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Abstract. Efficient implementation of some privacy-preserving algorithms and
applications rely on efficient implementation of homomorphic inversion. For example,
a recently proposed homomorphic image filtering algorithm and the privacy-preserving
body mass index (BMI) calculations repetitively use homomorphic inversion. In this
paper, inspired by Montgomery’s trick to perform simultaneous plaintext inversion,
we tackle the simultaneous homomorphic inversion problem to compute s inverses
simultaneously over ciphertexts. The advantage of Montgomery’s trick for plaintext
arithmetic is well-known. We first observe that the advantage can quickly vanish
when homomorphic encryption is employed because of the increased depth of the
circuits. Therefore, we propose three algorithms (Montgomery’s trick and two other
variants) that reduce the number of homomorphic inversions from s to 1 and that offer
different levels of trade-offs between the number of multiplications and the circuit
depth. We provide a theoretical complexity analysis of our algorithms and implement
them using the CKKS scheme in the OpenFHE library. Our experiments show that,
for some cases, the run time of homomorphic s-inversion can be improved up to 35%
while in some other cases, regular inversion seems to outperform Montgomery-based
inversion algorithms.
Keywords: Fully homomorphic encryption · Homomorphic inversion · Goldschmidt
inversion · Montgomery’s trick.

1 Introduction
Introduced by Rivest et al. [RAD+78], homomorphic encryption has been considered to
be the holy grail of cryptography. It is a kind of public key encryption with an additional
evaluation capability that allows computing over encrypted data without decrypting it.
More formally, a public key homomorphic encryption scheme E with a message space
M is a set of four probabilistic polynomial time (PPT) algorithms described as follows
[Bra18, Gen09, Rot11]:

• (sk, pk, evk)← KeyGen(1λ): KeyGen is a key generation algorithm that takes as input
a security parameter λ, and returns a tuple of secret key sk, public key pk, and
evaluation key evk.

• ct← Enc(pk, m): Enc is an encryption algorithm that takes as input the public key
pk and a plaintext m; and outputs a ciphertext ct.
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• m← Dec(sk, ct): Dec is a decryption algorithm that takes as input the secret key sk
and a ciphertext ct; and outputs a plaintext m.

• ct← Eval(evk, f, ct1, ..., ctw): Eval is a homomorphic evaluation algorithm that takes
as input the evaluation key evk, a circuit f , and w ciphertexts cti of plaintexts mi;
and outputs a ciphertext ct. Here, w must be a polynomial function of λ and the
length of evaluated ciphertext ct must be polynomially bounded and independent of
w.

Let Fw be the set of all circuits from Mw to M. For a given subset of circuits
F ⊆

⋃
w≥1 Fw, a homomorphic encryption scheme E is said to be F-homomorphic if it

can correctly evaluate any circuit f ∈ F . Specifically, for all f ∈ F , the following holds:

Pr[Dec(sk, Eval(evk, f, Enc(pk, m1), . . . , Enc(pk, mw))) ̸= f(m1, . . . , mw)] = negl(λ) (1)

where λ is the chosen security parameter, w is a polynomial function of λ such that f ∈ Fw,
and negl is a neligible function. E is called a fully homomorphic encryption (FHE) when
F =

⋃
w≥1 Fw is the set of all circuits. Additionally, E is said to be a leveled FHE when E

can correctly evaluate all circuits of depth at most D for some positive integer D.

1.1 An Overview of HE Schemes
It is noteworthy that for some time after the introduction of homomorphic encryption
[RAD+78] by Rivest et al., the schemes that were designed [Gal02, BGN05, GM82,
ElG85, Ben94, NS98, Pai99, BGN05, MGH10] supported only one of the addition or
multiplication operations (i.e., partially homomorphic schemes) or both operations on
a subset of circuits, such as unlimited number of aditions but only one multiplication,
(i.e., somewhat homomorphic schemes). The first fully homomorphic encryption (FHE)
scheme was proposed by Gentry in 2009 [Gen09]. His scheme is based on ideal lat-
tices and relies on a key technique called bootstrapping that aims to decrease the er-
ror in the ciphertext after performing a circuit homomorphic evaluation. Since Gen-
try’s scheme, significant improvements and new fully homomorphic encryption schemes
have been developed based on different techniques or security assumptions. Among
these, schemes based on ideal lattices and the approximate greatest common divisor
(AGCD) are referred to as the first generation of fully homomorphic encryption schemes
[SV10, GH11, SS11, SS10, VDGHV10, CMNT11, CNT12, CCK+13, NK15, CLT14, CS15].

The first generation FHE schemes experienced some efficiency and security challenges
[CDPR16, CN12]. Research has led to the development of new FHE schemes based on the
difficulty of lattice problems (learning with errors LWE, ring learning with errors RLWE,
torus with errors TLWE, torus ring learning with errors TRLWE, number theory research
unit NTRU) [BV11a, BV11b, LATV12, BLLN13, DS20, GSW13, BGV14, FV12, Bra12,
GSW13, KGV15, BV14, ASP14, DM15, CGGI20, CKKS17]. These schemes yield three
additional generations of FHE schemes: second, third and fourth generations.

Second-generation FHE schemes, based on LWE or RLWE, were introduced by Brakerski
and Vaikuntanathan [BV11a, BV11b]. Designed for integer arithmetic (i.e., finite field
and modular arithmetic), they support efficient packing and single instruction multiple
data (SIMD) instructions for vector computations, making them ideal for processing large
arrays of numbers. However, they are not suitable for evaluating circuits of large depth
due to the high complexity of bootstrapping. Fan and Vercauteren (B/FV) [FV12] and
Brakerski et al. (BGV) [BGV14] schemes are among widely adopted second-generation
FHE schemes.

Third-generation FHE schemes, initiated by Gentry et al. [GSW13], address the
challenge for bootstrapping and evaluating large depth circuits, excelling in bit-wise
arithmetic (boolean circuits). However, they do not support batching and they are not
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as efficient as the second generation schemes for evaluating low depth circuits. TFHE by
Chillotti et al. [CGGI20] is a widely adopted third-generation FHE scheme.

Fourth-generation schemes, introduced by Cheon et al. [CKKS17], are designed to
handle real number arithmetic and they support batching. Similar to the second-generation
schemes, they are not suitable for evaluating circuits of large depth due to the high
complexity of bootstrapping. The CKKS scheme [CKKS17] is a widely adopted fourth-
generation FHE scheme.

1.2 Motivation
The efficiency of homomorphic encryption based privacy-preserving applications rely on
the efficient implementation of some specific functions. One of the natural functions to
consider for homomorphic implementation is inversion, for at least two reasons.

1. Multiplicative inversion is the next simplest arithmetic operation after the addition
and multiplication operations. Computing the (multiplicative) inverse of an element
differs significantly depending on the domain. For x ∈ Z∗

p, the inverse of x can be
computed via modular exponentiation xp−2 mod p using an arithmetic circuit of
depth O(log (p)), whereas for x ∈ R, an (approximate) inverse of x can be computed
using (at least) three methods (Chebyshev [Che54], Newton-Rhapson [Rap02], and
Goldschmidt [Gol64]) where the multiplicative depth of the circuit depends on the
degree of the approximating polynomial, which sometimes can be related to the
number of iterations in the algorithm. These methods have already been adapted
for computing the inverse function over ciphertexts. OpenFHE [ABBB+22] library
uses the Chebyshev method [ABBB+22] for the CKKS scheme, [CDSM15] provides
a generic comparison of Newton-Rhapson and Goldschmidt methods, and [CKK+19]
implements the Goldschmidt inversion method using the CKKS scheme.

2. Inversion is one of the key operations in implementing privacy-preserving applications.
For example, the homomorphic adaptive image filtering algorithm as proposed in
[KK21] and the privacy-preserving body mass index (BMI) calculations [IIMP22a,
IIMP22b] repetitively use homomorphic inversions.

In this paper, motivated by our discussion above and inspired by Montgomery’s trick
to perform simultaneous plaintext inversion [Mon87, Har08], we tackle the simultaneous
homomorphic inversion problem: Suppose that ctbi

is the encryption of a plaintext bi, for
i = 1, ..., s and for some s > 1. How do we simultaneously compute ctb̃i

, where b̃i denotes
the inverse of bi in its domain, and ctb̃i

is the encryption of b̃i?

1.3 Reformulating our Problem for CKKS
To the best of our knowledge, the most motivating applications of homomorphic inversion
concern computing inverses over the real numbers [CKK+19, KK21, IIMP22a, IIMP22b].
Therefore, we focus on the fixed-point based approximate homomorphic encryption scheme
CKKS [CKKS17] throughout the rest of this paper.

In CKKS, we have the plaintext space Z[X]/⟨XN + 1⟩ and the ciphertext space
ZQ[X]/⟨XN + 1⟩ × ZQ[X]/⟨XN + 1⟩. Here, N is a power of two, Q is typically a product
of (L + 1) primes qi for some positive level parameter L, and the size of N and qi are
determined as a function of the security and precision parameters. In particular, for
a fixed Q, increasing the depth of the circuit would decrease the fixed-point precision.
CKKS allows encoding and encrypting n = N/2 real numbers bi,j , for j = 1, ..., n, as
a single ciphertext ctbi , where bi denotes the vector [bi,1, ..., bi,n]. The homomorphic
addition (⊕) and multiplication (⊙) operations can be performed component-wise. More
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b1,1 · · · b1,n · · · bs,1 · · · bs,n b̃1,1 · · · b̃1,n · · · b̃s,1 · · · b̃s,n

ctb1 · · · ctbs
ctb̃1 · · · ctb̃s

ctb1 · · · ctbs
ctb̃1 · · · ctb̃s

Enc Enc

Regular FHE inversion

s ciphertext inversions

Dec Dec

Simulteneous FHE inversion

1 ciph. inversion + other cost

Figure 1: An illustration of simultaneous homomorphic inversions. (s · n) elements can
be packed into s ciphertexts using a suitable FHE scheme. A regular inversion would
require s ciphertext inversions, whereas a simultaneous inversion method would aim for
only 1 inversion. Simultaneous inversion would introduce other costs, such as additional
multiplications.

precisely, decryptions of ctb1 ⊕ ctb2 and ctb1 ⊙ ctb2 yield [b1,1 + b2,1, ..., b1,n + b2,n] and
[b1,1 · b2,1, ..., b1,n · b2,n], respectively.

Therefore, using CKKS, (s · n) real numbers bi,j , for i = 1, ..., s and j = 1, ..., n, can be
encoded and encrypted as s ciphertexts ctbi

, and that we are interested in simultaneously
computing ctb̃i

, where b̃i = [b̃i,1, ..., b̃i,n] and b̃i,j is an (approximate) inverse of bi,j . Figure 1
presents an illustration of this problem. For future reference, we state this problem formally
as follows:

Problem 1. (Homomorphic s-inversion) Given the homomorphic encryption ctbi of the
vector of plaintexts bi = [bi,1, ..., bi,n], compute ctb̃i

for i = 1, ..., s. Here, ctb̃i
is the

encryption of the plaintext vector b̃i = [b̃i,1, ..., b̃i,n] such that b̃i,j = 1/bi,j, for i = 1, ..., s
and j = 1, ..., n.
Remark 1. Problem 1 assumes that the underlying homomorphic encryption scheme is
correct for all circuits. In the case of CKKS with approximate arithmetic, the problem
statement should include b̃i,j ≈ 1/bi,j .

1.4 Applications of Simultaneous Homomorphic Inversion
We revisit the homomorphic adaptive image filtering algorithm as proposed in [KK21].
Let I be an (R× C)-image, where R = r · w and C = c · w for some positive integers r, c,
and w. The image I contains R · C = r · c · w2 pixels. Let Ii[j] denote the pixel value at
row i and column j, for 0 ≤ i < R and 0 ≤ j < C. I can be partitioned as the union of
(r · c) pairwise disjoint kernel blocks, each containing w2 pixels:

KB(v · w, h · w) = {Iv·w+ℓv [h · w + ℓh] : 0 ≤ ℓv, ℓh < w}, (2)

where 0 ≤ v < r, 0 ≤ h < c. We call these kernel blocks KB(v ·w, h ·w) as spanning kernel
blocks. If r · c ≤ n, then the image I can be encoded and encrypted using w2 ciphertexts
ct0, ..., ctw2−1 such that the k = (v · c + h)’th slot value ctm[k] in the m = (ℓv · w + ℓh)’th
ciphertext corresponds to the encryption of the pixel value Iv·w+ℓv

[h · w + ℓh]. In other
words, the w2-encrypted entries of each spanning kernel block KB(v · w, h · w) can be
encoded in the k = (v · c + h)’th slot of w2-ciphertexts ct0, ..., ctw2−1. This encoding
allows to pass the locally adaptive Wiener filters through the encrypted spanning blocks
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simultaneously and the inversion operation dominates the cost because the Wiener filter
updates the original pixel value g(x, y) at the center of the spanning block to f(x, y) using
the formula

f(x, y) = mℓ + σ2
ℓ

σ2
ℓ + σ2

o

(g(x, y)−mℓ), (3)

where mℓ and σ2
ℓ denote the local mean and local variance within the kernel block; σ2

o

denotes variance of overall noise, which can be considered as a constant. In order to update
all of the pixel values in the centers of all of the kernel blocks using the Wiener filter, one
can basically repeat the same process (w2−1) more times. Before each repetition, one needs
to transform spanning kernel blocks to other classes of kernel blocks by applying suitably
chosen ciphertext rotations to a particular subset of ct0, ..., ctw2−1. We omit the details
and refer the reader to [KK21] for the full description of the process. The key point is
that, processing an image I requires w2 homomorphic inversions. An efficient simultaneous
homomorphic inversion could potentially be used to process images by performing only 1
homomorphic inversion instead of w2; see Figure 1. Typical choices for w include 3 and 5,
and which would imply reductions from 9 and 25 homomorphic inversions to 1.

For another motivating application, we refer to [IIMP22a], where the authors propose a
method for homomorphically counting elements with the same property. In the presentation
of their paper [IIMP22b], the authors give the body mass index (BMI) of an individual as
an example of a property. BMI can be calculated as

BMI = weight/(height)2. (4)

As a result, calculating BMI over an encrypted database of (s · n) users would require to
encode and encrypt the weight and height of users using (2 · s) ciphertexts (i.e., ct(i)

weight,
ct(i)

height) and to compute s ciphertext inversions before obtaining encrypted BMI values
ct(i)

BMI, for i = 1, .., s. Using simultaneous homomorphic inversion one could calculate
encrypted BMI values by performing only 1 homomorphic inversion instead of s.

1.5 Contributions and Organization

In this paper, we tackle the homomorphic s-inversion problem (Problem 1). As we explain
in Remark 2, a straightforward adaptation of the well-known Montgomery’s trick may
not be optimal because the depth of the underlying circuits increases as a function of s.
Therefore, we propose three simultaneous inversion algorithms: FHE-Montgomery, FHE-
relaxed Montgomery, and FHE-optimized Montgomery. The proposed algorithms reduce
the number of homomorphic inversions from s to 1, at a cost of introducing additional
ciphertext multiplications. Our algorithms provide different levels of trade-off between the
computational complexity and the depth of circuit. We provide an in-depth complexity
analysis of our algorithms and compare their efficiency against the efficiency of regular
homomorphic inversion. We implement our algorithms using the CKKS scheme in the
OpenFHE library and the Goldschmidt inversion. Our experiments show that the run
time of homomorphic s-inversion can be improved up to 35%.

The rest of this paper is organized as follows: In Section 2, we recall Montgomery’s
trick for simultaneous plaintext inversion and the Goldschmidt homomorphic inversion
method. In Section 3, we describe our proposed algorithms for solving Problem 1 and
provide some theoretical complexity analysis. We report on our implementation results in
Section 5 and conclude in Section 6.
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2 Preliminaries
In this section, we review Montgomery’s trick for simultaneous plaintext inversion and the
Goldschmidt homomorphic inversion method.

2.1 Montgomery’s Trick for s > 1 Inversions
We recall Montgomery’s trick [Har08, Mon87] which aims to simultaneously compute the
inverses b̃1, ..., b̃s of s > 1 elements b1, ..., bs, using only 1 inversion, instead of s, at a cost
of introducing multiplication operations. Since the cost of inversion is generally much
more expensive than that of multiplication, the method is expected to offer significant
efficiency gains. Montgomery’s algorithm comprises two passes: a forward pass followed
by a backward pass, which can be presented as in Figure 2. For more details, we refer to
[Mon87, Har08].

Input : b1, ..., bs

Output : b̃1, ..., b̃s such that b̃i = 1/bi

Forward Pass :
Initiate r1 ← b1

For i = 2, .., s

Compute ri ← ri−1bi

Backward Pass :

Initiate ts ← Inv(rs)

For i = s, .., 2 do:

Compute b̃i ← tiri−1

Compute ti−1 ← tibi

Set b̃1 ← t1

Figure 2: Montgomery’s trick can compute the inverses of s elements at a cost of performing
1 inversion and 3(s− 1) multiplications. See [Mon87, Har08] for more details.

Proposition 1. [Mon87, Har08] The multiplicative inverses of s elements can be computed
using 3(s− 1) multiplications and one inversion using Montgomery’s trick.

Proof. See Section 5 in [Har08].

2.2 FHE-Goldschmidt Inversion
As motivated in Section 1.3, we focus on computing inverses over the real numbers, and
so we fix CKKS as the underlying encryption scheme. As noted in Section 1, Chebyshev,
Newton-Raphson, and Goldschmidt algorithms have been adapted for ciphertext inversion
using CKKS. Our analysis in this paper is based on the Goldschmidt inversion algorithm
because it is commonly implemented in literature [CDSM15, CKK+19, KK21], and that
its simple and iterative nature offers explicit and reasonable trade-offs between the depth
of circuits and accuracy of the approximation. The main idea of the Goldschmidt inversion
method is to use approximation

1
x

= 1
1− (1− x) =

∞∏
i=0

(1 + (1− x)2i

) ≈
d∏

i=0
(1 + (1− x)2i

), (5)

for x ∈ (0, 2), which can be implemented using an iterative square-and-multiply method as
shown in Figure 3.
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Input : b ∈ (0, 2) and d ∈ N.
Output : b̃ ≈ 1/b

Compute a0 ← 2− b and b0 ← 1− b

For i = 0, .., d− 1, compute:

bi+1 ← bi
2 and ai+1 ← ai(1 + bi+1)

Return ad

Figure 3: FHE-Goldschmidt Inversion [CDSM15, CKK+19] can approximate inverses in d
iterations with a circuit of depth (d + 1) and exponential accuracy in d.

Proposition 2. [CKK+19] For a given integer m > 0 and x ∈ [2−m, 1), computing
the homomorphic inverse ctx̃ of the ciphertext ctx = Enc(pk, x) for an error bound of
2−α using FHE-Goldschmidt inversion algorithm, will require only d = Θ(log α + m)
iterations. Moreover, it will cost d homomorphic additions, 2 homomorphic subtractions, d
homomorphic squares, and d homomorphic multiplications, where the depth of the circuit
is d + 1.

Proof. See Lemma 1 in [CKK+19].

3 Homomorphic s-Inversion
A naive method for solving Problem 1 is to compute each of the s inverses separately. In
this section, we propose three algorithms to solve the homomorphic s-inversion problem
efficiently, by performing only one inversion instead of s. The first algorithm FHE-
Montgomery is a direct adaptation of Montgomery’s trick. The next two algorithms,
FHE-relaxed Montgomery and FHE-optimized Montgomery (see Figure 5 and Figure 7
for plaintext versions) reduce the circuit depth, which is a key efficiency factor in the
implementation of homomorphic encryption algorithms. FHE-relaxed Montgomery achieves
the minimum depth among the three algorithms but increases the number of multiplications
with respect to the base FHE-Montgomery algorithm. FHE-optimized Montgomery provides
a balance by reducing the circuit depth while keeping the number of multiplications same
with respect to FHE-Montgomery.

3.1 FHE-Montgomery Inversion
Following Montgomery’s trick, FHE-Montgomery inversion is divided into two parts: the
forward and backward pass. For simultaneously inverting s > 1 ciphertexts ctb1 ,...,ctbs ,
the forward pass computes a sequence of product of ciphertexts ctri = ctb1 ⊙ · · · ⊙ ctbi for
i = 1, ..., s. As a first step in the backward pass, ctts

= ctr̃s
(the ciphertext that corresponds

to the inverse of rs = b1·· · ··bs) is computed using a homomorphic inversion algorithm. Then,
ctb̃i

(the ciphertext that corresponds to the inverse of bi) is computed via ctb̃i
= ctti

⊙ ctri−1

for i = s, ..., 2, where ctti
can be computed using ctts

and ctti−1 = ctti
⊙ ctbi

. Finally, ctb̃1
comes for free as it is the same as ctt1 . More formally, we state the computational and
depth complexity of FHE-Montgomery in Theorem 1.

Theorem 1. Let s ∈ N. FHE-Montgomery yields a circuit of depth ⌈log(s)⌉ + s +
Depthinv −1 that solves the homomorphic s-inversion problem at a cost of performing
3(s− 1) homomorphic multiplications and 1 homomorphic inversion, where Depthinv is
the depth of the circuit corresponding to the underlying homomorphic inversion algorithm.
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Proof. In the forward pass, computing ctri
for i = 1, ..., s requires (s− 1) homomorphic

multiplications. In the backward pass, after performing 1 homomorphic inversion, homo-
morphic products ctb̃i

= ctti
⊙ ctri−1 and ctti−1 = ctti

⊙ ctbi
are computed for i = s, ..., 2.

Hence, the backward pass requires 1 homomorphic inversion and 2(s− 1) homomorphic
multiplications, and we compute the overall cost of the algorithm as 1 homomorphic
inversion and 3(s− 1) homomorphic multiplications. For the circuit depth, one can see
that computing ctri

requires ⌈log(s)⌉ sequential multiplications if a binary tree is used.
Computing ctts

increases the depth by Depthinv. Next, running the (s− 1) iterations in
the algorithm increases the depth by (s− 1). Hence, we conclude that the depth of the
circuit is Depthinv +⌈log(s)⌉+ s− 1.

Corollary 1. Let bi ∈ [ϵ, 1) for some ϵ ≥ 0 and i = 1, ..., s. The FHE-Montgomery
inversion algorithm can employ FHE-Goldschmidt and compute homomorphic inverses ctb̃i

of the ciphertexts ctbi = Enc(pk, x) at a cost of 3(s− 1) + 2d homomorphic multiplications
with a depth D = ⌈log(s)⌉ + s + d circuit, where d = ⌈log α − s log ϵ⌉ is the number of
iterations in the Goldschmidt algorithm and the error is bounded by 2−α.

Proof. The key observation is that for bi ∈ [ϵ, 1), we have,
s∏

i=1
bi ∈ [ϵs, 1) and so based on

Proposition 2, we need to set the number of Goldschmidt iterations to ⌈log(α)− log(ϵs)⌉ =
⌈log(α)− s log(ϵ)⌉. The rest of the proof follows from Proposition 2 and Theorem 1.

Remark 2. Let bi ∈ [ϵ, 1) for some ϵ ≥ 0 and i = 1, ..., s. Based on Proposition 2, the
Goldschmidt-based homomorphic inversion algorithm can compute homomorphic inverses of
ctbi , for an error bound of 2−α, at a cost of 2sd homomorphic multiplications using a depth
D = d + 1 circuit, where d = ⌈log α− log ϵ⌉ is the number of iterations in the Goldschmidt
algorithm. For α = 4 and ϵ = 1−1/24, we get d = 3, D = 4, and that yield 6 multiplications
per inverse. Under the same setting, based on Corollary 1, FHE-Montgomery inversion
algorithm (calling Goldschmidt inversion as a subroutine) can compute homomorphic
inverses of ctbi , for an error bound of 2−α, at a cost of (3(s − 1) + 2d) homomorphic
multiplications using a depth D = ⌈log s⌉ + s + d circuit, where d = ⌈log α − s log ϵ⌉ is
the number of iterations in the Goldschmidt algorithm. For α = 4, ϵ = 1 − 1/24, and
s = 2, ..., 8, we get d = 3, (s, D) pairs as (2, 6), (3, 8), (4, 11), (5, 11), (6, 12), (7, 13), (8, 14),
and that yield 4.5, 4.0, 3.75, 3.6, 3.5, 3.44, 3.38 multiplications per inverse, respectively.
These results are also illustrated in the first 2 plots in Figure 4. Observe that while FHE-
Montgomery reduces the number of homomorphic multiplications per inverse, the depth of
the underlying circuits increases. Therefore, it is unclear if FHE-Montgomery simultaneous
inversion outperforms the regular Goldschmidt-based inversion. Our experiments show
that (see the last plot in Figure 4) the choice of s = 2 is optimal for FHE-Montgomery, and
it loses its advantage for s ≥ 4 when α = 4 and ϵ = 1− 1/24. This motivates us to propose
variants of FHE-Montgomery in Sections 3.2 and 3.3, namely FHE-relaxed Montgomery and
FHE-optimized Montgomery. As we will see, our proposed variants offer trade-offs between
the number of multiplications and circuit depth, and that they improve the runtime of
FHE-Montgomery. Figure 4 illustrates these trade-offs and improvements for a particular
case. More detailed comparisons will follow in the next sections.

3.2 FHE-Relaxed Montgomery Inversion
In FHE-relaxed Montgomery, the backward pass uses only ctr̃s

as opposed to the use of
ctti

for i = 1, ..., s in FHE-Montgomery where ctti
= ctr̃i

. Moreover, in the backward pass,
FHE-relaxed Montgomery allows to computation ctb̃i

in parallel, which does not increase
the circuit depth. More formally, we state the computational and depth complexity of
FHE-relaxed Montgomery in Theorem 2 and illustrate its plaintext version in Figure 5.
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Figure 4: A comparison of FHE-regular, FHE-Montgomery, FHE-relaxed Montgomery,
and FHE-optimized Montgomery inversion algorithms with respect to the number of
multiplications per inversion, circuit depth, and runtime per inversion. All of the algorithms
call FHE-Goldschmidt as a subroutine, plaintexts bi belong to [ϵ, 1), and the approximation
error is bounded by 1/2α, where ϵ = 1− 1/24 and α = 4.

Input : b1, ..., bs

Output : b̃1, ..., b̃s such that b̃i = 1/bi

1. Compute rs ← b1 · ... · bs

2. Compute r̃s = 1/rs

3. For i = 1, .., s:

Compute ti ← b1 · ... · bi−1 · bi+1 · ... · bs

Compute b̃i ← r̃s · ti

4. Return b̃i for i = 1, ..., s

Figure 5: Plaintext version of the FHE-relaxed Montgomery inversion algorithm. It reduces
the depth of FHE-Montgomery inversion circuit by (s − 2) at a cost of increasing the
number of multiplications by (s2 − 3s + 2).

Theorem 2. Let s ∈ N. FHE-relaxed Montgomery yields a circuit of depth ⌈log(s)⌉ +
Depthinv +1 that solves the homomorphic s-inversion problem at a cost of performing 1
homomorphic inversion and (s2 − 1) homomorphic multiplications, where Depthinv is the
depth of the circuit corresponding to the underlying homomorphic inversion algorithm.

Proof. Based on inspecting the plaintext version of FHE-relaxed Montgomery in Figure 5,
computing ctrs

requires (s − 1) homomorphic multiplications. Computing ctti
and ctb̃i

requires (s−2) and 1 homomorphic multiplications respectively, and so s(s−1) homomorphic
multiplications are performed in the for loop. Hence, FHE-relaxed Montgomery requires
(s2 − 1) homomorphic multiplications and 1 homomorphic inversion. For the circuit
depth, one can see that computing ctrs = ctb1 ⊙ · · · ⊙ ctbs requires ⌈log(s)⌉ sequential
multiplications if a binary tree is used. Computing ctr̃s increases the depth by Depthinv,
and as a result each ctb̃i

can be computed with at most ⌈log(s)⌉+ Depthinv +1 sequential
multiplications, as required.
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Corollary 2. Let bi ∈ [ϵ, 1) for some ϵ ≥ 0 and i = 1, ..., s. The FHE-relaxed Montgomery
inversion algorithm can employ FHE-Goldschmidt and compute homomorphic inverses ctb̃i

of the ciphertexts ctbi
= Enc(pk, x) at a cost of (s2 + 2d− 1) homomorphic multiplications

with a depth D = ⌈log(s)⌉ + d + 2 circuit, where d = ⌈log α − s log ϵ⌉ is the number of
iterations in the Goldschmidt algorithm and the error is bounded by 2−α.

Proof. The proof is similar to the proof of Corollary 1 and follows from Proposition 2 and
Theorem 2.

3.3 FHE-Optimized Montgomery Inversion
FHE-relaxed Montgomery reduced the depth of FHE-Montgomery by (s−2) but introduced
(s2 − 3s + 2) additional multiplications. In this section, we propose FHE-optimized
Montgomery that reduces the depth of FHE-Montgomery by (s − ⌈log(s)⌉ − 1). The
reduction is more conservative than the FHE-relaxed Montgomery reduction but the
advantage is that FHE-optimized Montgomery does not introduce additional multiplications.
FHE-optimized Montgomery uses binary trees and the method is illustrated in Figure 6 for
s = 8. More formally, we state the computational and depth complexity of FHE-optimized
Montgomery in Theorem 3 and illustrate its plaintext version in Figure 7.

b1 b2 b3 b4 b5 b6 b7 b8

r1,1 r1,2 r1,3 r1,4

r2,1 r2,2

r3,1

r̃3,1

r̃2,1 r̃2,2

r̃1,1 r̃1,2 r̃1,3 r̃1,4

b̃1 b̃2 b̃3 b̃4 b̃5 b̃6 b̃7 b̃8

FHE inversion

Figure 6: An illustration of optimized Montgomery for s = 8. The elements of nodes in
the bottom half of the tree are inverses of those in the top half of the tree. The algorithm
computes 8 inverses at the cost of performing 21 multiplications and 1 inversion.

Theorem 3. Let s ∈ N. FHE-optimized Montgomery yields a circuit of depth 2⌈log(s)⌉+
Depthinv that solves the homomorphic s-inversion problem at a cost of performing 3(s− 1)
homomorphic multiplications and 1 homomorphic inversion, where Depthinv is the depth
of the circuit corresponding to the underlying homomorphic inversion algorithm.

Proof. Based on inspecting the plaintext version of FHE-optimized Montgomery in Fig-
ure 7, building the tree in the first step in the algorithm requires (s− 1) homomorphic
multiplications. After performing the homomorphic inversion in step 2, 2s− 2 more homo-
morphic multiplications are required in the algorithm. Hence, FHE-optimized Montgomery
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Input : b1, ..., bs and s = 2k

Output : b̃1, ..., b̃s such that b̃i = 1/bi

1. Compute a binary tree leaves rij as follows:

(a) Compute r1,i ← b2i−1 · b2i for i = 1, ..., 2k−1

(b) For i = 2 to k − 1 do:
For j = 1 to 2k−i, do:

ri,j ← ri−1,2j−1 · ri−1,2j

(c) rk,1 ← rk−1,1 · rk−1,2

2. Compute r̃k,1 ← 1/rk,1.

3. For i = k − 1 to 1 do:

For j = 1 to 2k−1−j , compute:
r̃i,2j−1 ← r̃i+1,j · ri,2j and r̃i,2j ← r̃i+1,j · ri,2j−1.

4. For i = 1 to 2k−1 compute:

b̃2i ← r̃1,i · b2i−1 and b̃2i−1 ← r̃1,i · b2i

Figure 7: Plaintext version of the FHE-optimized Montgomery algorithm. FHE-optimized
Montgomery reduces the depth of FHE-Montgomery inversion circuit by (s− ⌈log(s)⌉ − 1)
while keeping the number of multiplications same.

requires 3(s− 1) homomorphic multiplications and 1 homomorphic inversion. Observing
the structure of the underlying binary tree, we can conclude that the depth of the circuit
is 2⌈log(s)⌉+ Depthinv.

Corollary 3. Let bi ∈ [ϵ, 1) for some ϵ ≥ 0 and i = 1, ..., s. The FHE-optimized Mont-
gomery inversion algorithm can employ FHE-Goldschmidt and compute homomorphic
inverses ctb̃i

of the ciphertexts ctbi
= Enc(pk, bi) at a cost of 3(s− 1) + 2d homomorphic

multiplications with a depth D = 2⌈log(s)⌉+ d + 1 circuit, where d = ⌈log α− s log ϵ⌉ is
the number of iterations in the Goldschmidt algorithm and the error is bounded by 2−α.

Proof. The proof is similar to the proof of Corollary 1 and follows from Proposition 2 and
Theorem 3.

Corollary 4. For s = 2, FHE-Montgomery, FHE-relaxed Montgomery, and FHE-optimized
Montgomery have the same circuit depth and require the same number of multiplications.

Proof. Based on Corollary 1 and 2, FHE-relaxed Montgomery reduces the depth of FHE-
Montgomery inversion circuit by (s−2) at a cost of increasing the number of multiplications
by (s2 − 3s + 2). Therefore, when s = 2, they have the same circuit depth and require the
same number of multiplications. Based on Corollary 1 and 3, FHE-optimized Montgomery
reduces the depth FHE-Montgomery inversion circuit by (s− ⌈log(s)⌉ − 1) while keeping
the number of multiplications same. Therefore, for s = 2, they have the same circuit depth
and require the same number of multiplications.

4 A Comparison of FHE Inversion Algorithms
In the Goldschmidt-based FHE inversion algorithm, inverses are computed separately, the
depth of the circuit is exactly that of the FHE-Goldschmidt circuit, and the computational
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complexity is given by s times the cost of FHE-Goldschmidt operations (see Remark 2).
In particular, the depth of the regular homomorphic s-inversion circuit is independent
of s and is only a function of ϵ and α. The complexities of our proposed algorithms are
summarized in Corollary 1, 2, and 3. While the number of multiplications is reduced in
FHE-Montgomery, FHE-relaxed Montgomery, and FHE-optimized Montgomery, the depths
of the circuits increase as a function of s and α. FHE-Montgomery offers the least number
of multiplications, but its circuit requires the largest depth. FHE-relaxed Montgomery
minimizes the circuit depth but maximizes the number of multiplications. FHE-optimized
Montgomery has the same number of multiplications as FHE-Montgomery and its circuit
depth is smaller. Table 1 compares the complexity of our proposed algorithms and the
regular algorithm in terms of the circuit depth (Depth) and the number of ciphertext
multiplications for s = 2, 3, 4, 5; m = 2, 3, 4 and α = 4, 8. Here, s is the number of
ciphertext inversions to compute; the input plaintexts belong to the interval [1− 1/2m, 1);
α is the parameter that controls the error bound; and Depth is a function of d, which
is the number of iterations in the Goldschmidt algorithm (also see Corollary 1, 2, and
3). In short, the two variants of FHE-Montgomery improve the circuit depth at a cost
of possibly increasing the number of multiplications. To our knowledge, it is not known
how to compare multiplication costs at different depths. Therefore we cannot theoretically
conclude which inversion algorithm would offer the best time complexity. Instead, we
compare their performance based on our implementation in Section 5. Also Figure 8
extends the earlier comparison of our proposed algorithms as illustrated in Figure 4.

It can be observed from Figure 8 that in the 12 of the 18 cases (except the 6 cases in the
third and fourth rows in Figure 8), there is always at least one Montgomery based inversion
algorithm and a choice of grouping ciphertexts for simultaneous inversion such that the
Montgomery method outperforms regular inversion with respect to the per inversion
cost, and hence minimizes the overall cost. For example, the last plot in the last row in
Figure 8 shows that if the task is to compute 8 ciphertext inversions under α = 30 and
m = 4 parameters, then running FHE-relaxed Montgomery with s = 4 (hence computing
simultaneous 4-inversions twice) is the best option with minimal per inversion cost and
hence with minimal overall cost. Similarly, the first plot in the second row in Figure 8
shows that if the task is to compute 6 ciphertext inversions under α = 8 and m = 2
parameters, then running FHE-Montgomery with s = 2 (hence computing simultaneous
2-inversions three times) is the best option with minimal per inversion cost and hence with
minimal overall cost. Montgomery based algorithms lose their advantage in the 6 of the 18
cases because FHE-regular inversion yields the minimal per inversion costs according to
the third and fourth rows in Figure 8.

5 Implementation Results
As motivated in Section 1.3, we consider implementing our algorithms using CKKS and
choose Goldschmidt inversion as a subroutine in our algorithms. The approximated nature
of the ciphertext computations requires choosing the number of iterations parameter d in
Goldschmidt as a function of the parameter α that controls the error bound (or accuracy);
see Proposition 2.

Selecting CKKS parameters and algorithms For the CKKS parameters, we select
the scaling modulus ∆ over the lower bound given by Cheon et al. [CKKS17, Lemma 1],
i.e., ∆ > N + 2Benc, where N is the ring dimension, Benc = 8σN

√
2 + 6σ

√
N + 16σ

√
hN

is the encryption noise, with h the Hamming weight and σ = 3.19 the standard deviation.
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Figure 8: Implementation results for the FHE-regular, FHE-Montgomery, FHE-relaxed Mont-
gomery, and FHE-optimized Montgomery inversion algorithms for s ∈ {2, 3, 4, 5, 6, 7, 8},
m ∈ {2, 3, 4}, and α ∈ {4, 8, 10, 16, 20, 30}. Here, s is the number of ciphertexts to invert;
the input plaintexts belong to the interval [1 − 1/2m, 1); and α is the parameter that
controls the error bound. Time is measured in milliseconds and it shows the runtime per
inversion. Notice that in the 12 of the 18 cases (except the third and fourth rows in the
plot), there is always at least one Montgomery based inversion algorithm and a choice
of grouping ciphertexts for simultaneous inversion such that the Montgomery method
outperforms regular inversion with respect to the “per-inversion” cost, and hence minimizes
the overall cost.
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Table 1: The complexities of FHE-regular, FHE-Montgomery, FHE-relaxed Montgomery,
and FHE-optimized Montgomery inversion algorithms in terms of the circuit depth and
the number of ciphertext multiplications for s = 2, 3, 4, 5; m = 2, 3, 4; and α = 4, 8.
Here, s is the number of ciphertexts to invert; the input plaintexts belong to the interval
[1− 1/2m, 1); α is the parameter that controls the error bound; and Depth is a function of
d, which is the number of iterations in the Goldschmidt algorithm. Values in bold font
indicate the best complexity among the Montgomery-based algorithms. Values in bold font
that are also underlined indicate the best complexity among all of the Montgomery-based
algorithms and the regular algorithm.

d Depth # Mult
s α m Reg Mont-based Reg Mont RelaxMont OptMont Reg Mont/OptMont RelaxMont

2 3 3 4 6 6 6 12 9 9
4 3 3 3 4 6 6 6 12 9 9

2 4 3 3 4 6 6 6 12 9 9
2 4 4 5 7 7 7 16 11 11

8 3 4 4 5 7 7 7 16 11 11
4 4 4 5 7 7 7 16 11 11

2 3 4 4 9 8 9 18 14 16
4 3 3 3 4 8 7 8 18 12 14

3 4 3 3 4 8 7 8 18 12 14
2 4 5 5 10 9 10 24 16 18

8 3 4 4 5 9 8 9 24 14 16
4 4 4 5 9 8 9 24 14 16

2 3 4 4 10 8 9 24 17 23
4 3 3 3 4 9 7 8 24 15 21

4 4 3 3 4 9 7 8 24 15 21
2 4 5 5 11 9 10 32 19 25

8 3 4 4 5 10 8 9 32 17 23
4 4 4 5 10 8 9 32 17 23

2 3 5 4 13 10 12 30 22 34
4 3 3 3 4 11 8 10 30 18 30

5 4 3 3 4 11 8 10 30 18 30
2 4 6 5 14 11 13 40 24 36

8 3 4 4 5 12 9 11 40 20 32
4 4 4 5 12 9 11 40 20 32

We choose the scaling modulus ∆ and the first modulus q0 such that

∆ < q0 < ∆2, (6)

i.e., log(∆) < log(q0) < 2 log(∆). In our implementation, we fix the value of the first
modulus size to the maximum value allowed in the OpenFHE library [ABBB+22], i.e., 60
bits. We set the scaling technique to FixedAuto.

As noted in Section 4, the regular and Montgomery-based FHE inversion algorithms
offer various trade-offs between the number of multiplications and circuit depth, and it does
not seem to be possible to theoretically identify an inversion algorithm with the best time
complexity. We also observed in Corollary 4 that the three variants of Montgomery inversion
algorithms have the same circuit depth and require the same number of multiplications
when s = 2. Moreover, as shown in Figure 8, grouping ciphertexts by s = 2 yields an
optimal choice with respect to the per inversion cost in the 28 of the 54 Montgomery based
algorithms we study in the 18 cases. Therefore, in our experiments, we implement the
algorithms for s = 2 and, based on Corollary 4, we only focus on FHE-Montgomery. When
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the number of homomorphic inversions to perform is larger than 2, say 2k, one can pair
the ciphertexts and run Montgomery based algorithms k times with s = 2 (i.e., compute
simultaneous 2-inversions k times). In our experiments, the regular and FHE-Montgomery
inversion algorithms are compared over the same choices of accuracy parameter α and so
over the same choices of ∆ (see equation (6)).

The number of iterations in the Goldschmidt algorithm and so the multiplicative depth
of the circuit change as a function of log(α) (see Proposition 2). Therefore, critical values
of α appear as powers of two and that we choose α ∈ {4, 8, 16} in our experiments. We
extend this parameter set for α by the additional values of {10, 20, 30} for more granularity.
Hence, we choose α ∈ {4, 8, 10, 16, 20, 30}. This extended set is particularly useful to
observe that in some of the cases, FHE-Montgomery requires strictly larger ring dimension
N because of the dependency between N , the security parameter λ, and the multiplicative
depth (Depth) given by [CSY22]:

N >
(λ + 110) log (Q/σ)

7.2 , (7)

where Q is divisible by a product primes qi for i = 1, ..., Depth. As a result, the optimal
ring dimension is not the same for the regular and FHE-Montgomery for the parameters
(α = 10, m ∈ {2, 3, 4}) and (α = 16, m ∈ {2, 3, 4}). In these cases, the bit size of the
ring dimension is equal to 14 and 15 for the regular algorithm and FHE-Montgomery,
respectively. Finally, plaintext values in our experiments belong to [ϵ, 1) with ϵ = 1− 1/2m,
and we choose m ∈ {2, 3, 4}. In summary, the set of the selected parameters for our
experiments is given in Table 2.

Table 2: Implementation parameters for the FHE-regular and FHE-Montgomery inversion
algorithms for s = 2.

Regular Montgomery
m α log(∆) log(N) Gold. Iter. d MultDepth log(N) Gold. Iter. d MultDepth

2, 3, 4 4 31 14 3 4 14 3 6
2, 3, 4 8 31 14 4 5 14 4 7
2, 3, 4 10 33 14 5 6 15 5 8
2, 3, 4 16 39 14 5 6 15 5 8
2, 3, 4 20 45 15 6 7 15 6 9
2, 3, 4 30 55 15 6 7 15 6 9

Implementation For each pair (m, α), we implemented and measured the CPU times
of the algorithms for s ∈ {2, 4, 8}, using OpenFHE [ABBB+22] on a Windows 10 machine
with the following specifications: 13th Gen Intel(R) Core(TM) i7-13650HX 2.60 GHz,
64-bit operating system, x64-based processor, and 16 GB RAM. The machine was running
Ubuntu 22.04.4 LTS (GNU/Linux 5.15.153.1-microsoft-standard-WSL2 x86_64) via WSL.
Our experimental results are presented in Table 3 and Figure 9. The computations were
performed with respect to the CKKS estimated precision from the OpenFHE library (see
the last column in Table 3).
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Table 3: Implementation results for inverting s ∈ {2, 4, 8} ciphertexts using FHE-
Montgomery s/2 times with simultaneous 2-inversions, and for m ∈ {2, 3, 4} and
α ∈ {4, 8, 10, 16, 20, 30}. CPU run time is measured in milliseconds. See Figure 9 for a
visual representation of results.

m Gold. err. α s Regular (CPU) Montgomery (CPU) Estimated CKKS Precision (bits)
2 78.5 70.1 17

4 4 157 140 17
8 306 296 17
2 135 87.5 17

8 4 239 179 17
8 472 354 17
2 145 233 19

10 4 290 465 19
8 592 951 19

2 2 156 237 25
16 4 303 465 25

8 607 944 25
2 393 282 31

20 4 781 566 31
8 1572 1130 31
2 388 284 41

30 4 784 573 41
8 1552 1123 41

2 77.9 65.5 17
4 4 150 134 17

8 303 265 17
2 114 88.3 17

8 4 227 175 17
8 455 345 17
2 147 229 19

10 4 293 466 19
8 582 919 19

3 2 143 230 25
16 4 289 465 25

8 580 924 25
2 391 283 31

20 4 788 596 31
8 1577 1137 31
2 397 282 41

30 4 785 574 41
8 1580 1132 41

2 76.3 65.4 17
4 4 154 133 17

8 303 263 17
2 113 86.9 17

8 4 225 173 17
8 450 351 17
2 145 227 19

10 4 291 460 19
8 582 918 19

4 2 148 229 25
16 4 296 460 25

8 585 926 25
2 388 284 31

20 4 784 565 31
8 1572 1141 31
2 401 290 41

30 4 825 581 41
8 1650 1161 41

For α ∈ {4, 8, 20, 30} and m ∈ {2, 3, 4}, we found that the FHE-Montgomery inversion
outperforms regular inversion, achieving up to 35% speedups. However, for α ∈ {10, 16}
and m ∈ {2, 3, 4}, the regular homomorphic inversion method demonstrated better time
efficiency compared to the FHE-Montgomery inversion. This can be attributed to our
previous observation that the ring dimension for the FHE-Montgomery inversion algorithm
is significantly larger than that for the regular inversion.
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Figure 9: Implementation results for inverting s ∈ {2, 4, 8} ciphertexts using FHE-
Montgomery s/2 times with simultaneous 2-inversions, and for m ∈ {2, 3, 4} and
α ∈ {4, 8, 10, 16, 20, 30}. CPU run time is measured in milliseconds. For α ∈ {4, 8, 20, 30},
FHE-Montgomery yields up to 35% speed ups. For α ∈ {10, 16}, FHE-Montgomery loses
advantage. See Table 3 for more details.
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6 Conclusion
We proposed three algorithms to solve the homomorphic s-inversion problem. Our algo-
rithms provide different levels of trade-offs between the computational complexity and
the depth of circuits and reduce the number of homomorphic inversions from s to 1.
We implemented our algorithms using the CKKS scheme in the OpenFHE library and
the Goldschmidt inversion. Our experiments show that, for some cases, the run time of
homomorphic s-inversion can be improved up to 35% while in some other cases, regular
inversion seems to outperform Montgomery-based inversion algorithms.
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