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Abstract. In this paper, we study MDS matrices that are specifically designed to
prevent the occurrence of related differentials. We investigate MDS matrices with a
Hadamard structure and demonstrate that it is possible to construct 4 × 4 Hadamard
matrices that effectively eliminate related differentials. Incorporating these matrices
into the linear layer of AES-like block-ciphers/hash functions significantly mitigates
the attacks that exploit the related differentials property. The central contribution of
this paper is to identify crucial underlying relations that determine whether a given
4×4 Hadamard matrix exhibits related differentials. By satisfying these relations, the
matrix ensures the presence of related differentials, whereas failing to meet them leads
to the absence of such differentials. This offers effective mitigation of recently reported
attacks on reduced-round AES. Furthermore, we propose a faster search technique
to exhaustively verify the presence or absence of related differentials in Hadamard
matrices over F8×8

2n which requires checking only a subset of involutory matrices in the
set. Although most existing studies on constructing MDS matrices primarily focus on
lightweight hardware/software implementations, our research additionally introduces
a novel perspective by emphasizing the importance of MDS matrix construction in
relation to their resistance against differential cryptanalysis.
Keywords: AES · Linear Layers · Hadamard Matrices · Related Differentials ·
Counter-measures · MDS-Matrix-Construction.

1 Introduction
The Substitution-Permutation Network (SPN) structure stands as one of the most widely
accepted designs for block ciphers. In practice, permutation components are commonly
implemented using linear operations. Their purpose is to spread internal dependencies as
much as possible. Among these operations, maximum distance separable (MDS) matrices
are highly favored as diffusion building blocks. Integrating MDS matrices as diffusion
layers in iterative block ciphers allows us to achieve the desired number of differentially or
linearly active nonlinear elements in a small number of rounds, resulting in designs with
low latency.

Furthermore, designs that incorporate MDS matrices often benefit from straightforward
and well-established security proofs, as demonstrated by the case of AES [DR02]. In fact,
it is the elegant security proof provided by AES that has led to the widespread application
of MDS matrices in the design of symmetric key primitives.
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In [DR09], the authors presented a study on a class of linear transformations that are used
in AES-like block ciphers. Their goal was to address the question of which properties of
the linear transformation affect the probability of differentials and their characteristics
over super-S-boxes. Based on that study, the authors introduced a property of linear
transformations called Related Differentials which affects the probability values of differ-
entials over a fixed key. They presented related differentials over the AES MixColumns
transformation.

In [GBR22], using the related differentials caused by the current AES MixColumns
transformation, they provided related differentials for up to four-round AES. And, their
combinations with the zero-difference property introduced in [RBH17] resulted in new
attacks up to 7-round AES. One way to avoid such attack extensions is to exploit Mix-
Columns transformations without related differentials, which will be the main focus of this
paper.

This brings to light the question of constructing MDS matrices which do not exhibit the
property of related differentials, and therefore such attack extensions as [GBR22], which
use the vulnerability of Mixcolumns transformations, could be avoided due to the absence
of related differentials in the corresponding matrix used. In this paper, we answer this
question by presenting feasible techniques towards the construction of such matrices.

Related work. When the implementation cost is the primary concern, there exist
multiple approaches to search for a lightweight MDS matrix. Guo, Peyrin, and Poschmann
introduced a method that involves finding a lightweight matrix, denoted as A, satisfying
the property that raising A to the power of k results in an MDS matrix [GPP11, GPPR11].
This approach effectively reduces the implementation footprint and optimizes the chip
area. The recursive constructions are further explored in [WWW13, Ber13, AF14, CLM16,
GPV17, TTKS18, LSS+20].

Other endeavors aimed at discovering lightweight MDS matrices, in which the entire matrix
is implemented, primarily focusing on selecting matrix entries with minimal hardware
footprints [SKOP15, BKL16, LS16, LW16, SS16a, SS16b, LW17, SS17, JPST17, KLSW17,
ZWS18, DL18, LSL+19]. This line of work involves constructing MDS matrices from specific
classes of matrices, including circulant, involutory, Hadamard, and Toeplitz matrices.

In the constructions of the MDS matrices discussed above, the focus is on prioritizing
efficiency rather than security. This is due to the assurance of cipher security provided by
the wide-trail strategy and the MDS property. Until recently, [GBR22] provided a security
analysis that takes advantage of related differentials originating from the MixColumn
transformation of AES.

Our Contribution. In this paper, we use the notion of related differentials introduced
in [DR09] to propose a new perspective on the construction of MDS matrices with respect
to their resistance to related-differential cryptanalysis when used as a linear layer of a block
cipher/hash function. The objective of this paper is to show that the resistance of a 4× 4
MDS matrix M over F2n of a given structure to related differentials depends on certain
equations that the matrix elements must not satisfy. Failing that, the matrix admits
related differentials. The set of equations is deduced by analyzing a pair of related input
differences, for which the corresponding pair of output differences is also related on the
generalized map M . Whereas there are several matrix structures that are widely used in
the designs of cryptographic primitives, in this paper, we aim to choose one with structural
simplicity as the basis in order to show the construction of a resistant matrix. Since 4× 4
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circulant matrices by design always admit related differentials 1, we look into other classes
of matrices which admit the Maximum Distance Separable (MDS) property. Matrices with
Hadamard [BR00, SKOP15] and Toeplitz structures [SS16b] has been widely studied for
their applications in cryptography, however, Toeplitz matrices have less structure and
symmetry compared to Hadamard. Therefore, we use 4× 4 MDS matrices with Hadamard
structure as a pipeline to show the construction of a resistant matrix. For an in-depth
exploration of generalized results concerning Hadamard MDS Matrices, one can refer to
[PSA+18] and Section 2.3. Given Lemma 1 from [DR09] that proposes a bound on the
weights of quartets satisfying the related differentials property, we propose Lemmas 2
and 3 which show how to choose minimal weights of generalized related input differences
which are sufficient for deducing all the conditions in which the matrix admits related
differentials. Note that the Lemmas 1, 2 and 3 are independent of the structure of the
matrix, and can be utilized as a basis to derive similar conditions for different matrix
structures. Using these valid input pairs with minimal weights, Theorem 3 shows that
for the class of 4× 4 MDS Hadamard matrices, there exist 28 equations which should be
dissatisfied by the matrix to avoid the presence of related differentials. Note that the naive
approach to find a 4× 4 Hadamard MDS matrix without related differentials would be to
confirm that no possible quartet of input and output difference pairs exist that satisfies
this property, however, Theorem 3 reduces this complexity drastically to only 28 checks on
matrix elements over F2n for any value of n. From the results derived in Theorem 3, we
conclude using a faster experimental approach based on the equivalence class of matrices
with respect to related differentials, that

• all MDS Hadamard matrices in the sets F4×4
23 and F4×4

24 have related differentials.

• in F4×4
2n with n > 4, an exhaustive list of Hadamard MDS matrices devoid of

related differentials can be generated in time O(23n), which is 2n times faster than
brute-force.

We also present a list of some lightweight candidate matrices from the set of resistant
matrices in F4×4

28 . We notice that to deterministically construct 8 × 8 Hadamard MDS
matrices over F2n resistant to related differentials, one needs to have a complete character-
ization of the relations that the elements of the 8× 8 matrix must not satisfy. Applying
the methodology shown in Theorem 3 proves to be more cumbersome and complicated to
characterize all the necessary and sufficient relations between the 8× 8 matrix elements.
Nevertheless, leveraging the results on equivalence classes of Hadamard matrices over F2n

shown in [SKOP15], we propose Algorithm 3 to perform faster than exhaustive search
for Hadamard MDS matrices in F8×8

2n that are free of related differentials. This search
technique is faster than an exhaustive search because we only need to check the subset of
8× 8 involutory Hadamard matrices, which implies the same result for the entire matrix
set as a consequence of Theorem 4. By performing experiments using this technique,
we observed that all the Hadamard MDS matrices in sets F8×8

24 and F8×8
25 admit related

differenitals. In summary, this paper brings to light the need and feasibility of research in
the construction of differential cryptanalysis resistant MDS matrices of different dimensions
and structures, in addition to the ongoing efforts in other strands of literature on MDS
matrix construction, such as lightweight matrix constructions.

Outline. The paper is organized as follows. In Section 2 we present preliminaries on
Hadamard Matrices, related differentials of linear layers [DR09], AES and attacks based
on related differentials property. In Section 3 we present analytical proofs indicating the

1For a circulant matrix denoted as cir(a, b, c, d), the related input pair of differences
([1, 0, c

a
, 0], [0, d

a
, 0, b

a
]) always result in related output difference pair after post-multiplication with the ma-

trix for any value of {a, b, c, d}, thus forming related differentials (related difference and related differentials
are defined in Definitions 1 and 2). [DR09] also discusses this fact in circulant matrices.
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underlying relations the elements of the 4×4 Hadamard matrix must satisfy to form related
differentials. Section 4 provides discussions on the construction of resistant MDS matrices
by illustrating the implications of Theorem 3 over Hadamard MDS matrices in F4×4

23 , F4×4
24

and F4×4
2n with n > 4, and a faster than exhaustive experimental approach to generate

all 4× 4 resistant matrices over a given field. Additionally, we present discussions on the
search for candidate lightweight matrices in the list of resistant matrices. In Section 5, we
present an algorithm to perform faster than exhaustive search to find resistant matrices
in F8×8

2n by evaluating a representative subset of involutory matrices that generates the
entire matrix set. We conclude the paper in Section 6. In appendix A, we show examples
of matrices in F4×4

28 with related differentials and the corresponding relations satisfied by
their elements. Appendix B shows the lists of some resistant MDS Hadamard matrices in
F4×4

28 , F4×4
26 and F4×4

25 , followed by the list of a few candidate lightweight Hadamard MDS
matrices in F4×4

28 that are resistant to related differentials. We tabulate matrix spaces
with no resistant matrices in Appendix C Table 15, and provide a brief guide on obtaining
binary multiplication matrix of a field element in Appendix D.

2 Preliminaries

2.1 Operators and Notations
Let F2n denote a finite field of characteristic 2 and let F∗

2n = F2n \ {0} denote its
multiplicative cyclic group. Let a and b denote elements from the finite field F2n . We use
the terms a + b and a ⊕ b in this paper which are equivalent and denote addition over
finite fields of characteristic 2. The term a · b or simply ab denotes the multiplication in
the field. The term a

b denotes the operation a · b−1 in the field. v̂ = [v0, v1, . . . , vm−1] with
vi ∈ F2n denotes an m-element vector over the field. The function wt(v̂) returns the total
number of non-zero elements in v̂, often referred to as the hamming weight of v̂.

2.2 MDS Matrices
A square matrix M of order m over Fq is MDS (Maximum Distance Separable) if it satisfies
the following equivalent properties:

• For any non-zero vector V , wt(V ) + wt(M · V ) ≥ m + 1.

• Every square submatrix of M is non-singular [MS77].

The first property ensures maximal diffusion, as even a single non-zero input affects all
outputs.

Differential Branch Number The differential branch number of M , defined as

B(M) = min
V ̸=0

(wt(V ) + wt(M · V )) ,

is m + 1 for MDS matrices. This guarantees optimal propagation of non-zero patterns in
cryptographic primitives [DR02].

Cryptographic Relevance MDS matrices are critical in diffusion layers (e.g., AES’s
MixColumns). Their use ensures that minimal input changes propagate maximally,
countering differential attacks. However, they often require computations over large fields,
posing implementation trade-offs between security and efficiency.
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2.3 Hadamard Matrices over F2n

A Hadamard matrix is an m×m matrix whose entries are either +1 or −1, and whose
rows (and columns) are mutually orthogonal (i.e., HHT = mIm). Such matrices have been
widely studied due to their combinatorial properties and applications in signal processing,
coding theory, and other areas.

In this work, however, we consider a different but related notion of Hadamard matrices
over finite fields. Building upon the notation established in the paper [PSA+18], we
wish to underscore the following property: in the case where the finite field over which
Hadamard matrices are defined is F2n , a Hadamard m ×m MDS matrix is denoted as
M = had(a0, a1, . . . , am−1), comprising exactly m nonzero pairwise distinct elements.
The m×m Hadamard matrix M formed by the elements {a0, a1, . . . , am−1} has entries
M [i, j] = ai⊕j . Note that in a Hadamard MDS matrix, the m elements must be distinct
from each other. This requirement stems from the fact that if two elements are equal, i.e.,
ai = aj , then a minor of order 2 with the value a2

i + a2
j = 2a2

i becomes zero in a finite field
with characteristic 2.

The m×m matrix M denoted by had(a0, a1, . . . , am−1) is depicted below:

M =



a0 a1 a2 · · · am−2 am−1

a1 a0 a3 · · · . . . . . .

a2 a3 a0 · · · . . . . . .

...
...

... . . . ...
...

am−2 . . . . . . · · · a0 . . .

am−1 . . . . . . · · · . . . a0


.

From a differential cryptanalysis perspective, if the vector b̂ = [b0, b1, . . . , bm−1] denotes
the input difference to the linear map M and the vector ĉ = [c0, c1, . . . , cm−1] denotes the
the output difference, then we have ĉ = M · b̂.

2.4 Related Differences and Related Differentials
In [DR09], authors defined the notion of Related Differences and Related Differentials. Let
F2n be the underlying field over which the S-box of the block cipher is defined. Given
the input difference vector b̂ and the MixColumns matrix M , let ĉ = M · b̂ denote
the corresponding output difference. The input/output difference pair (b̂, ĉ) is called a
differential. We restate below the definitions of related differences and related differentials
from [DR09].

Definition 1. Two vectors b̂ = [b0, b1, . . . , bm−1] and b̂′ = [b′
0, b′

1,
. . . , b′

m−1] are related differences if and only if

bi · b′
i · (bi ⊕ b′

i) = 0

∀i ∈ {0, 1, 2, . . . , m− 1}.

Two related differences define a special type of second-order differential. Given a state α̂ ∈
Fm

2n , and the related differences b̂,b̂′, define a quartet of states as (α̂, α̂⊕b̂, α̂⊕b̂′, α̂⊕b̂⊕
b̂′). Note that this given quartet has a property that the sets {αi, αi⊕bi, αi⊕b′

i, αi⊕bi⊕b′
i},

for all i, contain only two distinct elements. This property is depicted in Figure 1.
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αi

αi ⊕ bi

αi ⊕ bi ⊕ b′
i

αi ⊕ b′
i

bi

bi ⊕ b′
i

bi

bi ⊕ b′
i

b
′
i

Figure 1: Pictorial representation of Related Differences with associated quartet. If any
one of bi, b′

i, bi ⊕ b′
i becomes zero, then the square collapses to a line.

Definition 2. Two differentials (b̂, ĉ) and (b̂′, ĉ′) are related differentials over a linear
map M , if and only if ĉ = M · b̂ and ĉ′ = M · b̂′, where the differences b̂, b̂′ are related
and the differences ĉ, ĉ′ are also related.

Observation: Consider two vectors b̂,b̂′ with all non-zero elements, i.e. wt(b̂) = wt(b̂′) =
m. Now, if these two vectors are to be related differences, then according to Definition
1, it must be true that bi ⊕ b′

i = 0 for all i, since their elements are all non-zero. This
can only happen if b̂ = b̂′. Therefore, two distinct vectors with all non-zero elements
cannot be related differences. We will use this observation in Section 3 in order to choose
the necessary and sufficient weights for input/output differences that will be used in our
analysis to prove Theorem 3. Note that cases involving trivial related differences, where
one of the vectors b̂, b̂′, b̂ + b̂′ is the zero vector, will be excluded from the discussion
in later sections. This exclusion is due to the fact that such cases do not contribute to
any meaningful attacks. We now restate below the following lemma from [DR09] which
bounds the weight of the input/output difference pairs forming related differentials.

Lemma 1. If (b̂, ĉ) and (b̂′, ĉ′) are related differentials over a linear map with an associated
m×m multiplication matrix that is MDS, then

min
{

wt(b̂) + wt(ĉ), wt(b̂′) + wt(ĉ′), wt(b̂⊕ b̂′) + wt(ĉ⊕ ĉ′)
}
≤ m +

⌊
m
3

⌋
.

Authors in [DR09] provide a combinatorial bound given as Lemma 1, to check the existence
of related differentials over any given map with associated MDS matrix. According
to this bound, if two differentials (b̂, ĉ) and (b̂′, ĉ′) are related, then the minimum of
[(wt(b̂) + wt(ĉ)), (wt(b̂′) + wt(ĉ′)), (wt(b̂′′) + wt(ĉ′′))] should be at most m + ⌊m

3 ⌋, where
b̂′′ = b̂ ⊕ b̂′ and ĉ′′ = ĉ ⊕ ĉ′. This means that if one were to check whether a matrix
M admits related differentials, it is sufficient to check all input/output difference pairs
with combined weight of m + ⌊m

3 ⌋ (which in case of m = 4 is 5) to reveal all the related
differentials for the matrix.

The authors emphasize that matrices with special structures exist that has no related
differentials in general. They show examples of matrices with Hadamard structures which
allows no related differentials. The Hadamard MDS matrix denoted as had(1, 2, 4, 6) is
used for linear transformation in the Anubis block cipher [BR00]. The authors show
related differentials which exists for the given matrix. The related differentials it has
are ([0, 0, 4, 6], [4, 0, 8, E]) and ([8, E, 4, 0], [4, 6, 0, 0]) and ([8, E, 0, 6], [0, 6, 8, E]) where the
pairs represent differential (b̂, ĉ) in hexadecimal. However, if the matrix is replaced
by had(1, 2, 4, 9), there are no related differentials. In Section 3, we focus on deducing



Sonu Jha, Shun Li, Danilo Gligoroski 7

conditions for 4 × 4 MDS Hadamard matrices using the related differentials property
defined above which indicates if the matrix admits related differentials or not.

2.5 AES and Attack Preliminaries
Advanced Encryption Standard or AES [AES01, DR02] operates on a 4× 4 array of bytes
given as 

α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15


where elements are in column-major order. This array is referred to as the internal state
of the cipher. The encryption algorithm consists of a certain number of transformation
rounds where the internal state of the cipher is transformed utilizing 4 specific operations.
The number of transformation rounds depends on the key size, and they are 10 rounds
for a 128-bit key, 12 rounds for a 192-bit key and 14 rounds for a 256-bit key. The key
operations of AES applied on the internal state in each round which are relevant for the
discussion of this paper are reproduced below.

AddRoundKey: Round key bytes are combined with each byte of the state using bit-wise
XOR.

SubBytes: Each byte of the state is replaced by another byte according to a lookup table
through a non-linear substitution step.

ShiftRow: The i-th row is shifted left by i positions, where i = 0, 1, 2, 3.

MixColumn: Applies a linear transformation on each column of the state using a fixed
MDS matrix.

MixColumn step is omitted in the last round and an additional AddRoundKey step is applied
to produce the resulting ciphertext.

Two-round zero-difference property: In [RBH17], a relation was introduced over a
2-round SPN, called the zero-difference property. We restate Theorem 1 from [RBH17].

Theorem 1. Let α̂, β̂ ∈ Fn
q and α̂

′
, β̂

′

constitute any pair of states generated from
α̂, β̂, satisfying the condition that for any 1 ≤ i ≤ n, (αi, βi) = (α′

i, β
′

i) or (αi, βi) =
(β′

i , α
′

i). Consequently, the difference S ◦ P ◦ S(α) ⊕ S ◦ P ◦ S(β) and the difference
S ◦P ◦S(α′)⊕S ◦P ◦S(β′) exhibit identical activity or (non-)zero occurrences in precisely
the same components, where S, P are generic substitution and permutation layers of a SPN
cipher.

Recently, the authors of [GBR22] showed that, for Substitution-Permutation Networks,
related differentials could be combined with two rounds of zero difference property. The
Theorem 2 from [GBR22] is restated below.

Theorem 2. Let α̂ ∈ Fn
q and x̂, x̂′ ∈ Fn

q be two related differences, then the differences
F (α̂)⊕ F (α̂⊕ x̂) and F (α̂⊕ x̂′)⊕ F (α̂⊕ x̂⊕ x̂′) exhibit zero-difference pattern where
F = P ◦ S ◦ P ◦ S.

This combination allows to extend the zero-difference property to more than two rounds
of SPNs. In the case of AES, the MixColumn matrix cir(2, 3, 1, 1) contains the following
sets of related differentials (see [DR09, p. 66]) which is used in [GBR22] to mount the
key-recovery attack up to 7 rounds.
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b̂ ĉ b̂′ ĉ′ b̂ + b̂′ ĉ + ĉ′

[0, 1, 4, 7] [0, 9, 0, B] [5, 1, 0, 7] [E, 0, D, 0] [5, 0, 4, 0] [E, 9, D, B]
[0, 1, 0, 3] [0, 1, 4, 7] [2, 0, 1, 0] [5, 1, 0, 7] [2, 1, 1, 3] [5, 0, 4, 0]
[7, 0, 7, 7] [9, E, 0, 0] [7, 7, 7, 0] [0, 0, 9, E] [0, 7, 0, 7] [9, E, 9, E]
[0, 3, 2, 0] [7, 0, 7, 1] [2, 0, 0, 3] [7, 1, 7, 0] [2, 3, 2, 3] [0, 1, 0, 1]

It is evident that the attacks discussed above requires the presence of related differentials
in the underlying MixColumns matrix. Section 3 focuses on the construction of MDS
matrices devoid of related differentials that makes the attack extension discussed above
ineffective.

3 Analyzing Related Differential Properties over 4×4
Hadamard Matrices

We aim for a generalized analysis of 4×4 Hadamard matrices by looking for vectors b̂, ĉ, b̂′,
ĉ′ which form related differentials. We begin the analysis by stating Lemmas 2 and 3 which
utilizes the MDS property to determine all the valid pairs of related input differences with
minimum weights which can be used in our analysis to derive the conditions under which
the map admits related differentials. In Theorem 3, we use these generalised valid pairs of
related input differences to compute the conditions under which the output differences
also turns out to be related.

Lemma 2. If (b̂, b̂′) are related differences containing m elements each, then differences
(b̂, b̂′′ = b̂⊕ b̂′) and (b̂′, b̂′′) are related differences with

wt(b̂) + wt(b̂′) + wt(b̂′′) ≤ 2m

Proof. According to Definition 1, we know that

bi · b′
i(bi ⊕ b′

i) = 0, i = 0, . . . , m− 1

then, the differences (b̂, b̂′′) are related differences since we have

bi · b′′
i (bi ⊕ b′′

i ) = bi · (bi ⊕ b′
i)(bi ⊕ bi ⊕ b′

i) = 0

and similarly, the differences (b̂′, b̂′′) are related differences since we have

b′
i · b′′

i (b′
i ⊕ b′′

i ) = b′
i · (bi ⊕ b′

i)(b′
i ⊕ bi ⊕ b′

i) = 0

If (b̂, b̂′) are related, this implies that either bi = 0 or b′
i = 0 or bi ⊕ b′

i = b′′
i = 0. This

means that for every 0 ≤ i < m one of bi, b′
i, b′′

i should be zero. Therefore the sum of
weights of these vectors can be at most 3m−m = 2m.

In our analysis, we consider the case when m = 4. From Lemma 2, we know that
wt(b̂) + wt(b̂′) + wt(b̂′′) ≤ 2 · 4 = 8 and similarly wt(ĉ) + wt(ĉ′) + wt(ĉ′′) ≤ 2 · 4 = 8. So
in order to check whether a matrix admits related differentials, we can begin our analysis
with two input differences among b̂, b̂′ and b̂′′ which have minimum weights.

The idea is to investigate under what conditions a given matrix admits related differentials
when the two of the input differences have minimum weights. It is straightforward to see
that the minimum weights a pair of input related differences can have are (1, 1), (1, 2),
(1, 3), (1, 4), (2, 2), or (2, 3).
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Lemma 3. If b̂, b̂′ are related differences and an input pair to a 4× 4 MDS linear map
M where (wt(b̂), wt(b̂′)) = (1, 1) or (wt(b̂), wt(b̂′)) = (1, 2), then (b̂, ĉ) and (b̂′, ĉ′) can
never form related differentials, where ĉ = M · b̂ and ĉ′ = M · b̂′.

Proof. Due to the MDS property, the input difference b̂ having weight 1 will always
result in the output difference ĉ = M · b̂ which has weight 4. So for the case when
(wt(b̂), wt(b̂′)) = (1, 1), we will have (wt(ĉ), wt(ĉ′)) = (4, 4). Therefore, according to the
observation presented in Section 2.4, it implies that ĉ = ĉ′.

When (wt(b̂), wt(b̂′)) = (1, 2), then (wt(ĉ), wt(ĉ′)) can either be (4, 3) or (4, 4). We already
know that two distinct differences with weights (4, 4) cannot be related. Therefore when
(wt(ĉ), wt(ĉ′)) = (4, 3), we must have wt(ĉ′′ = ĉ + ĉ′) = 8− 4− 3 = 1. As b̂, b̂′ are related
differences, wt(b̂′′ = b̂ + b̂′) can be equal to either 1 or 3. Since wt(ĉ′′) = 1, we must have
wt(b̂′′) = 4 from the MDS property, and hence the input differences with weights (1, 2)
cannot form related output differences.

Valid Weights: Omitting the invalid weights shown in Lemma 3, we see that input
difference pairs with weights (1, 3), (1, 4), (2, 2), and (2, 3) can form related differentials
and hence we consider input differences with these weight combinations for our analysis.
Moreover in our analysis, we only consider input differentials with weights (1, 4), (2, 2),
and (2, 3). We omit the case of (wt(b̂), wt(b̂′)) = (1, 3) because wt(b̂′′ = b̂ + b̂′) in this
case can either be 2 or 4. Since we already consider the case of input pairs with weights
(1, 4) in our analysis, so the case with weights (1, 3) implies the same analytical result as
(1, 4).

Theorem 3. Let us denote as {a, b, c, d} the 4-element subset of F2n and let M denote a
4× 4 MDS matrix with Hadamard structure formed by the elements {a, b, c, d} as,

M =


a b c d
b a d c
c d a b
d c b a


The matrix M is devoid of related differentials, if and only if the elements in M do not
solve any equation from the following list of 28 equations denoted as R:

ab + cd =


a2 + c2

a2 + d2

b2 + c2

b2 + d2

ac + bd =


a2 + b2

a2 + d2

b2 + c2

c2 + d2

ad + bc =


a2 + b2

a2 + c2

b2 + d2

c2 + d2

We note that the same property follows for the inverse map M−1 where

M−1 =


a⋆ b⋆ c⋆ d⋆

b⋆ a⋆ d⋆ c⋆

c⋆ d⋆ a⋆ b⋆

d⋆ c⋆ b⋆ a⋆


Proof. We firstly prove the statement on M−1. If M could lead to the 28 relations about
coefficients (a, b, c, d) from M , then M−1 could lead to the 28 relations about its coefficients
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a(a+b+c+d) =


a2 + b2

a2 + c2

a2 + d2
b(a+b+c+d) =


b2 + a2

b2 + c2

b2 + d2
c(a+b+c+d) =


c2 + a2

c2 + b2

c2 + d2

d(a+b+c+d) =


d2 + a2

d2 + b2

d2 + c2
a + b + c + d =


a

b

c

d

(a⋆, b⋆, c⋆, d⋆) and these 28 relations exactly correspond to the original relations of (a, b, c, d).
Actually we could deduce that 

a⋆ = a(a+b+c+d)2

det(M)

b⋆ = b(a+b+c+d)2

det(M)

c⋆ = c(a+b+c+d)2

det(M)

d⋆ = d(a+b+c+d)2

det(M)

Then substituting these value into the original 28 relations, as the degrees of left and
right side of each relation are same, we could divide the same value such as (a+b+c+d)2

det(M) or
(a+b+c+d)4

det(M)2 .

The proof proceeds by analyzing multiple cases and sub-cases, each corresponding to differ-
ent weight distributions of the related input vectors b̂ and b̂′. These weight distributions
are chosen based on the conditions established in Lemmas 2 and 3, ensuring that only the
relevant cases are considered.

For each case, we begin by selecting input vectors b̂ and b̂′, which may contain both fixed
constants and unknown elements over the field. We then compute the corresponding output
differences, ĉ = M · b̂ and ĉ′ = M · b̂′, and solve for the unknowns under the condition
that (ĉ, ĉ′) remains a related differential pair. By systematically iterating through all valid
cases and sub-cases, we derive a set of 28 necessary and sufficient equations that determine
whether M admits related differentials.

If any of these equations hold, M permits related differentials; otherwise, it does not.
Additionally, some cases lead to contradictions with the MDS property, making them
impossible. In such case, we explicitly highlight these contradictions, while omitting
redundant derivations. We now begin with the first case.

3.1 Analysis When wt(b̂) = 2 and wt(b̂′) = 2
The related input difference pairs with weight 2 each are given as:

1. b̂ = [w, 0, 0, x] and b̂′ equals [0, y, z, 0], which simplifies to b̂ = [1, 0, 0, x′] and b̂′ =
[0, y′, z′, 0]. Here, x, y, z are divided by w without affecting the related differential
properties.

2. b̂ = [w, 0, x, 0] and b̂′ equals [0, y, 0, z], simplifying to b̂ = [1, 0, x′, 0] and b̂′ =
[0, y′, 0, z′].

3. b̂ = [x, w, 0, 0] and b̂′ equals [0, 0, y, z], simplifying to b̂ = [x′, 1, 0, 0] and b̂′ =
[0, 0, y′, z′].
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4. b̂ = [x, y, 0, 0] and b̂′ equals either [x, 0, z, 0] or [x, 0, 0, z], simplifying to b̂ =
[1, y′, 0, 0] and b̂′ = [1, 0, z′, 0] or [1, 0, 0, z′].

5. b̂ = [x, 0, y, 0] and b̂′ equals [x, 0, 0, z], simplifying to b̂ = [1, 0, y′, 0] and b̂′ =
[1, 0, 0, z′].

where x, y, z, w ∈ F2n are unknowns. The following subsections analyze the solutions.

3.1.1 Case 1: b̂ = [1, 0, 0, x] and b̂′ = [0, y, z, 0]

For this case, the output differences are given by:

ĉ = M · b̂ = [a + dx, b + cx, c + bx, d + ax]

ĉ′ = M · b̂′ = [by + cz, ay + dz, dy + az, cy + bz]
Since both ĉ, ĉ′ have at least 3 non-zero elements and cannot have 4 simultaneously, at
least two of the indices must be equal and nonzero. Assume that is c0 = c′

0, c1 = c′
1{

a + dx = by + cz ̸= 0
b + cx = ay + dz ̸= 0

(1)

Here we have another 2 cases:

Subcase 1.1: One Zero Element in ĉ

ĉ has one zero, assume it is c2 = c + bx. Then x = c
b , equation 1 turns to be{

a + dc
b = by + cz

b + c2

b = ay + dz
,

it can be deduced that
y = c3 + c(b2 + d2) + abd

b(ac + bd) ,

z = b3 + b(a2 + c2) + acd

b(ac + bd) .

Furthermore, c′
3 = cy + bz = 0 or is equal to c3 = d + ax. Substitute the value of y, z into

c′
3 leads to

(b2 + c2 + ab + cd)2

b(ac + bd) ,

if c3
′ = 0 then,

ab + cd = b2 + c2 (2)
or if c′

3 = c3 then,
ac + bd

b
= (b2 + c2 + ab + cd)2

b(ac + bd) , (3)

equation 3 can be transformed into (b + c)(a + b + c + d) = 0, which contradicts the MDS
condition.

Along the similar lines of the analysis shown above, if we take c1 = 0, then we have x = b
c .

Solving for the variables y, z by equating c′
2 = c2,c′

3 = c3 and substituting the values in
the equation c′

0 = 0 gives equation 2. Similar impossibility result follow when we have
c′

0 = c0.

Similarly if we take c0 = 0, then x = a
d . Assume c2 = c′

2, c3 = c′
3, then we have the

following solutions for the remaining unknowns
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y = a3 + ab2 + ad2 + bcd

acd + bd2

z = d3 + a2d + c2d + abc

acd + bd2

Substituting these values in c′
1 gives(

a2 + ab + cd + d2)2

acd + bd2

Then if c′
1 = 0, we have

a2 + d2 = ab + cd (4)

otherwise if c′
1 = c1, we have the impossible relation (a + d)(a + b + c + d) = 0. When

we have c3 = 0 =⇒ x = d
a , then by solving for y, z in equations c′

0 = c0, c′
1 = c1 and

substituting in c′
2 = 0 and c′

2 = c2, we respectively get equation 4 and a similar impossible
case.

If we swap y, z in b̂′, we have

ĉ′ = [bz + cy, az + dy, dz + ay, cz + by]

Then for c0 = 0 =⇒ x = a
d , solving unknowns in c′

1 = c1, c′
3 = c3 and substituting in

c′
2 = dz + ay = 0 gives

ac + bd = a2 + d2 (5)

Impossibility results follow for substituting values of y, z in c′
2 = c2.

For c3 = 0 =⇒ x = d
a , solving unknowns in equations c′

0 = c0, c′
2 = c2 and substituting

the values in: c′
1 = az + dy = 0 gives equation 5, and c′

1 = c1 indicates a contradiction
with the MDS property.

Following the similar methodology, for both instances c1 = 0 =⇒ x = b
c and c2 = 0 =⇒

x = c
b , we get the relation

ac + bd = c2 + b2 (6)

Subcase 1.2: No Zero Elements in ĉ

If ĉ has no zero elements, then there must be a zero element from ĉ′, otherwise, if both
ĉ, ĉ′ are full non-zero, they must be completely equal, which means M · (b̂ + b̂′) = 0 or
M · [1, y, z, x] = 0, which is impossible. So we assume dy +az = 0 and cy + bz = d+ax ̸= 0,
solve the equation system with 4 equations and 3 variables:

a + dx = by + cz

b + cx = ay + dz

0 = dy + az

d + ax = cy + bz

(7)

which leads to a2 +d2 +ab+cd = ac+bd which can be simplified to (a+d)(a+b+c+d) = 0,
which is also impossible.
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3.1.2 Case 2: b̂ = [1, 0, x, 0] and b̂′ = [0, y, 0, z]

We have ĉ = M · b̂ = [a + cx, b + dx, c + ax, d + bx] and ĉ′ = M · b̂′ = [by + dz, ay +
cz, dy + bz, cy + az]. If we swap c and d, and exchange the third and fourth elements of
ĉ, ĉ′, then it results in Case 1 again. Therefore, we omit a step by step description and
provide table 1 indicating iterative deductions of each relation falling under this case of
input pairs. Note that if we swap y, z in b̂, then following the similar iterations as in table
1 we get two similar relations where L.H.S is ad + bc.

Table 1: Relations for b̂ = [1, 0, x, 0] and b̂′ = [0, y, 0, z]

Iterations Steps Results

c0 = 0 =⇒ x = a
c

Solve unknowns in: c2 = c′
2, c3 = c′

3 ab + cd = a2 + c2

Substitute in: c′
1 = 0

c2 = 0 =⇒ x = c
a

Solve unknowns in: c0 = c′
0, c1 = c′

1 ab + cd = a2 + c2

Substitute in: c′
3 = 0

c1 = 0 =⇒ x = b
d

Solve unknowns in: c2 = c′
2, c3 = c′

3 ab + cd = b2 + d2

Substitute in: c′
0 = 0

c3 = 0 =⇒ x = d
b

Solve unknowns in: c0 = c′
0, c1 = c′

1 ab + cd = b2 + d2

Substitute in: c′
3 = 0

3.1.3 Case 3: b̂ = [x, 1, 0, 0] and b̂′ = [0, 0, y, z]

We have ĉ = M · b̂ = [b + ax, a + bx, d + cx, c + dx] and ĉ′ = M · b̂′ = [cy + dz, dy + cz, ay +
bz, by + az]. If we swap b and d, and permute the elements of ĉ, ĉ′ by (1, 4, 3, 2), then it
results in Case 1 again. The relations are discussed in table 2. If we swap y, z in b̂′, then
following the similar iterations we get two similar relations where L.H.S is ad + bc.

Table 2: Relations for b̂ = [x, 1, 0, 0] and b̂′ = [0, 0, y, z]

Iterations Steps Results

c0 = 0 =⇒ x = b
a

Solve unknowns in: c1 = c′
1, c3 = c′

3 ac + bd = a2 + b2

Substitute in: c′
2 = 0

c1 = 0 =⇒ x = a
b

Solve unknowns in: c0 = c′
0, c2 = c′

2 ac + bd = a2 + b2

Substitute in: c′
3 = 0

c2 = 0 =⇒ x = d
c

Solve unknowns in: c1 = c′
1, c3 = c′

3 ac + bd = c2 + d2

Substitute in: c′
0 = 0

c3 = 0 =⇒ x = c
d

Solve unknowns in: c0 = c′
0, c2 = c′

2 ac + bd = c2 + d2

Substitute in: c′
1 = 0

3.1.4 Case 4: b̂ = [1, y, 0, 0] and b̂′ = [1, 0, z, 0]

We have ĉ = M ·b̂ = [a+by, b+ay, c+dy, d+cy] and ĉ′ = M ·b̂′ = [a+cz, b+dz, c+az, d+bz].
Since ĉ and ĉ′ have at most 1 zero elements, then at least two of the elements from them
are equal. Assume y = c

b z = d
a z, then ac + bd = 0, which contradicts the MDS property.

Similar argument follows for the case b̂′ = [1, 0, 0, z].
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3.1.5 Case 5: b̂ = [1, 0, y, 0] and b̂′ = [1, 0, 0, z]

We have ĉ = M ·b̂ = [a+cy, b+dy, c+ay, d+by] and ĉ′ = M ·b̂′ = [a+dz, b+cz, c+bz, d+az].
Then it can be lead to contradiction similarly as Case 4.

Therefore, M admits related differentials where (wt(b̂), wt(b̂′)) = (2, 2), if and only if the
elements of M satisfy at least one of the 12 relations deduced.

3.2 Analysis When wt(b̂) = 2 and wt(b̂′) = 3
In this section, we analyze input difference pairs having weights 2 and 3. Since the pair
has only one non-zero element in the same index, we can move this non-zero element to
the first index. A list of these input difference pairs are given below.

1. b̂ = [w, x, 0, 0] and b̂′ = [w, 0, y, z], which can be simplified to b̂ = [1, x′, 0, 0] and
b̂′ = [1, 0, y′, z′].

2. b̂ = [w, 0, x, 0] and b̂′ = [w, y, 0, z], which can be simplified to b̂ = [1, 0, x′, 0] and
b̂′ = [1, y′, 0, z′].

3. b̂ = [w, 0, 0, x] and b̂′ = [w, y, z, 0], which can be simplified to b̂ = [1, 0, 0, x′] and
b̂′ = [1, y′, z′, 0].

where x, y, z, w are unknowns elements from F2n .

3.2.1 Case 1: b̂ = [1, x, 0, 0] and b̂′ = [1, 0, y, z]

We have ĉ = M · b̂ = [a + bx, b + ax, c + dx, d + cx] and ĉ′ = M · b̂′ = [a + cy + dz, b +
dy + cz, c + ay + bz, d + by + az]. Since ĉ has at most 1 zero, we have another 2 cases:

Subcase 1.1: ĉ has one zero

Assume it is c0 = a + bx =⇒ x = a
b . b + ax ̸= 0, c + dx ̸= 0, and d + cx ̸= 0. Because

the corresponding elements from ĉ′ cannot be full zeros due to MDS property, we have at
least one equation assuming it is c1 = c′

1, or b + ax = b + dy + cz ̸= 0. If c + ay + bz = 0,
then we have equations {

a2

b = dy + cz

c = ay + bz
(8)

which leads to the solution of {
y = a2+c2

ac+bd

z = a3+bcd
b(ac+bd)

substitute the value of x, y, z into the last elements of ĉ, ĉ′, either

d + by + az = 0

which leads to a2 + ab + bc + bd = 0, which can be expressed as

b(a + b + c + d) = a2 + b2

or
d + by + az = d + cx

which leads to a2 + ab + ac + bc = 0, which is impossible.

If c + ay + bz ̸= 0, then we have equations{
a2

b = dy + cz
ad
b = ay + bz

(9)
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which leads to the solution of {
y = a(ab+cd)

b(ac+bd)

z = a(a2+d2)
b(ac+bd)

substituting the value of x, y, z into the last elements of ĉ, ĉ′, gives either

d + by + az = 0

which leads to a2 + ab + ad + bd = 0, which is impossible or

d + by + az = d + cx

which leads to a2 + ab + ac + ad = 0, which is also impossible. Note that the other
assumption of equation on third or fourth elements leads to the same discussion above.
Similarly, assuming c1 = 0, c2 = 0 and c3 = 0 and following similar iterations of solving
equations, we get the relations a(a + b + c + d) = a2 + b2, c(a + b + c + d) = c2 + d2 and

d(a + b + c + d) = c2 + d2 (10)

respectively.

Subcase 1.2: ĉ is full non-zero, ĉ′ has at most 2 zeros

Then we have at least two equations holds for non-zero elements. Assume they are the first
two, then c + ay + bz = 0 and d + by + az = 0. Otherwise there are three equal elements
from ĉ and ĉ′, which contradicts the MDS property, as the input has 3 non-zero elements
and output has only 1 non-zero element. We have

a + bx = a + cy + dz

b + ax = b + dy + cz

0 = c + ay + bz

(11)

which leads to the solution of 
x = c(c2+d2)

d(a2+b2)
y = c(ad+bc)

d(a2+b2)
z = c(ac+bd)

d(a2+b2)

substitute the value of x, y, z into the last elements of ĉ, ĉ′, combining with

d + by + az = 0

leads to ad + bd + ac + bc = 0, which is impossible.
Other assumptions like first and third elements equal leads to the system

a + bx = a + cy + dz

0 = b + dy + cz

c + dx = c + ay + bz

0 = d + by + az

(12)

which leads to condition b2+d2 = ab+cd. This relation shows equivalence with the relations
of (wt(b̂), wt(b̂′)) = (2, 2) case. This is because we have wt(b̂ + b̂′) = 3 and wt(ĉ + ĉ′) = 2.
Therefore, the differential (ĉ′, ĉ + ĉ′) can be viewed as the case (wt(b̂), wt(b̂′)) = (2, 2)
over M−1. Due to this equivalence, we omit discussing similar cases.
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3.2.2 Case 2: b̂ = [1, 0, x, 0] and b̂′ = [1, y, 0, z]

We have ĉ = M · b̂ = [a + cx, b + dx, c + ax, d + bx] and ĉ′ = M · b̂′ = [a + by + dz, b + ay +
cz, c + dy + bz, d + cy + az]. If we swap b and c, and exchange second and third elements
of ĉ and ĉ′, it results in Case 1. See table 3 for relations.

Table 3: Relations for b̂ = [1, 0, x, 0] and b̂′ = [1, y, 0, z]

Iterations Steps Results

c0 = 0 =⇒ x = a
c

Solve unknowns in: c′
2 = c2, c′

1 = 0
Substitute in:c′

3 = 0 c(a + b + c + d) = a2 + c2

c1 = 0 =⇒ x = b
d

Solve unknowns in: c′
3 = c3, c′

0 = 0
Substitute in: c′

2 = 0 d(a + b + c + d) = b2 + d2

c2 = 0 =⇒ x = c
a

Solve unknowns in: c′
0 = c0, c′

3 = 0
Substitute in:c′

1 = 0 a(a + b + c + d) = a2 + c2

c3 = 0 =⇒ x = d
b

Solve unknowns in: c′
1 = c1, c′

2 = 0
Substitute in: c′

0 = 0 b(a + b + c + d) = b2 + d2

3.2.3 Case 3: b̂ = [1, 0, 0, x] and b̂′ = [1, z, y, 0]

We have ĉ = M · b̂ = [a + dx, b + cx, c + bx, d + ax] and ĉ′ = M · b̂′ = [a + bz + cy, b +
az + dy, c + dz + ay, d + cz + by]. If we swap b and d, and exchange second and fourth
elements of ĉ and ĉ′, it results in Case 1. See table 4 for relations.

Table 4: Relations for b̂ = [1, 0, 0, x] and b̂′ = [1, z, y, 0]

Iterations Steps Results

c0 = 0 =⇒ x = a
d

Solve unknowns in: c′
3 = c3, c′

1 = 0
Substitute in:c′

2 = 0 d(a + b + c + d) = a2 + d2

c1 = 0 =⇒ x = b
c

Solve unknowns in: c′
2 = c2, c′

0 = 0
Substitute in: c′

3 = 0 c(a + b + c + d) = b2 + c2

c2 = 0 =⇒ x = c
b

Solve unknowns in: c′
1 = c1, c′

3 = 0
Substitute in:c′

0 = 0 b(a + b + c + d) = b2 + c2

c3 = 0 =⇒ x = d
a

Solve unknowns in: c′
0 = c0, c′

2 = 0
Substitute in: c′

1 = 0 a(a + b + c + d) = a2 + d2

This concludes the identification of the next 12 relations indicating admittance of related
differentials with (wt(b̂), wt(b̂′)) = (2, 3).

3.3 Analysis When wt(b̂) = 1 and wt(b̂′) = 4
We can move the same non-zero element to the first index that is

1. b̂ = [w, 0, 0, 0] and b̂′ = [w, x, y, z], which can be simplified to b̂ = [1, 0, 0, 0] and b̂′

= [1, x′, y′, z′].

where x, y, z, w are unknowns which takes elements from F2n .

3.3.1 Case 1: b̂ = [1, 0, 0, 0] and b̂′ = [1, x, y, z]

We have ĉ = [a, b, c, d] and ĉ′ = [a+bx+cy+dz, b+ax+dy+cz, c+dx+ay+bz, d+cx+by+az].
Because ĉ is full non-zero from MDS property and ĉ′ has at most 2 non-zero elements,
here we discuss the two subcases seperately.
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Subcase 1.1: ĉ′ has 1 non-zero element

Assume it is c′
0 = a + bx + cy + dz, then we have

a = a + bx + cy + dz ̸= 0
0 = b + ax + dy + cz

0 = c + dx + ay + bz

0 = d + cx + by + az

(13)

which leads to b2 + ab + bc + bd + ac + ad = 0 or (a + b)(b + c + d) = 0, so that

b + c + d = 0 (14)

is the condition to be satisfied. Similarly, solving for c′
1 ≠ 0,c′

2 ̸= 0,c′
3 ≠ 0, we get the

relations a + c + d = 0, a + b + d = 0 and a + b + c = 0 respectively.

Subcase 1.2: ĉ′ has 2 non-zero elements

Assume it is a + bx + cy + dz and b + ax + dy + cz, then we have
a = a + bx + cy + dz ̸= 0
b = b + ax + dy + cz

0 = c + dx + ay + bz

0 = d + cx + by + az

(15)

which leads to ac + ad + bc + bd = 0, which is impossible.

This gives us the list R with all the necessary and sufficient 28 equations.

3.4 Completeness of Proofs
We briefly clarify why our case analysis in the proof of Theorem 3 exhausts all possible
ways for a 4× 4 Hadamard MDS matrix M to admit related differentials, thereby ensuring
that the final list of 28 conditions is both necessary and sufficient.

3.4.1 Bounding Lemmas and Weight Constraints.

By Lemma 1 (due to Daemen and Rijmen), for related differentials (b̂, ĉ) and (b̂′, ĉ′) in
an m×m MDS setting, it holds that

min
{

wt(b̂) + wt(ĉ), wt(b̂′) + wt(ĉ′), wt(b̂⊕ b̂′) + wt(ĉ⊕ ĉ′)
}
≤ m +

⌊
m
3

⌋
.

For m = 4, at least one of these sums must be at most 5. In our analysis, this means
we may focus on input–output differences whose combined weight does not exceed 5.
Moreover, Lemma 3 shows that input pairs with weights (1, 1) and (1, 2) cannot yield
related differentials when m = 4. Consequently, the only input difference pairs that remain
relevant for a 4× 4 Hadamard MDS matrix are those with weights (1, 4), (2, 2), or (2, 3).
As we illustrate below, examining these pairs (and their corresponding outputs) naturally
leads to the generalized input–output relations that underlie our final set of 28 conditions.

3.4.2 Case-by-Case Enumeration.

For each weight class, we enumerate all relevant input pairs up to field scalings and
coordinate permutations. For instance, an input vector with weight 2 is scaled so that
its first nonzero entry becomes 1, and we systematically place the second nonzero entry
in positions 2, 3, or 4. A similar strategy applies for weight 3 and weight 4 vectors.
Consequently, we reduce each scenario to a canonical form (e.g., b̂ = [1, 0, 0, x], etc.)
without losing any potential relatedness conditions.
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3.4.3 Output Polynomial Constraints.

For each enumerated input pair, we compute the outputs ĉ = M · b̂, ĉ′ = M · b̂′, and
impose the “related difference” requirement on these outputs (Definition 1). This leads
to polynomial equations in the matrix elements {a, b, c, d}. By collecting and merging
duplicates, we ultimately arrive at exactly 28 distinct constraints (Section 3, Theorem 3).

3.4.4 Necessity.

Necessity follows from the fact that any valid related differential pair, by the bounding
lemma, must appear in our enumerations. Hence if M truly admits a related differential,
at least one of those 28 constraints must hold.

3.4.5 Sufficiency.

Sufficiency is immediate: once a constraint is satisfied, we can exhibit a corresponding
input pair (b̂, b̂′) whose outputs are related differentials. We could divide 28 equations
from Theorem 3 into 3 distinct classes:

Class 1: When Equation 2 holds

Given condition:
ab + cd = b2 + c2.

Choice of the input differentials:

b̂ = [1, 0, 0,
c

b
], b̂′ = [0,

c3 + c(b2 + d2) + abd

b(ac + bd) ,
b3 + b(a2 + c2) + acd

b(ac + bd) , 0].

Resulting outputs:

ĉ = [a + cd

b
, b + c2

b
, 0, d + ac

b
],

ĉ′ = [(ac + bd)(ab + cd)
b(ac + bd) ,

(ac + bd)(b2 + c2)
b(ac + bd) ,

(ab + cd)(a2 + b2 + c2 + d2)
b(ac + bd) ,

b4 + c4 + a2b2 + c2d2

b(ac + bd) ]

= [a + cd

b
, b + c2

b
, 0,

(b2 + c2 + ab + cd)2)
b(ac + bd) ]

= [a + cd

b
, b + c2

b
, 0, 0].

Since ĉ and ĉ′ are related differentials, M admits related differentials.

Class 2: When Equation 10 holds

Given conditions:
d(a + b + c + d) = c2 + d2,

i.e.,
c2 + ad + bd + cd = 0.

Choice of the input differentials:

b̂ = [1,
d

c
, 0, 0], b̂′ = [1, 0,

d(ad + bc)
c(c2 + d2) ,

d(ac + bd)
c(c2 + d2) ].

Resulting outputs:

ĉ = [a + bd

c
, b + ad

c
, c + d2

c
, 0],
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ĉ′ = [(c
2 + d2)(ac + bd)

c(c2 + d2) ,
(c2 + d2)(ad + bc)

c(c2 + d2) ,
c4 + c2d2 + a2d2 + b2d2

c(c2 + d2) ,
cd(a2 + b2 + c2 + d2)

c(c2 + d2) ]

= [a + bd

c
, b + ad

c
,

(c2 + cd + ad + bd)2

c(c2 + d2) ,
d(a2 + b2 + c2 + d2)

c2 + d2 ]

= [a + bd

c
, b + ad

c
, 0,

d(a2 + b2 + c2 + d2)
c2 + d2 ].

Since ĉ and ĉ′ are related differentials, M admits related differentials.

Class 3: When Equation 14 holds

Given conditions:
b + c + d = 0,

i.e.,
(b + c + d)2 = b2 + c2 + d2 = 0.

Choice of the input differentials:

b̂ = [1, 0, 0, 0], b̂′ = [1,
b

a
,

c

a
,

d

a
].

Resulting outputs:
ĉ = [a, b, c, d],

ĉ′ = [a
2 + b2 + c2 + d2

a
, 0, 0, 0]

= [a, 0, 0, 0].

Since ĉ and ĉ′ are related differentials, M admits related differentials.

Thus, our coverage of low-weight pairs is complete for detecting related differentials, and
the 28 resulting relations precisely characterize when a 4× 4 Hadamard MDS matrix M
over F2n admits related differentials.

4 Construction of 4× 4 Hadamard MDS Matrices re-
sistant to Related Differentials

To construct Hadamard MDS matrices resistant to related differentials, we can leverage the
MDS property and Theorem 3. For any non-zero triplet (a, d, c), the necessary conditions
are 

a ̸= d

a ̸= c

d ̸= c

a + c + d ̸= 0

derived from 2×2 submatrices containing a, d, c and a+ b+ c+d ̸= b. The choices for b are
then constrained by the remaining MDS conditions and the 28 conditions from Theorem
3, consisting of linear and quadratic inequalities on b. The linear inequalities forms a set
{a, d, c, a + c + d, ad

c , ac
d , cd

a , a2+c2+cd
a , a2+d2+cd

a , a2+d2+ac
d , c2+d2+ac

d , a2+c2+ad
c , c2+d2+ad

c ,
c2+ac+ad

a , d2+ac+ad
a , a2+ac+cd

c , d2+ac+cd
c , a2+cd+ad

d , c2+cd+ad
d , a2

a+c+d , c2

a+c+d , d2

a+c+d , c+d, a+
d, a + c}. Note that the set may contain multiple identical elements.
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4.1 4× 4 MDS Matrices over F23 and F24

When the entries of matrices belong to F23 or F24 , the linear inequalities and quadratic
inequalities consistently constitute a complete set of F⋆

23 or F⋆
24 , irrespective of the specific

values taken by the triplet (a, d, c). Therefore, all the matrices over these given fields have
related differentials.

4.2 4× 4 MDS Matrices over F2n with n > 4
When the entries of matrices belong to F2n with n > 4, the cardinality of values resulting
from the combined constraints of linear and quadratic inequalities will be less than 2n − 1.
Consequently, b can assume values arbitrarily from the set of F2n , excluding invalid values
calculated from those inequalities.

4.3 Exhaustive List of All Resistant 4×4 MDS Hadamard Matrices
over F2n with n > 4

Let us denote by Mfree the exhaustive list of all 4× 4 Hadamard matrices T where the
elements of T do not satisfy any of the equations in R found in Theorem 3 and hence are
resistant to related differentials. The list Mfree is generated using Algorithm 1.

Algorithm 1 Generation of the list Mfree

Require: An extension field F2n .
Ensure: The collection Mfree of all 4× 4 Hadamard matrices T over F2n that are both

MDS and do not satisfy any equations in R.
1: Mfree ← ∅ ▷ Initialize empty list of resistant matrices
2: for all (a, b, c, d) ∈ (F2n \ {0})4 do
3: Construct the 4× 4 Hadamard matrix T using {a, b, c, d}.
4: if T is MDS then
5: if {a, b, c, d} do not satisfy any equation in R then
6: Mfree ←Mfree ∪ {T} ▷ Store T
7: end if
8: end if
9: end for

10: return Mfree

We can view Mfree as a collection of sub-lists, say Mi, where i = 1, 2, . . . , 2n − 1 and
each of these sub-lists consist of matrices T with T [0, 0] = i. Running the aforementioned
steps for the case of matrices over F28 through a simple C code2 reveals that the total
number of resistant matrices in each sub-list is exactly 14229600. For the matrices over
F25 and F26 , each sub-list has 5040 and 127176 resistant matrices respectively. Note that
Algorithm 1 drastically reduces the complexity of verifying whether a matrix T admits
related differentials or not, compared to the traditional brute-force approach where one
needs to check all possible pairs of input and the corresponding output differences to
see if they satisfy the related differential property stated in Definition 2. For example,
with a traditional brute-force approach, verifying the presence of related differentials in a
matrix T over F24 would require 8402 checks on all input and corresponding output pairs,
where input and output differences have combined weight of 5 (due to Lemma 1). Similar
verification for matrices over F25 , F26 and F28 would require 17362, 35282 and 142802

checks on all input and output pairs respectively. Moreover, the brute-force verification
2Source codes available on https://github.com/sjsonucool/hadamard-matrices-resistant-to-rel

ated-differentials-cryptanalysis.

https://github.com/sjsonucool/hadamard-matrices-resistant-to-related-differentials-cryptanalysis
https://github.com/sjsonucool/hadamard-matrices-resistant-to-related-differentials-cryptanalysis
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complexity would increase further for matrices over F2n with n > 8. However, due to the
consequence of Theorem 3, step 5 of Algorithm 1 only checks if the elements of a 4× 4
matrix T over any field F2n satisfies any of the 28 relations deduced from Theorem 3.

Equivalence classes over related differentials: In order to exhaustively generate
the list of resistant MDS matrices, it suffices to only generate all the matrices T (with
T [0, 0] = 1) contained in the sub-list M1 using the aforementioned steps. The matrices in
the rest of the sub-lists with T [0, 0] = i, (i ̸= 1) are the multiplication of matrices contained
in M1 with scalar i. Consider a quartet of differences {x̂, x̂′, T (x̂), T (x̂′)} where T (x̂)
denotes post-multiplication of vector x̂ with matrix T . The differentials (x̂, T (x̂)) and
(x̂′, T (x̂′)) are related, if and only if the differentials (α · x̂, T (α · x̂)) and (α · x̂′, T (α · x̂′)) are
related for any α ∈ F∗

2n . Consider a matrix T such that T [0, 0] = α. If {x̂, x̂′, T (x̂), T (x̂′)}
denotes a related difference pair for the map T , then the quartet (α · x̂, T (α · x̂)) and
(α · x̂′, T (α · x̂′)) are also a related difference pair for the matrix α−1 · T ∈M1. Therefore,
if we have generated the list of all resistant matrices in M1, then consequently we have
found all the resistant matrices over F2n . Note that this property holds for any MDS
matrix, regardless of the matrix structure and dimension.

4.4 Searching Lightweight Matrices in M1

In [BKL16], the authors address the problem of identifying an optimal implementation for
the multiplication of a given field element over F2n . They present tables with minimal
XOR counts for multiplication with elements in F2n . We utilize the table for elements in
F28 from [BKL16, p. 650] to search for lightweight matrices in M1 with respect to the
minimal XOR count.

We consider a 4 × 4 matrix whose first row is [a b c d], while the remaining rows
follow a Hadamard permutation structure. When this matrix is multiplied by a vector
[x y z w]T , it produces four output elements in F28 , calculated as:

Output1 = a · x⊕ b · y ⊕ c · z ⊕ d · w,

Output2 = a · y ⊕ b · x⊕ c · w ⊕ d · z,

Output3 = a · z ⊕ b · w ⊕ c · x⊕ d · y,

Output4 = a · w ⊕ b · z ⊕ c · y ⊕ d · x.

To compute the XOR cost of this matrix, we refer to the XOR cost associated with the
multiplications by the matrix elements {a, b, c, d}. Using the minimal XOR counts provided
in the table mentioned above, we define the bitwise cost of multiplying by an element x
as cost(x). Since each of a, b, c, d appears exactly once in all four output terms, the total
multiplication cost is calculated as

4 ×
(
cost(a) + cost(b) + cost(c) + cost(d)

)
.

Furthermore, each output element, for instance Output1 = a · x ⊕ b · y ⊕ c · z ⊕ d · w,
requires three XOR operations to combine the four terms. With four output elements, the
additional number of XOR operations is 4×3 = 12. As each XOR operation in F28 requires
8 bitwise XOR gates, these 12 operations result in 12× 8 = 96 XOR gates. Consequently,
the total XOR gate cost is

4
(
cost(a) + cost(b) + cost(c) + cost(d)

)
+ 96.

For matrices in M1, the minimum multiplication cost with respect to the XOR count is
120. Table 13 presents a list of 20 matrices in M1 that achieve this minimum cost. The
corresponding inverse matrices and their respective costs are also listed in this table.
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The method from [BKL16] provides a means of computing the XOR costs of binary matrices
(see Appendix D for brief description on forming binary multiplication matrices from field
elements and check the respective code for forming binary matrices provided on GitHub).

However, subsequent research has introduced more advanced techniques for optimizing
XOR cost calculation. In particular, the work of [XZL+20] presents a heuristic approach
for matrix decomposition that achieves lower XOR costs than previous heuristics. While
this paper does not explicitly focus on the detailed computation of XOR costs from binary
matrices, we encourage readers with an interest in this topic to refer to [XZL+20] for a
thorough description of their methodology. Additionally, our current work does not aim to
compute or identify the lightest Hadamard MDS matrices resistant to related differentials,
as that is outside the scope of this study. Instead, we provide practical insights into the
XOR cost analysis, motivated by the small set of matrices presented in Tables 15. The
table serve as a valuable starting point for future research into lightweight optimizations
and cost-effective methods in XOR computation of Hadamard matrices free of related
differentials.

5 Related Differentials Properties over 8×8 Hadamard
MDS Matrices

We have demonstrated a deterministic construction of 4× 4 Hadamard MDS matrices over
F2n that are free of related differentials. A natural extension of the study is to analyze the
properties of related differentials and to construct 8× 8 Hadamard MDS matrices over F2n

that are also free of related differentials. For an arbitrary n, however, the exhaustive search
for an 8× 8 matrix without related differentials becomes increasingly infeasible due to the
huge size of the matrix set. Therefore, constructing such matrices deterministically for
any n requires a complete characterization of the relations that the elements of the matrix
must not satisfy. The methodology outlined in Section 3 becomes highly complicated and
cumbersome when extended to 8× 8 matrices. Developing a more compact and efficient
approach to analyze and deduce the set of relations for 8× 8 matrices remains an open
problem. Nevertheless, in this section, we propose experimental methods incorporating
faster search and verification techniques to determine if a given 8 × 8 Hadamard MDS
matrix over F2n admits related differentials. Using these methods, we have verified that
all the matrices in the sets F8×8

24 and F8×8
25 consist of related differentials.

From [PSA+18], it is established that a Hadamard matrix M ∈ Fk×k
2n , formed using

elements {a0, a1, . . . , ak−1} such that Mi,j = ai⊕j , satisfies the properties M = MT and
M2 = s2 · Ik, where s =

⊕k−1
i=0 ai is a scalar, and Ik is the k × k identity matrix.

Theorem 4. Let M be an invertible k × k Hadamard matrix with entries in F2n . Define
s as the (nonzero) XOR sum of the elements in the first row of M , given by

s =
k−1⊕
i=0

ai,

where {ai} are the entries of the first row of M . Let the matrix M ′ be obtained by scaling
each entry of M by s−1 as

a′
i = ai · s−1.

Then the scaled k × k Hadamard matrix M ′ is involutory.

Proof. Since M is a Hadamard matrix over F2n , it satisfies

M2 = s2 Ik,

https://github.com/sjsonucool/hadamard-matrices-resistant-to-related-differentials-cryptanalysis
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where

s =
k−1⊕
i=0

ai,

and s ̸= 0 because M is invertible.

We know that the matrix M ′ is formed as:

a′
i = ai · s−1.

Hence, M ′ can be expressed as
M ′ = s−1 M,

where s−1 is the multiplicative inverse of s in F2n . The involutory property of M ′ can be
verified as

(M ′)2 = (s−1M) (s−1M) = s−2 M2 = s−2 (
s2Ik

)
= Ik.

Thus, M ′ satisfies (M ′)2 = Ik, proving that M ′ is an involutory matrix.

Note that scaling the entries of M by s−1 preserves the symmetric Hadamard structure,
as the relative relationships between the matrix entries remain unchanged under uniform
scaling. Therefore, M ′ retains the Hadamard property and is the desired involutory
Hadamard matrix of order k. We restate below the theorem on the equivalence classes of
Hadamard matrices proposed in [SKOP15].

Theorem 5. [SKOP15] Given a set of 2t nonzero elements, S = {α0, α1, . . . , α2t−1},
there are (2t−1)!∏t−1

i=0
(2t−2i)

equivalence classes of Hadamard matrices of order 2t defined by the

set of elements S.

Based on Theorem 5, we observe that there are 30 equivalence classes of 8× 8 matrices
formed by the set S, which contains 8 elements. In [SKOP15], the authors present an
algorithm to generate one representative matrix from each equivalence class, which is
restated below (for detailed proofs of Theorem 5 and Algorithm 2, refer to the original
paper).

Algorithm 2 Construction of candidate 8× 8 Hadamard matrix entries [SKOP15]
Require: A sorted set of 8 distinct elements {α0, α1, . . . , α7} in ascending order.

1: α0 ← the smallest element
2: α1 ← the second smallest element
3: α2 ← the third smallest element ▷ Fix the first three entries.
4: S ← {α3, α4, α5, α6, α7} ▷ The remaining 5 elements in ascending order.
5: for all x ∈ S (in ascending order) do
6: α3 ← x
7: S′ ← S \ {x}
8: α4 ← min(S′) ▷ Select the smallest of the remaining 4 elements as α4.
9: R← S′ \ {α4} ▷ Now R contains the 3 leftover elements.

10: for all permutations (p5, p6, p7) of R do
11: (α5, α6, α7)← (p5, p6, p7) ▷ Assign the permuted elements as the last three

entries.
12: Form the candidate matrix T from α0, . . . , α7.
13: end for
14: end for
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Given Theorems 4, 5 and Algorithm 2, we propose Algorithm 3 to perform a faster search
for matrices over F2n with related differentials. Note that due to Theorem 4, we only need
to exhaustively check the set of involutory matrices for the presence of related differentials
to verify the results for entire matrix set. This drastically reduces the search time compared
to an exhaustive search over the entire matrix set F8×8

2n .

Algorithm 3 Faster verification of related differentials in F8×8
2n using equivalence classes

of Involutory Hadamard Matrices
Require: A finite field F2n of size 2n, where n ∈ N.

▷ Enumerate 7-element subsets
1: for all 7-element subsets {a, b, c, d, x, y, z} of (F2n \ {0}) do

▷ Define the set S
2: S ← { a, b, c, d, x, y, z, a⊕ b⊕ c⊕ d⊕ x⊕ y ⊕ z ⊕ 1}
3: Using Algorithm 2, generate 30 non equivalent matrices from S and store in T

▷ Verify MDS and RD properties of each matrix
4: for all T ∈ T do
5: if T is MDS then
6: Check if T admits related differentials (RD) (definition 2).
7: end if
8: end for
9: end for

By performing experiments based on the steps outlined in Algorithm 3 on 8× 8 involutory
matrices with elements over F24 and F25 , we observe that no matrices in the sets F8×8

24 and
F8×8

25 are free of related differentials. In fact, there is only one representative involutory
matrix had(2, 3, 4, 12, 5, 10, 8, 15) ∈ F8×8

24 which is MDS and admits related differentials,
and there are 255 MDS representative involutory matrices in F8×8

25 each of which admits
related differentials.

6 Conclusion
In this paper, we propose a deterministic approach for constructing MDS matrices that
are resilient against related-differential cryptanalysis. Our primary focus is on the related-
differentials property of linear layers, which can be exploited to attack block ciphers/hash
functions, and under what conditions matrices used in such layers do not admit this
property. Using Hadamard MDS matrices as a basis of our study, we present methods for
constructing 4×4 Hadamard MDS matrices over F2n that are devoid of related differentials,
accompanied by concrete proofs. These proposed methods are feasible and can also be
incorporated in other matrix structures to determine the conditions in which they admit
related differentials, and consequently filter the matrices devoid of related differentials.
Additionally, we propose faster search and verification techniques to identify if the matrices
in the set F8×8

2n exhibit related differentials. To the best of our knowledge, this paper for
the first time adds a new direction towards the construction of MDS matrices with focus on
their resistance towards differential cryptanalysis, when incorporated in AES-like ciphers.
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The first component of the matrix-vector product over F28 is computed as:

(
F5 5A 34 3F

)
·


1

D6
0
0

 = F5 · 1⊕ 5A ·D6

• F5 = x7 + x6 + x5 + x4 + x2 + 1, multiplied by 1 remains unchanged

• 5A = x6 + x4 + x3 + x, multiplied by D6 = x7 + x6 + x4 + x2 + x:

(x6 + x4 + x3 + x)(x7 + x6 + x4 + x2 + x) ≡ x7 + x + 1 (mod x8 + x4 + x3 + x + 1)
≡ 8316

• Addition (XOR):

F516 ⊕ 8316 = (x7 + x6 + x5 + x4 + x2 + 1)
⊕ (x7 + x + 1)

= x6 + x5 + x4 + x2 + x

≡ 7616

M1 =


0xF5 0x5A 0x34 0x3F
0x5A 0xF5 0x3F 0x34
0x34 0x3F 0xF5 0x5A
0x3F 0x34 0x5A 0xF5

 , M2 =


0x66 0x4D 0xBF 0x36
0x4D 0x66 0x36 0xBF
0xBF 0x36 0x66 0x4D
0x36 0xBF 0x4D 0x36

 ,

M3 =


0x66 0x63 0x34 0xD2
0x63 0x66 0xD2 0x34
0x34 0xD2 0x66 0x63
0xD2 0x34 0x63 0x66

 , M4 =


0x0F 0xDF 0xD0 0x75
0xDF 0x0F 0x75 0xD0
0xD0 0x75 0x0F 0xDF
0x75 0xD0 0xDF 0x0F

 .

Table 5: The sets of related differentials over M1.

b̂ ĉ b̂′ ĉ′

[1, D6, 0, 0] [76, 80, 80, 0] [0, 0, D6, 1] [0, 80, 80, 76]
[1, E2, 0, 0] [67, 39, 0, 67] [0, 0, E2, 1] [67, 0, 39, 67]

[53, 16, 16, 0] [1, D6, 0, 0] [0, 16, 16, 53] [0, 0, D6, 1]
[D8, 21, 0, D8] [1, E2, 0, 0] [D8, 0, 21, D8] [0, 0, E2, 1]

Table 6: The sets of related differentials over M2

b̂ ĉ b̂′ ĉ′

[1, B1, 0, 0] [63, AE, 0, AE] [0, 0, 1, B1] [0, AE, 63, AE]
[1, E0, 0, 0] [54, 1A, 54, 0] [0, 0, 1, E0] [54, 0, 54, 1A]
[1, 0, 0, 63] [89, 89, CD, 0] [0, 1, 63, 0] [89, 89, 0, CD]
[1, 0, 0, D3] [0, AE, 85, 85] [0, 1, D3, 0] [AE, 0, 85, 85]

[8B, 15, 0, 15] [1, B1, 0, 0] [0, 15, 8B, 15] [0, 0, 1, B1]
[CF, 6, CF, 0] [1, E0, 0, 0] [CF, 0, CF, 6] [0, 0, 1, E0]

[FC, FC, 9E, 0] [1, 0, 0, 63] [FC, FC, 0, 9E] [0, 1, 63, 0]
[0, 15, C7, C7] [1, 0, 0, D3] [15, 0, C7, C7] [0, 1, D3, 0]
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Table 7: The sets of related differentials over M3.

b̂ ĉ b̂′ ĉ′

[1, 0, 0, 50] [E3, A1, ED, 0] [1, 4, 54, 0] [E3, 0, 0, 4C]
[1, 0, 0, ED] [0, C, EF, 7D] [0, 98, 99, ED] [E3, 0, 0, 7D]
[0, 1, 50, 0] [A1, E3, 0, ED] [4, 1, 0, 54] [0, E3, 4C, 0]

[0, 1, ED, 0] [C, 0, 7D, EF ] [98, 0, ED, 99] [0, E3, 7D, 0]

Table 8: The sets of related differentials over M4.

b̂ ĉ b̂′ ĉ′

[1, 0, 0, 0] [F, DF, D0, 75] [1, 58, A1, F9] [0, 0, 0, 75]
[0, 1, 0, 0] [DF, F, 75, D0] [58, 1, F9, A1] [0, 0, 75, 0]
[0, 0, 1, 0] [D0, 75, F, DF ] [A1, F9, 1, 58] [0, 75, 0, 0]
[0, 0, 0, 1] [75, D0, DF, F ] [F9, A1, 58, 1] [75, 0, 0, 0]

Table 9: The total number of related differentials and the relations between matrix
elements

Matrix Total number of related differentials Relations between elements
M1 1020 ad + bc = c2 + d2 = 45

M2 2040 ab + cd = a2 + d2 = B0
ac + bd = c2 + d2 = DB

M3 1020 a(a + b + c + d) = a2 + d2 = FD
M4 1020 a + b + c = 0

B Some Resistant MDS Hadamard matrices in F4×4
28 ,

F4×4
26 and F4×4

25

Table 10: First 100 resistant MDS matrices in F4×4
28 that satisfy no relation from R in

Theorem 3, ensuring no related differentials. Matrix elements are in decimal.
[1 2 4 9] [1 2 4 10] [1 2 4 11] [1 2 4 12] [1 2 4 14] [1 2 4 15] [1 2 4 16] [1 2 4 17] [1 2 4 18] [1 2 4 19]
[1 2 4 20] [1 2 4 21] [1 2 4 23] [1 2 4 24] [1 2 4 26] [1 2 4 27] [1 2 4 28] [1 2 4 29] [1 2 4 30] [1 2 4 31]
[1 2 4 32] [1 2 4 33] [1 2 4 34] [1 2 4 35] [1 2 4 36] [1 2 4 37] [1 2 4 38] [1 2 4 39] [1 2 4 40] [1 2 4 41]
[1 2 4 42] [1 2 4 43] [1 2 4 44] [1 2 4 45] [1 2 4 46] [1 2 4 47] [1 2 4 48] [1 2 4 50] [1 2 4 52] [1 2 4 53]
[1 2 4 54] [1 2 4 55] [1 2 4 56] [1 2 4 57] [1 2 4 58] [1 2 4 59] [1 2 4 60] [1 2 4 61] [1 2 4 62] [1 2 4 63]
[1 2 4 64] [1 2 4 65] [1 2 4 67] [1 2 4 68] [1 2 4 69] [1 2 4 70] [1 2 4 71] [1 2 4 72] [1 2 4 73] [1 2 4 74]
[1 2 4 75] [1 2 4 76] [1 2 4 77] [1 2 4 78] [1 2 4 79] [1 2 4 80] [1 2 4 81] [1 2 4 82] [1 2 4 83] [1 2 4 84]
[1 2 4 85] [1 2 4 86] [1 2 4 87] [1 2 4 88] [1 2 4 89] [1 2 4 90] [1 2 4 91] [1 2 4 92] [1 2 4 93] [1 2 4 94]
[1 2 4 95] [1 2 4 96] [1 2 4 97] [1 2 4 98] [1 2 4 99] [1 2 4 100] [1 2 4 101] [1 2 4 102] [1 2 4 103] [1 2 4 104]
[1 2 4 106] [1 2 4 107] [1 2 4 108] [1 2 4 109] [1 2 4 110] [1 2 4 111] [1 2 4 112] [1 2 4 113] [1 2 4 114] [1 2 4 115]

Table 11: First 100 resistant MDS matrices in F4×4
26 which do not satisfy any relation from

the set R.
[1 2 4 9] [1 2 4 10] [1 2 4 11] [1 2 4 12] [1 2 4 14] [1 2 4 15] [1 2 4 16] [1 2 4 17] [1 2 4 21] [1 2 4 24]
[1 2 4 26] [1 2 4 27] [1 2 4 28] [1 2 4 30] [1 2 4 31] [1 2 4 32] [1 2 4 34] [1 2 4 35] [1 2 4 37] [1 2 4 38]
[1 2 4 39] [1 2 4 40] [1 2 4 41] [1 2 4 42] [1 2 4 43] [1 2 4 45] [1 2 4 46] [1 2 4 47] [1 2 4 51] [1 2 4 55]
[1 2 4 56] [1 2 4 57] [1 2 4 58] [1 2 4 59] [1 2 4 61] [1 2 4 63] [1 2 5 9] [1 2 5 11] [1 2 5 12] [1 2 5 14]
[1 2 5 16] [1 2 5 17] [1 2 5 18] [1 2 5 19] [1 2 5 20] [1 2 5 24] [1 2 5 25] [1 2 5 27] [1 2 5 28] [1 2 5 29]
[1 2 5 30] [1 2 5 32] [1 2 5 33] [1 2 5 34] [1 2 5 36] [1 2 5 39] [1 2 5 42] [1 2 5 43] [1 2 5 44] [1 2 5 46]
[1 2 5 47] [1 2 5 48] [1 2 5 49] [1 2 5 50] [1 2 5 52] [1 2 5 61] [1 2 6 8] [1 2 6 10] [1 2 6 14] [1 2 6 15]
[1 2 6 17] [1 2 6 18] [1 2 6 19] [1 2 6 22] [1 2 6 23] [1 2 6 24] [1 2 6 26] [1 2 6 27] [1 2 6 29] [1 2 6 30]
[1 2 6 31] [1 2 6 33] [1 2 6 34] [1 2 6 35] [1 2 6 41] [1 2 6 44] [1 2 6 45] [1 2 6 47] [1 2 6 48] [1 2 6 49]
[1 2 6 50] [1 2 6 51] [1 2 6 55] [1 2 6 56] [1 2 6 57] [1 2 6 58] [1 2 6 59] [1 2 6 61] [1 2 6 63] [1 2 7 8]
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Table 12: First 100 resistant MDS matrices in F4×4
25 which do not satisfy any relation from

the set R.
[1 2 4 9] [1 2 4 16] [1 2 4 17] [1 2 4 19] [1 2 4 20] [1 2 4 24] [1 2 4 26] [1 2 4 27] [1 2 4 29] [1 2 5 13]
[1 2 5 17] [1 2 5 23] [1 2 5 27] [1 2 5 28] [1 2 5 31] [1 2 6 8] [1 2 6 14] [1 2 6 15] [1 2 6 17] [1 2 6 27]
[1 2 6 29] [1 2 6 31] [1 2 7 8] [1 2 7 13] [1 2 7 21] [1 2 7 23] [1 2 7 29] [1 2 7 31] [1 2 8 6] [1 2 8 7]
[1 2 8 13] [1 2 8 15] [1 2 8 18] [1 2 8 25] [1 2 8 28] [1 2 9 4] [1 2 9 21] [1 2 10 18] [1 2 10 24] [1 2 10 28]
[1 2 10 30] [1 2 10 31] [1 2 11 14] [1 2 11 15] [1 2 11 16] [1 2 11 25] [1 2 11 29] [1 2 12 16] [1 2 12 18] [1 2 12 21]
[1 2 12 23] [1 2 12 25] [1 2 12 26] [1 2 12 27] [1 2 12 28] [1 2 13 5] [1 2 13 7] [1 2 13 8] [1 2 13 17] [1 2 13 18]
[1 2 13 21] [1 2 13 25] [1 2 13 27] [1 2 14 6] [1 2 14 11] [1 2 14 16] [1 2 14 17] [1 2 14 19] [1 2 14 21] [1 2 14 30]
[1 2 14 31] [1 2 15 6] [1 2 15 8] [1 2 15 11] [1 2 15 17] [1 2 15 25] [1 2 15 29] [1 2 16 4] [1 2 16 11] [1 2 16 12]
[1 2 16 14] [1 2 16 20] [1 2 16 23] [1 2 16 26] [1 2 16 28] [1 2 17 4] [1 2 17 5] [1 2 17 6] [1 2 17 13] [1 2 17 14]
[1 2 17 15] [1 2 18 8] [1 2 18 10] [1 2 18 12] [1 2 18 13] [1 2 18 22] [1 2 18 26] [1 2 18 27] [1 2 18 28] [1 2 18 31]

Table 13: Some lightweight matrices in M1 alongside their inverses and respective XOR
costs. Values are represented in decimal.

Matrices Cost Inverse Matrices Cost
1 2 4 9 120 76 152 43 26 140
1 2 4 11 120 237 193 153 5 140
1 2 4 16 120 229 209 185 210 144
1 2 4 18 120 41 82 164 244 136
1 2 4 19 120 192 155 45 239 136
1 2 4 20 120 238 199 149 247 140
1 2 4 24 120 233 201 137 27 128
1 2 4 27 120 19 38 76 134 140
1 2 4 28 120 97 194 159 240 136
1 2 4 29 120 23 46 92 152 136
1 2 4 30 120 34 68 136 209 140
1 2 4 31 120 240 251 237 190 144
1 2 4 34 120 250 239 197 157 132
1 2 4 37 120 244 243 253 160 140
1 2 4 39 120 51 102 204 163 140
1 2 4 40 120 53 106 212 73 140
1 2 4 42 120 187 109 218 72 140
1 2 4 44 120 10 20 40 35 136
1 2 4 48 120 175 69 138 34 136
1 2 4 50 120 54 108 216 187 144

Table 14: Cost analysis of some matrices using methods of [XZL+20]

Matrix Cost
1 2 4 9 131
1 2 4 11 140
1 2 4 16 119
1 2 4 18 122
1 2 4 19 136

C Impossible Matrix Spaces
Based on our results and experiments discussed in the Sections 3,4 and 5, we summarize
the Hadamard matrix spaces where all the matrices admit related differentials in the Table
15 given below.
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Table 15: Hadamard matrix spaces with no resistant matrices

Matrix Space Resistant Matrices Reference
F4×4

23 None Section 4.1
F4×4

24 None Section 4.1
F8×8

24 None Section 5
F8×8

25 None Section 5

D Binary Matrix Representation of Multiplication by
x in F28

For readers interested in doing lightweight analysis of the resistant matrices from their
corresponding binary matrix form, in this section we provide brief example guide on how
to form the corresponding binary matrix representing multiplication by an element in F28 .
We define F28 as

F28 ∼=
F2[x]

(x8 + x4 + x3 + x + 1) .

Each element α ∈ F28 can be written as

α(x) = a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0,

where ai ∈ {0, 1}. The field element x (which we also call “2”) acts by left-shifting these
coefficients and reducing modulo the irreducible polynomial.

Step 1: Multiply by x.

x · α(x) = x
(
a7x7 + a6x6 + · · ·+ a1x + a0

)
= a7x8 + a6x7 + · · ·+ a1x2 + a0x.

Step 2: Reduction. In F28 , we have

x8 ≡ x4 + x3 + x + 1 (mod x8 + x4 + x3 + x + 1).

Thus:
a7 · x8 = a7

(
x4 + x3 + x + 1

)
.

Collecting like terms gives the coefficients

b7 = a6, b6 = a5, b5 = a4, b4 = a3 ⊕ a7, b3 = a2 ⊕ a7, b2 = a1, b1 = a0 ⊕ a7, b0 = a7.

Hence,
x · α(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0.

Step 3: Form the Matrix. We view α as the 8-bit column vector a =
(a7, a6, a5, a4, a3, a2, a1, a0)T . Its image under multiplication by x is b =
(b7, b6, b5, b4, b3, b2, b1, b0)T . From the relations above:



b7
b6
b5
b4
b3
b2
b1
b0


=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


︸ ︷︷ ︸

Mx = M2



a7
a6
a5
a4
a3
a2
a1
a0


.
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This 8× 8 binary matrix M2 (also denoted Mx) thus represents multiplication by 2 (=x)
in F28 .
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