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Abstract. Persistent Fault Attacks (PFA) have emerged as an active research area
in embedded cryptography. This attack exploits faults in one or multiple constants
stored in memory, typically targeting S-box elements. In the literature, such persistent
faults primarily induced by bit flips in storage, often achieved through laser fault
injection techniques. In this paper, we demonstrate that persistent faults can also be
induced through instruction skips, which can easily be achieved with almost any fault
injection methods (e.g., voltage/clock glitching, electromagnetism). Specifically, we
target AES implementations that dynamically generate the S-box table at runtime,
during the initialization phase, before executing the first AES operation. We illustrate
this with an attack on the AES implementation in the MbedTLS library, where a
clock glitch is inserted during the S-box generation. Secondly, we introduce, to our
knowledge, the first PFA that targets a constant other than the S-box elements. We
show that faulting a round constant involved in the AES key schedule is sufficient
to recover the key by a differential analysis. Compared to previous PFAs that rely
on statistical analysis requiring hundreds to thousands of ciphertexts, our approach
needs only three correct-faulty ciphertexts pairs. We showcase this attack with an
experiment on the MbedTLS AES implementation, using a clock glitch in the round
constant generation.
Keywords: Persistent Fault Attacks · Instruction Skip · Clock Glitch · AES

1 Introduction
Fault injection attacks have become a major area of interest in embedded cryptography.
These attacks take advantage of errors in the execution of cryptographic algorithms, caused
by intentional fault injection, to extract the secret key. A fault attack typically involves
two main steps: fault injection and fault analysis. In the first step, the attacker deliberately
injects faults into the target device to disrupt the algorithm’s execution. This can be
done using techniques like laser pulses, electromagnetic interference, voltage/clock glitches.
In the second step, the attacker analyzes the faulty outputs collected from the device to
recover the secret key.

The concept of fault attack was first presented by Boneh et al. [BDL97] with an applica-
tion to RSA. Subsequently, Biham and Shamir [BS97] proposed Differential Fault Analysis
(DFA) with an application to DES. Since then, DFA has become a common fault attack,
applicable to many block ciphers such as AES [PQ03, DLV03], DES [Riv09]. Over time,
numerous additional effective fault attacks have been developed using disparate techniques.
Some examples are Ineffective Fault Analysis (IFA) [Cla07], Statistical Fault Analysis
(SFA) [FJLT13], Differential Fault Intensity Analysis (DFIA) [GYTS14], Fault Sensitivity
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Analysis (FSA) [LSG+10], Statistical Ineffective Fault Analysis (SIFA) [DEK+18], Fault
Template Attack (FTA) [SBR+20].

Depending on the duration of the effect, faults can be classified into three categories:
transient faults, persistent faults, and permanent faults. A transient fault affects the
execution in a very short period, typically during a single encryption. This means that
a transient fault causes errors in only one execution and does not persist in subsequent
executions. Most fault attacks mentioned above are proposed within the transient fault
settings. A permanent fault, on the other hand, has a lasting effect on the target and
cannot be erased. Persistent faults, on which we focus in this work, fall between the other
two categories. A fault of this type persists across different executions but is erased once
the device is reset.

The concept of persistent faults was introduced by Schmidt et al. [SHP09] with an
application to attacking AES. Recently, Persistent Fault Analysis (PFA) has received
significant attention since the work of Zhang et al. [ZLZ+18]. In this work, the authors
developed a dedicated model for the persistent fault setting and proposed a technique for
recovering the key of block ciphers, with an application to AES. The model assumes that
the ciphers are implemented with a lookup table for the S-box and that the faults affect
one or multiple S-box elements stored in memory (e.g., ROM). Specifically, the faults
result in a biased faulty S-box, where one or several S-box elements appear more than once
while one or several others disappear. These faults persist across different encryptions until
the device is reset. Building on Zhang et al.’s model, many follow-up works have either
aimed to reduce the number of required ciphertexts by more advanced analyses [CGR20,
XZY+21, ZZJ+20, SBH+22, ZFL+22, ZHF+23] or to apply this model to attack different
(protected) ciphers [PZRB19, GPT19, TL22, ZFL+22]. Among the previous works, only a
few focus on fault injection experiments [ZLZ+18, SHP09, ZZJ+20, SBH+22, GTB+24],
while the others primarily focus on analysis based on assumptions about the faults.

We make the first key observation: existing PFAs are all based on the assumption
that the S-box is implemented as a lookup table stored in memory, with one or more
elements being faulted (as modeled by Zhang et al. [ZLZ+18]). In practice, this table is
typically stored statically in FLASH/ROM and then copied to RAM in runtime. Some
works target inducing faults directly in FLASH [GTB+24] or ROM [SHP09], while others
focus on inducing faults in SRAM [ZZJ+20], DRAM [ZLZ+18], or during the table transfer
from FLASH to RAM [SBH+22]. However, a static S-box table stored in FLASH is
not always the case in practice. In embedded systems, there is often a question about
using FLASH and RAM for table storage. Storing lookup tables in FLASH consumes
a certain amount of permanent memory space. To reduce this, tables can be generated
on-the-fly. Table generation helps save FLASH space, while the RAM usage remains
unchanged, whether the table is copied from FLASH or generated at runtime. For that
reason, many embedded systems use the table generation approach. In reality, some
embedded cryptographic libraries, such as MbedTLS1 and cryptlib,2 offer this strategy for
their AES implementations.

Our second key observation is that persistent faults in the literature are primarily
induced by bit flips in memory, often achieved through laser-based techniques [ZZJ+20,
SHP09, GTB+24]. Laser-based fault injection is highly complex and requires specialized,
expensive equipment, costing hundreds of thousands of dollars [BH22]. It also demands
high-precision laser pulses with proper intensity and focus, as well as chip decapsulation
without causing damage. Another approach for inducing persistent faults is electromagnetic
fault injection (EMFI), as demonstrated in [SBH+22]. The experimental setup in [SBH+22]
is also quite complex. It requires precise control over high-voltage pulses (up to 200V)
with very low rise time (less than 4ns) to avoid damaging the device, expertise in EM

1https://github.com/Mbed-TLS/mbedtls, version 3.6.1
2https://www.cs.auckland.ac.nz/~pgut001/cryptlib/, version 3.4.8

https://github.com/Mbed-TLS/mbedtls
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/


Viet Sang Nguyen, Vincent Grosso, Pierre-Louis Cayrel 3

probe customization, and accurate probe positioning for effective fault injection.
Meanwhile, instruction skip, a simple technique easily achievable with almost any fault

injection techniques (e.g., voltage/clock glitch, laser, EM), has not yet been explored
for inducing persistent faults in the literature. In addition to being easy to implement,
instruction skip can also be achieved with very low-cost equipment, for example, using
clock glitch for about 130 dollars or EM for about 10 dollars (see [BH22]). This leads us
to the following research question: Can we perform a PFA attack with an instruction skip
(that is easy to insert)? Targeting faults in S-box elements stored in memory, as done in
previous works, may seem infeasible with this approach. However, considering our first
key observation about implementations that generate table at runtime, we could instead
focus on skipping an instruction during the table generation phase.

Our third key observation is that existing PFAs all target to fault the S-box elements.
Their analysis phases focus on exploiting the biased distribution of the ciphertexts as the
consequence of the biased faulty S-box. This leads us to the second research question:
Are the S-box elements the only constants that the attacker can target to fault in the PFA
context?

Contributions. In this work, we provide affirmative answers to the two research ques-
tions. First, we show that a PFA attack on AES can be performed using an instruction
skip. This is particularly effective against implementations that generate the S-box table
at runtime, during the initialization phase, before executing the first AES operation. We
showcase an attack on the AES implementation in MbedTLS by using a clock glitch to
skip an instruction, resulting in a faulty S-box that can be exploited to recover the key.

Second, we show that the S-box is not the only target for fault injection in PFA attacks.
We propose, to our knowledge, the first PFA that exploits a fault in a constant other than
S-box elements. Specifically, we consider a persistent fault induced on a round constant
involved in the AES key schedule. We demonstrate that the key can be effectively recovered
using a differential fault analysis. Our attack significantly reduces the amount of data
required compared to many previous works based on Zhang et al.’s model, which typically
involves a statistical analysis on hundreds to thousands of ciphertexts. In contrast, our
differential analysis needs only three correct-faulty ciphertext pairs.

Similar to previous PFAs with S-box table (based on Zhang et al.’s model), the round
constants are assumed to be implemented as a lookup table stored in memory, which can
be targeted by memory faults (e.g., bit flips by laser as in [ZZJ+20, GTB+24]). However,
as this work focuses on implementations that generate the tables at runtime, we use an
instruction skip to demonstrate the attack on the AES implementation in MbedTLS, where
round constants are generated during the initialization phase. By injecting a clock glitch
to skip an instruction during the round constant generation, we obtain the desired faulty
round constant for key recovery.

Table 1 presents a comparison between this work and the existing PFAs in the literature
that include practical fault injection experiments. Other studies, such as [CGR20, XZY+21,
ZFL+22, ZHF+23], which focus on the analysis phase based on assumptions about the
faults, are excluded from this comparison.

For reproducibility, we publish the source code for our experiments and simulations.
The experimental code is intended for those with access to the required hardware, while
the simulation code can be used by those without the hardware. The code is available at
https://github.com/nvietsang/pfa-inskip.

Outline. The paper is organized as follows. Section 2 provides the background necessary
for this work. Section 3 details the attack that targets a fault in the S-box generation.
Section 4 describes the attack that exploits a faulty round constant. Section 5 discusses
about countermeasures. Finally, Section 6 concludes our work.

https://github.com/nvietsang/pfa-inskip
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Table 1: Comparison with previous PFAs on AES.

Fault target Fault injection technique

[ZLZ+18] T-table elements
stored in DRAM

Flipping bits
by rowhammer

[ZZJ+20] S-box table
stored in SRAM

Flipping bits
by laser

[SHP09] S-box table
stored in ROM

Flipping bits
by laser

[GTB+24] S-box table
stored in FLASH memory

Flipping bits
by laser

[SBH+22] Transfer of S-box table
from FLASH to RAM

Faults during transfer
by electromagnetic

This work
Section 3 S-box table generation Skipping an instruction

by clock glitch

This work
Section 4 Round constant table generation Skipping an instruction

by clock glitch

2 Preliminaries
In this section, we first provide a brief overview of related PFAs in the literature. Next,
we present the background on AES, the cipher used to showcase our attacks in this work.
Finally, we describe the setup for our experiments.

2.1 Related PFAs
Fault anlysis phase. At CHES 2018, Zhang et al. [ZLZ+18] introduced a model
dedicated to persistent faults and a novel analysis known as PFA. In this model, the S-box
is assumed to be implemented as a lookup table and stored in memory. A single fault on an
S-box element v alters this value to the faulty value v′ ≠ v. Since S-box is a permutation,
v no longer appears in the S-box, while v′ appears twice as often. Consequently, one value
will never be observed in each ciphertext byte, and another value will be observed twice
as often. This results in a non-uniform probability distribution for each ciphertext byte.
If an attacker collects a sufficiently large number of ciphertexts, he can recover the last
round key through a statistical analysis. Both the fault value (i.e., v ⊕ v′) and the fault
location (i.e., the position of v) are assumed to be known in this model.

Many follow-up works have been proposed based on the same model introduced by
Zhang et al. [ZLZ+18]. Carré et al. [CGR20] reduced the number of ciphertexts needed
for the analysis of AES by applying maximum likelihood estimation. Pan et al. [PZRB19]
showed that PFA can break higher-order masking schemes with a single persistent fault
and showcased on the masked implementations of the AES and PRESENT ciphers. Note
that to apply PFA, they assumed that (part of) the masked S-box computation is realized
as a lookup table. Gruber et al. [GPT19] applied PFA to the authenticated encryption
schemes OCB, DEOXYS, and COLM. Xu et al. [XZY+21] enhanced PFA by extending
the analysis to deeper middle rounds. Caforio and Banik [CB19] constructed PFA on
generic Feistel schemes, with an additional requirement for the model that an attacker can
collect both correct and faulty ciphertexts, i.e., encrypt a set of plaintexts twice.

At CHES 2020, Zhang et al. [ZZJ+20] relaxed the assumption of knowing the fault
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value and the fault location for the case of a single fault with applications on the AES
and PRESENT ciphers. For multiple faults, both [ZLZ+18] and [ZZJ+20] (double faults)
presented analysis methods, however, the values and locations of the faults need to be
known in both works. This assumption for the case of multiple faults was then relaxed
by Engels et al. [ESP20] and Soleimany et al. [SBH+22] with applications on the AES
and LED ciphers. Zheng et al. [ZLZ+21] and Zhang et al. [ZHF+23] proposed a collision
analysis and chosen-plaintext analysis, respectively, which operate under a relatively relaxed
model that does not require any information about the fault value, the fault location, or
the number of faults.

Fault injection phase. Schmidt et al. [SHP09] reported that irradiating ultraviolet
(UV) for a few minutes can flip bits from 0 to 1 in various types of non-volatile memory
(EPROM, EEPROM, FLASH). They also demonstrated a real attack on AES by faulting
an S-box element. In 2014, Kim et al. [KDK+14] exposed persistent bit flips on DRAM
using the rowhammer technique, successfully inducing errors in most DRAM modules
from major manufacturers. Using this technique, Zhang et al. [ZLZ+18] faulted the AES’
T-tables stored in DRAM in their PFA attack. In [ZZJ+20], Zhang et al.’s experiment on
the SRAM of an ATmega163L microcontroller showed that a single laser pulse can flip
two adjacent bits. Soleimany et al. [SBH+22] experimented with electromagnetic fault
injection (EMFI) on an STM32F407VG microcontroller. The EM pulse more likely affects
multiple S-box elements (3-5 elements for the LED S-box and 4-6 elements for the AES
S-box). Grandamme et al. [GTB+24] demonstrated that it is feasible to inject faults into
S-box elements stored in FLASH memory, even when the device is powered off. Selmke et
al. [SBHS15] demonstrated their experiments of flipping bits at precise locations into 90
nm and 45 nm SRAM cells.

2.2 Description of AES
AES [DR05] is a block cipher with a block size of 128 bits. A block (also called a state) is
an array of 4 × 4 bytes indexed from 0 to 15. In this work, we consider the 128-bit key
variant. It consists of 10 rounds where each round is the composition of the following
transformations:

− SubBytes (SB): A substitution step where each byte is replaced using an S-box to
introduce non-linearity.

− ShiftRows (SR): A transposition step where rows of the state are cyclically shifted
by a certain number of positions to introduce diffusion.

− MixColumns (MC): A mixing step where columns are combined using linear algebra
to further diffuse the state.

− AddRoundKey (AK): A 16-byte round key derived from the original key is XOR-ed
to the state.

The process of deriving round keys from the original key is known as the key schedule.
As this paper analyzes the fault effects in the key schedule (Section 4), we provide a
detailed background of this process. An illustration of the key schedule can be found in
Figure 3. The key schedule generates a total of 44 words (i.e., 44 columns, each of 4 bytes)
from the 128-bit master key. The master key is first divided into four 4-byte words (similar
to the state), forming the initial round key (round 0).

An iterative process is applied to derive the remaining 40 words. For the first word in
each group of four, the process begins by taking the last word of the previous group and
applying a series of transformations. These include RotWord, which cyclically shifts the
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Figure 1: ChipWhisperer Lite used in our experiments.

bytes of the word, and SubWord, which substitutes each byte using the S-box. Following
this, a round constant (Rcon) is XOR-ed with the first byte of the word. The result is
then XOR-ed with the word located four positions earlier to produce the new word. For
the subsequent words in the group, the process is simpler. Each word is generated by
XOR-ing the previous word with the word from four positions earlier. This process is
repeated until 40 words are created, which are grouped into 10 sets of four words to form
the round keys.

2.3 Experimental setup
For our experiments, we use a ChipWhisperer Lite board featuring an STM32F303 32-bit
ARM target microcontroller to realize the clock glitches. Figure 1 shows the ChipWhisperer
setup used in this study. The device runs at its default clock frequency of 7.37 MHz and is
connected to a MacBook Air M1 via a USB cable.

3 Attack with a fault on S-box generation
In practice, some public embedded cryptographic libraries, such as MbedTLS and cryptlib,
support the S-box table generation at runtime. This feature is particularly useful when
users aim to save ROM/FLASH usage for statically storing the full table and benefit from
faster RAM access. The generation occurs during the initialization phase before the first
AES operation. Once generated, the S-box table is stored in RAM and reused across all
subsequent AES operations as long as the device is not reset. This persistent reuse of the
S-box introduces a potential vulnerability. If the S-box generation process is faulted, the
resulting fault affects multiple AES operations. By collecting sufficient faulty outputs, it
becomes feasible to perform a PFA to recover the key.

Since the analysis phase has been well investigated in the literature, e.g. [ZLZ+18,
ZZJ+20], we refer to these works for the analysis of the key recovery. In this section, we
focus on the injection of a fault in the S-box generation. We begin by describing the fault
model in Subsection 3.1. Next, we detail in Subsection 3.2 the S-box generation process
with a concrete C implementation and point out where the fault can be injected. We then
present the experimental results of the fault injection via clock glitching in Subsection 3.3.

3.1 Fault model
We consider AES implementations that generate the S-box table at runtime during the
initialization phase, before the execution of the first AES encryption. The fault model is
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summarized as follows:

• The attacker can fault an S-box element by an instruction skip in the S-box table
generation during the initialization phase.

• The fault does not need to be precise either value or location. Knowing that an
S-box value has changed is sufficient for the attack (we will later show how to verify
that the fault injection is successful).

• The injected fault is persistent, i.e., the affected S-box element remains faulty across
encryptions until the device is reset.

• The attacker can collect the multiple ciphertexts.

We note that the attack presented in this section is a ciphertext-only attack. Therefore,
the attacker does not need access to the plaintexts.

3.2 S-box generation
We refer to [DR05] for the mathematical aspect of the S-box. Here, we only focus on the
implementation aspect. We use the AES implementation provided by MbedTLS library3

for our demonstration. Listing 1 shows the extracted C code for generating the forward
S-box table (FSb). Two additional tables (pow and log) are involved in this process. The
i-th S-box element, FSb[i] for 1 ≤ i ≤ 255, is computed based the two values log[i] and
pow[255 − log[i]]. The generation of the pow and log tables is performed with a loop of
256 iterations in line 18. The computation of the FSb is then performed with a loop of
255 iterations in line 26, except for the first element FSb[0], which is directly assigned in
line 25. To obtain a faulty S-box element, one can cause an instruction skip during an
iteration in the generation of the FSb table, or log table, or pow table.

In addition, Listing 1 illustrates the generation of four T-tables (FT0, FT1, FT2, FT3)
derived from the S-box table FSb (line 37). These T-tables are instrumental in accelerating
computation. Each 8-bit S-box element corresponds to four 32-bit elements distributed
across the T-tables. Consequently, to have an equivalent effect as faulting an S-box element,
we need to fault all four corresponding elements in the T-tables. This approach is inefficient
because it requires targeting multiple elements. However, the generation of the last three
T-tables is based on applying a cyclic shift to the first T-table (lines 46-48). Therefore, by
faulting the generation process of the first T-table (lines 38-45), it is possible to achieve an
equivalent effect, making the fault injection more efficient.

Listing 1: Implementation of S-box generation in C
1 # define ROTL8 (x) (((x) << 8) & 0 xFFFFFFFF ) | ((x) >> 24)
2 # define XTIME (x) (((x) << 1) ^ (((x) & 0x80) ? 0x1B : 0x00))
3
4 // Forward S-box & tables
5 static uint8_t FSb [256];
6 static uint32_t FT0 [256];
7 static uint32_t FT1 [256];
8 static uint32_t FT2 [256];
9 static uint32_t FT3 [256];

10
11 static void aes_gen_tables ( void ){
12 int i;
13 uint8_t x, y, z;

3The source code can be found at https://github.com/Mbed-TLS/mbedtls/blob/71c569d44bf3a8bd53
d874c81ee8ac644dd6e9e3/library/aes.c#L375. To use the table generation feature, we need to deactivate
the default macros MBEDTLS_AES_ROM_TABLES, MBEDTLS_HAVE_ASM and MBEDTLS_AESNI_C in the configuration
file https://github.com/Mbed-TLS/mbedtls/blob/v3.6.1/include/mbedtls/mbedtls_config.h.

https://github.com/Mbed-TLS/mbedtls/blob/71c569d44bf3a8bd53d874c81ee8ac644dd6e9e3/library/aes.c#L375
https://github.com/Mbed-TLS/mbedtls/blob/71c569d44bf3a8bd53d874c81ee8ac644dd6e9e3/library/aes.c#L375
https://github.com/Mbed-TLS/mbedtls/blob/v3.6.1/include/mbedtls/mbedtls_config.h
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14 uint8_t pow [256];
15 uint8_t log [256];
16
17 // Compute pow and log tables over GF (2^8)
18 for (i = 0, x = 1; i < 256; i++) {
19 pow[i] = x;
20 log[x] = ( uint8_t ) i;
21 x ^= XTIME (x);
22 }
23
24 // Generate the forward S-box
25 FSb [0 x00] = 0x63;
26 for (i = 1; i < 256; i++) {
27 x = pow [255 - log[i]];
28 y = x; y = (y << 1) | (y >> 7);
29 x ^= y; y = (y << 1) | (y >> 7);
30 x ^= y; y = (y << 1) | (y >> 7);
31 x ^= y; y = (y << 1) | (y >> 7);
32 x ^= y ^ 0x63;
33 FSb[i] = x;
34 }
35
36 // Generate the forward T- tables
37 for (i = 0; i < 256; i++) {
38 x = FSb[i];
39 y = XTIME (x);
40 z = y ^ x;
41
42 FT0[i] = (( uint32_t ) y) ^
43 (( uint32_t ) x << 8) ^
44 (( uint32_t ) x << 16) ^
45 (( uint32_t ) z << 24);
46 FT1[i] = ROTL8 (FT0[i]);
47 FT2[i] = ROTL8 (FT1[i]);
48 FT3[i] = ROTL8 (FT2[i]);
49 }
50 }

3.3 Experiment
We use the ChipWhisperer to perform the fault injection via a clock glitch. An additional
fast clock cycle is inserted between two ordinary clock cycles during the execution. The
width of the induced clock is chosen such that it is short enough to disrupt the correct
execution of the current instruction but still recognized by the microprocessor. When the
next clock edge arrives, the microprocessor starts executing the next instruction, effectively
skipping the current one. Our fault targets the generation of the pow, log and FSb tables,
as shown in Listing 1. Notably, we do not require a precise fault on a specific instruction
or a specific value during the table generation. Any fault that causes an error in an S-box
element is sufficient for the attack.

In this experiment, we use the AES encryption with Electronic Code Book (ECB)
mode from the MbedTLS library. The results should be analogous for other modes, as
the attack exploits the biased distribution of the ciphertext bytes. After performing the
clock glitch, we collect a number of ciphertexts. We now discuss how to verify, using these
ciphertexts, whether the fault has been successfully injected. Let us consider what can
be observed when an S-box element is faulted as intended. We compute the occurrence
probabilities for all 256 possible values of each ciphertext byte. Figure 2 shows this for a
specific ciphertext byte, denoted as cj , where 0 ≤ j ≤ 15. If an S-box element is erroneous,
the distribution of cj reveals that one value (denoted by cmin

j ) never appears, while another
value (denoted by cmax

j ) appears twice as often. In practice, if this pattern is not observed
across all 16 ciphertext bytes (c0, . . . , c15) after analyzing a sufficiently large number of
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Figure 2: Occurrence probability for 256 values of a ciphertext byte.

ciphertexts, the fault injection was likely unsuccessful. In such cases, the fault injection
process should be repeated with different parameters of glitch.

In summary, the attack is automated with the following steps:

1. Perform the glitch with chosen values for the parameters (delay, offset and width).

2. Request the device to do encryption N times and collect N ciphertexts.

3. Check if we can observe (cmin
j , cmax

j ) as described above:

• If yes, proceed with the key recovery.
• If no, reset the device, go back to step 1 and try with different parameter values.

In our experiment using the ChipWhisperer, it takes around 30 minutes identify a
glitch configuration that causes the fault as desired. This duration is primarily dominated
by the calculation of probabilities to check whether an S-box element is erroneous (step 3).
However, we note that this time depends on the initial parameter values of the glitch. If
the initial configuration is already close to the successful ones, the time required will be
shorter, otherwise, it may take longer.

We now briefly recall the process of recovering the last round key. For further details
and optimizations regarding the required number of ciphertexts, we refer to several related
works, such as [ZZJ+20, CGR20, XZY+21]. Let S[i] and S′[i] denote the original S-box
element that is faulted and its altered value, respectively. The fault value can be expressed
as f = S[i] ⊕ S′[i]. Since S[i] no longer appears in the S-box table and cmin

j is absent in the
distribution of cj , we deduce that cmin

j = S[i] ⊕ kj , where kj (0 ≤ j ≤ 15) represents the
j-th byte of the last round key. Thus, kj can be recovered using the following equation:

kj = cmin
j ⊕ S[i].

Note that the fault location i is unknown to the attacker. However, this can be resolved
through brute force by testing all 256 possible locations in the S-box (i ∈ [0, 255]), resulting
in 256 candidates for the last round key. We can derive the 256 corresponding master key
candidates, as the AES key schedule relies solely on the forward (faulty) S-box table for
both key expansion and key reversal. If a correct plaintext-ciphertext pair is available,
identifying the correct key becomes straightforward. For ciphertext-only attacks, where
such a pair is not accessible, obtaining the unique correct key candidate is a challenge.
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Zhang et al. [ZHF+23] addressed this issue, but in the context of a chosen-plaintext attack
(not ciphertext-only).

4 Attack with a fault on round constant
In this section, we show that S-box elements are not the only target for PFA attacks. We
demonstrate that, by faulting the 8th round constant in AES, an attacker can recover
the key using a differential fault analysis (DFA). We note that the effect of this fault
attack is similar to Kim’s work [Kim12], which presented a DFA with a fault in the AES
key schedule. The main difference is that Kim considered a transient fault induced into
the first column of the 8th round in the key schedule, whereas we consider a persistent
fault induced into the 8th round constant. Our analysis is somewhat simpler since the
fault value remains the same across executions due to the nature of a persistent fault.
Nonetheless, we can directly apply Kim’s analysis to recover the last round key. Therefore,
we refer to the original analysis of Kim [Kim12] for the key recovery. In this section, we
only focus on the effect of a persistent fault on the 8th round constant, which is the main
difference from [Kim12].

4.1 Fault model
As in previous PFAs with S-box table based on Zhang et al.’s model [ZLZ+18], the round
constants are assumed to be stored as a lookup table in memory. The attacker can induce
a memory fault in an element of the table, for example, by flipping bits using laser, as in
[ZZJ+20, GTB+24].

In this work, we consider AES implementations that generate the tables at runtime,
including the table of round constants. We still demonstrate a persistent fault using an
instruction skip. The fault model is summarized as follows:

• The attacker can fault the 8th round constant by skipping an instruction during the
round constant table generation in the initialization phase.

• The fault value does not need to be known. However, the fault location must be
precise, meaning the 8th round constant is specifically targeted. (We will later show
how to verify the success of the fault injection.)

• The injected fault is persistent, i.e., the affected round constant remains faulty across
multiple encryptions until the device is reset.

• The attacker has access to both plaintexts and ciphertexts, as also assumed in
previous PFAs [ZHF+23, ZLZ+21].

• The attacker can operate the device in two scenarios: with and without the fault,
to collect correct and faulty ciphertexts. Note that this assumption is also used in
previous PFA [CB19].

The attack presented in this section is a differential attack. The attacker needs to
collect several pairs of correct-faulty ciphertexts encrypted with the same plaintexts.

4.2 Fault propagation
We now describe how the differential effects of the fault propagate through the last three
rounds of AES encryption. Let a denote the difference in the output of the associated
XOR operation caused by the fault. Figure 3 illustrates the propagation of a through the
8th, 9th and 10th round keys. Due to the SB transformation, this difference a results in



Viet Sang Nguyen, Vincent Grosso, Pierre-Louis Cayrel 11

two additional differential values, denoted b and c, in the 9th and 10th round keys. Since
the fault is persistent, the values a, b, and c remain the same across all correct-faulty
ciphertext pairs.

Figure 3: Differential propagation in the key schedule. This figure omits the XOR
operations to recursively generate the 2-nd, 3-rd and 4-th columns of each round key for a
succinct illustration.

Figure 4 depicts the influence of the differences a, b and c in the last three rounds of
AES encryption. First, a spreads to the first row of the 8th round key, and thus the output
state of the AK in the 8th round (state (5) in Figure 4). Next, the SB transformation
causes the changes in the differences of the first row from (a, a, a, a) to (e, f, g, h) (state
(6) in Figure 4). Since SB is a non-linear transformation, the differences e, f , g, and h
are plaintext-dependent and vary among different correct-faulty ciphertext pairs. Then,
the MC transformation spreads them to the four cells of its corresponding column. Now,
there is a differential relation of the four cells in each column (state (8) in Figure 4), e.g.,
(2e, e, e, 3e) for the first column. The AK of the 9th round key then adds a to two cells of
the first row and b to four cells of the last row (state (9) in Figure 4).

Given a pair of correct-faulty ciphertexts, we make hypotheses for bytes of the last
round key and for the differences a, b, and c (we only need to make hypotheses for 2 bytes
at a time, see [Kim12] or Appendix A). We then compute backward to the state at the
beginning of the last round (state (9) in Figure 4). The correct hypothesis will lead to
a match for the differential relation in this state. The analysis algorithm is provided in
Appendix A, and a similar algorithm can be found in [Kim12].

According to Kim’s analysis [Kim12], using N = 2 pairs of correct-faulty ciphertexts
can reduce the search space of the key to 224 candidates. However, Kim’s approach assumes
transient faults where the differences a, b, and c vary for each ciphertext pair. In contrast,
we exploit a persistent fault where the differences a, b, and c remain consistent for all N
pairs. Our simulation shows that with N = 3 pairs, we obtain a single candidate, which is
the correct key. With N = 2 pairs, we obtain around 20 candidates. The correct key is
then identified using a correct plaintext-ciphertext from the set of N pairs.
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Figure 4: Differential propagation in the last three rounds of AES.

4.3 Experiment
As before, we use the AES implementation from MbedTLS for demonstration. Our goal is
to skip an instruction in the generation of the round constants table during the initialization
phase using a clock glitch. Listing 2 shows the extracted implementation of the round
constant generation from this library.4 Recall that the target of our fault is the 8th round
constant (i = 7).

Listing 2: Code of round constant generation in C
1 # define XTIME (x) (((x) << 1) ^ (((x) & 0x80) ? 0x1B : 0x00))
2 static uint32_t round_constants [10];
3
4 for (i = 0, x = 1; i < 10; i++) {
5 round_constants [i] = x;
6 x = XTIME (x);
7 }

Before the fault injection, we encrypt three chosen (possibly random) plaintexts and
collect their corresponding correct ciphertexts. The device is then reset. A clock glitch
injection is performed during the initialization phase by inserting an additional fast clock

4The source code can be found at https://github.com/Mbed-TLS/mbedtls/blob/71c569d44bf3a8bd53
d874c81ee8ac644dd6e9e3/library/aes.c#L394

https://github.com/Mbed-TLS/mbedtls/blob/71c569d44bf3a8bd53d874c81ee8ac644dd6e9e3/library/aes.c#L394
https://github.com/Mbed-TLS/mbedtls/blob/71c569d44bf3a8bd53d874c81ee8ac644dd6e9e3/library/aes.c#L394
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cycle to skip a proper instruction. We subsequently encrypt the same three plaintexts again
and collect their corresponding faulty ciphertexts. The three correct-faulty ciphertext pairs
are then analyzed to recover the last round key. If the analysis does not yield a unique
key candidate, the fault injection was likely unsuccessful in altering the targeted round
key. This is also used as the verification to know whether the fault is successful injected as
desired.

In summary, the attack is automated with the following steps:

1. Encrypt N chosen (possibly random) plaintexts and collect N corresponding correct
ciphertexts.

2. Reset the device.

3. Perform the glitch with chosen values for the parameters (delay, offset and width).

4. Encrypt the same N plaintexts and collect N corresponding ciphertexts.

5. Check if we can obtain a unique key candidate when performing the key recovery on
the N pairs of ciphertexts.

• If yes, perform the inverse key schedule and return the recovered master key.
• If no, go back to step 2 and try with different parameter values.

In our experiment using the ChipWhisperer, it typically takes around 3 minutes to find
a suitable configuration for the glitch parameters (delay, offset and width) that results in
a successful fault injection. Note that this duration depends on the initial configuration’s
proximity to the successful configuration. If the initial parameters are close to the optimal
values, the time to achieve a successful fault injection is shorter. However, if the starting
configuration is far from the optimal settings, it may take longer to achieve the desired
outcome.

4.4 Discussion
This analysis reduces the PFAs based on statistical analyses from previous works (e.g.,
[ZLZ+18, ZZJ+20, SBH+22]), which require hundreds to thousands of ciphertexts, to a
DFA needing only 3 pairs of correct-faulty ciphertexts. This approach is much more
efficient in data complexity for the key recovery.

A limitation of this attack is that DFA does not work in the ciphertext-only context.
Our attack assumes that the attacker can encrypt the same plaintext twice, once with
the fault and once without, to collect a pair of correct-faulty ciphertexts. In practice, the
attacker can first collect the correct ciphertexts, then reset the device, perform the fault
injection and collect the faulty ciphertexts. This approach is feasible if the implementation
allows re-initialization, where the tables are freed and then recreated in memory. Some
configurations of the MbedTLS library allow this. However, in configurations where the
initialization occurs only once, the attacker cannot collect the both correct and faulty
ciphertexts. This difficulty in switching between faulty and non-faulty modes might restrict
the applicability of DFA.

Another advantage of this DFA attack is its applicability to implementations that
do not use a lookup table for the S-box, as it targets a round constant instead. It is
worth noting that the assumption of a table-based implementation is common in prior
works (e.g., [ZLZ+18, ZZJ+20, SBH+22, ZHF+23]). However, such implementations are
known to pose significant risks of side-channel attacks when the CPU relies on caches
[Ber05]. This vulnerability has led to the development of modern ciphers, such as Ascon
[DEMS21]. Recently selected by NIST as the lightweight cipher standard, Ascon is designed
to support efficient bit-sliced implementations, avoiding reliance on a lookup table for
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S-box operations. For AES, there is also bit-sliced implementation that does not use S-box
lookup tables [RSD06].

5 Countermeasure discussion
In this section, we discuss the applicability of common countermeasures against fault
attacks in the PFA context. These countermeasures include Error Correction Codes (ECC)
in memory and Dual Modular Redundancy (DMR).

5.1 ECC
For systems that use static tables of constants (S-box elements, round constants), ECC
can be an effective method for detecting and correcting faults. In this method, redundant
bits are stored alongside the data in the memory during the write process. These bits
are typically derived from a linear relationship with the data, enabling the detection and
correction of errors. When the data is read, the memory controller verifies this relationship
and corrects any detected errors before passing the data to the processor. As a result, a
fault persists only until the affected element is accessed in ECC-protected memory. No
faulty ciphertexts are produced, making statistical analyses relying on faulty ciphertexts
infeasible.

5.2 DMR
ECC may not be useful for systems that dynamically generate the tables at runtime, as the
fault injection targets the generation process rather than the memory. In such cases, we
consider a popular DMR countermeasure, where a ciphertext C is obtained by encrypting
a plaintext P , then decrypted to yield P ′ for comparison with P . A fault is detected if the
decrypted result does not match the original plaintext, i.e., P ̸= P ′.

First, we consider the differential attack with a faulty round constant, as presented in
Section 4. The round keys for both encryption and decryption are derived from the master
key using the same round constant table, which contains the faulty element. Consequently,
the verification P = P ′ always holds, although the ciphertext C is faulty. Therefore, the
countermeasure is not effective in this case.

Second, we consider the statistical attack with a faulty S-box element, as presented
in Section 3. The AES S-box consists of 256 elements, and an encryption accesses the
S-box 160 times. Note that S-box accesses during the key schedule are excluded from the
consideration. This is because both encryption and decryption use the same (faulty) round
keys derived from the forward S-box table. If the faulty S-box element is accessed only
during the key schedule and not during encryption, the fault remains undetected.

Suppose a fault is injected into an element of the forward S-box table, while the inverse
S-box used for decryption remains unaffected. There is a chance that the faulty element
may not be accessed during encryption. This is because AES encryption only makes use of
160 out of the 256 elements in the S-box. As a result, the ciphertext could remain correct,
and the fault is undetected by the DMR.

We now investigate the maximum number of correct ciphertexts, denoted by ℓ, that
can be produced before the fault is detected. Suppose that with random plaintexts, each
S-box element is accessed with uniform probability. In ℓ encryptions, there are 160 · ℓ
S-box accesses in total. The probability that there exists an S-box element that is never
accessed in ℓ encryptions is (

1 − 1
256

)160·ℓ

.
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The probability p that every S-box element is accessed at least once in ℓ encryptions is
therefore

p = 1 −
(

1 − 1
256

)160·ℓ

.

Figure 5 shows the probability p corresponding to different numbers of encryptions ℓ. We
see that p ≈ 0.98 when ℓ = 6 and p ≈ 1.00 when ℓ = 9. In the worst case, the fault is
detected after 9 encryptions.

Figure 5: Probability p of different number of encryptions ℓ for PRESENT and AES

A key aspect of implementing the DMR countermeasure is defining the device’s response
upon detecting a fault. Zhang et al. [ZLZ+18] demonstrated that returning no ciphertext,
a zero-value ciphertext, or a random ciphertext upon fault detection does not prevent a
PFA attack. Instead, it only introduces noise into the key recovery analysis, increasing
the number of ciphertexts required for a successful attack. Note that this assumes the
device continues to return correct ciphertexts in subsequent encryptions if no fault is
detected during those encryptions. Therefore, aborting the operation and preventing the
device from returning ciphertexts from the moment a fault is detected onwards could be a
mitigation. In this case, the attacker can collect at most 8 correct ciphertexts (since with
ℓ = 9 encryptions, the fault is detected with a probability close to 1), which is insufficient
for statistical analysis.

6 Conclusion
In this paper, we first demonstrated that a PFA attack on AES can be carried out using a
simple instruction skip. To achieve this, we focused on the implementations that generate
the S-box table at runtime before executing the first AES operation. Through an experiment
on the ChipWhisperer platform, using the AES implementation in the MbedTLS library,
we showed that skipping a single instruction via a clock glitch is enough to induce a
persistent fault in an S-box element and enable the key recovery. Second, we introduced
the first PFA attack that does not rely on faulting the S-box table. We demonstrated
that inducing a fault in a round constant involved in the AES key schedule can enable
key recovery through a differential analysis. This approach significantly reduces the data
requirements of previous works based on Zhang et al.’s model, which typically analyze
hundreds to thousands of ciphertexts. In contrast, our differential analysis needs only
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three correct-faulty ciphertext pairs. Finally, we provide a discussion on the applicability
of common countermeasures against fault attacks in the PFA context.
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A Key recovery algorithm for fault in round constant
Let (Ci

j , C̃i
j) be the i-th pair of correct-faulty ciphertext byte at index j, where i ∈ [1, N ]

and j ∈ [0, 15]. Let ∆Sj be the difference of the j-th byte in the state at the beginning
of the last round (state (9) in Figure 4). Let Kj and K̂j be the correct value and the
hypothesis for byte at index j of the last round key. To recover K, we perform the following
algorithm:

1. Recover (K12, K9): For each candidate (K̂12, K̂9) of 216 possibilities, we compute

∆S12 = SB−1(Ci
12 ⊕ K̂12) ⊕ SB−1(C̃12 ⊕ K̂12)

∆S13 = SB−1(Ci
9 ⊕ K̂9) ⊕ SB−1(C̃9 ⊕ K̂9)

If ∆S12 = 2 · ∆S13 for every i ∈ [1, N ], then (K̂12, K̂9) is a good candidate.

2. Recover (K6, c): For each candidate (K̂16, ĉ) of 216 possibilities, we compute

∆S14 = SB−1(Ci
6 ⊕ K̂6) ⊕ SB−1(C̃6 ⊕ K̂6 ⊕ c)

∆S13 = SB−1(Ci
9 ⊕ K9) ⊕ SB−1(C̃9 ⊕ K9)

If ∆S14 = ∆S13 for every i ∈ [1, N ], then (K̂6, ĉ) is a good candidate.

3. Recover (K3, b): For each candidate (K̂3, b̂) of 216 possibilities, we compute

∆S15 = SB−1(Ci
3 ⊕ K̂3) ⊕ SB−1(C̃3 ⊕ K̂3 ⊕ b)

∆S13 = SB−1(Ci
9 ⊕ K9) ⊕ SB−1(C̃9 ⊕ K9)

If ∆S15 = 3 · ∆S13 ⊕ b for every i ∈ [1, N ], then (K̂3, b̂) is a good candidate.

4. Recover (K5, K15): For each candidate (K̂5, K̂15) of 216 possibilities, we compute

∆S9 = SB−1(Ci
5 ⊕ K̂5) ⊕ SB−1(C̃5 ⊕ K̂5)

∆S11 = SB−1(Ci
15 ⊕ K̂15) ⊕ SB−1(C̃15 ⊕ K̂15)

If ∆S11 = 3 · ∆S9 ⊕ b for every i ∈ [1, N ], then (K̂5, K̂15) is a good candidate.

https://tches.iacr.org/index.php/TCHES/article/view/7272
https://tches.iacr.org/index.php/TCHES/article/view/7272
https://doi.org/10.13154/tches.v2018.i3.150-172
https://doi.org/10.1109/TCAD.2021.3049687
https://doi.org/10.1109/TCAD.2021.3049687
https://tches.iacr.org/index.php/TCHES/article/view/8548
https://tches.iacr.org/index.php/TCHES/article/view/8548
https://doi.org/10.13154/tches.v2020.i2.172-195
https://doi.org/10.13154/tches.v2020.i2.172-195


20 Practical Persistent Fault Attacks on AES with Instruction Skip

5. Recover (K8, a): For each candidate (K̂8, â) of 216 possibilities, we compute

∆S9 = SB−1(Ci
5 ⊕ K5) ⊕ SB−1(C̃5 ⊕ K5)

∆S8 = SB−1(Ci
8 ⊕ K̂8) ⊕ SB−1(C̃8 ⊕ K̂8)

If ∆S8 = 2 · ∆S9 ⊕ a for every i ∈ [1, N ], then (K̂8, â) is a good candidate.

6. Recover K2: For each candidate K̂2 of 28 possibilities, we compute

∆S9 = SB−1(Ci
5 ⊕ K5) ⊕ SB−1(C̃5 ⊕ K5)

∆S10 = SB−1(Ci
2 ⊕ K̂2) ⊕ SB−1(C̃2 ⊕ K̂2 ⊕ c)

If ∆S10 = ∆S9 ⊕ a for every i ∈ [1, N ], then K̂2 is a good candidate.

7. Recover (K4, K1): For each candidate (K̂4, K̂1) of 216 possibilities, we compute

∆S4 = SB−1(Ci
4 ⊕ K̂4) ⊕ SB−1(C̃4 ⊕ K̂4 ⊕ a)

∆S1 = SB−1(Ci
1 ⊕ K̂1) ⊕ SB−1(C̃1 ⊕ K̂1)

If ∆S4 = 2 · ∆S1 ⊕ b for every i ∈ [1, N ], then (K̂4, K̂1) is a good candidate.

8. Recover (K14, K11): For each candidate (K̂14, K̂11) of 216 possibilities, we compute

∆S6 = SB−1(Ci
14 ⊕ K̂14) ⊕ SB−1(C̃14 ⊕ K̂14 ⊕ c)

∆S7 = SB−1(Ci
11 ⊕ K̂11) ⊕ SB−1(C̃11 ⊕ K̂11 ⊕ b)

If ∆S7 = 3 · ∆S6 ⊕ b for every i ∈ [1, N ], then (K̂14, K̂11) is a good candidate.

9. Recover (K0, K13): For each candidate (K̂0, K̂13) of 216 possibilities, we compute

∆S0 = SB−1(Ci
0 ⊕ K̂0) ⊕ SB−1(C̃0 ⊕ K̂0 ⊕ a)

∆S1 = SB−1(Ci
13 ⊕ K̂13) ⊕ SB−1(C̃13 ⊕ K̂13)

If ∆S0 = 2 · ∆S1 ⊕ a for every i ∈ [1, N ], then (K̂0, K̂13) is a good candidate.

10. Recover (K10, K7): For each candidate (K̂10, K̂7) of 216 possibilities, we compute

∆S2 = SB−1(Ci
10 ⊕ K̂10) ⊕ SB−1(C̃10 ⊕ K̂10 ⊕ c)

∆S3 = SB−1(Ci
7 ⊕ K̂7) ⊕ SB−1(C̃7 ⊕ K̂7)

If ∆S3 = 3 · ∆S2 ⊕ b for every i ∈ [1, N ], then (K̂10, K̂7) is a good candidate.
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