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Abstract. We introduce a framework based on Bayesian statistical inference for
analyzing leakage in cryptography and its vulnerability to inference attacks. Our
framework naturally integrates auxiliary information, defines a notion of adversarial
advantage, and provides information-theoretic measures that capture the security of
leakage patterns against both full and functional recovery attacks.
We present two main theorems that bound the advantage of powerful inference
techniques: the maximum a posteriori (MAP), the maximum likelihood estimate
(MLE) and the MAP test. Specifically, we show that the advantage of these methods
is exponentially bounded by new entropy measures that capture the susceptibility of
leakage patterns to inference.
To demonstrate the applicability of our framework, we design and implement an
automated leakage attack engine, Bayle, which leverages a novel inference algorithm
that efficiently computes MAP estimates for a large class of i.i.d. leakage models.
These models include query equality leakage, the combination of query equality and
volume leakage, and leakage patterns arising from naive conjunctions.
Keywords: Encrypted search · leakage · leakage attacks

1 Introduction
Sub-linear encrypted search algorithms (ESA) are highly-efficient search algorithms that can
be executed on end-to-end encrypted data. ESAs are the core building block in the design
of a variety of end-to-end encrypted data systems [KPR11, PRZB11, JJK+13, CJJ+14,
CJJ+14, PKV+14, FVK+15, KM18, KMZZ20, ZKMZ21, KMPQ21, EGKQ24, Mon]. Sub-
linear ESAs can be designed based on a variety of cryptographic primitives including
structured encryption (STE), oblivious RAM (ORAM) and property-preserving encryption
(PPE). Intuitively, an ESA should reveal no partial information about the data and/or
queries but all sub-linear ESAs leak some information. This leakage is typically captured
with a leakage profile that formally and precisely describes what the scheme reveals. While
leakage profiles have proven to be an important conceptual and analytical tool, they are
purely descriptive and do not provide any explanatory value.

The presence of leakage in ESAs has motivated several complimentary research agendas:
leakage cryptanalysis which focuses on the design of attacks that try to exploit various
leakage profiles in order to recover information about the data and/or queries [IKK12,
NKW15, CGPR15, BKM20, KKNO16, LMP18, GLMP18, GLMP19, KPT20, KPT21];
leakage suppression which focuses on techniques to design low-leakage, zero-leakage and
subliminal ESAs [KMO18, KM19, GKM21, PPYY19, APP+21, BKMN24]; and leakage
quantification which focuses on quantifying the information revealed by a given leakage
profile [JS19, JPS21, KMPP22].
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2 Bayesian Leakage Analysis

Leakage of cryptographic primitives. While the focus of this work is on the leakage
produced by sub-linear ESAs, we note that leakage is pervasive throughout cryptography.1
This includes perfectly-secure [Sha49] and CPA-secure encryption schemes [GM82], which
reveal the length of messages; oblivious RAM (ORAM) [GO96] and private information
retrieval (PIR) [CGKS95], which reveal the number of items stored and the number
of accesses; anonymous communication protocols [Cha81], which reveal certain traffic
patterns; differentially private mechanisms [DMNS06], which reveal global information
about the dataset; secure multi-party computation (MPC) protocols [Yao82, GMW87]
which reveal information about honest party inputs that is a function of the output; and
obfuscation [BGI+01, SW14], which reveals certain characteristics of the circuit/program.
The foundations of cryptography, however, do not provide a principled way to study such
leakage, e.g., there is no established framework to study seemingly fundamental questions
like

can revealing the length, order or location of a secret lead to a security violation
and, if so, under what conditions?

Leakage in definitions. Leakage appears in security definitions and it is typically
handled using one of two approaches:

• (implicit) leakage is implicitly modeled (e.g., by constraining the choices of the
adversary in game-based definitions or by using backchannels in simulation-based
definitions) and taken as a natural limitation of the primitive and is not considered
further. For example, this is the case in the security definitions of encryption, MPC,
ORAM, and PIR as mentioned above.

• (explicit) leakage is explicitly modeled (e.g., as a leakage function) and no assumption
is made on whether it is “natural” or not.

The main limitation of the implicit approach is that the line between natural and unnatural
leakage is mostly arbitrary since the exploitability of leakage depends on the context in
which it is revealed. For example, in the case of encryption, standard security definitions
guarantee that all partial information about the message beyond its length and what the
adversary already knows is hidden. This length leakage seems acceptable when transmitting
fixed-length messages but can become problematic when transmitting variable-length
messages and, in particular, compressed messages [Kel02, WBMM07]. Similarly, accessing
an ORAM in a way that is indepenent of a secret is acceptable but the number of ORAM
accesses can become an issue if it depends on a secret. Unlike the implicit approach,
the explicit approach does not consider any leakage as natural and instead examines its
implications in specific settings. Note that, in this approach, leakage itself is elevated to
being an object for cryptographic study.

Since its introduction in [CGKO06, CK10], the explicit approach has become standard
in encrypted search and is increasingly being applied in other areas of cryptography.
While it has focused cryptographers’ attention on leakage and driven advances in leakage
cryptanalysis, it is only meant to make leakage explicit. As such, a crucial foundational
component that has been absent is a formal and theoretical framework for systematically
studying leakage and its susceptibility to leakage attacks. Developing such a framework has
been an open problem for the last twenty years and has been a central topic of discussion
in encrypted search since the introduction of the explicit approach.

1Here, we are referring to leakage that results from the primitive itself in the model in which it is proven
secure, as opposed to, e.g., side-channel leakage or leakage about keying material as in leakage-resilient
cryptography.
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Auxiliary information. One of the main challenges in developing a useful “theory
of leakage” is that leakage itself is not the only component of a leakage attack. In fact,
as critical as leakage is, in many attacks, it is the combination of leakage and auxiliary
information that results in information being extracted. In other words, for a leakage
framework to be interesting and applicable in practice, it must not only capture leakage
but must also integrate auxiliary information and, crucially, model the interaction between
the two in order to accurately evaluate the susceptibility to attack.

An overview of our framework. In this work, we propose a new theoretical framework
to analyze leakage and its vulnerability to inference attacks. Our framework offers several
key advantages: (1) a natural way to incorporate auxiliary information; (2) a definition of
advantage that quantifies an adversary’s success probability in exploiting a leakage profile
using auxiliary information; (3) a set of information-theoretic measures that formalize the
characteristics of leakage that determine the hardness of full and functional recovery; and
(4) an automated method—subject to computational constraints—to attack a common
class of leakage patterns.

We begin by modeling leakage profiles and the design of leakage attacks as a concrete
instantiation of the following statistical inference problem. Let X = (S, H, L) be a joint
random variable consisting of multivariate variables S that output a secret from a secret
space S, H that outputs hidden/unobservable elements from a hidden space H and L that
outputs leakage from a leakage space L. Additionally, let α be a probability distribution
over the secret space that captures the adversary’s auxiliary information about the secret.
Throughout, we refer to X as a leakage model. A leakage attack is an inference/estimation
algorithm that, given an instantiation ℓ of L and α in explicit form, returns information
about the instantiation s of the secret variables S that led to the observed leakage. If the
goal is to recover these instantiations in their entirety, the attack is a full recovery attack
and if the goal is to recover some function of the instantiations, then it is a functional
recovery attack. If the objective is only to approximate the instantiations, the attack is an
approximation attack.

In the case of encrypted search, the secret variables usually consist of query variables
Q and/or data variables D that produce a query sequence q and a dataset d, respectively.
If the target of the attack is the query sequence, then we refer to the attack as a query
recovery attack; whereas if the target is the dataset, we refer to it as a data recovery attack.

Advantage. In the literature on leakage cryptanalysis, leakage attacks are usually
evaluated by reporting their recovery rate, which is the fraction of secrets from a target
dataset that the attack recovers correctly. In Section 4, we discuss in detail why the
recovery rate is a misleading metric but the main issue is that, if an attack leverages
auxiliary information, then its success should be compared against an attack that leverages
this auxiliary information and nothing else. Without doing so, one cannot rule out the
possibility that the attack ignores the leakage and extracts information directly from the
auxiliary data. To address this we formalize a notion of advantage that works as follows.
For a leakage model X, we first define an inference experiment Inf where the adversary is
given some observed leakage ℓ such that (s, h, ℓ)← X, and the description of an auxiliary
probability distribution α over the secret space. In the case of full recovery, for example,
the experiment succeeds if the adversary’s estimate ŝ of the secret is equal to the secret s.
We then define an experiment Guess which samples a secret s such that (s, h, ℓ)← X, sets
the estimate ŝ to be a mode of α’s support and succeeds if ŝ = s. We define the advantage
of the adversary as the absolute difference between the probabilities that these experiments
succeed. The case of functional recovery is defined based on a natural variation of these
experiments.
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Adversaries. We focus on three adversaries based on standard statistical inference
methods. In the case of full recovery, we consider the MAP adversary, Amap, which
computes the maximum a-posteriori (MAP) estimate of the secret and the MLE adversary,
Amle, which computes the maximum likelihood estimate (MLE). The MAP estimate of
a random variable S is the instantiation of the variable that maximizes the posterior
probability; that is, the secret that maximizes the probability over the secret space S
conditioned on the leakage variables being instantiated by ℓ. The MLE of a random
variable S is the instantiation that maximizes the likelihood of the observed value; that
is, the secret that assigns the most probability to the observed leakage. For functional
recovery, we consider the MAP test adversary, Atst, which computes the MAP test over a
recovery function f . The MAP test outputs the element in the co-domain of f with the
highest-probability pre-image with respect to the posterior distribution. We call this the
MAP test adversary because it corresponds to the MAP test from Bayesian hypothesis
testing, where the hypotheses are of the form Hy : f(s) = y, with f : S→ Y.

Bounds for full recovery. The goal of leakage analysis is to better understand the
conditions under which a leakage profile is hard to exploit. With our framework in place,
we can reframe this question precisely as follows: given a leakage model X, can one
bound the advantage of the adversaries Amap, Amle and Atst with respect to an auxiliary
distribution α. We address this question for the case of full recovery in our main results of
Section 4. The first characterizes the advantage of Amap and the second the advantage of
Amle as a function of three information-theoretic measures we introduce:

• the leakage entropy quantifies the indistinguishability of the secrets with respect to
the leakage they produce and the a-priori beliefs the auxiliary distribution assigns
to them. An increase in leakage entropy decreases the divergence between the
leakage model’s likelihood functions (i.e., the probability distributions over observable
leakages conditioned on a secret), introducing ambiguity in the observed leakage
that confuses statistical estimation;

• the singular entropy measures how susceptible a model is to direct inversion, where
an unbounded adversary can trivially recover the secret because secrets and leakages
are in a one-to-one correspondence;

• the modal entropy measures how well the adversary’s strongest beliefs about the
secrets (according to the auxiliary distribution) align with the true distribution of
secrets.

Based on these measures we present in Section 4 a theorem showing that the advantage of
Amap against a leakage model X is at most

2−Λ(X,α) + 2−Σ(X) + 2−χ(pS,α),

where Λ(X) is the leakage entropy of X with respect to α, Σ(X) is the singular entropy of
X, and χ(pS, α) is the modal entropy of pS with respect to α. We then show a Corollary
that proves that the advantage of Amle against a leakage model X is at most

2−Λ(X,uS) + 2−Σ(X) + 1
#S

,

where uS is the uniform distribution over the secret space.
In Section 7, we use our theorem to study the case of query equality leakage over

Zipf-distributed queries with respect to Zipf-distributed auxiliary distributions with the
same parameter. We show that, in this case, the advantage of Amap is at most

H−n
m,γ + log Hm,γ

log(mγ ·Hm,γ) ,
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where m is the size of the query space and Hm,γ is the generalized Harmonic number. The
above bound can be approximated by

H−n
m,γ + log(log m + 1)

γ · log(m) .

For γ = 1 or γ = 2, this bound is O (log log m/ log m), where m is the size of the query
space. This is somewhat surprising because it shows that even when the adversary has an
accurate auxiliary distribution, the attack can still underperform. We also study the case
of Zipf-distributed queries with respect to Zipf-distributed auxiliary distributions with
distinct parameters γ ≠ γ′. In particular, we show that the advantage of Amap is at most

H−n
m,γ + log Hm,γ′

log(mγ′ ·Hm,γ′) .

Finally, we also study the case of Zipf-distributed queries with respect to Zipf-distributed
auxiliary distributions with distinct parameters γ ≠ γ′ and distinct underlying permuta-
tions. Note that for a Zipf distribution, one has to implicitly define a bijection π that maps
a query to a rank. Assuming that πq and πa are the underlying bijections of the query
and auxiliary distributions, respectively, we show that the advantage of Amap is at most(

πq

(
π−1

a (1)
)−γ ·Hm,γ

)−n

+ log Hm,γ′

log(mγ′ ·Hm,γ′) .

The worst case occurs when the query with the highest mass in the query distribution is
the query with the smallest mass in the auxiliary distribution. In this case, (πq(π−1

a (1))−γ ·
Hm,γ)−n = m.

Bounds for functional recovery. In our second theorem, we examine the case of
functional recovery, where an adversary aims to compute a function f of the secret s. We
present a bound that characterizes the advantage of Atst as a function of more complex
variants of the information-theoretic measures discussed above. Specifically, we show that
the advantage of Atst against a leakage model X is at most

2−Γ(X,f,α) + 2−Φ(X,f) + 2−Ψ(f,pS,α).

Here, Γ(X, f, α) is a measure we call the functional leakage entropy of X, which quantifies
the difficulty of estimating f(s) given the observed leakage. This measure depends on the
number and distribution of secrets that f maps to an incorrect recovery value y ̸= f(s).
Additionally, Φ(X, f) is a measure we refer to as the functional singular entropy, which
quantifies how susceptible a model is to the direct estimation of the recovery value and
Ψ(f, pS, α) is what we refer to as the functional modal entropy, which measures how
well the auxiliary distribution’s strongest beliefs align with function values under the
true distribution. As mentioned, these information measures are complex, and we were
unable to compute them for specific leakage patterns and common recovery functions.
Nevertheless, we believe that the bound remains a valuable contribution and hope that it
will inspire future work, potentially leading to bounds based on simpler measures.

Automated leakage attacks. In addition to naturally integrating auxiliary information,
our framework supports the use of statistical and machine learning algorithms. This
capability allows us to construct leakage attack engines, which we define as tools that can
automatically attack common classes of leakage models without requiring the design of
custom attacks. In this work, we demonstrate the feasibility of this idea by designing and
implementing an attack engine called Bayle that targets a wide range of leakage models,
including the i.i.d. variants of the most common leakage patterns: the query equality
pattern, the combination of query equality and volume and conjunctive leakage.
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A new inference algorithm. The first step in designing our engine is to restrict our
attention to leakage models that can be formalized as a subclass of Bayesian Networks
(BNs), which are probabilistic graphical models widely used in statistics and machine
learning. All the leakage profiles we are aware of can be modeled as BNs, though it is
possible that more complex profiles may emerge in the future.

Roughly speaking, a BN is a graph whose vertices represent the model’s random
variables and edges represent conditional dependencies. One can think of a BN as a
compact representation of a joint distribution that can be leveraged to efficiently compute
a variety of probability distributions associated with the model. MAP estimates on certain
BNs can be computed efficiently using the Variable Elimination (VE) algorithm [LS18]
which has a running time of O(n ·dw+1) and a space complexity of O(dw+1), where d is the
maximum domain size of the random variables and w is the treewidth of the BN. While
BNs in machine learning tend to have small domains, this is unfortunately not the case in
our setting.

To address this, we first observe that the BNs of many leakage profiles share a similar
structure. We refer to these networks as hidden function networks (HFNs) and formalize
them in Section 8.1. At a high level, these leakage models generate leakage sequences
ℓ = (ℓ1, . . . , ℓn) such that each observed leakage ℓi = (h1(si), . . . , hk(si)) results from
evaluating a set of hidden functions h = (h1, . . . , hk) on the secrets. We then design
a new MAP inference algorithm specifically for HFNs over independent and identically
distributed (i.i.d.) secret variables. When at least one of the hidden functions is bijective,
our algorithm is considerably faster than running VE on HFNs. Although the comparison is
not entirely fair since the algorithms were implemented in different programming languages,
our Python implementation of VE took 2 hours to estimate a sequence of 10 i.i.d. secrets
from query equality leakage over a query space of size 9, whereas a Julia implementation
of our custom algorithm took 31.3 ms.

Empirical analysis of leakage patterns. We used our engine to analyze the HFNs of
several common leakage patterns, including query equality, the combined query equality
and volume, and leakage patterns resulting from naive conjunctions. We focused on these
because they are among the most prevalent and difficult to suppress. Additionally, we
examined the leakages from naive conjunctions to determine whether the common belief
that they leak excessively holds true. In our experiments, we used a Zipf distribution for
the query distributions and a uniform distribution for volume. Overall, our experiments
show that Amap has a higher advantage in query recovery when its auxiliary distribution is
the same as or very close to the query distribution, when the query sequences are longer,
and when the query space is smaller. In the case of naive conjunctions, the attack achieved
a very high advantage.

Connections and new directions. In addition to providing theoretical and algorithmic
techniques to study leakage, our framework naturally connects the analysis of leakage to
other areas of computer science and mathematics. Through these connections, we hope
that techniques from these fields can be leveraged to analyze leakage and that leakage, in
turn, can motivate new research problems within these areas. These connections are as
follows:

• (Bayesian statistics) our leakage analysis framework is based on Bayesian statistics,
a powerful statistical paradigm with strong theoretical underpinnings. Conducting
leakage analysis within the Bayesian framework allows us to benefit from many
statistical results. For example, one can show using a fairly simple decision-theoretic
argument that MAP estimates are optimal in the sense that they minimize the
expected zero-one loss. However, this argument does not trivially extend to our
setting since the MAP estimate is computed using an auxiliary distribution. Therefore,
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it would be interesting to show (or disprove) that the MAP adversary is optimal
in the same sense either for all auxiliary distributions or for some class of auxiliary
distributions.2

• (information theory) the notions of entropy we introduce for the study of leakage
are connected to the Kullback-Leibler (KL) divergence and, in some cases, to the
min-entropy. It would be interesting, however, to study these measures further
and establish bounds that formally connect them to standard information-theoretic
concepts.

• (computational statistics and machine learning) as mentioned above, our inference
algorithm for HFNs has two main limitations: (1) it relies on the secret variables
being i.i.d.; and (2) its running time is exponential in the domain size of the variables.
A natural question then is how to design inference algorithms for HFNs (and possibly
other cryptographically relevant Bayesian Networks) that are efficient without relying
on the i.i.d. assumption. Another interesting direction is to consider approximate
attacks, which could be implemented using approximate inference algorithms such
as variational inference [JGJS99] or Markov Chain Monte Carlo (MCMC) methods
[MRR+53, Has70, RC04].

• (average-case hardness) our framework and the bounds we prove are information-
theoretic, meaning they bound the advantage of computationally unbounded adver-
saries. A natural question then is whether stronger bounds exist for computationally
bounded adversaries. Specific examples of leakage profiles that are computationally
secure were first presented in [KM19], but it would be interesting to obtain gen-
eral results about the limits of computationally-bounded leakage attacks. We note
that this question is directly related to an extensive line of work in average-case
complexity theory concerning the computational hardness of statistical inference
[Bar16, Hop18, BBH18, BHK+19, BB20, BBH+21]. These works prove lower bounds
on various statistical inference problems like the planted clique problem in restricted
models of computation, such as the Sum-of-Squares (SOS) hierarchy [Las01, Par03]
and the Statistical Query (SQ) model [Kea98]. An important research direction
motivated by our work is to explore how these hardness assumptions can be used to
study the limits of computationally-bounded leakage attacks.

• (Fourier analysis of Boolean functions) our notion of functional leakage entropy
is defined for a given Boolean function f . It would be interesting to study the
functional leakage entropy of classes of recovery functions, however. Such results
may be obtainable by using ideas from the Fourier analysis of Boolean functions,
which allows us to reason about and approximate Boolean functions in a structured
way.

• (cryptography) though our framework was motivated by the study of leakage in
encrypted search, it can be used to analyze leakage throughout cryptography since,
as discussed above, leakage appears in many cryptographic settings. Additional ex-
amples include secure multi-party computation [FIM+06, MF06, HKE12, KMRR15],
private set intersection [GRR19], topology-hiding computation [BBMM18], differen-
tial privacy [DMNS06] and anonymization networks.

2 Related Work
We review related work that proposes leakage analysis frameworks. We note that our focus
is on comparing the frameworks that are described in these works and not the specific

2The standard argument holds if the auxiliary distribution is the same as the secret distribution.
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results proved using the frameworks.

Biased coin game. In [WP17], Wright and Pouliot propose a framework to study full
data recovery attacks against the leakage of deterministic (DTE) and order-revealing
encryption (ORE). At a high level, their approach consists of reducing the problem of
recovering DTE- and ORE-encrypted data to winning two games the authors call the
biased coin game (BCG) and the loaded dice game (LDG). In the (m, n)-BCG, a challenger
holds m biased coins each of which lands heads with probability pi. The challenger then
samples a coin according to a prior distribution and tosses that coin n times. It then
provides its prior distribution over coins, the coin probabilities (p1, . . . , pm) and the results
of the n coin tosses to an adversary whose goal is to guess which coin was chosen. The
(m, n, d)-LDG is a generalization of the BCG to d-sided die. The authors then show how
winning the BCG leads to a full data recovery attack on DTE and how winning the LDG
leads to a full data recovery attack on ORE.

Quantitative information flow. In a pair of works, Jurado and Smith [JS19] and later
Jurado, Palamidessi and Smith [JPS21], present a comprehensive framework to analyze
the leakage of deterministic and order-revealing encryption, respectively. Their approach
is based on quantitative information flow (QIF) which is a theoretical framework originally
proposed to study the information that a program reveals about a secret [Den82, Gra92].
For an introduction to QIF we refer the reader to [ACM+20]. At a very high level, the
framework models a leakage pattern as a channel which, together with a prior distribution
over the plaintexts, results in a distribution over posterior distributions which the authors
call the hyper-distribution. This hyper-distribution is known to the adversary and, given
some observed leakage, results in a specific posterior distribution. The framework also
models different adversarial goals as gain functions g which can be thought of as loss
functions from decision theory and machine learning. The prior g-vulnerability is then
defined as the expected gain with respect to the prior distribution and the posterior
g-vulnerability is defined as the expected gain over the hyper-distribution. The g-leakage
is then defined as the difference or the quotient of the prior and posterior g-vulnerabilities.
The authors study the g-leakage of DTE and ORE for various gain functions and prior
distributions and use their theorems to design and study mitigation techniques. Some
results are quite surprising; e.g., the authors are able to show that ideal ORE is safe to use
against an adversary that wishes to recover an entire column if the values in the column
are sampled uniformly at random and the value space is larger than the number of rows.

Leakage inversion. Closer to our own work and appearing roughly concurrently, Ko-
rnaropoulos, Moyer, Papamanthou and Psomas [KMPP22] propose a framework to study
the leakage of searchable encryption schemes. Roughly speaking, their approach is to
characterize the set of all databases (technically multi-maps) that lead to the same ob-
served leakage as the target with respect to a certain leakage profile. This set is the
target database’s reconstruction space and the logarithm of its size is reported as the
amount of information revealed about the target database. The framework of [KMPP22]
quantifies leakage with respect to full data recovery attacks against (scheme specific)
response identity leakage, which reveals the results of a query. 3 Furthermore, it handles
auxiliary information that can be modeled as a predicate and that can be used to filter
out items from the reconstruction space (e.g., “the data contains the word crypto”).

PAC learning. Grubbs, Lacharite, Minaud and Paterson propose in [GLMP18] to use
PAC learning [Val84] as a framework to study approximate data reconstruction attacks.

3The response identity is sometimes referred to as the access pattern in the context of searchable
symmetric encryption
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More precisely, they show how, given O

(
d

ε
log d

εδ

)
known queries sampled i.i.d, an

adversary can recover an ε-approximation of a column with probability at least 1− δ. Here,
d is the VC-dimension of a concept class needed for the reduction to PAC learning and
an ε-approximation is, roughly speaking, a column whose entries will be incorrect with
probability at most ε. Similarly to the leakage inversion framework, this approach focuses
on data recovery attacks from response identity leakage but, unlike leakage inversion, it
only applies to known-query attacks.

ϵ-similarity. Another work closely related to ours is by Damie, Leger, Hahn, and
Peter who also describe a statistical framework to analyze leakage in encrypted search
[DLHP23]. Their framework, however, differs from ours in several important ways. First,
their approach specifically addresses co-occurrence leakage and attacks that rely on the
similarity of co-occurrences between secret and auxiliary data. In contrast, our framework
and theorems apply to any leakage profile and auxiliary distribution—although our leakage
engine is restricted to a particular class of leakages. Second, while their framework focuses
on analyzing how an adversary’s ability to estimate the secrets’ co-occurrence distribution
from auxiliary data impacts the attack, our framework assumes the adversary already
possesses an auxiliary distribution that could be generated from an auxiliary dataset or
not. This auxiliary distribution could represent any arbitrary knowledge the adversary has
about the secrets. Third, the main result in [DLHP23] is statistically asymptotic—meaning
that it holds for sufficiently large samples—and assumes that the auxiliary dataset is
sampled from a distribution with the same co-occurrence probabilities as the secret dataset.
In addition to their leakage analysis framework, [DLHP23] also proposes a risk assessment
framework and alternative methods for empirically evaluating attacks.

q-Leakage analysis. Finally, we mention a recent paper by Boldyreva, Gui and Warin-
schi who propose a framework to study leakage in encrypted search [BGW24]. Their
approach is inspired by QIF but extends to SSE and STE schemes. Like ours, this frame-
work studies leakage but it does so from a very different perspective and with different goals
in mind. Roughly speaking, the q-Leakage framework quantifies the cost of leakage on
the security of a construction. This is done by defining quantitative leakage functions (or
ql-functions) which award value to the adversary’s output. Different ql-functions capture
different adversarial goals and the framework then studies the expected value an adversary
obtains. Roughly speaking, the ql-functions of [BGW24] correspond to loss functions in
our framework but our work is motivated by the analysis of leakage profiles as their own
objects of study for the purposes of better understanding the characteristics that make
them exploitable.

Summary. With respect to attacks, the BCG/LDG [WP17] and QIF [JS19, JPS21]
frameworks model full data recovery attacks against frequency and order leakage. The
leakage inversion [KMPP22] and PAC-based frameworks [GLMP18] model full data recov-
ery attacks against response identity leakage while the ϵ-similarity framework [DLHP23]
models full query recovery against co-occurrence leakage. In this work, we focus on full
and functional attacks against query and/or data. With respect to auxiliary information,
the BCG/LDG framework handles auxiliary distributions that are within a certain statis-
tical distance from the data distribution. The QIF framework assumes the adversary’s
auxiliary distribution is the same as the data distribution. Leakage inversion studies
auxiliary distributions that can be modeled as predicates and the PAC-based framework
assumes (non-distributional/perfect) auxiliary knowledge of client queries. The ϵ-similarity
framework assumes the adversary receives an auxiliary dataset sampled from a distribution
that is similar to the secret data. Our framework makes no assumption about auxiliary
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information.

3 Preliminaries
Notation. We write x← D to represent an element x being sampled from a distribution
D, and x←$ X to represent an element x being sampled uniformly at random from a
set X. The output x of an algorithm A is denoted by x← A. Given a sequence v of n
elements, we refer to its ith element as vi. If S is a set then #S refers to its cardinality. We
denote the set of all functions from domain X to co-domain Y by Func (X,Y) and the set of
bijections from X and Y by Bij (X,Y). Given a function f : X→ Y and a sequence x ∈ Xn,
we sometimes write f(x) to denote the sequence (f(x1), . . . , f(xn)). We write a

◦= b to
denote that a is defined as b. We denote the falling factorial by (m)n

◦= Πn−1
i=0 (m − i).

The identity function over a domain X is denoted idX and the indicator function of a
proposition P is denoted as 1{P}.

Probabilities and random variables. Given a discrete random variable X defined
over a probability space (Ω,F , µ), we denote its distribution by pX(x) or p(x) when
X is clear. We denote some special distributions with their own symbols, e.g., we
write uX to denote the uniform distribution over a set X. Given two discrete random
variables X : Ω → X and Y : Ω → Y, we denote the joint distribution of X and Y by
pX,Y (x, y) or p(x, y) when X and Y are clear, and the distribution of X conditioned on
Y = y, for some y ∈ Y, by pX|Y (x | y) or p(x | y) when X and Y are clear. Given n
independent and identically p-distributed random variables X1, . . . , Xn : Ω → X0, we
denote their joint distribution by p⊗n and refer to the co-domain of the random sequence
X = (X1, . . . , Xn) as X = X1 × · · · × Xn = X0 × · · · × X0. We will denote multivariate
random variables X = (X1, . . . , Xn) using bold font and denote their underlying space
as X = X1 × · · · × Xn. The min-entropy of a discrete random variable X is defined
as H∞(X) ◦= − log max

x∈X
pX(x). Throughout, we will make use of logarithmic ratios of

probabilities of the form log(p(x)/q(x)), where p and q are probability distributions. As is
standard in statistics we define log(0) as −∞.

Zipf distributions. A random variable X is Zipf distributed with parameter γ if for all
λ ∈ [m],

Pr [ X = λ ] = λ−γ

Hm,γ
,

where Hm,γ =
m∑

i=1
1/iγ is the general form of the harmonic number. When considering

Zipf distributions, we usually assume the existence of a bijection π : X→ [m] that maps
every element of X to a rank in [m]. We denote by Zm,γ the Zipf distribution over a space
X of size m and parameter γ.

Kullback-Leibler divergence. Given two probability distributions p and q over the
same space, their Kullback-Leibler (KL) divergence is defined as

KL(p∥q) =
∑
x∈X

p(x) · log
(

p(x)
q(x)

)
,

where KL(p∥q) is defined as 0 when p(x) = q(x) = 0 and as +∞ when p(x) > 0 and
q(x) = 0.
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A useful divergence. In addition to the KL divergence, we introduce the following
measure which will be useful for our purposes. Given a probability distribution p over X
and two subsets X1,X2 ⊆ X,

D
(
p
/
X1,X2

) ◦= log
(

maxx∈X1 p(x)
minx∈X2 p(x)

)
,

where D(p
/
X1,X2) is defined as 0 when max

x∈X1
p(x) = min

x∈X2
p(x) = 0 and as +∞ when

max
x∈X1

p(x) > 0 and min
x∈X2

p(x) = 0. Intuitively, this divergence measures the disparity
between the most likely element of X1 and the least likely element of X2.

Loss functions. A loss function is a function g : Θ×Θ→ R, where Θ is the parameter
space, that quantifies the cost of estimating the true parameter θ ∈ Θ as θ̂. In our setting,
the loss function will capture the cost that the adversary incurs by inferring a secret ŝ
(or a function of ŝ) when the real secret is s. For instance, we will use the zero-one loss
function zo : S× S→ {0, 1} defined as

zo(s, ŝ) =
{

1 if s ̸= ŝ
0 if s = ŝ,

to capture full query recovery. Loss functions are important when assessing leakage attacks
because they capture the goal of the adversary. They are, therefore, crucial for determining
how well an attack performs.

Statistical estimators. In this work, we will be interested in computing the maximum
a-posteriori probability (MAP) estimate which is defined as

mapS(ℓ, α) ◦= arg max
s∈S

p̃S (s | ℓ) = arg max
s∈S

pL (ℓ | s) · α(s),

where α is the auxiliary distribution. In the above, we denote by p̃S(s | ℓ) the posterior
distribution computed using the auxiliary distribution α as opposed to the true secret
distribution pS. We will also be interested in the maximum likelihood estimate (MLE)
which is defined as

mleS(ℓ) ◦= arg max
s∈S

pL (ℓ | s) ,

and the MAP test which is defined as

tstY(f, ℓ, α) ◦= arg max
y∈Y

∑
s∈f−1(y)

p̃ (s | ℓ) = arg max
y∈Y

∑
s∈f−1(y)

pL (ℓ | s) · α(s),

where f : S→ Y is a recovery function that maps secrets to an output space Y. Note that
the MAP estimate outputs an element of the secret space whereas the MAP test outputs
an element of the recovery function’s co-domain and, specifically, the one with the highest
probability according to the posterior distribution. For example, the recovery function f
could be the function that outputs the most significant bit of the secret, the function that
outputs the XOR of the bits of the secret or even a histogram of a multivariate secret.

Bayesian networks. A probabilistic model is a set of random variables together with their
joint and marginal distributions. A probabilistic graphical model (PGM) is a probabilistic
model whose dependencies can be captured and analyzed using a graph with the random
variables as vertices and their probabilistic dependencies (e.g., conditional dependence and
independence) as edges or lack thereof. The graphical structure provides both a visual and



12 Bayesian Leakage Analysis

formal way to express complex relationships between the variables in a compact manner
that enables efficient computation and inference. There are two main forms of PGMs:
Markov random fields and Bayesian networks, which we now describe.

A Bayesian network NX over a multivariate random variable X = (X1, . . . , Xn) is a
directed acyclic graph with the random variables Xi as vertices and directed edges between
variables that are conditionally dependent. In addition, each node Xi with incoming edges
is labeled with a conditional probability table defined as

cpt(Xi)
◦=
{

p(xi|z1, . . . , zm)
}

(z1,...,zm)∈Z1×···×Zm

,

where Z1, . . . , Zm ∈ X are the parents of Xi. We can partition the variables X into a
subset of evidence variables L ⊂ X, a set of hidden variables H ⊂ X and a set of secret
variables S ⊂ X and use the Bayesian network to infer something about the instantiation
s of the secret variables S given an instantiation ℓ of the evidence variables L. In the
context of encrytped search, the secret variables will be the query and/or data variables
and the evidence variables will be the leakage variables. The power of Bayesian networks
comes from the Bayesian network chain rule which states that

p(x) =
n∏

i=1
p(xi | parent(Xi))

which is often more efficient to compute than the standard chain rule. In the design
of our inference algorithm in Section 8.1, we make use of a notion called d-separation
[Pea88] which allows one to prove conditional independence between two BN vertices with
respect to a set of other vertices. At a high level, two nodes X1 and X2 are conditionally
independent with respect to a set of nodes Y if all the undirected paths between X1 and
X2 are blocked by nodes in Y, where nodes in Y are blocking if they satisfy one of three
structural graph properties. In our case, we only need one of these structural properties
called the fork structure which is satisfied if the nodes in Y have outgoing edges towards
X1 and X2. For more about d-separation we refer the reader to [Pea88, KF09].

4 Bayesian Leakage Analysis
We model the design of leakage attacks as a statistical inference problem and leakage
attacks themselves as statistical estimators.

Basic definitions. A leakage model X is a joint random variable that consists of a
multivariate secret variable S over a secret space S = S1 × · · · × Ss, where s ≥ 1; a
multivariate hidden or unobservable variable H over a hidden space H = H1 × · · · ×Hh,
where h ≥ 1; and a multivariate leakage variable L over a leakage space L = L1 × · · · × Ll,
where l ≥ 1. The probability distribution pS over S is the true secret distribution and α is
the auxiliary distribution over S. We write pS( · | ℓ) to denote the posterior and pL( · | s)
the likelihood function of s.

Full recovery attacks. A full recovery attack is a statistical inference algorithm that,
given observed leakage ℓ, which we refer to as a leakage point, and the auxiliary distribution
α over S, outputs an element of the secret space ŝ. The standard MAP and MLE estimators
lead to full recovery attacksAmap andAmle that compute and output mapS(ℓ, α) and mleS(ℓ),
respectively.
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Functional recovery attacks. A functional recovery attack is a statistical inference
algorithm that, given a leakage point ℓ, a recovery function f : S→ Y and the auxiliary
distribution α over S, outputs an element of Y. The standard MAP test leads to a
functional recovery attack Atst that computes and outputs the MAP test tstY(f, ℓ, α).

From auxiliary data to auxiliary distributions. In this work, we assume the
adversary has access to an auxiliary distribution α. In practice, however, this is not always
the case and the adversary could only have a dataset sampled from a distribution that
is similar to the secret distribution. We refer to such datasets as auxiliary datasets and
note that if they are large enough, standard statistical techniques can be used to learn the
distribution from the data. This is usually referred to as empirical Bayes in the statistics
literature. For our purposes, we will therefore assume the adversary has access to an
auxiliary distribution, though we note that a more in depth study of how empirical Bayes’
affects the adversary’s advantage would be interesting.

Interpretation. It is important to note that the attacks we study in this work are
not necessarily optimal so our bounds should not, therefore be interpreted as a security
analysis but, rather, as an analysis of a given leakage model against specific, but powerful,
inference methods.

4.1 Definitions
In this section, we present our statistical leakage analysis framework which includes a
notion of adversarial advantage and establishes a bound on the MAP, MLE and MAP test
adversaries’ advantages.

Inference. To quantify the success of an attack, we first define an experiment that
captures the adversary’s recovery task as an inference problem. Consider the following
probabilistic experiment where X is a leakage model, α is an auxiliary distribution,
f : S→ Y is a recovery function, g : Y× Y→ R is a loss function and A is an attack:

• Infg
A,f (X, α) :

1. the challenger samples (s, h, ℓ)← X;
2. the adversary outputs ŷ← A(ℓ, α);
3. output g(f(s), ŷ);

Refining advantage. The literature on leakage attacks almost exclusively evaluates
attacks by reporting the recovery rate which, roughly speaking, is defined as the fraction
of values from a test set that the attack recovers correctly [IKK12, NKW15, CGPR15,
BKM20, GLMP18, GLMP19, LMP17, LMP18]. Reporting the recovery rate, however, is
misleading for several reasons. The first and most obvious limitation of the recovery rate
is that it cannot be interpreted in isolation but needs to be compared to the probability
of guessing the secret. So, instead, one should report the advantage of the attack over
guessing the secret.

We note, however, that this can still be misleading. The problem is that leakage attacks
also leverage auxiliary information so an attack’s recovery rate should be compared to
guessing the secret given the auxiliary information and nothing else. There are several
intuitions that support this. First, a cryptographic scheme cannot be expected to hide
information about the secrets that is already revealed by the auxiliary information alone.
Second, recall that the purpose of a leakage attack is to extract information from the
leakage given the auxiliary information. But if one reports the recovery rate alone, then
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how do we know that the attack extracted the information from the leakage and not from
the auxiliary information alone? To make this more concrete, consider a scheme that is
zero-leakage, an auxiliary dataset that is exactly the same as the target dataset and an
“attack” that outputs the auxiliary dataset. The recovery rate of this attack is 100% but
the attack is not even a leakage attack as it is clearly not exploiting leakage.

A concrete example. As an example, we consider the empirical evaluation conducted
by Gui, Patterson and Tang in [GPT23]. In this work, the authors describe a leakage
attack against a leakage pattern they refer to as the field-value equality pattern which,
roughly speaking, reveals whether the values of a field are the same or not. 4 To evaluate
their attack, the authors choose as target dataset the 2013 American Community Survey
(ACS-13) and as auxiliary dataset the 2012 American Community Survey (ACS-12) both
projected on the race (RAC3P), state (ST), place of birth (POBP), place of work (POWSP),
class of worker (COW) and occupation (OCCP) fields. We note that [GPT23] does not provide
any justification as to why these particular datasets and fields were chosen. In the following
discussion, we will define the set T = {RAC3P, ST, POBP, POWSP, COW, OCCP} and often refer
to the T -projected datasets ACS-13T and ACS-12T , by which we mean the datasets that
result from keeping only the fields in T from ACS-13 and ACS-12, respectively.

Taking a closer look at these datasets, one can see that ACS-13T and ACS-12T are very
similar under almost any similarity metric one can think of. This can be seen by simple
inspection or by using, for example, the multiset Jaccard similarity index which is 0.37
out of a possible 0.5. One can also see that out of 3, 113, 030 documents in ACS-12T and
3, 132, 795 documents in ACS-13T , there is a total of 2, 333, 886 T-projected documents in
common. We stress here that this intersection is over the combination of all the target fields
in T and not over one individual field. In other words, the auxiliary and target databases
used in the experiments of [GPT23] share about 75% of their T-projected documents.

This raises several questions about how one can even interpret the empirical results
of [GPT23]. A first observation is that the only thing one can conclude from them is
that the attack is only accurate assuming knowledge of 75% of the target data making
it a known-data attack rather than inference attack as claimed. This is similar to the
well-known case of the IKK attack which was shown in [CGPR15] to not work as an
inference attack as claimed but only as a known-data attack. A more subtle issue, however,
is that [GPT23] only report the recovery rate of their attack but not the advantage. The
recovery rates are high, ranging from 90% to even 99% but this is misleading depending on
the loss function under consideration. For example, if one is concerned with (unordered)
data recovery, then the trivial attack mentioned above that simply outputs the auxiliary
dataset ACS-12T without even seeing the leakage would achieve somewhere around 75%
recovery rate. 5

Auxiliary guessing. With this in mind, we define a guessing experiment where the
secret is estimated as the mode of the auxiliary distribution, which is the best an adversary
can do given an explicit description of the auxiliary distribution and assuming it is perfectly
accurate in the sense that it is equal to the secret distribution. Consider the following
probabilistic experiment where X is a leakage model, α is an auxiliary distribution,
f : S→ Y is a recovery function and g : Y× Y→ R is a loss function:

• Guessg
f (X, α) :

1. the challenger samples (s, h, ℓ)← X;
4Technically they also study the field-value-contention equality which technically reveals less than the

field-value equality but our discussion holds for both leakage patterns.
5Note that if, on the other hand, one is concerned with recovering the ordered data then the trivial

attack would not achieve such a high recovery rate.
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2. computes G(α) := arg max
s′∈S

α(s′);

3. sets ŝ←$G(α);
4. outputs g

(
f(s), f(ŝ)

)
;

In the experiment above, we assume the auxiliary distribution is provided in explicit form,
e.g., as a parameter θ ∈ Θ if the distribution is parameterized or as a probability vector if
it is non-parameteric.

Auxiliary advantage. We can now formalize our notion of advantage which captures
how well a leakage attack recovers the secret compared to guessing. Though our framework
can be used with any loss function, our results are for the zero-one loss.

Definition 1. The advantage of an (f, zo)-adversary A against a leakage model X =
(S, H, L) with respect to auxiliary distribution α over S is defined as

Advzo
A,f (X, α) ◦=

∣∣Pr
[

Inf zo
A,f (X, α) = 1

]
− Pr

[
Guesszo

f (X, α) = 1
]∣∣ .

Remark. Notice that the advantage is not an “absolute” notion but a relative one in the
sense that it depends on the auxiliary distribution. In other words, an attack could have
small advantage against a particular leakage model with respect to a specific auxiliary
distribution α but have large advantage with respect to another auxiliary distribution α′.

5 Bounds on Full Recovery Attacks
We prove a theorem that characterizes the properties of a leakage model that result in
Amap having a small advantage. More precisely, we show that its full-recovery advantage is
exponentially bounded by three information-theoretic measures we introduce: the leakage
entropy, the singular entropy and the modal entropy.

Leakage entropy. The leakage entropy of a leakage model provides a way to quantify the
level of indistinguishability between any two secrets with respect to both the leakage they
produce and the a-priori beliefs the adversary has in them given the auxiliary distribution.

Definition 2 (Leakage entropy). The leakage entropy of a model X = (S, H, L) with
respect to an auxiliary distribution α over S is defined as

Λ∞(X, α) ◦= min
ℓ∈L, s∈Sℓ

Λℓ,s(X, α)

where

Λℓ,s(X, α) ◦= − log

 min
s′∈Sℓ\{s}


KL
(

pL( · | s)
∥∥∥∥ pL( · | s′)

)
− log α(s′)

− log α(s)


 ,

where for all ℓ ∈ L, Sℓ
◦= {s ∈ S : pL(ℓ | s) > 0}.

Intuitively, an increase in the leakage entropy reduces the KL divergence between
the model’s likelihoods. This introduces ambiguity in the observed leakage that confuses
statistical estimation techniques, and hinders the adversary’ s ability to infer the secret
given its auxiliary information.
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Singular entropy. Next, we describe another important aspect of leakage models that
affects security. Note that any leakage model that assigns observable leakages to secrets
in a one-to-one fashion is immediately information-theoretically exploitable, since, given
some observed leakage, one can directly invert it by returning the only secret that could
have produced it. Throughout, we will refer to leakages that are in such a one-to-one
correspondence with secrets as singular leakage points, to their corresponding secrets as
singular secrets and to the process of recovering a secret from its uniquely associated
leakage as direct inversion. An example of direct inversion in the setting of encryption
occurs when the message space consists of two messages m1 and m2 such that |m1| ≠ |m2|,
and one encrypts one of these messages with a length-preserving encryption scheme like
the one-time pad. Here, the secrets are the messages, the leakage is the message length
and they are in a one-to-one correspondence. In such a scenario, an unbounded adversary
can directly invert the encryption—even if it is perfectly secure—by observing the length
and returning the associated message. To capture a leakage model’s susceptibility to direct
inversion, we introduce an information-theoretic measure called the singular entropy.

Definition 3 (Singular entropy). The singular entropy of a leakage model X is defined as

Σ(X) ◦= − log
(∑

ℓ∈L1

p(sℓ)
)

,

where L1
◦= {ℓ ∈ L : #Sℓ = 1} are the model’s singular leakage points, Sℓ

◦= {s ∈ S :
pL(ℓ | s) > 0} and sℓ ∈ S for ℓ ∈ L1 is the unique secret such that pL(ℓ | s) = pS(s | ℓ) = 1.

The singular entropy measures the probability of singular leakage points. Specifically,
the singular entropy increases for leakage models that are unlikely to produce singular
leakage points. Therefore, higher singular entropy indicates that the model is more secure
because it reduces the likelihood of direct inversion. Conversely, the singular entropy
decreases for models that are likely to produce singular leakages points. Therefore, lower
singular entropy indicates that the model is less secure because it increases the likelihood
of direct inversion. In summary, singular entropy is a measure that evaluates a leakage
model’s susceptibility to direct inversion.

Modal entropy. The final definition we need to prove our bound is a notion we call the
modal entropy. Intuitively, the modal entropy of two distributions p and q measures the
belief that p has in the global modes of q.

Definition 4 (Modal entropy). Let pS and α be two probability distributions over the
secret space S. The modal entropy of pS with respect to α is

χ(pS, α) = − log
(

pS (G(α))
#G(α)

)
,

where G(α) ◦= arg max
s∈S

α(s) are the global modes of α.

We now show some basic but useful identities related to the modal entropy.

Proposition 1. Let pS be a probability distribution over the secret space S, then

(i) χ(pS, uS) = log (#S);

(ii) χ(pS, pS) = H∞(S).

Proof. Towards showing the first identity, we have

χ(pS, uS) = − log
(

pS (G(uS))
#G(uS)

)
= − log

(
pS (S)

#S

)
= log (#S) .
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Turning to the second identity, we have

χ(pS, pS) = − log
(

pS (G(pS))
#G(pS)

)
= − log

(
#G(pS) ·maxs∈S pS(s)

#G(pS)

)
= H∞(S).

Full recovery. We now turn to our theorem on full recovery which states that the
advantage of Amap against a leakage model is exponentially bounded by the model’s
leakage, as well as its singular and modal entropies. Note that the theorem does not rely
on any independence assumptions.

Theorem 1. For any leakage model X = (S, H, L) and auxiliary distribution α over S,

Advzo
Amap,idS

(X, α) ≤ 2−Λ∞(X,α) + 2−Σ(X) + 2−χ(pS,α).

Proof. Analyzing the first term of the advantage, we have

Pr
[

Inf zo
Amap,idS

(X, α) = 1
]

= Pr [Amap(L, α) = S ]

=
∑
s∈S

Pr
[
Amap(L, α) = s

∣∣S = s
]
· Pr [ S = s ]

=
∑
ℓ∈L

∑
s∈S

Pr
[
Amap(ℓ, α) = s

∣∣S = s, L = ℓ
]
· Pr [ S = s, L = ℓ ]

=
∑
ℓ∈L

∑
s∈Sℓ

Pr
[
Amap(ℓ, α) = s

∣∣S = s, L = ℓ
]
· p(s, ℓ) (1)

where Equality (1) holds because, for all s ∈ S \ Sℓ,

Pr
[
Amap(L, α) = s

∣∣S = s, L = ℓ
]

= 0

since the MAP adversary can never output a secret s that does not explain the observed
leakage point. In the following, we partition the leakage space into its singular leakage
points L1 and its remaining leakage points L≥2,

L1
◦= {ℓ ∈ L : #Sℓ = 1} and L≥2

◦= {ℓ ∈ L : #Sℓ > 1}.

For visual clarity, we will denote the event that Inf zo
Amap,idS

(X, α) outputs 1 as I. We can
rewrite Equation (1) as follows,

Pr [ I ] =
∑
ℓ∈L1

p(sℓ, ℓ) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
[
Amap(ℓ, α) = s

∣∣S = s, L = ℓ
]
· p(s, ℓ)

= 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
[
Amap(ℓ, α) = s

∣∣S = s, L = ℓ
]
· p(s, ℓ)

where the first Equality is because Sℓ = {sℓ} and Pr
[
Amap(ℓ, α) = sℓ

∣∣S = sℓ, L = ℓ
]

= 1
when ℓ ∈ L1 (recall that sℓ is the unique secret that explains the leakage ℓ) and the second
is by definition of the singular entropy.

Now, let p̃S( · | ℓ) denote the posterior distribution computed by the adversary, i.e.,
the posterior computed using the auxiliary distribution α as the prior and let Sels be the
event that the secret s is selected by Amap (e.g., uniformly at random) from the global
modes of the posterior. We then have,
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Pr [ I ] = 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
ℓ

∧
s′ ̸=s

p̃S(s | ℓ) ≥ p̃S(s′ | ℓ)

∧Sels

 · p(s, ℓ) (2)

≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
ℓ

∧
s′ ̸=s

p̃S(s | ℓ) ≥ p̃S(s′ | ℓ)

 · p(s, ℓ)

≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
ℓ

 ∧
s′∈Sℓ\{s}

p̃S(s | ℓ) ≥ p̃S(s′ | ℓ)

 · p(s, ℓ) (3)

≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
ℓ

 ∧
s′∈Sℓ\{s}

log
(

p̃S(s | ℓ)
p̃S(s′ | ℓ)

)
≥ 0

 · p(s, ℓ)

≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
ℓ

 ∧
s′∈Sℓ\{s}

log
(

pL(ℓ | s) · α(s)
pL(ℓ | s′) · α(s′)

)
≥ 0

 · p(s, ℓ)

≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

Pr
ℓ

 ∧
s′∈Sℓ\{s}

log
(

pL(ℓ | s)
pL(ℓ | s′)

)
− log

(
α(s′)
α(s)

)
≥ 0

 · p(s, ℓ)

≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

min
s′∈Sℓ\{s}

Pr
ℓ

[
log
(

pL(ℓ | s)
pL(ℓ | s′)

)
− log α(s′) ≥ − log α(s)

]
· p(s, ℓ)

(4)

where, Inequality 3 follows from the fact that we are only interested in the secrets s′ such
that p̃S(s′ | ℓ) > 0 otherwise p̃S(s | ℓ) ≥ p̃S(s′ | ℓ) = 0 is always true so those events do
not contribute to the overall probability. Inequality 4 follows from the Fréchet inequalities.
Also, observe that for all s, s′ ∈ Sℓ, when #Sℓ > 1, both p̃S(s | ℓ) and p̃S(s′ | ℓ) are strictly
positive and, without loss of generality, the auxiliary distribution has a strictly positive
probability mass function. This is needed to guarantee that the divisions in the inequalities
above are valid. In the following, let

λℓ,s,s′
◦= log

(
pL(ℓ | s)
pL(ℓ | s′)

)
− log α(s′).

Since λℓ,s,s′ is a non-negative random variable, using Markov’s inequality, we have

Pr
ℓ

[λℓ,s,s′ ≥ − log α(s)] ≤ Eℓ [λℓ,s,s′ ]
− log α(s) . (5)

Note, however, that

E
ℓ

[λℓ,s,s′ ] = E
ℓ∼pL(ℓ|s)

[
log
(

pL(ℓ | s)
pL(ℓ | s′)

)
− log α(s′)

]
=
∑

ℓ

pL(ℓ | s) · log
(

pL(ℓ | s)
pL(ℓ | s′)

)
− log α(s′)

= KL
(

pL( · | s)
∥∥∥∥ pL( · | s′)

)
− log α(s′).

Plugging this back into Equation (5), we have

Pr
ℓ

[λℓ,s,s′ ≥ − log α(s)] ≤
(

KL
(

pL( · | s)
∥∥∥∥ pL( · | s′)

)
− log α(s′)

)
· (− log α(s))−1 (6)
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and plugging Equation (6), in turn, into Equation (4) we have

Pr [ I ] ≤ 2−Σ(X) +
∑

ℓ∈L≥2

∑
s∈Sℓ

p(s, ℓ) · 2−Λℓ,s(X,α) ≤ 2−Σ(X) + 2−Λ∞(X,α).

where the last inequality follows from the fact that, for all ℓ ∈ L and all s ∈ Sℓ,

Λℓ,s(X, α) ≥ min
ℓ∈L, s∈Sℓ

Λℓ,s(X, α) = Λ∞(X, α).

We now turn to the second term of the advantage. Let UG(α) be the random variable that
outputs an element of G(α) ◦= arg max

s∈S
α(s) uniformly at random. We then have,

Pr
[

Guesszo
idS

(X, α) = 1
]

= Pr
[
S = UG(α)

]
=

∑
s∈G(α)

Pr
[
S = s | UG(α) = s

]
· uG(α)(s)

= 1
#G(α) ·

∑
s∈G(α)

pS(s)

= 2−χ(ps,α).

Finally, by the triangle inequality, this gives∣∣∣Pr
[

Inf zo
Amap,idS

(X, α) = 1
]
− Pr

[
Guesszo

idS
(X, α) = 1

]∣∣∣ ≤ 2−Λ∞(X,α) + 2−Σ(X) + 2−χ(pS,α),

from which the theorem follows.

Bounds for the MLE adversary. We now provide a bound on the advantage of the
MLE adversary.

Corollary 1. For any leakage model X = (S, H, L),

Advzo
Amle,idS

(X,⊥) ≤ 2−Λ∞(X,uS) + 2−Σ(X) + 1
#S

,

where uS is the uniform distribution over S and we prpvide ⊥ as the second argument of
the advantage since the MLE does not use a prior.

Proof. By definition of the MLE and MAP we have,

mleS(ℓ) = arg max
s∈S

pL(ℓ | s) = arg max
s∈S

pL(ℓ | s) · uS(s) = mapS(ℓ, uS).

It follows then that

Advzo
Amle,idS

(X,⊥) = Advzo
Amap,idS

(X, uS)

≤ 2−Λ∞(X,uS) + 2−Σ(X) + 2−χ(pS,uS)

= 2−Λ∞(X,uS) + 2−Σ(X) + 1
#S

,

where the inequality follows from Theorem 1 and the last equality follows from Proposition
1.
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Identical auxiliary and secret distributions. In the following corollary, we show a
bound for the case when the auxiliary is the same as the secret distribution.

Corollary 2. For any leakage model X = (S, H, L), if the auxiliary distribution α = pS
then

Advzo
Amap,idS

(X, α) ≤ 2−Λ∞(X,pS) + 2−Σ(X) + 2−H∞(S).

Proof. It follows from Theorem 1 and Proposition 1 that,

Advzo
Amap,idS

(X, α) ≤ 2−Λ∞(X,pS) + 2−Σ(X) + 2−χ(pS,pS)

= 2−Λ∞(X,pS) + 2−Σ(X) + 2−H∞(S).

6 Bounds on Functional Recovery Attacks
We now turn to the study of functional recovery attacks. We prove a theorem that
characterizes the properties of a leakage model that lead to Atst having small advantage.
Similarly to the case of full recovery, we show that the advantage of Atst against any
leakage model is exponentially bounded by functional variants of the information-theoretic
measures defined previously.

Functional leakage entropy. The functional leakage entropy of a leakage model
quantifies the difficulty in estimating f(s) given the observed leakage.

Definition 5 (Functional leakage entropy). The functional leakage entropy of a leakage
model X = (S, H, L) with respect to a recovery function f : S → Y and an auxiliary
distribution α over S is defined as

Γ∞(X, f, α) ◦= min
ℓ∈L, s∈Sℓ

Γℓ,s(X, f, α)

where

Γℓ,s(X, f, α) ◦= − log

 min
y∈Yℓ\{f(s)}


log
(

#Ss
#Sy

)
+ maxℓ′∈L D

(
pS(ℓ′ | · )

/
Ss,Sy

)
− log maxa∈Ss α(a)


 ,

where Ss
◦= f−1(f(s)), Sy

◦= f−1(y), Yℓ
◦= {f(s) : s ∈ Sℓ} and Sℓ

◦= {s ∈ S : p(s | ℓ) > 0}.

Intuitively, functional leakage entropy characterizes the conditions under which a
statistical estimator will return an incorrect output y ̸= f(s) given ℓ. We call the secrets
in Ss the valid secrets since f maps them to f(s) and the secrets in Sy, for y ̸= f(s),
the invalid secrets. Also, we say that a leakage point ℓ is a strong signal for secret s if
the likelihood function of s assigns a large probability to ℓ; that is, if pL( · | s) assigns a
high probability to ℓ. Minimizing log(#Ss/#Sy) in the expression requires that the set
of invalid secrets Sy be significantly larger than the set of valid secrets. Minimizing the
maximum of the divergence term, on the other hand, requires that, in the worst case over
the leakage points, the probabilities that the likelihood functions of the valid secrets assign
to the leakage points are small and that the probabilities that the likelihood functions of
the invalid secrets assign to the leakage points are large. In other words, that the leakage
be a weak signal of the valid secrets and a strong signal of the invalid secrets. Finally, to
minimize the denominator, − log max

a∈Ss
α(a), the auxiliary distribution must assign small

probabilities to the valid secrets.
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If these three conditions are met then: (1) we have more invalid secrets than valid ones;
(2) the leakage point is a stronger signal of the invalid secrets than the valid ones; and (3)
the adversary’s auxiliary distribution (and therefore its belief) weighs the invalid secrets
more than the valid ones.

Functional singular entropy. Functional singular entropy extends the notion of singular
entropy by considering not only whether leakages uniquely identify secrets but also whether
they uniquely determine some function of the secrets, as defined by a recovery function.
Specifically, functional singular entropy measures the extent to which leakage allows an
adversary to estimate a function of the secret with certainty, even if the secret itself cannot
be directly recovered from the leakage. In the context of functional singular entropy, a
leakage point is considered “singular” if all the secrets that can produce that point are
mapped to the same value by the recovery function. More precisely, ℓ is functionally
singular if the set of recovery values Yℓ = {f(s) : s ∈ Sℓ} is of size one. This means that
an unbounded adversary that observes a functionally singular ℓ can determine the value of
f(s) with certainty, even if multiple secrets are associated with it.

Definition 6 (Functional singular entropy). The functional singular entropy of a leakage
model X is defined as

Φ(X, f) ◦= − log

 ∑
ℓ∈L1,f

∑
s∈Sℓ

p(s, ℓ)

 ,

where L1,f
◦= {ℓ ∈ L : #Yℓ = 1}, Yℓ

◦= {f(s) : s ∈ Sℓ} and Sℓ
◦= {s ∈ S : p(s | ℓ) > 0}.

This variant of singular entropy quantifies the probability associated with these func-
tional singular leakage points which reflects the leakage model’s susceptibility to direct
estimation of the recovery value. A larger functional singular entropy indicates that these
singular leakage points occur with lower probability, which increases security. On the other
hand, a smaller functional singular entropy suggests that the model is more vulnerable,
because they occur with higher probability.

Functional modal entropy. We now introduce a notion we call the functional modal
entropy which measures how well the auxiliary distribution’s strongest beliefs align with
function values under the true distribution. In other words, instead of focusing on individual
secrets like the modal entropy, the functional variant focuses on the pre-image of the
recovery function.

Definition 7 (Functional modal entropy). Let pS and α be two probability distributions
over the secret space S and f : S → Y be a recovery function. The functional modal
entropy of pS with respect to α is defined as

Ψ(f, pS, α) = − log

∑
y∈Y

pS(Sy) · # (G(α) ∩ Sy)
#G(α)

 ,

where G(α) ◦= arg max
s∈S

α(s) are the global modes of α and Sy
◦= f−1(y).

To better understand the functional modal entropy, consider the case where f is the
function that outputs the most significant bit of the secret. The functional modal entropy
then measures how well α’s strongest beliefs about which secrets have a 0 or 1 as their
most significant bit align with how often those bits actually occur according to the true
secret distribution pS.

We now show a useful identity related to the functional modal entropy.
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Proposition 2. Let pS and α be two probability distributions over the secret space S and
f : S→ Y be a recovery function, then

Ψ(f, pS, uS) = − log

∑
y∈Y

pS(Sy) · uS(Sy)

 .

Proof. We have

Ψ(f, pS, uS) = − log

∑
y∈Y

pS(Sy) · #(G(uS) ∩ Sy)
#G(uS)


= − log

∑
y∈Y

pS(Sy) · #Sy

#S


= − log

∑
y∈Y

pS(Sy) · uS(Sy)

 ,

where the second equality follows from the fact that G(uS) = S.

Functional recovery. We now prove our Theorem on functional recovery which states
that the advantage of Atst against a leakage model is exponentially bounded by the model’s
functional leakage entropy, functional singular entropy and functional modal entropy.

Theorem 2. For any leakage model X = (S, H, L), recovery function f : S → Y and
auxiliary distribution α over S,

Advzo
Atst,f (X, α) ≤ 2−Γ∞(X,f,α) + 2−Φ(X,f) + 2−Ψ(f,pS,α).

Proof. Analyzing the first term of the advantage, we have

Pr
[

Inf zo
Atst,f (X, α) = 1

]
= Pr [Atst(L, α) = f(S) ]

=
∑
s∈Sℓ

Pr
[
Atst(L, α) = f(s)

∣∣S = s
]
· p(s)

=
∑
ℓ∈L

∑
s∈Sℓ

Pr
[
Atst(ℓ, α) = f(s)

∣∣S = s, L = ℓ
]
· Pr [ S = s, L = ℓ ]

(7)

We partition the label space into two: L1,f and L≥2,f defined as follows,

L1,f
◦= {ℓ ∈ L : #Yℓ = 1} and L≥2,f

◦= {ℓ ∈ L : #Yℓ > 1},

where Yℓ
◦= {f(s) : s ∈ Sℓ} and Sℓ

◦= {s ∈ S : p(s | ℓ) > 0}. Intuitively, L1,f is the set of
leakage points ℓ such that all the secrets in Sℓ are mapped to the same recovery value by f
and L≥2,f is the complement. For visual clarity, we denote the event that Inf zo

Atst,f (X, α)
outputs 1 by I. We also define Ss

◦= f−1(f(s)) and Sy
◦= f−1 (y), and write

Pr [ I ] =
∑

ℓ∈L1,f

∑
s∈Sℓ

p(s, ℓ) +
∑

ℓ∈L≥2,f

∑
s∈Sℓ

Pr
ℓ

 ∧
y ̸=f(s)

p̃S
(
Ss
∣∣ ℓ
)
≥ p̃S

(
Sy

∣∣ ℓ
) · p(s, ℓ)
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= 2−Φ(X,f) +
∑

ℓ∈L≥2,f

∑
s∈Sℓ

Pr
ℓ

 ∧
y ̸=f(s)

log
(

p̃S
(
Ss
∣∣ ℓ
)

p̃S
(
Sy

∣∣ ℓ
)) ≥ 0

∧
Self(s)

 · p(s, ℓ)

≤ 2−Φ(X,f) +
∑

ℓ∈L≥2,f

∑
s∈Sℓ

Pr
ℓ

 ∧
y ̸=f(s)

log
(∑

a∈Ss
pL(ℓ | a) · α(a)∑

a∈Sy
pL(ℓ | a) · α(a)

)
≥ 0

 · p(s, ℓ)

≤ 2−Φ(X,f) +
∑

ℓ∈L≥2,f

∑
s∈Sℓ

(
min

y ̸=f(s)
Pr
ℓ

[
log
(∑

a∈Ss
pL(ℓ | a) · α(a)∑

a∈Sy
pL(ℓ | a) · α(a)

)
≥ 0
])
· p(s, ℓ)

≤ 2−Φ(X,f) +
∑

ℓ∈L≥2,f

∑
s∈Sℓ

(
min

y ̸=f(s)
Pr
ℓ

[
log
(∑

a∈Ss
pL(ℓ | a)∑

a∈Sy
pL(ℓ | a)

)
− log α−

y ≥ − log α+
f(s)

])
· p(s, ℓ),

(8)

where α−
y

◦= min
a∈Sy

α(a) and α+
f(s)

◦= max
a∈Ss

α(a) and the second inequality follows by the

Fréchet inequalities. Self(s) is the event that captures the probability to output f(s) in
case #tstY(f, ℓ, α) > 0. Also notice that since we restrict the second term to all ℓ ∈ L≥2,f ,
then, by definition, there always exists a y ̸= f(s) which, in turn, implies that all the
divisions are valid. Let

λℓ,s,y
◦= log

(∑
a∈Ss

pL(ℓ | a)∑
a∈Sy

pL(ℓ | a)

)
− log α−

y , and γs
◦= − log α+

f(s),

and note that for all s ∈ Sℓ and y ̸= f(s),

λℓ,s,y ≤ log
(

#Ss ·maxa∈Ss pL(ℓ | a)
#Sy ·mina∈Sy

pL(ℓ | a)

)
− log α−

y (9)

≤ log
(

#Ss

#Sy

)
+ log

(
maxa∈Ss pL(ℓ | a)
mina∈Sy

pL(ℓ | a)

)
− log α−

y . (10)

Given that λℓ,s,y is a non-negative random variable and − log α+
f(s) > 0, then by

Markov’s inequality, we have

Pr
ℓ

[λℓ,s,y > γs] ≤ E
ℓ

[λℓ,s,y] · γ−1
s

≤
(

log
(

#Ss

#Sy

)
+ E

ℓ

[
log
(

maxa∈Ss pL(ℓ | a)
mina∈Sy

pL(ℓ | a)

)]
− log α−

y

)
· γ−1

s

≤
(

log
(

#Ss

#Sy

)
+ max

ℓ

{
log
(

maxa∈Ss pL(ℓ | a)
mina∈Sy pL(ℓ | a)

)}
− log α−

y

)
· γ−1

s .

Plugging this back into Equation 8, we have

Pr
[

Inf zo
Atst,f (X) = 1

]
≤ 2−Φ(X,f)+

∑
ℓ∈L≥2,f

∑
s∈Sℓ

p(s, ℓ)·2−Γℓ,s(X,f,α) ≤ 2−Φ(X,f)+2−Γ∞(X,f,α).

We now turn to the second term of the advantage. Let UG(α) be the random variable that
outputs an element of G(α) ◦= arg max

s∈S
α(s) uniformly at random. We then have

Pr
[

Guesszo
A,f (X, α) = 1

]
= Pr

[
f(S) = f

(
UG(α)

) ]
=
∑
y∈Y

Pr
[
f(S) = y

∣∣∣∣ f
(
UG(α)

)
= y

]
· Pr

[
f
(
UG(α)

)
= y
]



24 Bayesian Leakage Analysis

=
∑
y∈Y

Pr
[
S ∈ Sy

∣∣∣∣ f
(
UG(α)

)
= y

]
· Pr

[
UG(α) ∈ Sy

]
(11)

Note, however that for all y ∈ Y,

Pr
[

UG(α) ∈ Sy

]
=
∑
s∈Sy

Pr
[
UG(α) = s

]
=
∑
s∈Sy

∑
s′∈G(α)

Pr
[
UG(α) = s′

∧
UG(α) = s

]
=
∑
s∈Sy

∑
s′∈G(α)

Pr
[
UG(α) = s′

∣∣∣∣ UG(α) = s
]
· Pr

[
UG(α) = s

]
= 1

#G(α) ·
∑
s∈Sy

∑
s′∈G(α)

1{s = s′}

= 1
#G(α) ·# (G(α) ∩ Sy)

Plugging this back into Equation (11) we get

Pr
[

Guesszo
A,f (X, α) = 1

]
=
∑
y∈Y

pS(Sy) · # (G(α) ∩ Sy)
#G(α)

= 2−Ψ(f,pS,α),

and, by the triangle inequality, this gives us∣∣Pr
[

Inf zo
Atst,A,f (X) = 1

]
− Pr

[
Guesszo

A,f (X) = 1
]∣∣ ≤ 2−Γ∞(X,f,α) + 2−Φ(X,f) + 2−Ψ(f,pS,α),

from which the Theorem follows.

Bounds for the MLE adversary. We now provide a bound on the advantage of the
MLE adversary against functional recovery attacks.

Corollary 3. For any leakage model X = (S, H, L) and recovery function f : S→ Y,

Advzo
Amle,idS

(X,⊥) ≤ 2−Γ∞(X,f,uS) + 2−Φ(X,f) + 2−Ψ(f,pS,uS).

This follows trivially from the fact that mleS(ℓ) = mapS(ℓ, uS).

7 Full Recovery Against Query Equality Leakage
As a concrete application of our framework, we analyze the full recovery advantage of the
MAP adversary against the query equality model, which is one of the most commonly
revealed leakage patterns by highly-efficient encrypted search algorithms. We consider two
cases: (1) when the query and auxiliary distributions are Zipf-distributed with the same
parameter; and (2) when the query and auxiliary distributions are Zipf-distributed with
different parameters. The first case captures settings where the adversary has accurate
knowledge of the query distribution and the second settings where it only has some
approximate knowledge.
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The query equality leakage model. The query equality pattern is the most common
leakage pattern revealed by sub-linear ESAs. As such it is the most important pattern
to study. The query equality can be formalized in many ways but in our model it is a
joint distribution XQEQ = (Q, H, L), where S = Q = (Q1, . . . , Qn) is a random query
sequence over a query sequence space Q = Q1 × · · · ×Qn = Q0 × · · · ×Q0, H is a random
bijection from Q0 to [#Q0] and L = (L1, . . . , Ln) is a random leakage point such that, for
all i ∈ [n], Li = H(Qi).

Zipf queries and Zipf auxiliaries with the same parameter. We consider the
case where S = Q is a multivariate random variable composed of n i.i.d. Zipf-distributed
queries with parameter γ and α is the product distribution of n Zipf distributions with
the same parameter γ.

Theorem 3. Let XQEQ = (Q, H, L) be a query equality leakage model. For all n ∈ N and
m ∈ N>1, if Q ∼ Z⊗n

m,γ and α = Z⊗n
m,γ ,

Advzo
Amap,idQ

(XQEQ, α) ≤ H−n
m,γ + log Hm,γ

log(mγ ·Hm,γ) .

Proof. We compute each of the terms from Corollary 2.

Claim. 2−Λ∞(X,α) = log Hm,γ/ log(mγ ·Hm,γ).

Based on the definition of leakage entropy, we can write

2−Λ∞(X,α) = 2−Λqlo,ℓ∗ (X,α) =
(

KL
(

pL( · | qlo)
∥∥∥∥ pL( · | qhi)

)
− log α(qhi)

)
·(− log α(qlo))−1,

where ℓ∗, qlo and qhi are the leakage point and the two query sequences that minimize
the leakage entropy, where qhi ∈ Sℓ∗ and Sℓ∗ = {q ∈ Q : p(ℓ∗ | q) > 0}. In particular,
notice that these values have to minimize both KL(pL ( · | q)∥pL( · | q′)) and − log α(q′)
and maximize − log α(q). Given that the KL divergence is non-negative, we want that
qlo and qhi lead to a KL divergence of zero. In our case, this becomes possible for the
following sequences,

ℓ∗ = (i, . . . , i) , qlo =
(
π−1(m), . . . , π−1(m)

)
and qhi =

(
π−1(1), . . . , π−1(1)

)
for any i ∈ [#Q0] and where π−1(m) is the query with the smallest probability, and π−1(1)
is the query with the highest probability with respect to the Zipf distribution. Note also
that we chose ℓ∗ such that qlo, qlo ∈ Sℓ∗ . Moreover, both query sequences lead to one of
the m possible leakage points {(1, . . . , 1), (2, . . . , 2), . . . , (m, . . . , m)}. More formally, for
all ℓ ∈ L, pL(ℓ | qlo) = pL(ℓ | qhi) = 1/m and since they are equal, we have

KL
(

pL( · | qlo)
∥∥∥∥ pL( · | qhi)

)
=
∑
ℓ∈L

pL(ℓ | qlo) · log pL(ℓ | qlo)
pL(ℓ | qhi)

= 0.

Now, since α is Zipf-distributed, − log α(qhi) reaches its minimum when the query sequence
is composed of the most frequent query π−1(1). Specifically, we have

− log α(qhi) = − log 1
Hn

m,γ

= n · log Hm,γ .

Finally, notice that the quantity (− log α(qlo))−1 reaches its maximum when the query
sequence is composed of the least frequent query π−1(m) so we have,

− log α(qlo) = − log
(

m−γ

Hm,γ

)n

= n · log(mγ ·Hm,γ).
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Claim. 2−Σ(X) =
∑
ℓ∈L1

p(qℓ) = 0.

Recall that L1
◦= {ℓ ∈ L : #Sℓ = 1} and Sℓ

◦= {q ∈ Q : p(ℓ | q) > 0}, for all
ℓ ∈ L and n ∈ N. Since m > 1, there is no leakage point that can result from a unique
query sequence. In particular, given a leakage point ℓ ∈ L, there are (m)λ possible query
sequences that could have potentially led to it, where λ represents the number of unique
values in ℓ. More precisely, since λ ≥ 1 and m ≥ 2, (m)λ ≥ 2 which implies that L1 = ∅.

Claim. 2−χ(pQ,α) = H−n
m,γ .

We have by definition,

2−χ(pQ,α) = pQ (G(α))
#G(α) = pQ (qhi) = 1

Hn
m,γ

,

where
G(α) ◦= arg max

q∈Q
α(q) = {qhi},

and qhi =
{

π−1(1), . . . , π−1(1)
}

, and π−1(1) is the query with the highest probability with
respect to the Zipf distribution. Note that G(α) is composed of a unique query sequence
since the Zipf distribution has a strictly decreasing probability mass function.

Discussion. The bound of Theorem 3 decreases as the size of the query space m increases
for a given γ. To see why, notice that we can approximate the bounds above for all m ≥ 1
and γ ≥ 1,

H−n
m,γ + log Hm,γ

log(mγ ·Hm,γ) ≤ H−n
m,γ + log Hm,1

log(mγ)

≤ H−n
m,γ + log(log m + 1)

γ · log(m) ,

since log m ≤ Hm,1 ≤ log m + 1 and Hm,γ ≥ 1. We also make use of the fact that the
generalized Harmonic number decreases when increasing the Zipf parameter, for a fixed m.
Also, since the generalized Harmonic number can take values between 1 and log m + 1,
the above bound will behave differently depending on the chosen Zipf parameter. If we
consider the case where γ = 1, then the bound is

H−n
m,1 + log Hm,1

log(m ·Hm,1) ≤ (log m)−n + log(log m + 1)
log(m · log m)

= O

(
log log m

log m

)
,

The same result can be obtained for γ = 2 as Hm,2 = Θ(log m) [SDT98].

Zipf queries and Zipf auxiliaries with distinct parameters. We now consider the
case where the query and auxiliary distributions are Zipf product distributions but with
different parameters. The proof of Theorem 4 below is similar to Theorem 3 so we omit
the details.
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Theorem 4. Let XQEQ = (Q, H, L) be a query equality leakage model. For all n ∈ N and
m ∈ N>1, if Q ∼ Z⊗n

m,γ and α = Z⊗n
m,γ′ where γ ̸= γ′, then

Advzo
Amap,idQ

(XQEQ, α) ≤ H−n
m,γ + log Hm,γ′

log(mγ′ ·Hm,γ′) .

Zipf queries and Zipf auxiliaries with distinct parameters and permutations.
We now consider the more general case where the query and auxiliary distributions are
Zipf product distributions but with different parameters and permutations. In particular,
we assume the existence of two permutations πq : Q0 → [m] and πa : Q0 → [m], for both
the query and auxiliary distributions, that map every element in Q0 to a rank in [m]. For
instance, the rank of a query, as defined by the query distribution, can be different from
the rank of a query in the auxiliary distribution.

Theorem 1. Let XQEQ = (Q, H, L) be a query equality leakage model. For all n ∈ N and
m ∈ N>1, if Q ∼ Z⊗n

m,γ and α = Z⊗n
m,γ′ where γ ̸= γ′ and πq : Q0 → [m] and πa : Q0 → [m]

the underlying permutations, then

Advzo
Amap,idQ

(XQEQ, α) ≤
(

πq

(
π−1

a (1)
)−γ ·Hm,γ

)−n

+ log Hm,γ′

log(mγ′ ·Hm,γ′) .

Proof. The proof is the same as the one of Theorem 3 except that we have to define the
query sequences that minimize the leakage entropy slightly differently to account for the
different permutations. More precisely, we consider

qlo =
(
π−1

a (m), . . . , π−1
q (m)

)
and qlo =

(
π−1

a (1), . . . , π−1
a (1)

)
.

Given these new sequences, we only need to recompute the value of the modal entropy.

Claim. 2−χ(pQ,α) =
(

πq

(
π−1

a (1)
)−γ ·Hm,γ

)−n

.

We have by definition,

2−χ(pQ,α) = pQ (G(α))
#G(α) ,

= pQ (qhi) ,

= pQ
((

π−1
a (1), . . . , π−1

a (1)
))

,

=
(

πq(π−1
a (1))−γ

Hm,γ

)n

.

Note that the worst case occurs when the most frequent query with respect to the
auxiliary distribution is the least frequent query with respect to the query distribution. In
this case, πq

(
π−1

a (1)
)−γ = m.

8 Automated Leakage Attacks
A key feature of our framework is its inherent support for automated analysis which
allows the security of leakage profiles to be evaluated algorithmically. In other words, our
framework enables us to construct a leakage attack engine capable of targeting a wide range
of leakage profiles without the need to design custom attacks. Although the engine we
describe has limitations, we believe that even introducing the concept and demonstrating
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the feasibility of such a tool is an important step in improving leakage analysis. We
discussed new research directions motivated by our work in Section 1 and mention here
some of the impact that advances in leakage attack engines can offer:

• (complex leakage models) the theoretical analysis of complex leakage models—such
as those based on Theorems 1 and 2 or through more concrete analysis as in Section
7—can be technically challenging. A leakage attack engine can replace or complement
this analysis by executing code.

• (general-purpose attacks) many leakage profiles in the literature have not been
cryptanalyzed due to the difficulty of designing custom leakage attacks. A leakage
attack engine, while not necessarily providing optimal attacks, enables authors to
cryptanalyze their own constructions.

• (empirical analysis) with a leakage attack engine, one can analyze a leakage profile
using distributions generated from real-world data and study the advantage across a
variety of secret and auxiliary distributions.

8.1 A Scalable Inference Algorithm for Hidden Function Networks
We describe a new inference algorithm that computes MAP estimates for a certain class
of leakage models that includes the i.i.d. variants of most of the leakage patterns we are
aware of. Though the algorithm is computationally limited, it provides a way to study the
security of many real-world leakage profiles against full recovery when the secrets are i.i.d.
Recall that, in our framework, leakage profiles and auxiliary information are modeled as
probabilistic models. Although our bounds do not rely on specific model assumptions, we
can leverage structural features of these models to support the use of efficient algorithms.

Overview. We do this by modeling leakage profiles as Bayesian networks and executing
a new inference algorithm we designed to work efficiently on a restricted class of Bayesian
networks that capture most leakage profiles on to i.i.d. secrets. As described in Section 8.2,
a Bayesian network is a probabilistic graphical model with the model’s random variables as
vertices and directed edges between variables that are conditionally dependent. Bayesian
networks are widely used in statistics and machine learning due to their expressiveness
and support for efficient algorithms. While they cannot model every conceivable leakage
profile, they capture all the profiles we are aware of. In the case that more complex leakage
profiles appear in future work, we note that our framework naturally extends to Markov
Random Fields (MRF) which are more general than Bayesian networks.

From leakage models to attack networks. As mentioned above, we can construct
Bayesian networksNX for a large class of leakage models X = (S, H, L) in the standard way:
each random variable in X corresponds to a vertex of NX and we include directed edges
between variables that are conditionally dependent together with appropriate conditional
probability tables. Given a leakage model X = (S, H, L) and an auxiliary distribution α
over S, however, we can also construct the Bayesian network representation of a leakage
attack by simply replacing the secret random variable S with auxiliary random variable
A ∼ α. In other words, by constructing a standard Bayesian network NX(α) = (A, H, L)
where the vertices are the random variables of (A, H, L) and the edges and conditional
probability tables are the same as NX.

Variable elimination. A standard way to compute MAP estimates on BNs is to use
the variable elimination (VE) algorithm. For our purpose, it suffices to know that the
algorithm iteratively applies a set of base operations to compute the posterior distribution
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over the parameter space given the instantiations of the evidence variables. It then suffices
to compute the arg max.

The algorithm requires O(v · dw+1) time and O(dw+1) space, where v is the number
of variables in NX, w is the treewidth of NX and d is the maximum domain size of the
variables. In statistics and machine learning, the domain sizes d tend to be small, making
the VE algorithm practical for models with low treewidth. In the context of cryptography,
however, where the domains of the secret variables are message spaces or query and data
spaces in encrypted search, these domains can become very large. Another issue is that,
when modeled as Bayesian networks, some leakage patterns can result in variables over
exponential-sized spaces. This is the case, for example, for the query equality pattern (see
Section 7), where the domain of the hidden function variable F is m!, where m is the size
of the query space. Consequently, we found that the VE algorithm is not practical for
most cryptographically-relevant models.

Hidden function networks. To address this, we propose a new simpler and more
efficient algorithm for a special class of BNs we refer to as hidden function networks (HFN).
These networks have the following structure:

• (i.i.d. secrets) a set of n i.i.d. secret random variables S = (S1, . . . , Sn);

• (hidden functions) a set of hidden random variables H = (H1, . . . , Hk) that sample k
functions h1, . . . , hk from function spaces H1, . . . ,Hk;

• (observables) a set of n observable random variables L = (L1, . . . , Ln) such that, for
all i ∈ [n], Li = (h1(si), . . . , hk(si));

• (edges) a set of directed edges from the hidden variables to each of the observable
variables and, for all i ∈ [n], an edge from Si to Li.

HFNs capture a common class of leakage profiles in the context of i.i.d. queries. In fact,
as we will see below, the query equality pattern, the volume pattern and the combination
of query equality and volume can all be modeled as HFNs when applied to i.i.d. query
sequences.

Our initial experiments using the VE algorithm on the query equality pattern required
47.83 seconds and 98 GB of memory to perform a query recovery attack on a query
sequence of length n = 7 over a query space of size m = 7. Our Bayle engine, on the
other hand, executes the same experiment in 27.9 ms while using only 0.5 GB of memory.
This improvement is not purely algorithmic since our algorithm was implemented in Julia
1.10.5 while the VE algorithm was implemented in Python 3.12, but it serves to illustrate
the need to develop a new approach to inference for the cryptographic setting.

Secret MAP via the hidden MAP. As mentioned above, a standard way of computing
MAP estimates via the VE algorithm is to use it to compute the posterior distribution
and then to return its arg max. For HFNs, however, we observe that if at least one of the
hidden functions is a bijection, then the MAP of the secret variables can be computed
indirectly by: (1) computing the MAP estimate of the hidden functions; and (2) using the
inverses of these functions to find the secrets that map to the observed leakage. Using full
query recovery from the query equality pattern as an example, recall that the secret i.i.d.
variables are Q = (Q1, . . . , Qn), the single hidden function H is a uniformly distributed
random function over the set of bijections from Q0 to [#Q0] and L = (L1, . . . , Ln) is
the random vector defined as Li = H(Qi), for i ∈ [n]. In this case, our observation is
that the MAP estimate q̂ = (q̂1, . . . , q̂n) of the query sequence given the leakage point
ℓ = (ℓ1, . . . , ℓn) can be computed by first computing the MAP estimate ĥ given ℓ and then
computing ŝ =

(
ĥ−1(ℓ1), . . . , ĥ−1(ℓn)

)
. Based on this observation, we can now focus on

efficiently computing the MAP estimate of the hidden functions.
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Efficiently computing the hidden function MAP. Our goal is to compute

mapH(ℓ, pH) = arg max
h∈H

pH(h | ℓ)

= arg max
h∈H

pL(ℓ | h) · pH(h)
pL(ℓ)

= arg max
h∈H

pL(ℓ | h) · pH(h)

= arg max
h∈H

pH(h) ·
∏

i∈[n]

pL(ℓi | h)


where

ℓi
◦= (ℓi,1, . . . , ℓi,k) = (h1(si), . . . , hk(si))

and where the third equality follows from the fact that p(ℓ) is a constant and the last
equality follows from the fact that, for all i ̸= j ∈ [n], Li is conditionally independent of
Lj given H. This is because the nodes in H d-separate the variables Li and Lj based on
the fork structure. By definition, we then have

mapH(ℓ, pH) = arg max
h∈H

pH(h) ·
∏

i∈[n]

pS

 k⋂
j=1

h−1
j (ℓi,j)

 ,

where pS = p⊗n
S , i.e., where pS is the distribution of a single secret. By using the auxiliary

distribution αS instead of pS , we can estimate the hidden functions by computing, for all
h ∈ H,

π̃h
◦= pH(h) ·

∏
i∈[n]

αS

 k⋂
j=1

h−1
j (ℓi,j)

 = pH(h) ·
∏

i∈[n]

∑
s∈Sℓi

αS(s), (12)

where Sℓi

◦=
k⋂

j=1
h−1

j (ℓi,j), and returning the one with the largest π̃h. Now notice that

if some hj is bijective, then #h−1
j (ℓi,j) = 1 and, therefore, #Sh(ℓi) = 1 and π̃h can be

computed even faster. Furthermore, since A is i.i.d., we can reuse the computations of
α
(

ĥ−1
j (ℓi)

)
whenever we encounter another ℓj = ℓi, for j ≠ i. The final optimization

we make is based on the observation that, given some observed leakage ℓ, some hidden
functions h may be ruled out from the set we maximize over. In other words, instead
of computing π̃h for all h ∈ F, we only need to consider the functions in the support of
pH( · | ℓ).

Comparison. In cases where at least one hidden function is a bijection, our algorithm
requires significantly less computation and memory than VE which, even in the best case,
must multiply the CPTs of H1, . . . , Hk and Ai for each i ∈ [n] to determine and restrict
the CPT of Li. This operation alone requires O(dk+1) time and space.

As mentioned above, VE requires O(v · dw+1) time and O(dw+1) space, where v is
the number of variables in the network, w is the treewidth of the network and d is the
maximum domain size of the variables. For HFNs, the treewidth is dictated by the number
of secrets (e.g., the query sequence size) so w = n. The number of variables is v = 2n + k
and d = max

i∈[k]
#Hi. Using VE to compute a MAP estimate on a generic HFN would

therefore require O((2n+k) ·dn+1) time and O(dn+1) space. For the case of query equality,
where k = 1 and d = m!, VE requires O(n · (m!)n+1) time and O((m!)n+1) space. We note
that, in practice, VE implementations can improve their space use for the query equality
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H Q1 Q2 . . . Qn

L1 L2 . . . Ln

Figure 1: The leakage network N+
QEQ.

pattern to O(m2 · (m!)) by storing no more than one factor product between H and each
Ai and Li at a time, but this is still prohibitive. In comparison, our algorithm requires
O(kn ·m!) time in the worst case and O(kn + m) space. Note that our technique to only
consider the functions h ∈ H in the support of pH( · | ℓ) substantially reduces the time in
practice.

8.2 Hidden Function Networks for Common Leakage Patterns
In this section, we describe HFNs that model the common leakage patterns we will proceed
to study.

Query equality network. The query equality leakage XQEQ = (Q, H, L) for i.i.d.
queries, can be modeled as an HFN, N+

QEQ, as follows:

• (i.i.d. secrets) a set of n i.i.d. query variables Q = (Q1, . . . , Qn) over a space Q ◦= Qn
0 ;

• (hidden functions) a hidden random variable H that samples a function h uniformly
from Bij(Q0, [#Q0]);

• (observables) a set of n observable random variables L = (L1, . . . , Ln) such that, for
all i ∈ [n], Li = h(qi). In other words, each Li has a conditional probability table of
the form

p (ℓi |h, qi) =
{

1 if ℓi = h(qi)
0 otherwise

• (edges) as described in Figure 1, directed edges from H to (L1, . . . , Ln) and for all
i ∈ [n], an edge from Qi to Li.

Note that, technically, this Bayesian network also reveals the size of the query space Q0
through the output length of the random bijection h. We add a + in N+

QEQ to denote
this and observe that it is possible to construct a Bayesian network that captures only the
query equality.

Volume network. The volume leakage XVOL = (Q, D, L) for i.i.d. queries, can be
modeled as an HFN, N+

VOL, as follows:

• (i.i.d. secrets) a set of n i.i.d. query variables Q = (Q1, . . . , Qn) over a space Q ◦= Qn
0 ;

• (hidden functions) a hidden random variable D that samples a function d uniformly
from

DN =
{

d ∈ Func (Q0, [N −m + 1]) :
∑

q∈Q0

d(q) = N

}
,

where m = #Q0, N ∈ N and N ≥ m;
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D Q1 Q2 . . . Qn

L1 L2 . . . Ln

Figure 2: The volume network N+
VOL.

• (observables) a set of n observable random variables L = (L1, . . . , Ln) such that, for
all i ∈ [n], Li = d(qi). In other words, each Li has a conditional probability table of
the form

p (ℓi | d, qi) =
{

1 if ℓi = d(qi)
0 otherwise;

• (edges) as described in Figure 2, directed edges from D to (L1, . . . , Ln) and for all
i ∈ [n], an edge from Qi to Li.

The functions d ∈ DN model the volume of multi-map data structures that map queries
(usually called labels) to tuples. N is the size of the multi-map, i.e., the sum of its tuple
lengths and N −m + 1 is the largest possible tuple size in a N -sized multi-map with m
labels. Similar to the query equality, this Bayesian network reveals the size of the query
space m as well as the size of the multi-map N through the output length of the functions
d ∈ DN . We add a + in N+

VOL to denote this.

Volume and query equality. The combination of volume and query equality XQeVo =
(Q, D, H, L) can be modeled as an HFN, N+

QeVo, as follows:

• (i.i.d. secrets) a set of n i.i.d. query variables Q = (Q1, . . . , Qn) over a space Q ◦= Qn
0 ;

• (hidden functions) a hidden random variable D that samples a function d uniformly
from

DN =
{

d ∈ Func (Q0, [N −m + 1]) :
∑

q∈Q0

d(q) = N

}
where m = #Q0, N ∈ N and N ≥ m, and a hidden random variable H that samples
a function h uniformly at random from Bij(Q0, [#Q0]);

• (observables) a set of n observable random variables L = (L1, . . . , Ln) such that, for
all i ∈ [n], Li =

(
d(qi), h(qi)

)
. In other words, each Li has a conditional probability

table of the form

p (ℓi | d, h, qi) =
{

1 if ℓi =
(
h(qi), d(qi)

)
0 otherwise;

• (edges) as described in Figure 3, directed edges from D to (L1, . . . , Ln), from H to
(L1, . . . , Ln) and, for all i ∈ [n], an edge from Qi to Li.

Similar to the query equality and volume cases, we add a + in N+
QeVo to denote that our

network reveals both m and N .
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D H Q1 Q2 . . . Qn

L1 L2 . . . Ln

Figure 3: The leakage network N+
QeVo.

D H Q1,1 Q1,2 . . . Qn,1 Qn,2

L1,1 L1,2 . . . Ln,1 Ln,2

Figure 4: The leakage network N+
ConjQeVo.

Conjunctions with equality and volume. The leakage of the degree 2 naive con-
junction equality and volume pattern which reveals the query equality and the volume of
the conjuncts can be modeled as an HFN, N+

ConjQeVo, as follows:

• (i.i.d. secrets) a set of 2n query variables Q = (Qi,1, Qi,2)i∈[n] such that the pairs
(Qi,1, Qi,2) are i.i.d. and where, for all i ∈ [n] and j ∈ [2], Qi,j is over a space Q0 and
Qi,1 ̸= Qi,2. In addition, each Qi,2 has a conditional probability table of the form

p (qi,2 | qi,1) =
{

0 if qi,1 = qi,2

pQi,1(qi,2)/(1− pQi,1(qi,1)) otherwise.

• (hidden functions) a hidden random variable D that samples a function d uniformly
from

DN =
{

d ∈ Func (Q0, [N −m + 1]) :
∑

q∈Q0

d(q) = N

}
,

where m = #Q0, N ∈ N and N ≥ m, and a hidden random variable H that samples
a function h uniformly at random from Bij(Q0, [#Q0]);

• (observables) a set of 2n observable random variables L = (Li,1, Li,2)i∈[n] such that,
for all i ∈ [n] and j ∈ [2], Li = (d(qi,j), h(qi,j)) . In other words, each Li,j has a
conditional probability table of the form

p (ℓi,j | d, h, qi,j) =
{

1 if ℓi,j =
(
h(qi,j), d(qi,j)

)
0 otherwise;

• (edges) as described in Figure 4, directed edges from D and H to (Li,j)i∈[n],j∈[2] and,
for all i ∈ [n], an edge from Qi to Li and an edge from Qi,1 to Qi,2.

Conjunctions with equality and response identity. The degree 2 naive conjunction
equality and response identity leakage which reveals the query equality and the response
identity of the conjuncts can be modeled as an HFN, N+

ConjQeRid, as follows:
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• (i.i.d. secrets) a set of 2n query variables Q = (Qi,1, Qi,2)i∈[n] such that the pairs
(Qi,1, Qi,2) are i.i.d. and where, for all i ∈ [n] and j ∈ [2], Qi,j is over a space Q0
and such that Qi,1 ̸= Qi,2. In addition, each Qi,2 has a conditional probability table
of the form

p (qi,2 | qi,1) =
{

0 if qi,1 = qi,2

pQi,1(qi,2)/(1− pQi,1(qi,1)) otherwise.

• (hidden functions) a hidden random variable D that samples a function d uniformly
from

DN =
{

d ∈ Func
(
Q0,

N−m+1⋃
k=1

Ik

)
:
∑

q∈Q0

#d(q) = N

}
where I is a identifier space, m = #Q0, N ∈ N and N ≥ m and a hidden random
variable H that samples a function h uniformly at random from Bij(Q0, [#Q0]).

• (observables) a set of 2n observable random variables L = (Li,1, Li,2)i∈[n] such that,
for all i ∈ [n] and j ∈ [2], Li = (d(qi,j), h(qi,j)). In other words, each Li,j has a
conditional probability table of the form

p (ℓi,j | d, h, qi,j) =
{

1 if ℓi,j =
(
h(qi,j), d(qi,j)

)
0 otherwise;

• (edges) as described in Figure 4, directed edges from D and H to (Li,j)i∈[n],j∈[2] and,
for all i ∈ [n], an edge from Qi to Li and an edge from Qi,1 to Qi,2.

8.3 Our Attack Engine
We now describe our Bayle attack engine which includes two components: (1) a parallel
implementation of our HFN inference algorithm; and (2) an experimental harness to
empirically evaluate HFNs. Bayle is implemented in Julia 1.10.5 and its source code is
available at [EKM25]. It incorporates the following two optimizations.

Paralellism. The first is the use of SIMD operations. More precisely, since the π̃h values
can be computed in parallel, we utilize SIMD instructions on a vector that stores, in each
coordinate, the products of π̃h computed thus far.

Normalization. The second is the use of normalization to reduce floating-point un-
derflows. Bayle implements our HFN inference algorithm which relies on Equation 12
which requires a large number of multiplications of probabilities. These probabilities are
represented as 64-bit IEEE 754 floating point numbers which has limited precision.6 A
direct implementation of Equation 12 which multiplies hundreds of probabilities results in
the π̃h values underflowing to zero.

To address this, we periodically normalize the running products so that they sum to 1.
We do this by maintaining a vector with each entry corresponding to the running product
of each h ∈ H and perform the multiplications in batches of size B. After each batch
of multiplications, we divide each entry in the vector by the sum of all entries. At the

6An alternative approach is to use larger-precision such as 128-bit or 256-bit floating points or arbitrary
precision “big numbers”. We found, however, that larger floating points still required normalization after
some number of multiplications and negated the benefits of SIMD instructions on every operation since
SIMD instructions only work on 128-bit slots. Arbitrary precision numbers required no normalization, but
their overhead for multiplications was prohibitive.
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end of all the batches, we compute the arg max by finding the maximum entry in the
vector and retrieving its corresponding h. This normalization technique does not directly
impact the correctness of the algorithm (aside from potential errors introduced by the use
of floating points) because in every normalization operation we divide each vector entry by
an expression that is independent of the entry’s corresponding h.

The normalization step requires “synchronization” between the running products which
negates some of the benefits provided by SIMD instructions if the batch size B is small.
In our experiments, we determined via trial-and-error that B = 8 was the largest batch
size we could use before normalization was needed.

Experimental harness. To evaluate a leakage model, Bayle runs a series of trials, each
of which does the following:

1. samples hidden function h = (h1, . . . , hk) and a sequence of queries q = (q1, . . . , qn);

2. computes the observed leakages ℓ = (ℓ1, . . . , ℓn), where ℓi = (h1(qi), . . . , hk(qi));

3. runs the inference algorithm from Section 8.1;

4. if the inferred sequence q̂ is equal to q, the the trial succeeds. (We do not consider
partial query recovery in our experiments—if any single element of q̂ is not equal to
q, the trial fails.)

Our engine provides an experimental harness that uses Google Cloud Batch to distribute
and synchronize a large number of trials for each experiment across up to 2, 500 virtual
machines at once. Currently, Bayle runs experiments on e2-standard-8 hosts, each of
which has 4 vCPUs and 16 GBs of memory. We explored multi-threading for additional
parallelization within individual trials but decided against it for two reasons. First, Google
Cloud Batch automatically runs multiple batch tasks on one machine if the machine
has sufficient vCPUs and memory and we found that running multiple single-threaded
trials on one e2-standard-8 host was more efficient than running one multi-threaded
trial due to the synchronization needed to retrieve the final results of a trial. Second, the
normalization step needed to mitigate the limited precision of floating point multiplications
would require additional synchronization between threads which would add complexity for
limited benefit.

9 Experimental Results
We ran our Bayle engine against theN+

QEQ, N+
QeVo, N+

ConjQeVo, andN+
ConjQeRid networks.

Using the experimental harness described in Section 8.3 with a Zm,2-distributed true query
distribution and a uniform data distribution, we evaluated each network against four
different auxiliary query distributions:

• (identical) a Zm,2 distribution with the same permutation;

• (different parameter same ranking) a Zm,4 distribution with the same permutation;

• (same parameter different ranking) a Zm,2 distribution with a different permutation;

• (uniform) a uniform distribution.

For each auxiliary distribution, we varied the size of the query space m from 4 to 10 and
the number of queries n from 1000 to 15000. For the NQeVo, NConjQeVo, and NConjQeRid
networks, we fix N = 1000. For the NConjQeVo and NConjQeRid networks, the real query
distribution outputs queries containing exactly two subclauses and is restricted to queries
where both subclauses are different.



36 Bayesian Leakage Analysis

For each experiment, we ran between 5,000 to 10,000 trials and counted the number of
successes. In total, we ran over 8 million trials over 896 experiments. Figure 5 reports the
percentage of successes in each experiment.

Discussion. Our experiments demonstrate that the most important factor that deter-
mines the MAP adversary’s advantage with respect to full query recovery is whether or
not the auxiliary query distribution α is the same (or close) to that of the true query
distribution. This can be seen by comparing the first two columns of Figure 5—which use
auxiliary query distributions that are the same as or close to the true query distribution—to
the last two columns of Figure 5. Interestingly, we see that some auxiliary distributions
can cause the advantage to be slightly worse than the uniform distribution—the adversary
never succeeds in any of the experiments when it uses a Zipf auxiliary query distribution
with a permutation from that of the true query distribution. Aside from choosing a “good”
auxiliary distribution, the experiments show that the adversary’s full advantage increases
when: (1) the adversary sees longer query sequences, since the adversary sees more leakage;
and (2) the size of the query space is smaller, since the number of possible “incorrect”
choices decreases with smaller query space. For specific experiments, we highlight the
following:

• Given an auxiliary distribution α, the query recovery rates for the query equality
pattern NQEQ and the query equality and volume pattern NQeVo are nearly identical,
showing that the additional leakage added by volume for each query does not provide
additional help with full query recovery when the data distribution is uniform.

• Given a fixed auxiliary distribution α, the recovery rates for both conjunction leakage
patterns are nearly the same. This shows that, even though the query equality and
response identity pattern NConjQeRid intuitively seems “more leaky” than the query
equality and volume pattern NConjQeVo, the response identifiers do not assist with
query recovery when the real data distribution is uniform.

• For the conjunction networks, we achieve high advantage even when the auxiliary
distribution does not account for the dependency between subclauses in the true
query distribution. This shows that, even though our experiments do not account for
the dependencies between subclause query variables in the auxiliary distribution, the
MAP adversary can still achieve high advantage when the auxiliary query distribution
is close enough to the distribution of the individual subclauses.
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