N ], the challenger does the following:
(a) Sample Xj,n ← X .
(b) Sample pj,n ← P.
(c) Prepare T + 1 copies of the state

∣∣ψXj,n,pj,n

〉
, and send T of those copies

to the adversary.
2. The adversary sends the challenger two messages (m0,m1) ∈ {0, 1}N × {0, 1}N .
3. Encryption:

(a) The challenger samples a bit b← {0, 1}.
(b) For each j ∈ [J ] and each n ∈ [N ], the challenger measures

∣∣ψXj,n,pj,n

〉
in the computational basis. The measured value is a sample xj,n =
(kj,n, wj,n)← Xj,n.

(c) For each n ∈ [N ], the challenger computes:

cn = mn
b ⊕

⊕
j∈[J]

wj,n

They send the adversary ct =
[
(cn)∀n∈[N ],

(
kj,n

)
∀j∈[J],n∈[N ]

]
.
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4. The adversary outputs a guess b′ for b. The output of the experiment is 1 (win)
if b = b′ and 0 (lose) otherwise.

• G1:

1. For each j ∈ [J ] and each n ∈ [N ], the challenger does the following:
(a) Sample Xj,n ← X .
(b) Sample pj,n ← P.
(c) Prepare T copies of the state

∣∣ψXj,n,pj,n

〉
, and send the copies to the

adversary.
2. The adversary sends the challenger two messages (m0,m1) ∈ {0, 1}N × {0, 1}N .
3. Encryption:

(a) The challenger samples a bit b← {0, 1}.
(b) For each j ∈ [J ] and each n ∈ [N ], the challenger samples xj,n =

(kj,n, wj,n)← Xj,n.
(c) For each n ∈ [N ], the challenger computes:

cn = mn
b ⊕

⊕
j∈[J]

wj,n

They send the adversary ct =
[
(cn)∀n∈[N ],

(
kj,n

)
∀j∈[J],n∈[N ]

]
.

4. The adversary outputs a guess b′ for b. The output of the experiment is 1 (win)
if b = b′ and 0 (lose) otherwise.

• G2:

1. For each j ∈ [J ] and each n ∈ [N ], the challenger does the following:
(a) Sample Xj,n ← X .
(b) Sample yj,n ←

(
Xj,n

)T , and send yj,n to the adversary.
2. The adversary sends the challenger two messages (m0,m1) ∈ {0, 1}N × {0, 1}N .
3. Encryption:

(a) The challenger samples a bit b← {0, 1}.
(b) For each j ∈ [J ] and each n ∈ [N ], the challenger samples xj,n =

(kj,n, wj,n)← Xj,n.
(c) For each n ∈ [N ], the challenger computes:

cn = mn
b ⊕

⊕
j∈[J]

wj,n

They send the adversary ct =
[
(cn)∀n∈[N ],

(
kj,n

)
∀j∈[J],n∈[N ]

]
.

4. The adversary outputs a guess b′ for b. The output of the experiment is 1 (win)
if b = b′ and 0 (lose) otherwise.

As before, let val(G0) be the maximum Pr[G0 → 1], over all strategies of the adversary.
And for the other hybrids, val is defined analogously.

Claim. The output distributions of G0 and G1 are identical.
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Proof. The main difference between G0 and G1 is how the sample xj,n is generated. In G0,
the challenger prepares the state

∣∣ψXj,n,pj,n

〉
and measures it in the computational basis

to get the sample xj,n ← Xj,n. In G1, the challenger samples xj,n ← Xj,n directly. The
choice of which sampling procedure to use does not affect the output distribution of the
hybrid, so the output distributions of G0 and G1 are identical.

Claim. val(G1) = val(G2).

Proof. We can appeal to theorem 4 to say that for any adversary for G1, its state at the
end of step 1 can be simulated in G2, and vice versa.

Claim. There exists a negligible function ϵ(λ) such that for any λ ∈ N, val(G2) ≤ 1
2 + ϵ(λ).

Proof.

• Recall that yj,n is a tuple of elements sampled from Xj,n. Let yj,n ∩Xj,n be the set
of elements of Xj,n that are contained in yj,n. Then

∣∣yj,n ∩Xj,n
∣∣ is the number of

distinct elements of Xj,n that yj,n contains. Note that
∣∣yj,n ∩Xj,n

∣∣ ≤ T .

• In step 3b of G2, the challenger samples xj,n = (kj,n, wj,n)← Xj,n (for each j ∈ [J ]
and n ∈ [N ]). In the case where xj,n /∈ yj,n ∩Xj,n, then wj,n is independent of the
adversary’s input from step 1. Also in this case, the ciphertext bit

cn = mn
b ⊕

⊕
j∈[J]

wj,n

is uniformly random and independent of the adversary’s input in step 1, their output
in step 2, and the bit b.

• The same argument generalizes to ct: ct is independent of the adversary’s input in step
1, their output in step 2, and the bit b if the the following condition holds: for every
message bit n ∈ [N ], there exists a component j ∈ [J ] such that xj,n /∈ yj,n ∩Xj,n.

• We will show that this condition holds with overwhelming probability.

• For any given j ∈ [J ], n ∈ [N ],

Pr
xj,n←Xj,n

[
xj,n ∈ yj,n ∩Xj,n

]
=
∣∣yj,n ∩Xj,n

∣∣
|Xj,n|

≤ T

K
= 1

2

• For any given n ∈ [N ],

Pr
xj,n←Xj,n,∀j

[
∀j ∈ [J ], xj,n ∈ yj,n ∩Xj,n

]
≤ 2−J

Pr
xj,n←Xj,n,∀j,n

[
∃n, ∀j ∈ [J ], xj,n ∈ yj,n ∩Xj,n

]
≤ N · 2−J = N · 2−λ

Pr
xj,n←Xj,n,∀j,n

[
∀n, ∃j ∈ [J ], xj,n /∈ yj,n ∩Xj,n

]
≥ 1−N · 2−λ

• If ct is independent of the adversary’s input in step 1, their output in step 2, and
the bit b, then ct gives the adversary no information about b, so the adversary’s
probability of guessing b is 1/2.

• In total, this means that

val(G2) ≤ 1
2 ·
(
1−N · 2−λ

)
+ 1 ·

(
N · 2−λ

)
= 1

2 + 1
2 ·N · 2

−λ
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• Let ϵ(λ) = 1
2 · N · 2−λ. Note that ϵ(λ) is negligible because N = poly(λ). Then

val(G2) ≤ 1
2 + ϵ(λ).

Corollary 1. There exists a negligible function ϵ(λ) such that for any λ ∈ N, val(G0) ≤
1
2 + ϵ(λ).

Proof. This claim follows immediately from the previous claims.

Finally, G0 is the security game of definition 13 using the construction from section 4.1,
so the construction is CPA-secure.

5 One-Time Signatures
Definition 16 (One-Time Signature Scheme with Quantum Public Keys). Let λ ∈ N
be the security parameter, and let T ∈ N bound the number of copies of the public key.
Let the message length, N , be some poly(λ). A one-time signature scheme with quantum
public keys is a tuple of the following QPT algorithms:

SKGen(1λ, 1T )→ sk: Outputs a random secret key sk← K, where K is the keyspace.

PKGen(sk)→ |pk⟩: Outputs a pure state |pk⟩, which serves as the public key.

Sign(sk,m)→ σ: Given as input the secret key sk and a message m ∈ {0, 1}N , it outputs
a classical signature σ.

Ver(|pk⟩ ,m, σ)→ {0, 1}: Verifies the signature and outputs either 1 (accept) or 0 (reject).

We require that the scheme satisfies correctness and one-time security, defined below.

Definition 17 (Correctness). There exists a negligible function ϵ(λ) such that for any
λ, T ∈ N and any m ∈ {0, 1}N ,

Pr

Ver(|pk⟩ ,m, σ) = 1 :
sk← SKGen(1λ, 1T )
|pk⟩ ← PKGen(sk)
σ ← Sign(sk,m)

 ≥ 1− ϵ(λ)

In our version of security, the adversary gets a bounded number of copies, T , of the
public key, and they may also request a signature on any message of their choice.

Definition 18 (One-Time Signature Security Game, Sig_Forge_Exp).

1. The challenger runs SKGen(1λ, 1T ) to obtain sk. Then they run PKGen(sk) for T + 1
times to obtain T + 1 copies of |pk⟩. Finally, they send |pk⟩⊗T to the adversary and
keep one copy of |pk⟩ for later.

2. The adversary sends the challenger a message m′ ∈ {0, 1}N . The challenger computes
σ′ := Sign(sk,m′), and sends it to the adversary.

3. The adversary outputs a message-signature pair (m,σ).

4. The challenger checks whether m ̸= m′ and Ver(|pk⟩ ,m, σ) = 1. The output of the
experiment is 1 (win) if both checks pass, and 0 (lose) otherwise.

Definition 19 (One-Time Security). The signature scheme is one-time secure if for
any T ∈ N, there exists a negligible function ϵT (λ) such that for any quantum adversary
running in unbounded time, and any λ ∈ N, Pr[Sig_Forge_Exp = 1] ≤ ϵT (λ).
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Construction
Our construction will use the one-way state generator from section A. Let the one-way
state generator be a tuple of the following algorithms: (OWSG.KeyGen,OWSG.StateGen,
OWSG.Ver).

Algorithm 5 SKGen(1λ, 1T )
1: For each bit index n ∈ [N ] and each bit value b ∈ {0, 1}:

1: Sample kb
n ← OWSG.KeyGen(1λ).

2: Let sk =
[
(k0

1, k
1
1), . . . , (k0

N , k
1
N )
]
, and output sk.

Algorithm 6 PKGen(sk)
1: For each bit index n ∈ [N ] and each bit value b ∈ {0, 1}:

1: Generate the state
∣∣Ψb

n

〉
= OWSG.StateGen(kb

n).
2: Let |pk⟩ =

(∣∣Ψ0
1
〉
⊗
∣∣Ψ1

1
〉)
⊗ · · · ⊗

(∣∣Ψ0
N

〉
⊗
∣∣Ψ1

N

〉)
, and output |pk⟩.

Algorithm 7 Sign(sk,m)
1: For each bit index n ∈ [N ]:

1: Let σn = kmn
n .

2: Let σ = [σ1, . . . , σN ], and output σ.

Algorithm 8 Ver(|pk⟩ ,m, σ)
1: Parse |pk⟩ as

(∣∣Ψ0
1
〉
⊗
∣∣Ψ1

1
〉)
⊗ · · · ⊗

(∣∣Ψ0
N

〉
⊗
∣∣Ψ1

N

〉)
, and parse σ as (k1, . . . , kN ).

2: For each bit index n ∈ [N ]:
1: Check whether OWSG.Ver (kn, |Ψmn

n ⟩) = 1.
2: If all checks pass, then output 1. Otherwise output 0.

Theorem 8. The above construction of a one-time signature scheme satisfies correctness
(definition 17).

Proof. For each message bit n ∈ [N ]:

Sign(sk,m) outputs the key kmn
n , and

Ver(|pk⟩ ,m, σ) checks whether OWSG.Ver (kmn
n , |Ψmn

n ⟩) = 1.

By the correctness of the one-way state generator scheme, OWSG.Ver (kmn
n , |Ψmn

n ⟩) outputs
1 with probability ≥ 1 − negl(λ). Therefore, Ver [|pk⟩ ,m,Sign (sk,m)] outputs 1 with
probability ≥ 1− negl(λ).

Theorem 9. The above construction of a one-time signature scheme satisfies one-time
security (definition 19).

Proof. We can reduce the security of the one-time signature (OTS) scheme to the security
of the underlying one-way state generator (OWSG) scheme. Note that for each position
(n, b) ∈ [N ]× {0, 1}, the OTS scheme contains an instance of the OWSG scheme.

Given an instance of the OWSG security game, we will embed it into one position
(n∗, b∗) of the OTS security game and then simulate the OTS security game. Given an
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adversary AOTS that breaks the security of the one-time signature scheme, we will construct
an adversary AOWSG that breaks the security of the one-way state generator scheme.

Algorithm 9 AOWSG

1: The algorithm receives |Ψk∗⟩⊗T , where |Ψk∗⟩ ← OWSG.StateGen(k∗), and k∗ ←
OWSG.KeyGen(1λ).

2: Embed the OWSG instance into a random position of the OTS instance: Choose a
random n∗ ← [N ] and b∗ ← {0, 1}. Set

∣∣Ψb∗

n∗

〉⊗T = |Ψk∗⟩⊗T , and let kb∗

n∗ = ⊥.
3: Fill out the rest of the positions of the OTS instance:

1: For all (n, b) ∈ [N ]×{0, 1} not equal to (n∗, b∗): sample kb
n ← OWSG.KeyGen(1λ),

and generate T + 1 copies of the state
∣∣Ψb

n

〉
= OWSG.StateGen(kb

n).
2: Let |pk⟩ =

(∣∣Ψ0
1
〉
⊗
∣∣Ψ1

1
〉)
⊗ · · · ⊗

(∣∣Ψ0
N

〉
⊗
∣∣Ψ1

N

〉)
, and generate T copies of |pk⟩.

3: Let sk =
[
(k0

1, k
1
1), . . . , (k0

N , k
1
N )
]
.

4: Run AOTS:
1: Run AOTS on input |pk⟩⊗T until it outputs m′. If m′n∗ ̸= b∗, then continue.

Otherwise abort.
2: Compute σ′ = Sign(sk,m′) and send σ′ to AOTS.
3: Run AOTS until it outputs (m,σ).

4: If mn∗ = b∗, then continue. Otherwise abort.
5: Parse σ as (k1, . . . , kN ).
6: For every n ∈ [N ]\{n∗}, check that OWSG.Ver (kn, |Ψmn

n ⟩) = 1. If so, continue. If
not, halt and output 0.

7: Send kn∗ to the OWSG challenger, who checks that OWSG.Ver (kn∗ , |Ψk∗⟩) = 1.

Observe that AOWSG is simulating a version of the OTS security game by running AOTS
and simulating the OTS challenger. Specifically, AOWSG is simulating the following game,
Sig_Forge_Exp′. Any changes from Sig_Forge_Exp are shown in red.

Definition 20 (Sig_Forge_Exp′).

1. The challenger runs SKGen(1λ, 1T ) to obtain sk. Then they run PKGen(sk) for T + 1
times to obtain T + 1 copies of |pk⟩. Finally, they send |pk⟩⊗T to the adversary and
keep one copy of |pk⟩ for later. The challenger also samples (n∗, b∗)← [N ]× {0, 1}.

2. The adversary sends the challenger a message m′ ∈ {0, 1}N . If m′n∗ ̸= b∗, then the
challenger continues. Otherwise, they abort.

3. The challenger computes σ′ := Sign(sk,m′), and sends it to the adversary.

4. The adversary outputs a message-signature pair (m,σ).

5. If mn∗ = b∗, then the challenger continues. Otherwise, they abort.

6. The challenger checks whether m ̸= m′ and Ver(|pk⟩ ,m, σ) = 1. The output of the
experiment is 1 (win) if both checks pass, and 0 (lose) otherwise.

Lemma 3. For any adversary AOTS that wins Sig_Forge_Exp with probability p, the same
adversary wins Sig_Forge_Exp′ with probability ≥ p

2·N .

Proof. The difference between Sig_Forge_Exp and Sig_Forge_Exp′, is that in Sig_Forge_Exp′,
the challenger checks that b∗ = mn∗ ̸= m′n∗ and if the condition is not satisfied, they
abort. Note that the condition, b∗ = mn∗ ̸= m′n∗ , can equivalently be checked at the
end of Sig_Forge_Exp′, and the adversary’s behavior up until that point is the same in
Sig_Forge_Exp and Sig_Forge_Exp′.
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If m ̸= m′, then the messages must differ on at least one bit. Given that m ̸= m′, the
probability that b∗ = mn∗ ̸= m′n∗ is at least 1

2·N . Therefore the probability that AOTS
wins Sig_Forge_Exp′ is ≥ p

2·N .

Lemma 4. If AOWSG does not abort, then the probability that AOTS’s output wins
Sig_Forge_Exp′ is ≤ the probability that AOWSG’s output wins the OWSG security game.

Proof. Given that AOWSG does not abort, mn∗ = b∗, and AOWSG outputs kn∗ . The proba-
bility that AOWSG’s output wins the OWSG security game is Pr[OWSG.Ver(kn∗ , |Ψk∗⟩) = 1].
AOTS’s output wins the simulated OTS security game only if OWSG.Ver(kn∗ , |Ψk∗⟩) = 1.
Therefore the probability that AOTS’s output wins Sig_Forge_Exp′ is ≤ the probability
that AOWSG’s output wins the OWSG security game.

We’ve shown that if AOTS wins Sig_Forge_Exp with probability p, then AOWSG wins
the OWSG security game with probability ≥ p

2·N .
Now we’ll show that if OTS scheme is insecure, then the OWSG scheme is also insecure.
Pick any negligible function ϵ(λ). Then ϵ(λ) · 2 ·N(λ) is also negligible because N is

some polynomial function of λ.
Next, if the OTS scheme is insecure, then there is an adversary AOTS such that for

some λ, AOTS wins the OTS security game with probability > ϵ(λ) · 2 · N(λ). By the
reduction above, there is also an adversary AOWSG and some λ such that AOWSG wins the
OWSG security game with probability > ϵ(λ). Therefore, the OWSG generator scheme is
not secure.

The contrapositive is also true: if the OWSG scheme is secure, then the OTS scheme is
secure.

6 Impossibility Results

6.1 Algorithm to find a good key
This section provides a lemma about shadow tomography that is used to prove our impos-
sibility results.

Let ρ be a quantum state. Let K be a set of keys, and for each k ∈ K, define an
observable Ok that acts on ρ such that Tr(Ok) ≤ 1. Ok represents the outcome of a
measurement on ρ, which occurs with probability Tr(Ok · ρ). Finally let O = {Ok}∀k∈K
be the set of observables.

Theorem 10. For any such O, there is a quantum algorithm SO (runnning in unbounded
time) and some function T ∗(|K|) = O(log |K|) such that for any state ρ and any T > T ∗,
SO(ρ⊗T ) outputs, with probability ≥ .99, a k′ ∈ K such that

Tr(Ok′ρ) ≥
[
max
k∈K

Tr(Okρ)
]
− .01

Proof. The proof follows a similar approach to [BGHD+23].
SO will use the shadow tomography algorithm from [HKP20] to estimate the value of

Tr(Okρ) for every k ∈ K. Then it will output the k′ with the largest estimated value.
The following theorem describes performance guarantees of [HKP20]’s shadow tomog-

raphy algorithm.
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Theorem 11 (Theorem 4 in [BGHD+23], based on Theorem 1 in [HKP20]). Let O1, . . . , OM

be M fixed observables acting on an unknown state ρ. Let ϵ, δ ∈ [0, 1] be accuracy parameters.
Let T ∗ be the number of copies of ρ. T ∗ is some function

T ∗(M) = O

[
log(M/δ) · ϵ−2 · max

i∈[M ]
Tr
(
O2

i

)]
Finally, there is a quantum algorithm that takes as input ρ⊗T ∗ , performs random Clifford
measurements, and outputs estimates (p̃1, . . . , p̃M ) such that with probability at least 1− δ:

∀i, |p̃i − Tr(Oiρ)| ≤ ε

Now, we will fill in values for the parameters in theorem 11. The set of observables
will be O = {Ok}∀k∈K, defined above. The number of observables is M = |K|. Next, let
δ = .01 and ϵ = .005. Also, Tr

(
O2

k

)
≤ 1 for all k ∈ K. This is because Ok is a positive

semi-definite operator satisfying Tr(Ok) ≤ 1, so Tr
(
O2

k

)
≤ Tr(Ok) ≤ 1.

In summary, theorem 11 says that for some T ∗ = O(log |K|), there is an algorithm that
takes ρ⊗T ∗ and outputs estimates (p̃k)∀k∈K such that with probability at least .99:

∀k, |p̃k − Tr(Okρ)| ≤ .005

Now the algorithm SO is simple to state:
SO(ρ⊗T ) :

1. Run the shadow tomography algorithm of theorem 11, using the parameters
from above, on input ρ⊗T ∗ . The output is the tuple of estimates: (p̃k)∀k∈K.

2. Select the key k′ ∈ K with the largest value of p̃k′ , and output k′.

Let us consider the case where the values of (p̃k)∀k∈K that SO computes satisfy:

∀k, |p̃k − Tr(Oiρ)| ≤ .005

This case occurs with probability ≥ .99.
Let k∗ ∈ K be the key with the largest value of Tr(Ok∗ρ). Then

p̃k∗ ≥ Tr(Ok∗ρ)− .005 =
[
max
k∈K

Tr(Okρ)
]
− .005

For the k′ that SO outputs, p̃k′ ≥ p̃k∗ . Additionally, Tr(Ok′ρ) ≥ p̃k′ − .005, so

Tr(Ok′ρ) ≥
[
max
k∈K

Tr(Okρ)
]
− .01

6.2 Key length for one-way state generator schemes
In a one-way state generator scheme, the bit length of the key k is at least log |K| (where K
is the keyspace). It is natural to wonder whether some construction of a OWSG could have
the key length grow slower than T . The following theorem says that this is not possible.
Note that the result still holds when StateGen is allowed to output a mixed state, not just
a pure state.
Theorem 12. Consider a one-way state generator scheme where the output of StateGen(k)
is allowed to be a mixed state. For any construction of such a scheme that satisfies
correctness and security, log |K| ̸= o(T ).
Proof. Assume we are given a OWSG scheme that satisfies correctness and for which
log |K| = o(T ). Then we will show that there is an adversary that breaks the security of
the scheme.
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The observables: Let K be the set of possible keys output by KeyGen(1λ, 1T ). For any
given k ∈ K, let ρk be the output of StateGen(k), expressed as a density matrix.

For a given k′ ∈ K, we can view the act of computing Ver(k′, ρk) and measuring the
output as a measurement on ρk. We can represent the event that Ver(k′, ρk) = 1 as an
observable Ok′ . Let Ok′ be a positive semi-definite operator acting on ρk that satisfies:

Tr(Ok′ρk) = Pr [Ver(k′, ρk) = 1]

and Tr(Ok′) ≤ 1. Let O = {Ok′}∀k′∈K be the collection of these observables.

The adversary’s strategy:

1. On input ρ⊗T
k , call SO(ρ⊗T

k ), which returns k′ ∈ K.

2. Output k′.

OWSG security game: The following hybrid, G0, is the OWSG security game when
the adversary follows the strategy above:

G0(1λ, 1T ) :

1. k ← KeyGen(1λ, 1T ).
2. ρ⊗T +1

k = StateGen(k)⊗T +1.
3. k′ ← SO(ρ⊗T

k ).
4. Compute Ver(k′, ρk), and output the result.

Claim. For any negligible function ϵs(λ) and for sufficiently large T and λ,

Pr
[
G0(1λ, 1T ) = 1

]
> ϵs(λ)

Proof. For a given k, let pk = Pr [Ver(k, ρk) = 1] = Tr(Okρk). The correctness property
of the OWSG scheme (definition 22) says that there is some negligible function ϵc(λ) such
that for any λ, T ,

E
k←K

pk ≥ 1− ϵc(λ)

Next, let us consider the case where T ∗ ≤ T . This holds for sufficiently large T because
T ∗ is some function O(log |K|), and log |K| = o(T ).

When T ∗ ≤ T , we can appeal to theorem 10, which says that for any k, SO(ρ⊗T
k )

outputs, with probability ≥ .99, a k′ such that

Pr [Ver(k′, ρk) = 1] ≥
[

max
k′′∈K

Tr(Ok′′ρk)
]
− .01

≥ pk − .01

Then
Pr
[
G0(1λ, 1T ) = 1

]
≥ E

k←K
.99 · (pk − .01) ≥ .99 · [.99− ϵc(λ)]

Next, for any negligible function ϵs(λ) and sufficiently large λ,

.99 · [.99− ϵc(λ)] > .9 > ϵs(λ)

In summary, for any negligible function ϵs(λ) and for sufficiently large T and λ, Pr
[
G0(1λ, 1T ) = 1

]
>

ϵs(λ).

Therefore, the adversary described above breaks the security of the OWSG scheme.
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6.3 Secret key length for one-time signature schemes
Analogously to the impossibility result of section 6.2, we can prove that for one-time
signature schemes, the bit length of the secret key cannot grow slower than T . Note that
our result holds even when the public key is a mixed state.

Let K be the keyspace of the secret key sk; then the bit length of sk is at least log |K|.

Theorem 13. Consider a one-time signature scheme where the output of PKGen(sk) is
allowed to be a mixed state. For any construction of such a scheme that satisfies correctness
and security, log |K| ̸= o(T ).

Proof. Assume we are given a OTS scheme that satisfies correctness and for which log |K| =
o(T ). Then we will show that there is an adversary that breaks the security of the scheme.
The adversary uses shadow tomography to find a sk′ that is good at producing signatures
that the challenger will accept.

The observables: Let K be the set of possible secret keys output by SKGen(1λ, 1T ).
For a given sk ∈ K, let ρsk be the output of PKGen(sk), expressed as a density matrix.
Next, for a given sk′ ∈ K, let M(sk′, ρsk) compute the following function:

M(sk′, ρsk):

1. Let m = 1N .
2. Compute σ ← Sign(sk′,m).
3. Compute Ver(ρsk,m, σ), and output the result.

We can view M(sk′, ρsk) as a measurement on ρsk. We can represent the event that
M(sk′, ρsk) = 1 as an observable Osk′ . Let Osk′ be a positive semi-definite operator acting
on ρsk that satisfies:

Tr(Osk′ρsk) = Pr
[
M(sk′, ρsk) = 1

]
and Tr(Osk′) ≤ 1. Let O = {Osk′}∀sk′∈K be the collection of such observables.

The adversary’s strategy:

1. Input: ρ⊗T
sk .

2. Send m′ = 0N to the challenger and receive a signature σ′ on m′. Then discard
(m′, σ′).

3. Call SO(ρ⊗T
sk ), which outputs sk′ ∈ K.

4. Let m = 1N , and compute σ ← Sign(sk′,m).

5. Output (m,σ).

Hybrids: We will use a sequence of hybrids to simplify the OTS security game.

• G0(1λ, 1T ) is the OTS security game with the adversary above:

1. The challenger samples sk ← SKGen(1λ, 1T). Then they generate the T + 1
copies of ρsk and send T of the copies to the adversary.

2. The adversary sends the challenger m′ = 0N . The challenger sends the adversary
σ′ := Sign(sk,m′).

3. The adversary computes:
sk′ ← SO(ρ⊗T

sk )
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m = 1N

σ = Sign(sk′,m)
and sends (m,σ) to the challenger.

4. The challenger checks whether m ̸= m′ and Ver(ρsk,m, σ) = 1. The output of
the experiment is 1 (win) if both checks pass, and 0 (lose) otherwise.

• G1(1λ, 1T ) :

1. sk← SKGen(1λ, 1T).
2. ρ⊗T +1

sk = PKGen(sk)⊗T +1

3. sk′ ← SO(ρ⊗T
sk )

4. σ = Sign(sk′, 1N )
5. Compute Ver(ρsk, 1N , σ), and output the result.

• G2(1λ, 1T ) :

1. sk← SKGen(1λ, 1T).
2. ρ⊗T +1

sk = PKGen(sk)⊗T +1

3. sk′ ← SO(ρ⊗T
sk )

4. Compute M(sk′, ρsk), and output the result.
Claim. Pr

[
G0(1λ, 1T ) = 1

]
= Pr

[
G1(1λ, 1T ) = 1

]
= Pr

[
G2(1λ, 1T ) = 1

]
for any (λ, T ).

Proof. G1 is the same as G0 except G1 omits the step where the adversary sends m′ = 0N

and the challenger responds with σ′, as well as the step where the challenger checks whether
m ̸= m′. These steps can be omitted because the adversary doesn’t use (m′, σ′) to compute
(m,σ), and it’s always true that m ̸= m′.

Next, G2 is equivalent to G1; we’ve just changed the notation to use M(sk′, ρsk).

Claim. For any negligible function ϵs(λ) and for sufficiently large T and λ,

Pr
[
G2(1λ, 1T ) = 1

]
> ϵs(λ)

Proof. M(sk′, ρsk) signs a message with sk′ and then verifies it with ρsk. When sk′ = sk,
we can appeal to the correctness of the scheme to show that verification will pass with
overwhelming probability. To state this formally: for a given sk,

let psk = Pr [M(sk, ρsk) = 1] = Tr(Oskρsk)
The correctness property of the OTS scheme (definition 17) says that there is some
negligible function ϵc(λ) such that for any λ, T ,

E
sk←K

psk ≥ 1− ϵc(λ)

Next, consider the case where T ∗ ≤ T , which holds for sufficiently large T . Then
theorem 10 says that for any sk, SO(ρ⊗T

sk ) outputs, with probability ≥ .99, a sk′ such that

Pr
[
M(sk′, ρsk) = 1

]
≥
[

max
sk′′∈K

Tr(Osk′′ρsk)
]
− .01

≥ psk − .01
Then

Pr
[
G2(1λ, 1T ) = 1

]
≥ E

sk←K
.99 · (psk − .01) ≥ .99 · [.99− ϵc(λ)]

Next, for any negligible function ϵs(λ) and sufficiently large λ, .99 · [.99− ϵc(λ)] > ϵs(λ).

These claims immediately imply that the adversary described above breaks the security
of the OTS scheme.
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6.4 Secret key length for one-time public key encryption schemes
We can also prove the analogous impossibility result for one-time public key encryption
schemes (as defined in definition 11). We will show that the bit length of the secret key
cannot grow slower than T . Note that our result holds even when the public key is a mixed
state.

Let K be the keyspace of the secret key sk; then the bit length of sk is at least log |K|.

Theorem 14. Consider a one-time public key encryption scheme where the output of
PKGen(sk) is allowed to be a mixed state. For any construction of such a scheme that
satisfies correctness and security, log |K| ̸= o(T ).

Proof. Assume we are given a PKE scheme that satisfies correctness and for which
log |K| = o(T ). Then we will show that there is an adversary that breaks the security of the
scheme. The adversary uses shadow tomography to find a sk′ that is good at decrypting
ciphertexts encrypted by the challenger’s key sk.

The observables: Let K be the set of possible secret keys output by SKGen(1λ, 1T ).
For a given sk ∈ K, let ρsk be the output of PKGen(sk), expressed as a density matrix.
Next, for a given sk′ ∈ K, let M(sk′, ρsk) compute the following function:

M(sk′, ρsk):

1. Let m0 = 0N and m1 = 1N .
2. Sample b← {0, 1}, and compute ct← Enc(ρsk,mb).
3. Compute m′ ← Dec(sk′, ct).
4. If m′ = mb, then output 1. Otherwise, output 0.

Next, let Osk′ be a positive semi-definite operator acting on ρsk that satisfies:

Tr(Osk′ρsk) = Pr
[
M(sk′, ρsk) = 1

]
and Tr(Osk′) ≤ 1. Let O = {Osk′}∀sk′∈K.

The adversary’s strategy:

1. Input: ρ⊗T
sk .

2. Call SO(ρ⊗T
sk ), which outputs sk′ ∈ K.

3. Send m0 := 0N and m1 := 1N to the challenger and receive ct, the encryption of mb.

4. Compute m′ ← Dec(sk′, ct). If m′ = m0, then output b′ = 0. If m′ = m1, then
output b′ = 1. Otherwise, output b′ = ⊥.

Hybrids: We will use a sequence of hybrids to simplify the PKE security game.

• G0(1λ, 1T ) is the PKE security game with the adversary above:

1. The challenger samples sk ← SKGen(1λ, 1T). Then they generate the T + 1
copies of ρsk and send T of the copies to the adversary.

2. The adversary calls SO(ρ⊗T
sk ), which outputs sk′ ∈ K.

3. The adversary sends the challenger m0 = 0N and m1 = 1N .
4. The challenger samples b← {0, 1}, computes ct← Enc(ρsk,mb), and sends ct

to the adversary.
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5. The adversary computes m′ ← Dec(sk′, ct). If m′ = m0, the adversary outputs
b′ = 0. If m′ = m1, they output b′ = 1. Otherwise, they output b′ = ⊥.

6. The output of the experiment is 1 if b = b′ and 0 otherwise.

• G1(1λ, 1T ) :

1. Sample sk← SKGen(1λ, 1T).
2. Generate ρ⊗T +1

sk = PKGen(sk)⊗T +1.

3. Compute sk′ ← SO(ρ⊗T
sk ).

4. Let m0 = 0N and m1 = 1N .
5. Sample b← {0, 1}, and compute ct← Enc(ρsk,mb).
6. Compute m′ ← Dec(sk′, ct).
7. If m′ = mb, then output 1. Otherwise, output 0.

• G2(1λ, 1T ) :

1. Sample sk← SKGen(1λ, 1T).
2. Generate ρ⊗T +1

sk = PKGen(sk)⊗T +1.

3. Compute sk′ ← SO(ρ⊗T
sk ).

4. Compute M(sk′, ρsk), and output the result.

Claim. Pr
[
G0(1λ, 1T ) = 1

]
= Pr

[
G1(1λ, 1T ) = 1

]
= Pr

[
G2(1λ, 1T ) = 1

]
for any (λ, T ).

Proof. G1 is the same as G0 except in how they compute the output of the experiment.
We will show that they compute the same output, just with different procedures.

In G0:

• If m′ /∈ {m0,m1}, then the output is 0 because b′ = ⊥ ≠ b.

• If m′ = mb, then the output is 1 because b′ = b.

• If m′ = m¬b, then the output is 0 because b′ = ¬b ̸= b.

Equivalently, G1 outputs 1 if and only if m′ = mb.
Next, G2 is equivalent to G1; we’ve just changed the notation to use M(sk′, ρsk).

Claim. For any negligible function ϵs(λ) and for sufficiently large T and λ,

Pr
[
G2(1λ, 1T ) = 1

]
>

1
2 + ϵs(λ)

Proof. M(sk′, ρsk) encrypts a message with ρsk and then decrypts it with sk′. When
sk′ = sk, we can appeal to the correctness of the scheme to show that m′ = mb with
overwhelming probability. To state this formally: for a given sk,

let psk = Pr [M(sk, ρsk) = 1] = Tr(Oskρsk)

The correctness property of the PKE scheme (definition 12) says that there is some
negligible function ϵc(λ) such that for any λ, T ,

E
sk←K

psk ≥ 1− ϵc(λ)
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Next, consider the case where T ∗ ≤ T , which holds for sufficiently large T . Then
theorem 10 says that for any sk, SO(ρ⊗T

sk ) outputs, with probability ≥ .99, a sk′ such that

Pr
[
M(sk′, ρsk) = 1

]
≥
[

max
sk′′∈K

Tr(Osk′′ρsk)
]
− .01

≥ psk − .01

Then
Pr
[
G2(1λ, 1T ) = 1

]
≥ E

sk←K
.99 · (psk − .01) ≥ .99 · [.99− ϵc(λ)]

Next, for any negligible function ϵs(λ) and sufficiently large λ, .99 · [.99− ϵc(λ)] > .9 >
1
2 + ϵs(λ). Then

Pr
[
G2(1λ, 1T ) = 1

]
>

1
2 + ϵs(λ)

These claims immediately imply that the adversary described above breaks the security
of the PKE scheme.
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Definition 23 (Security). For any T ∈ N, there exists a negligible function ϵT (λ) of λ
such that for any quantum algorithm A running in unbounded time, and any λ ∈ N:

Pr

1 = Ver (k′, |Ψk⟩) :

k ← KeyGen(1λ, 1T )
|Ψk⟩ ← StateGen(k)

k′ ← A
(
|Ψk⟩⊗T

)
 ≤ ϵT (λ).

A.1 Construction
Definition 24 (Parameters).

• λ is the security parameter.

• T is the number of copies of the state given to the adversary.

• J = λ is the number of components of the state |Ψk⟩.

• K = 2T is the number of strings (coupons) per component.

• M = T + 1 is the modulus of the phase.

• We will also use the definitions of X,p,X ,P, and |ψX,p⟩ given in definition 6.

Algorithm 10 KeyGen(1λ, 1T )
1: For each component j ∈ [J ]:

1: Sample Xj ← X , a set of strings.
2: Sample pj ← P, a corresponding set of phases.

3: Let k =
[
(X1,p1), . . . , (XJ ,pJ)

]
, and output k.

Let K be the set of all keys k that could be outputted by KeyGen(1λ, 1T ).

Algorithm 11 StateGen(k)
1: Parse k as

[
(X1,p1), . . . , (XJ ,pJ)

]
.

2: Prepare and output the following state:

|Ψk⟩ :=
∣∣ψX1,p1

〉
⊗ · · · ⊗

∣∣ψXJ ,pJ

〉

Algorithm 12 Ver(k′, |Ψk⟩)
1: Check that k′ ∈ K. If so, continue. If not, halt and output 0.
2: Treat StateGen(k) as a unitary that maps the all-zeros string |0⟩ to |Ψk⟩.
3: Compute StateGen(k′)† |Ψk⟩, and measure whether it equals 0.
4: Output 1 if the measurement returns 0, and output 0 otherwise.

Theorem 15. The above construction of one-way state generators satisfies correctness
(definition 22).

Proof. For two well-formed keys, k and k′, the probability that Ver(k′, |Ψk⟩) outputs 1 is∣∣⟨0|StateGen(k′)† |Ψk⟩
∣∣2 = |⟨Ψk′ |Ψk⟩|2

Therefore, the probability that Ver(k, |Ψk⟩) outputs 1 is 1.
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Theorem 16. The above construction of one-way state generators satisfies security
(definition 23).

A.2 Proof of Theorem 16 (Security)
Hybrids

Consider the following sequence of hybrids, which transforms the security game (defi-
nition 23) into a classical game. Any changes from the previous hybrid are shown in
red.

• G0 is the security game for one-way state generators, with the construction from
section A.1:

1. For each component j ∈ [J ]:
(a) Sample Xj ← X .
(b) Sample pj ← P.
(c) Let k =

[
(X1,p1), . . . , (XJ ,pJ)

]
.

2. Generate the state (|Ψk⟩ ⟨Ψk|)⊗T , and send it to the adversary.
3. The adversary responds with a key k′.
4. Output the result of Ver (k′, |Ψk⟩ ⟨Ψk|). This requires generating another copy

of |Ψk⟩ ⟨Ψk|.

• G1 :

1. For each component j ∈ [J ]:
(a) Sample Xj ← X .
(b) Sample pj ← P.
(c) Prepare the state

(∣∣ψXj ,pj

〉 〈
ψXj ,pj

∣∣)⊗T , and send it to the adversary.
2. The adversary responds with (X ′1, . . . , X ′J).
3. Output 1 with probability

∏
j∈[J]

(∣∣Xj ∩X ′j
∣∣

K

)2

and output 0 otherwise.

• G2 :

1. For each j ∈ [J ]:
(a) Sample Xj ← X .
(b) Sample yj ← Y(Xj), and send yj to the adversary.

2. The adversary responds with (X ′1, . . . , X ′J).
3. Output 1 with probability

∏
j∈[J]

(∣∣Xj ∩X ′j
∣∣

K

)2

and output 0 otherwise.
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As before, let val(G0) be the maximum Pr[G0 → 1], over all strategies of the adversary.
And for the other hybrids, val is defined analogously.

Claim. val(G0) ≤ val(G1)

Proof.

• For two given keys (k, k′), let us parse k as
[
(X1,p1), . . . , (XJ ,pJ)

]
and k′ as[

(X ′1,p′1), . . . , (X ′J ,p′J)
]
.

• We will show that for any (k, k′),

Pr [Ver (k′, |Ψk⟩ ⟨Ψk|) = 1] ≤
∏

j∈[J]

(∣∣Xj ∩X ′j
∣∣

K

)2

This implies that val(G0) ≤ val(G1) because

Pr [G0 = 1|k, k′] = Pr [Ver (k′, |Ψk⟩ ⟨Ψk|) = 1]

Pr [G1 = 1|k, k′] =
∏

j∈[J]

(∣∣Xj ∩X ′j
∣∣

K

)2

• First,

Pr
[
Ver(k′, |Ψk⟩ ⟨Ψk|) = 1

]
= |⟨Ψk′ |Ψk⟩|2 =

∏
j∈[J]

∣∣〈ψX′j ,p′j

∣∣ψXj ,pj

〉∣∣2
• Next,

∣∣〈ψX′j ,p′j

∣∣ψXj ,pj

〉∣∣ =

∣∣∣∣∣∣ 1
K

∑
k,k′∈[K]

〈
x′jk′

∣∣∣xj
k

〉
· e

2πi
M ·(pj

k
−p′j

k′ )

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
K

∑
k∈[K]

〈
x′jk

∣∣∣xj
k

〉
· e 2πi

M ·(pj
k
−p′j

k
)

∣∣∣∣∣∣
≤ 1
K

∑
k∈[K]

∣∣∣〈x′jk ∣∣∣xj
k

〉∣∣∣ · ∣∣∣e 2πi
M ·(pj

k
−p′j

k
)
∣∣∣ =

∣∣Xj ∩X ′j
∣∣

K

• Finally,

Pr
[
Ver(k′, |Ψk⟩ ⟨Ψk|) = 1

]
≤
∏

j∈[J]

(∣∣Xj ∩X ′j
∣∣

K

)2

Claim. val(G1) = val(G2)

Proof. We can appeal to theorem 4 to say that any adversary for G1 can be transformed
into an adversary for G2 with the same success probability, and vice versa.

Claim. For any T ∈ N, there exists a negligible function ϵT (λ) such that for any λ ∈ N,
val(G2) ≤ ϵT (λ).

Proof. Let us fix Xj , for all j ∈ [J ]. yj is a tuple of T samples from Xj . Since T = 1
2K,

there are always at least 1
2K strings xj

k ∈ Xj that are not contained in yj . If
∣∣X ′j ∩Xj

∣∣ >
1
2K, then the adversary must have guessed at least one of those strings correctly. This
can only occur with probability ≤ K · 2−λ because each xj

k that is not represented in yj

contains a λ-bit string that the adversary has no information about.
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This argument generalizes to all J components.

Pr
[
∃j ∈ [J ],

∣∣X ′j ∩Xj
∣∣ > 1

2K
]
≤ J ·K · 2−λ

Pr [G2 = 1] = E(Xj ,X′j)∀j

 ∏
j∈[J]

(∣∣Xj ∩X ′j
∣∣

K

)2


≤ 2−2J · Pr
[
∀j ∈ [J ],

∣∣X ′j ∩Xj
∣∣ ≤ 1

2K
]

+ (1) · Pr
[
∃j ∈ [J ],

∣∣X ′j ∩Xj
∣∣ > 1

2K
]

≤ 2−2J + Pr
[
∃j ∈ [J ],

∣∣X ′j ∩Xj
∣∣ > 1

2K
]
≤ 2−2J + J ·K · 2−λ = 2−2λ + 2 · T · λ · 2−λ

Finally, let ϵT (λ) = 2−2λ + 2 · T · λ · 2−λ. For a fixed T , ϵT (λ) is negligible in λ.

Corollary 2. For any T ∈ N, there exists a negligible function ϵT (λ) such that for any
λ ∈ N, val(G0) ≤ ϵT (λ).

Proof. The proof of this claim follows immediately from the previous claims.

Finally, G0 is the security game of definition 23 using the construction of section A.1.
Therefore the construction satisfies security.
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