
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 18 pages.

https://doi.org/10.62056/avl86chdj
Check for updates

Breaking BASS
Simon-Philipp Merz1 , Kenneth G. Paterson1 and

Àlex Rodríguez Garcíaa, 2

1 ETH Zurich, Zurich, Switzerland
2 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. We provide several attacks on the BASS signature scheme introduced by
Grigoriev, Ilmer, Ovchinnikov and Shpilrain in 2023. We lay out a trivial forgery attack
which generates signatures passing the scheme’s probabilistic signature verification
with high probability. Generating these forgeries is faster than generating signatures
honestly. Moreover, we describe a key-only attack which allows us to recover an
equivalent private key from a signer’s public key. The time complexity of this recovery
is asymptotically the same as that of signing messages.
Keywords: cryptanalysis · digital signatures · boolean automorphisms

1 Introduction
In this paper, we present multiple attacks against the Boolean automorphisms signature
scheme (BASS) proposed by Grigoriev, Ilmer, Ovchinnikov and Shpilrain in 2023 [GIOS24].

First, we show that the scheme’s probabilistic signature verification allows us to forge
signatures that will likely pass verification. Producing these forgeries is more efficient than
honestly generating signatures using the private key. According to our experiments, the
forgeries produced this way pass the verification algorithm of BASS on average 86.2% of
the time for the proposed parameters.

Second, we provide a key-only attack which recovers a key equivalent to the private
key from the public key. This allows us to forge signatures that pass verification with
the same probability as legitimately generated signatures. This attack is practical for the
suggested parameters of the signature algorithm and it runs with the same complexity as
the signing algorithm asymptotically.

Finally, we briefly discuss how to further improve our attack by exploiting how secret
keys are chosen in BASS.

Along the way, we provide a different characterisation of the space of the Boolean
automorphisms used as private keys in BASS. From our description it is apparent that the
private keys are far from being unique. Further, we discuss the probability of the BASS
verification algorithm rejecting valid signatures. Our analysis and experimental results
diverge significantly from the claims made by the authors of BASS [GIOS24].

All algorithms described in this paper are implemented and they were used to verify
our results experimentally. The code is publicly available [Rod24]. We shared the results
of this paper with the authors of BASS [GIOS24] who acknowledged our attacks.

Outline. In Section 2 we introduce some necessary notation as well as the notion of two
bases that will be crucial to describe this paper’s contributions. In Section 3 we recall

E-mail: research@simon-philipp.com (Simon-Philipp Merz), kenny.paterson@inf.ethz.ch (Kenneth
G. Paterson), alex.rodriguez.garcia@upc.edu (Àlex Rodríguez García)

aThe research was carried out while the third author visited ETH Zurich on an SSRF scholarship.

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-13 Accepted: 2025-03-11

https://doi.org/10.62056/avl86chdj
https://crossmark.crossref.org/dialog/?doi=10.62056/avl86chdj&domain=pdf&date_stamp=2025-04-02
https://orcid.org/0000-0002-2475-2966
https://simon-philipp.com/
https://orcid.org/0000-0002-5145-4489
mailto:research@simon-philipp.com
mailto:kenny.paterson@inf.ethz.ch
mailto:alex.rodriguez.garcia@upc.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Breaking BASS

the BASS signature scheme and we provide our own explanation of why the probabilistic
verification of the scheme is usually correct. We further explain why it seems to have more
false negatives than claimed in [GIOS24]. Section 4 characterises the (large number of)
equivalent private keys in the BASS signature scheme. In Section 5 we give a probabilistic
attack which forges signatures that will likely be accepted. Generating forgeries takes
less time than it would take to honestly sign a message. Finally, in Section 6, we show
how to recover an equivalent private key from a public key in BASS. Using this, we can
forge signatures that will be accepted with the same probability as legitimately generated
signatures.

2 Notation
We introduce the following notation to describe the BASS signature scheme and our
attacks.

Let Kn := Z[x1, . . . , xn] and I the ideal in Kn generated by the polynomials x2
i − xi

for i ∈ {1, . . . , n}. The authors of the BASS signature scheme refer to the quotient ring
Bn := Kn/I as the “booleanization” of Kn. We denote the automorphisms of Bn by
Aut(Bn). The following example illustrates how the previous notions are related.

Example 1. Suppose n = 3. Then K3 is the ring of polynomials in three variables with
integer coefficients containing polynomials such as

A(x1, x2, x3) := x3
1x

2
2 + x3 − 5x1x

4
3 ∈ K3

Bn is the quotient ring of Kn divided by the ideal generated by the polynomials x2
i − xi,

i.e. another representative of the class containing the polynomial A is

A(x1, x2, x3) = x1x2 + x3 − 5x1x3 ∈ B3

Now, consider an automorphism ϕ ∈ Aut(B3). The image of A under the automorphism is

ϕ(A(x1, x2, x3)) = ϕ(x1x2 + x3 − 5x1x3) = ϕ(x1)ϕ(x2) + ϕ(x3)− 5ϕ(x1)ϕ(x3) ∈ B3.

Note that by linearity, any automorphism ϕ is defined uniquely by its images on xi for all
i ∈ {1, . . . , n}. As an automorphism ϕ must be invertible. As such it is easy to check that
the map ϕ and its inverse defined as follows are examples of automorphisms.

ϕ(x1) := x2 ϕ−1(x1) = 1− x2 − x3 + 2x2x3

ϕ(x2) := x1 + x3 − 2x1x3 ϕ−1(x2) = x1

ϕ(x3) := 1− x3 ϕ−1(x3) = 1− x3

Indeed, one can manually check that ϕ−1(ϕ(xi)) = xi in B3 for all i ∈ {1, 2, 3}.

Let c = c1c2 . . . cn ∈ {0, 1}n be an n-tuple of bits, i.e. ci ∈ {0, 1}. We define

bc :=
n∏

i=1
xci

i ∈ Bn B := {bc | c ∈ {0, 1}n},

ec :=
n∏

i=1
xci

i (1− xi)1−ci ∈ Bn E := {ec | c ∈ {0, 1}n}.

We refer to B as the standard basis of Bn and E as the orthogonal basis of Bn. Given
A ∈ Bn, we denote by A(c) = A(c1, c2, . . . , cn) = A|xi=ci ∀i∈{1,...,n} the evaluation of A at
a Boolean n-tuple c ∈ {0, 1}n. Partial evaluations are written as A|xi=b, where b ∈ {0, 1}.

S.-P. Merz, K. G. Paterson and A. Rodríguez García 3

When providing implementation details, we denote a polynomial A represented in the
standard basis by [A]b and in the orthogonal basis by [A]e. In the first case, polynomials
are represented as a list of monomials whose size depends on the number of monomials.
In the second case, polynomials are represented by a list of 2n binary coefficients, where
the i-th element corresponds to the coefficient of ei. In all implementations we represent
automorphisms by their action on the orthogonal basis, leaving no ambiguity in their
representation.

3 The BASS signature scheme
In this section, we briefly recall the BASS signature scheme with the parameters suggested
in [GIOS24].

Key generation. A secret automorphism ϕ ∈ Aut(B31) is sampled as the private
key of the signer. Further, three sparse polynomials P1, P2, P3 ∈ B31 are chosen at
random from a publicly known distribution. The public key consists of the polynomials
P1, P2, P3, ϕ(P1), ϕ(P2), ϕ(P3) ∈ B31. Using the recommended parameters, all three Pi are
the sum of three monomial terms with coefficients in {−1, 1}.

Signature generation. To sign a message m, it is hashed onto a 256-bit string (using
SHA3-256) which is encoded as a polynomial Q ∈ B32 according to a publicly known
map. Then, the secret automorphism ϕ ∈ Aut(B31) is extended to ϕext ∈ Aut(B32) such
that ϕext(xi) = ϕ(xi), ∀i ∈ {1, . . . , 31} and ϕext(x32) is a randomly chosen image that is
compatible with ϕext being an automorphism. The signature for m is σ := ϕext(Q) ∈ B32.

Verification. When verifying a signature, first a random polynomial u ∈ K4 is sampled.
Given the message-signature pair (m, σ), the hash of m is mapped to the polynomial
Q ∈ B32 following the same procedure as in the signature generation. Let

R := u(P1, P2, P3, Q), S := u(ϕ(P1), ϕ(P2), ϕ(P3), σ) ∈ B32.

The verifier samples randomly (with repetition) 3000 Boolean tuples in {0, 1}32 and
evaluates both R and S at these tuples and counts the tuples that evaluate to a positive
value. If the number of positive values appearing for R and S differ by no more than 3%
of the total number of samples, the signature is accepted as valid and rejected otherwise.
Note, this is a probabilistic signature verification algorithm.
Remark 1. The description of the signature verification in BASS is not consistent through-
out [GIOS24]. In most places, the authors claim that the proportions of positive values of
R and S are compared as mentioned above [GIOS24, Sect. 2-7]. However, according to the
abstract and the proof of concept implementation the number of zeroes in R and S are
compared. Our attacks later apply to both verification procedures, but for consistency we
will adhere to the description given above.

3.1 Correctness of the verification algorithm
We provide in this subsection our own explanation for the correctness of the signature
scheme, i.e. why we expect the scheme to verify legitimately generated signatures.

We typically express polynomials in Bn using the standard basis. However, the
orthogonal basis is more useful for understanding the behaviour of automorphisms. The
following lemma summarises the key properties of the orthogonal basis that we will use in
the following. Its proof is located in Section A.

4 Breaking BASS

Lemma 1. Let E := {ec | c ∈ {0, 1}n} with ec :=
∏n

i=1 x
ci
i (1 − xi)1−ci ∈ Bn denote the

“orthogonal basis”.

(i) The orthogonal basis is indeed a basis, i.e. any polynomial in Bn can be uniquely
expressed as a linear combination of elements in E.

(ii) For c, d ∈ {0, 1}n with c ̸= d, we have ec(d) = 0 and ec · ed = 0. Moreover, ec(c) = 1
and ec · ec = ec.

(iii) The orthogonal basis is a Lagrange basis, i.e. any polynomial A ∈ Bn can be expressed
in terms of E as

A =
∑

c∈{0,1}n

A(c)ec.

(iv) For each ϕ ∈ Aut(Bn) there exists a permutation π ∈ Σ{0,1}n such that ϕ(ec) = eπ(c)
for every c ∈ {0, 1}n.

(v) For each π ∈ Σ{0,1}n there exists an automorphism ϕ ∈ Aut(Bn) such that ϕ(ec) =
eπ(c) for every c ∈ {0, 1}n.

Lemma 1 shows that any automorphism can be identified with a permutation on the
variables of Bn. We use this result to argue why honestly generated signatures are expected
to pass verification.

Given any polynomial A ∈ Bn and any automorphism ϕ ∈ Aut(Bn), we can write

A =
∑

c∈{0,1}n

A(c)ec,

ϕ(A) =
∑

c∈{0,1}n

A(c)ϕ(ec) =
∑

c∈{0,1}n

A(c)eπ(c) =
∑

c∈{0,1}n

A(π−1(c))ec (1)

for some permutation π. Then, we have ϕ(A)(c) = A(π−1(c)). Hereby, we used (ii), (iii)
and (iv) of Lemma 1 and the linearity of automorphisms. If σ is an honestly generated
signature, then σ = ϕext(Q). Using the linearity of automorphisms, we have

R = u(P1, P2, P3, Q),
S = u

(
ϕext(P1), ϕext(P2), ϕext(P3), ϕext(Q)

)
= ϕext

(
u(P1, P2, P3, Q)

)
= ϕext(R).

Using Eq. (1), we obtain: R(c) = S(π−1(c)) for some permutation π. Using this
relationship, it is easy to see that if we evaluate the polynomials R and S on the set of all
Boolean tuples, the results have to be the same up to a permutation. In particular, the
number of positive images have to be the same.

Probability of false negatives. Let r be the proportion of positive images when
evaluating R or S on all Boolean tuples, i.e. r is the (unknown) probability that S
evaluated on a random boolean tuple returns a positive value. When evaluating the
polynomials on a sample of 3000 values, the number of positive images follows a binomial
distribution Bin(3000, r) as the verification algorithm samples with replacement.

When running the signature verification on an honestly generated signature, the
probability that this signature is falsely rejected is the probability that two random variables
X,Y ∼ Bin(3000, r) satisfy |X−Y | > 90, i.e. that the proportions differ by more than 3%
of the samples. When approximating X,Y as normal distributions N(3000r, 3000r(1− r)),
then X − Y ∼ N(0, 6000r(1− r)). Using the fact that r(1− r) ≤ 1/4 and looking at the
normal probability density function table, we conclude

Pr(|X − Y | ≤ 90) ≤ Pr(−2.32σ ≤ X − Y ≤ 2.32σ) ≈ 0.98,

S.-P. Merz, K. G. Paterson and A. Rodríguez García 5

where σ denotes the standard deviation. Hence the probability of rejecting an honestly
generated signature is at most 2%.

Note that this bound is tight if the proportion of positive images among all the
evaluations on Boolean tuples r is close to 0.5 which can be observed in practice. We ran
the probabilistic signature verification on a fixed message-signature pair 100.000 times.
The signature was falsely rejected in roughly 1.32% of the trials. The example can be
found at [Rod24].

This contrasts the claim by the authors of BASS that false negatives would only occur
with a tiny probability of 2−33 (see [GIOS24, Sect. 6.1]).

4 Space of equivalent private keys
In this section, we characterise automorphisms which are equivalent to a signer’s private
key in the BASS signature scheme, i.e. automorphisms that allow us to compute signatures
which will pass verification with the same probability as signatures generated with the
private key of the signer, independent of the message signed.

4.1 A sufficient condition for equivalent private keys
Lemma 2. Let ϕ ∈ Aut(B32) be a signer’s private key, let P1, P2, P3 be the polynomials
contained in the public key and let Q ∈ B32 be the polynomial corresponding to a message m.
For any ψ ∈ Aut(B32) satisfying

ψ(Pi) = ϕ(Pi), ∀i ∈ {1, 2, 3}, (2)

the polynomial ψ(Q) will be accepted as a valid signature with the same probability as an
honestly generated signature ϕ(Q).

Proof. Using the same notation as in Section 3, note that

S = u(ϕ(P1), ϕ(P2), ϕ(P3), ψ(Q)) = u(ψ(P1), ψ(P2), ψ(P3), ψ(Q))
= ψ(u(P1, P2, P3, Q)) = ψ(R).

The verification only checks (probabilistically) the equality of the proportion of positive
images of S and R. Since ψ is an automorphism the proportion of positive values are
the same for both polynomials, following the same argument as in Section 3 for honestly
generated signatures. Hence, the signature ψ(Q) will be accepted by the verifier with the
same probability as an honestly generated signature.

As such, Lemma 2 provides a sufficient condition on whether an automorphism ψ ∈
Aut(B32) is equivalent to a signer’s private key for the purpose of producing arbitrary
message-signature pairs.

Recall from the key generation in Section 3, that all three polynomials Pi in the public
key are the sum of three monomial terms with coefficients in {−1, 1}. Let ai denote the
number of coefficients in Pi equal to −1. As each term of Pi only takes values in {0, 1}
when evaluated at a Boolean tuple, the polynomial Pi−ai takes values in the set {0, 1, 2, 3}
for each i ∈ {1, 2, 3}. Consider the polynomial P defined as

P := (P1 − a1) + 4 · (P2 − a2) + 16 · (P3 − a3). (3)

Note that the polynomial

ϕ(P) = (ϕ(P1)− a1) + 4 · (ϕ(P2)− a2) + 16 · (ϕ(P3)− a3)

can also be computed from the public key.

6 Breaking BASS

Clearly, any ψ ∈ Aut(B32) satisfying ψ(P) = ϕ(P) also satisfies the sufficient condition
of Lemma 2, as we have only rewritten the condition in base 4.

Thus, to recover a key that is equivalent to a signer’s private key it is sufficient to solve
the following problem (in BASS with n = 32).

Problem 1. Let ϕ ∈ Aut(Bn) be an unknown automorphism. Given two polynomials
P, ϕ(P) ∈ Bn, find ψ ∈ Aut(Bn) such that ψ(P) = ϕ(P).

Our observation about equivalent private keys raises the question how many solutions
exist for Problem 1.

4.2 Solutions to Problem 1 as permutations
In this section we characterise the set of solutions to Problem 1 as a set of permutations
with a specific property described by the following theorem. This characterisation will
allow us to quantify the number of solutions of Problem 1.

Theorem 1. Let A,B ∈ Bn be two polynomials and let

V := {v ∈ Z | ∃c ∈ {0, 1}n such that A(c) = v or B(c) = v}.

We write m = |V | and V = {vi | i ∈ {0, 1, . . . ,m− 1}}. For each i ∈ {0, 1, . . . ,m− 1}, we
further define

Si := {c ∈ {0, 1}n | A(c) = vi} and Ti := {c ∈ {0, 1}n | B(c) = vi}.

Then, there exists an automorphism ψ ∈ Aut(Bn) such that ψ(A) = B if and only if
|Si| = |Ti|, for all i ∈ {0, 1, . . . ,m− 1}.

Proof. Using Lemma 1 (iii) and grouping terms based on the value of A(c) and B(c)
respectively, we write

A =
m−1∑
i=0

vi

 ∑
c∈{0,1}n

A(c)=vi

ec

 =
m−1∑
i=0

vi

(∑
c∈Si

ec

)
,

B =
m−1∑
i=0

vi

 ∑
c∈{0,1}n

B(c)=vi

ec

 =
m−1∑
i=0

vi

(∑
c∈Ti

ec

)
.

We first prove that if there exists ψ ∈ Aut(Bn) such that ψ(A) = B, then |Si| = |Ti| for
all i ∈ {0, 1, . . . ,m− 1}. Note that

ψ(A) =
m−1∑
i=0

vi

(∑
c∈Si

eτ(c)

)
=

m−1∑
i=0

vi

 ∑
c∈τ(Si)

ec


for some unknown permutation τ . Using Lemma 1 (iii), we know that the coefficients of
the polynomials ψ(A) and B in the orthogonal basis must coincide. In particular, we have
τ(Si) = Ti and thus both sets must have the same cardinality.

We prove the reverse direction by construction. Suppose |Si| = |Ti| for all i ∈
{0, 1, . . . ,m− 1}. Then we can define a bijection between elements of Si and Ti. As the
sets Si are pairwise disjoint and so are the Ti, these bijections define a permutation τ over
the set of Boolean tuples. Using Lemma 1 (v), we know that τ defines an automorphism
ψ ∈ Aut(B32). As

S.-P. Merz, K. G. Paterson and A. Rodríguez García 7

ψ(A) =
m−1∑
i=0

vi

(∑
c∈Si

eτ(c)

)
=

m−1∑
i=0

vi

 ∑
c∈τ(Si)

ec

 =
m−1∑
i=0

vi

(∑
c∈Ti

ec

)
= B,

we obtain the desired equality.

Remark 2. We can apply Theorem 1 to the polynomials P and ϕ(P) defined in Eq. (3) and
consider the respective sets Si and Ti. The space of solutions ψ to Problem 1 corresponds
to all the permutations τ such that τ(Si) = Ti, ∀i ∈ {0, 1, . . . ,m− 1}. Note that any such
permutation induces a solution to Problem 1. Thus, we can count the exact number of
solutions, which is:

∏m−1
i=0 |Si|!. For the proposed parameters of BASS and the definition

of the polynomial P , we know that P takes values only in {0, 1, . . . , 63}, i.e. m ≤ 64.
The value is minimised for larger m and if each set Si has an equal number of elements.
Therefore, the number of automorphisms ψ ∈ Aut(B32) such that ψ(P) = ϕ(P), i.e. the
number of equivalent keys for the BASS signature scheme, is considerable – at least
(232/64)!64 ≈ 101010.5 . This contradicts the statement of the authors of BASS that “the
secret key does not have to be unique, although most of the time it is” [GIOS24, Sect. 7].

5 Signing with trivial signatures
We have seen that there are many automorphisms which solve Problem 1. When evaluating
any such automorphism on Q, the encoded hash of a message, we obtain a polynomial
that will be accepted during the signature verification with the same probability as a
legitimately generated signature. In Section 6 we will describe how to compute such
equivalent keys. Another natural question is:

Given a polynomial σ ∈ Bn and a message corresponding to the hashed encoding
Q ∈ Bn, how likely will the probabilistic signature verification accept σ?

Note that a polynomial will likely be accepted whenever it is “sufficiently close” to
a polynomial obtained by evaluating any (of many) automorphism ψ from the set of
equivalent private keys on Q.

In this section, we provide a lower bound for the above question. Estimating the
probability of polynomials passing the signature verification will allow us to describe how
to forge signatures that are likely to be accepted in less time than it would take to generate
a legitimate signature using the private key.

More precisely, we will argue why just outputting Q, the encoded hash of a message,
as a forgery, may pass signature verification. Then, we provide experimental evidence that
such forgeries will indeed be accepted on average 86.2% of the time for randomly chosen
pairs of messages and public keys.

Further, we observe experimentally that the trivial zero-polynomial will also pass
verification on average 11.2% of the time for randomly chosen messages.

For a polynomial σ ∈ B32 to pass verification with high probability, it needs to be close
to ψ(Q) for one of the automorphisms ψ solving Problem 1, i.e. we want both ψ(Q) and
σ to evaluate to a positive value simultaneously on as many Boolean tuples as possible.
For a fixed Q and σ, a probability estimate for the acceptance can be approximated by
determining the distance to a good choice of automorphism ψ evaluated on Q.

The following example illustrates how to construct such an automorphism ψ for the
purpose of estimating the probability of a given polynomial σ passing signature verification.

8 Breaking BASS

Example 2. For a small example with n = 3, suppose the polynomials P , ϕ(P) ∈ B3
computed from the public key are

[P]e = [0, 1, 0, 2, 1, 0, 0, 1]
[ϕ(P)]e = [0, 0, 2, 1, 0, 1, 1, 0].

From Theorem 1, we know that finding an automorphism which maps P to ϕ(P) is
equivalent to finding a permutation that maps the first vector of coefficients to the second
one. For example, we may consider the permutation τ1 =

(
1 2 3 4 5 6 7 8
1 4 2 3 6 5 8 7

)
, which induces

an automorphism ψ1. Suppose Q is the encoding of the hash of a message m and assume
we want to sign the message with the polynomial σ. These polynomials may look like

[Q]e = [−1, 2, 2, 0,−1, 1, 1, 0]
[σ]e = [1,−1, 0, 0, 2,−1, 1, 0].

We know that ψ1(Q) is a signature which will pass verification with the same probability
as an honestly generated signature. We would have

[ψ1(Q)]e = [−1, 2, 0, 2, 1,−1, 0, 1].

Given that σ and ψ1(Q) are represented in the orthogonal basis, we can compare the vectors
componentwise to see that there are exactly two Boolean tuples where both polynomials
evaluate to the same value. However, we can try to find an automorphism ψ2 such that
ψ2(Q) is a valid signature, and also “closer” to σ in the sense that the evaluation coincides
on more Boolean tuples. Let τ2 be the permutation corresponding to ψ2. As τ2 has to map
the vector of coefficients of P to the vector of coefficients of ϕ(P), we have restrictions
such as τ2(1) ∈ {1, 2, 5, 8}. If possible, we choose among the permissible images such that
ψ2(Q) and σ agree in the corresponding coefficient. For example choosing τ2(1) = 2 makes
[σ]e and [ψ2(Q)]e coincide in the second coefficient. Iterating this process greedily, we
obtain the permutation τ2 =

(
1 2 3 4 5 6 7 8
2 ∗ 5 3 6 1 ∗ ∗

)
.

The undefined images are completed such that τ2 still induces an automorphism between
P and ϕ(P), e.g. τ2 =

(
1 2 3 4 5 6 7 8
2 4 5 3 6 1 8 7

)
.

Constructing ψ2(Q) with this greedy approach, it is both a signature that will verify
with the same probability as a legitimately generated one and it is indistinguishable from
σ when evaluated on five of the eight possible Boolean tuples as

[ψ2(Q)]e = [1,−1, 0, 2, 2,−1, 0, 1].

When running the signature verification on σ and the message corresponding to Q, σ will
evaluate to the value of a valid signature 5/8 of the time. In the remaining 3/8 of tuples,
the sign of the evaluation may or may not be the same.

In the following, we generalise Example 2 and we give the greedy algorithm which
computes an automorphism ψ in the solution set of Problem 1 such that ψ(Q) is close
to a given polynomial σ. The “distance” between the polynomials can be used to give a
lower bound on the probability that σ will be accepted as a signature. For Example 2, we
say that the distance between ψ2(Q) and σ is bounded by 3/8. Notice that in general the
smaller the distance, the bigger the probability σ will be accepted during the verification.

5.1 Sufficiently good signatures
As discussed in Section 4.2, there are many different solutions ψ to Problem 1 for each
of which ψ(Q) passes verification with the same probability as an honestly generated
signature. To determine the probability with which a candidate signature σ ∈ Bn passes

S.-P. Merz, K. G. Paterson and A. Rodríguez García 9

verification, we would like to determine whether σ is sufficiently close to ψ(Q) for some ψ
in the set of solutions to Problem 1, meaning ψ(Q) and σ evaluate to the same values on
many Boolean tuples. We say ψ(Q) ≈ σ if the proportion of Boolean values where the
evaluation of both polynomials coincides is large.

Note that given the signature verification this could be relaxed even further only
demanding that ψ(Q) and σ evaluate to values with the same sign on many Boolean tuples.

Let ϕ be the sender’s private key and recall that the polynomials P , as defined in
Eq. (3), and ϕ(P) which can be computed from the public key evaluate to values in
{0, 1, 2, . . . , 63} for the parameters proposed by the authors of BASS. Given σ, consider
the following algorithm generalising Example 2. The algorithm computes an equivalent
private key ψ ∈ Aut(Bn) in the set of solutions to Problem 1 such that ψ(Q) ≈ σ.

1. Apply Theorem 1 to the polynomials P and ϕ(P) as computed in Eq. (3) and
compute the sets Si, Ti ∀i ∈ {0, 1, . . . , 63}, i.e. the sets of Boolean tuples on which
P , respectively ϕ(P), evaluate to i.

2. For every i ∈ {0, 1, . . . , 63}, do:

2.1. For each c ∈ Si (in any order), try to find d ∈ Ti such that Q(c) = σ(d). If one
is found, take both of them out of their sets and define τ(c) = d.

2.2. For the remaining c ∈ Si for which we were not able to find a corresponding d,
define τ(c) = d for any d ∈ Ti. Take both of them out of their sets until both
sets are empty. This will happen as Theorem 1 guarantees |Si| = |Ti|.

3. Output the automorphism ψ corresponding to the computed permutation τ , which
we know to exist by (v) of Lemma 1.

As a consequence of Theorem 1, ψ is a solution to Problem 1 because τ matches
elements of Si with Ti. Using Eq. (1), we see that for any ψ computed this way, we have
ψ(Q)(d) = Q(τ−1(d)) = Q(c). If τ(c) was defined during Step 2.1 of the algorithm, then
Q(c) = σ(d), i.e. ψ(Q)(d) = Q(c) = σ(d).

Let C denote the set of Boolean tuples c such that τ(c) was defined on the Step 2.1 of
the algorithm. Clearly ψ(Q) and σ are equal whenever evaluated on any Boolean tuple
in C. Thus, computing a good ψ and tracking the size of C allows us to give a lower bound
on the probability that a polynomial σ ∈ B32 passes the signature verification of BASS.

Estimating the probability a polynomial passes signature verification. Let
u ∈ K4 be random and consider the corresponding polynomials

R := u(P1, P2, P3, Q), S := u(ϕ(P1), ϕ(P2), ϕ(P3), σ) ∈ B32.

Let r be the proportion of positive values the polynomials R (and S) take when
evaluated over the set C where ψ(Q) and σ evaluate to the same values. Further, let
δ := 1 − |C|/232. Note that the set C depends on the choices made in Step 2.1 when
computing ψ but its cardinality, and thus δ, is independent of these choices. For the
proportion of positive values r1 of R and r2 of S when evaluated over all Boolean tuples,
we have

r1 = (1− δ)r + δp1, r2 = (1− δ)r + δp2,

where p1 and p2 denote the proportions of positive values of R and S, respectively, when
evaluated over the complement of C. Clearly, we have |r1 − r2| = δ|p1 − p2|. The number
of positive values N1 of R and N2 of S when evaluated over 3000 Boolean tuples sampled
during the signature verification follow a binomial distribution. Approximating both to a
normal distribution as described in Section 3.1, their difference can be approximated by

N1 −N2 ∼ N(3000(r1 − r2), 3000r1(1− r1) + 3000r2(1− r2)).

10 Breaking BASS

Clearly, the closer r1, r2 are to each other, the more likely the signature verification
will succeed. In particular, suppose that σ = ψ(Q) for some automorphism ψ in the space
of solutions of Problem 1. Then, it is easy to check that δ = 0, which implies r1 = r2.
Therefore, the probability of accepting σ is the same as the one of a correctly generated
signature.

5.2 Experimental observations
Signing a message with its encoded digest. We tried signing a message with its
encoded digest Q as a signature. The rational is that Q and ψ(Q) have the same images
when evaluated over all Boolean tuples. Thus, one may hope that there are a number of
Boolean tuples in Si and Ti where Q evaluates to the same value. The greater the number
of such tuples, the larger the set C and the smaller δ. For the proposed parameters of BASS,
we computed δ experimentally to be roughly ≈ 0.1. Assuming p1, p2 are independent
random variables following a uniform distribution, the expected value of |r1 − r2| is then
δ|p1 − p2| = δ/3 ≈ 0.033. Using the result from the previous section, we can approximate

N1 −N2 ∼ N(100, 1500).

Here, we used that the distribution has variance close to 1500 which follows from exper-
iments suggesting that ri ≈ 0.5. Computing the values for the normal distribution, we
get

Pr(|N1 −N2| ≤ 90) ≈ 0.398.

This suggests that Q itself should verify as a signature at least 40% of the time. Note
that the assumptions made throughout were the worst case for an attacker.

Experimentally, using Q as a signature turned out to be even more successful. For the
proposed parameters, Q was accepted between 78% and 94% of the time for most of the
randomly chosen pairs of public keys and messages. A visualisation of our experiments is
depicted in Fig. 1.

Signing a message with 0. Another idea is to sign a message with the zero-polynomial.
In this case, the rational is that Q evaluates to zero on many Boolean tuples and so will
ψ(Q). Choosing random messages, we computed δ ≈ 0.87 with respect to σ = 0 ∈ Bn.
Our experiments then showed that the probability of accepting 0 as a valid signature
tends to be larger than 10% for the parameters proposed for BASS. This highlights a clear
weakness in the signature validation and yields a trivial attack on BASS.

Both of our attacks, signing with Q as well as signing with 0, exploit the low accuracy of
BASS’s probabilistic verification algorithm. Clearly, the success probability of the attacks
could be lowered when checking that the proportions of positive values in R and S diverge
by less than 3%. When reducing this error bound in the signature verification, either even
more correctly generated signatures would be rejected or one would need to evaluate R
and S on a much larger number of Boolean tuples.

Assume we accepted the current probability of rejecting a legitimately generated
signature 2% of the time. Further, assume that the attack of signing a message with its
encoded hash Q succeeds only with a probability of 78% after evaluating 3000 Monte
Carlo samples. Note this was among the lowest success rates observed in the experiments
and the attack performed on average much better. Even under these very optimistic
assumptions (for a signer), it would be necessary to sample ≈ 295.000 Boolean tuples
during signature verification in order for the attack of signing with the encoded hash of
a message Q to succeed with probability less than 2−128. Since signature verification is
linear in the number of Boolean tuples checked, this would slow down signature verification
almost by 100x.

S.-P. Merz, K. G. Paterson and A. Rodríguez García 11

0 2 4 6 8 10 12 14 16
Public key

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

Q
0

Signature

0.000
0.005
0.010

0.015

0.020

0.025

Variance

Probability of accepting a signature
Fixed public key, random message

0 5 10 15 20 25 30
Message

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

Q
0

Signature

0.00
0.01

0.02

0.03

Variance

Probability of accepting a signature
Fixed message, random public key

Figure 1: Given randomly chosen pairs of public key and message, we estimated the
probability of accepting Q or 0 as a valid signature for each pair. The probabilities were
approximated by running the verification algorithm 100 times for all (pk,m)-pairs, counting
how often the verification succeeded. Mean and variance of the probabilities are computed
for all the pairs (pk,m) that share either the public key (left) or the message (right).

Remark 3. Given the inconsistent description of the signature verification of BASS, as
mentioned in Remark 1, we also ran the trivial attacks of signing a message directly with
its hashed encoding Q or with 0 for the version of the signature verification which compares
the number of zeroes instead of the number of positive values. The success probability
of the attacks was even higher with Q being accepted as a valid signature for almost all
message-signature pairs that we tested. The results are depicted in Section B.

6 Recovering and signing with equivalent private keys
In this section, we provide a key-only attack which computes an equivalent private key,
i.e. a solution to Problem 1, given only the public key of the signature scheme. We first
provide an attack using a first-in, first-out (FIFO) criterion. Then, we speculate about a
hypothetical countermeasure and we suggest a more sophisticated attack that will succeed
in this case. Asymptotically, our attack has the same complexity as the signing algorithm
of BASS.

Throughout this section, we let ψ be an equivalent private key that we aim to compute
and we represent automorphisms by their action on the orthogonal basis.

6.1 FIFO attack
6.1.1 Computing an equivalent key.

As observed in Section 4.2, we can find a solution ψ to Problem 1 by mapping elements
in Si to elements in Ti where Si and Ti are defined with respect to the polynomials P
and ϕ(P) from Eq. (3). We know that P takes values in {0, 1, . . . , 63} for the proposed
parameters in BASS. Given two polynomials A,B ∈ Bn taking values in {0, 1, . . . , 63} such
that there exists an automorphism that maps one polynomial to the other, Algorithm 1
describes how to recover an automorphism with the same action on the polynomials using
a first-in, first-out approach.

Lemma 3. Algorithm 1 is correct and its time and memory complexity is O(poly(n)2n).

Proof. The correctness of the algorithm follows from Lemma 1(v) and Theorem 1. Com-
puting Si and Ti from polynomials given in the orthogonal basis takes time O(poly(n)2n)

12 Breaking BASS

Algorithm 1 FIFO
Require: [A]e, [B]e ∈ Bn such that there exists ϕ ∈ Aut(Bn) with A = ϕ(B)
Ensure: ψ ∈ Aut(Bn) with ψ(A) = B

for i ∈ {0, . . . , 63} do
Compute Si = {c ∈ {0, 1}n | A(c) = i}
Compute Ti = {c ∈ {0, 1}n | B(c) = i}

end for
for i ∈ {0, . . . , 63} do

for j ← 1 to |Si| do
c← Si[j]
d← Ti[j]
ψ(ec)← ed

end for
end for
return ψ

by once passing through the polynomial’s coefficients. Transforming polynomials from the
standard basis to the orthogonal basis can be done with a divide-and-conquer recurrence
running in O(m log(m)), where m is the size of the given polynomial in the standard
basis which is bounded by 2n. Thus, the translation from standard to orthogonal basis
can be achieved in time O(poly(n)2n). The second loop touches upon all Boolean tuples
c ∈ {0, 1}n exactly once and thus runs in time O(poly(n)2n).

The union of the sets Si and Ti are all Boolean n-tuples whose storage requires O(n2n)
bits of memory. Similarly, the automorphism can be stored in a representation that
describes its action on each element of the orthogonal basis requiring O(n2n) bits of
memory.

6.1.2 Evaluating the equivalent key ψ on Q.

Having computed an equivalent key ψ in the set of solutions to Problem 1 by its action on
the orthogonal basis in Algorithm 1, we are left with computing [ψ(Q)]b to sign a message.

We do so by expressing [Q]e in the orthogonal basis, computing [ψ(Q)]e and then
converting it to the standard basis as summarised in Algorithm 2. We claim that this can
be done in O(poly(n)2n) time, using O(poly(n)2n) memory.

Algorithm 2 Signing
Require: [ψ]e an equivalent private key, m a message
Ensure: A signature [ψ(Q)]b of m

[Q]b ← Encode(H(m)) ▷ Standard hash and encoding
[Q]e ← StandardToOrthogonal([Q]b)
[ψ(Q)]e ← ψ([Q]e)
[ψ(Q)]b ← OrthogonalToStandard([ψ(Q)]e)
return [ψ(Q)]b

To run Algorithm 2, we need an efficient algorithm to transform a polynomial’s
representation with respect to the standard basis to the orthogonal basis and vice versa.
As claimed in the proof of Lemma 3, the first transformation can be done with a divide-
and-conquer recurrence in time O(poly(n)2n). To transform a polynomial A from the
orthogonal basis to the standard basis we apply the following relation.

S.-P. Merz, K. G. Paterson and A. Rodríguez García 13

A =
∑

c∈{0,1}n

A(c)ec = (1− xn)
∑

c∈{0,1}n−1

A(c∥0)ec + xn

∑
c∈{0,1}n−1

A(c∥1)ec

= A0 + xn(A1 −A0),

where
Ai =

∑
c∈{0,1}n−1

A|xn=i(c)ec.

Constructing A0 and A1 requires simply selecting the terms A(c)ec in A with cn

equal to 0 or 1, respectively. Computing and subtracting the polynomials thus takes
time linear in the length of A. Since the polynomials Ai do not contain any terms with
xn, the multiplication only appends xn. Conducting the computation recursively, the
standard basis representation can therefore be computed from the orthogonal basis in time
O(poly(n)2n) as well.

As before, we store the automorphism ψ as its action on the orthogonal basis which takes
O(n2n) bits. Storing [Q]b requires O(n) memory as Q consists of at most 3n monomial
terms. Computing the representation of Q in the orthogonal basis requires O(poly(n)2n)
bits of memory. Evaluating ψ on [Q]e is just a reordering of the basis elements and the
recursion to compute Q in the standard basis requires the same amount of memory in
every step. As such the memory cost of signing messages with the equivalent private key
given with respect to its action on the orthogonal basis is O(poly(n)2n).

Note that when a signature is honestly computed, a signer has to compute polynomial
products of the form ϕ(xi) · ϕ(xj) for some indices i ̸= j. In general, this has time
complexity O(poly(n)2n) as well.

We implemented and verified the correctness of the attack in Python and ran it on
several instances for n = 28, small enough to run the attack with the 8GB of RAM available
on our laptop [Rod24]. On a single core (Apple M1 3.228 GHz with reduced clock speed)
the attack ran for roughly 2 days, but since the big arrays used in the attack exceeded our
8GB of RAM this should be taken as a strict upper bound.

6.2 Further improvements of the attack
We have seen how to compute an equivalent secret key from the public key provided using
Algorithm 1, and how this can be used to forge signatures that will pass verification with
the same probability as a legitimately generated signature. This raises the question:

Are our forgeries indeed indistinguishable from legitimate signatures?
It turns out that forgeries computed with an equivalent key given by Algorithm 1 will

usually be polynomials with significantly more terms than honestly generated ones, when
expressed in the standard basis. This is an artifact of the way private keys are generated
in BASS. Instead of choosing private keys uniformly at random in Aut(B31) and then
extending them to an automorphism in Aut(B32), the secret automorphism ϕ is sampled
in a way such that ϕ(xi) = xj for some j for approximately one-quarter of the indices
i ∈ {1, . . . , 31}. This is a property of the secret keys we have not yet exploited and that is
not present in our equivalent keys in general. To address a hypothetical countermeasure
which would reject signatures of length surpassing a certain threshold, we discuss how we
can find equivalent keys that generate more compact signatures.

In this subsection, we briefly describe how to predict that ψ(xi) = xj for some
i, j ∈ {1, . . . , 32} and how to adapt Algorithm 1 to incorporate these predictions. Clearly,
the more pairs of indices i, j with ψ(xi) = xj we find for a solution ψ to Problem 1, the
shorter we can expect the resulting signatures to be in the standard basis.

We start with the following observation.

14 Breaking BASS

Lemma 4. Let P , ϕ(P) as defined in Eq. (3), and Si and Ti be the sets of Boolean tuples
where P and ϕ(P), respectively, evaluate to the same value i as defined in Theorem 1.
Further, define

Si,k,0 := Si ∩ {c ∈ {0, 1}n | ck = 0}, Ti,ℓ,0 := Ti ∩ {c ∈ {0, 1}n | cℓ = 0}.

If there exist k, ℓ ∈ {1, . . . , n} such that |Si,k,0| = |Ti,ℓ,0| for all i ∈ {0, 1, . . . ,m− 1}, then
there exist ψ0, ψ1 ∈ Aut(Bn−1) such that

ψ0(P |xk=0) = ϕ(P)|xℓ=0, ψ1(P |xk=1) = ϕ(P)|xℓ=1.

For ψ ∈ Aut(Bn) defined as

ψ(xk) = xℓ, ψ(xi) = (1− xℓ)ψ0(xi) + xℓψ1(xi), ∀i ̸= k,

we have ψ(P) = ϕ(P).
Conversely, if ψ ∈ Aut(Bn) such that ψ(P) = ϕ(P) and ψ(xk) = xℓ for some k, ℓ ∈

{1, . . . , n}, then |Si,k,0| = |Ti,ℓ,0| for all i ∈ {0, 1, . . . ,m− 1}.

The proof of Lemma 4 is located in Section A. The lemma allows us to split the
problem of finding ψ ∈ Aut(Bn) into two smaller problems where we have to find ψ0, ψ1 ∈
Aut(Bn−1). By iterating this process, we may find several indices in the standard basis
where ψ has a very simple image, i.e. i, j such that ψ(xi) = xj . For example, suppose that
when computing ψ0, ψ1, we have ψ0(xi) = xj = ψ1(xi). Then, by definition of ψ we have

ψ(xk) = xℓ

ψ(xi) = (1− xℓ)xj + xℓxj = xj .

That is ψ has two indices with simple images with respect to the standard basis. Note
that the secret automorphism of a signer ϕ has many simple images, thus by the reverse
direction we know that we can find ψ0, ψ1 that will satisfy the necessary condition of
the lemma. Yet, we may find false positives in the sense that the necessary condition of
Lemma 4 can be fulfilled even if ϕ(xk) ̸= xℓ for the secret automorphism ϕ.
Remark 4. Any automorphism which sends xk to xℓ can be obtained using the reverse
direction of Lemma 4. In other words, all automorphisms ψ ∈ Aut(Bn) with ψ(xk) = xℓ

can be obtained by merging solutions for ψ0, ψ1 ∈ Aut(Bn−1).
We implemented a variant of our attack which recursively finds a list of valid predictions

by computing and matching the sets Si,k,0 and Ti,k,0 from Lemma 4. When no further
predictions for simple images can be made, we call Algorithm 1 previously described.

Making r valid predictions breaks the problem of finding an equivalent private key ψ
into 2r smaller problems of size n− r. Each problem can be solved in time O(poly(n)2n−r).
The necessary predictions can be made in time O(poly(n)2n). Overall the time and memory
complexity thus remains at O(poly(n)2n). However, the automorphism found will have
more simple images with respect to the standard basis, making the resulting forgeries more
compact in the standard basis.

7 Conclusion
In this paper we describe multiple shortcomings of and attacks on the BASS signature
scheme by Grigoriev, Ilmer, Ovchinnikov and Shpilrain [GIOS24].

We explain two ways of generating trivial forgeries which pass the verification with
high probability for the proposed parameters. Generating these forgeries takes less time
than legitimately generating a signature. The attack could be prevented by changing the

S.-P. Merz, K. G. Paterson and A. Rodríguez García 15

parameters of the probabilistic signature verification. However, even under very optimistic
assumptions this would lead to a slowdown of roughly 100x of the signature verification.

Further, we give a key-only attack which recovers an equivalent private key from the
public key. The complexity of this attack is asymptotically the same as honestly running
the signature scheme.

Along the way, we contradict several claims by the authors of BASS. We show that
private keys are far from being (almost) unique, and we show that the scheme’s signature
verification leads to significantly more false negatives for the proposed parameters than
claimed.

Due to the numerous design flaws and significant security issues of BASS identified in
this paper, the signature scheme and in particular its probabilistic signature verification
appear not to be fit for use.

References
[GIOS24] Dima Grigoriev, Ilia Ilmer, Alexey Ovchinnikov, and Vladimir Shpilrain. BASS:

Boolean automorphisms signature scheme. In Mark Manulis, Diana Maimuţ,
and George Teşeleanu, editors, Innovative Security Solutions for Information
Technology and Communications, pages 1–12, Cham, 2024. Springer Nature
Switzerland. doi:10.1007/978-3-031-52947-4_1.

[Rod24] A. Rodríguez. Python implementation of attacks on BASS, 2024. URL: https:
//github.com/AlexRG03/BASS_attack.

A Proofs
Proof of Lemma 1: For (i) notice that any polynomial expressed in the standard basis
can be written as a polynomial in the orthogonal basis. Given c ∈ {0, 1}n, define
I1 := {i : ci = 1}, I0 := {i : ci = 0}. Then

bc =
∏
i∈I1

xi =
∏
i∈I1

xi

∏
j∈I0

[xj + (1− xj)] =
∑

c : ci=1 ∀i∈I1

ec.

Uniqueness will follow with the proof of (iii).
(ii) As c ̸= d, there exists an i ∈ {1, . . . , n} such that ci ̸= di. If ci = 0, then

ec = (1− xi) ·
∏
j ̸=i

x
cj

j (1− xj)1−cj .

If ci = 1, then
ec = xi ·

∏
j ̸=i

x
cj

j (1− xj)1−cj .

In both cases, evaluation at d is zero. Using the same notation, we have

ec · ed = (1− xi) · xi

∏
j ̸=i

x
cj

j (1− xj)1−cj ·
∏
j ̸=i

x
dj

j (1− xj)1−dj = 0,

where we used (1− xi)xi = xi − x2
i = 0. Finally, we have

ec(c) =
n∏

i=1
1 = 1

ec · ec =
n∏

i=1
x2ci

i (1− xi)2(1−ci) =
n∏

i=1
xci

i (1− xi)1−ci = ec

https://doi.org/10.1007/978-3-031-52947-4_1
https://github.com/AlexRG03/BASS_attack
https://github.com/AlexRG03/BASS_attack

16 Breaking BASS

using again that x2
i = xi.

(iii) From (i) we know that any polynomial A ∈ Bn can be written as

A =
∑

c∈{0,1}

Acec

for some integers Ac. Evaluating both sides at d ∈ {0, 1}n and using (ii), we obtain the
equality A(d) = Ad. Hence,

A =
∑

c∈{0,1}

A(c)ec

which is a unique expression.
(iv) Let ϕ ∈ Aut(Bn). By ϕ’s linearity and the previous results, we have

ϕ(ed) =
∑

c∈{0,1}n

ϕ(ed)(c)ec

ϕ(ed) · ϕ(ed) =
∑

c∈{0,1}n

ϕ(ed)(c)2ec

ϕ(ed) = ϕ(ed · ed) = ϕ(ed) · ϕ(ed)

In particular, we have ϕ(ed)(c) = ϕ(ed)(c)2, i.e. 0 or 1. Thus, we can write

ϕ(ed) =
∑

c∈Md

ec

for some non-empty subset Md. Note Md is non-empty as ϕ must have an inverse. For
d′ ∈ {0, 1}n, d′ ̸= d, we have

ϕ(ed) · ϕ(ed′) =
∑

c∈Md∩Md′

ec

ϕ(ed) · ϕ(ed′) = ϕ(ed · ed′) = ϕ(0) = 0,

i.e. Md ∩Md′ = ∅. Here, we used that the expression of a polynomial in base ec is unique
and the coefficients of the 0 polynomial are all zero. The 2n sets Md are contained in the
power set of {0, 1}n are all non-empty and disjoint and thus all must have size 1. Define
π such that Md = {π(d)}. We observe that π is a permutation. Further, ϕ(ed) = eπ(d),
which we wanted to prove.

(v) Let π be a permutation and define a morphism ϕ with

ϕ(xi) =
∑

c∈{0,1}n

ci=1

eπ(c).

We can verify that

ϕ(xi)(π(d)) =
∑

c∈{0,1}n

ci=1

eπ(c)(π(d)).

As π is a permutation and using (ii), we conclude that eπ(c)(π(d)) = ec(d). Therefore,

ϕ(xi)(π(d)) =
{

1 if di = 1,
0 if di = 0.

= di.

S.-P. Merz, K. G. Paterson and A. Rodríguez García 17

Then,

ϕ(ec) =
n∏

i=1
ϕ(xi)ci(1− ϕ(xi))1−ci .

Evaluating this expression at π(d), we have

ϕ(ec)(π(d)) =
{

1 if d = c,

0 otherwise
.

Using (iii), we get ϕ(ec) = eπ(c). Thus, ϕ is a morphism with the desired prop-
erty. Defining ϕ−1 analogously using the permutation π−1, we see that ϕ is indeed an
automorphism as it has an inverse.

Proof of Lemma 4: The existence of ψ0 and ψ1 follows by applying Theorem 1 on the
polynomials A := P |xk=0 and B := ϕ(P)|xℓ=0. The sets of Boolean tuples where A and
B evaluate to i are Si,k,0 and Ti,ℓ,0. Similarly, for A′ = P |xk=1 and B′ = ϕ(P)|xℓ=1, the
corresponding sets are Si \ Si,k,0 and Ti \ Ti,ℓ,0.

Note that ψ as defined in the lemma is a morphism as it extends linearly, and it is
an automorphism because ψ(ec) = eπ(c) for some permutation π. Next, we show that
ψ(P) = ϕ(P). Consider any c ∈ {0, 1}n. If cℓ = 0, we have

ψ(P)(c) = P (ψ(x1), . . . , ψ(xn))(c)
= P ((1− xℓ)ψ0(x1) + xℓψ1(x1), . . . , xℓ, . . . , (1− xℓ)ψ0(xn) + xℓψ1(xn))(c)
= P (ψ0(x1), . . . , 0, . . . , ψ0(xn))(c) = P (ψ0(x1), . . . , ψ0(xn))|xk=0(c)
= ψ0(P |xk=0)(c) = ϕ(P)|cℓ=0(c) = ϕ(P)(c).

Similarly, if cℓ = 1

ψ(P)(c) = P (ψ(x1), . . . , ψ(xn))(c)
= P ((1− xℓ)ψ0(x1) + xℓψ1(x1), . . . , xℓ, . . . , (1− xℓ)ψ0(xn) + xℓψ1(xn))(c)
= P (ψ1(x1), . . . , 1, . . . , ψ1(xn))(c) = P (ψ1(x1), . . . , ψ1(xn))|xk=1(c)
= ψ1(P |xk=1)(c) = ϕ(P)|cℓ=1(c) = ϕ(P)(c).

By (iii) of Lemma 1 and as ψ(P)(c) = ϕ(P)(c) for all c ∈ {0, 1}n, it follows that
ψ(P) = ϕ(P).

For the other direction of the proof, suppose there exists ψ ∈ Aut(Bn) such that
ψ(P) = ϕ(P) and ψ(xk) = xℓ for some k, ℓ ∈ {1, . . . , n}. Grouping terms in the orthogonal
basis, we obtain

P = xkp1 + (1− xk)p0

where p0 and p1 do not depend on xk. Evaluating on both sides we get p0 = P |xk=0 and
p1 = P |xk=1. Applying ψ to both sides, we get

ϕ(P) = ψ(P) = xℓψ(p1) + (1− xℓ)ψ(p0).

Evaluating on xℓ = 0, we get

ϕ(P)|xℓ=0 = ψ(p0)|xℓ=0.

We can define ψ0 by linear extension as ψ0(xi) = ψ(xi)|xℓ=0 for all i ̸= k, i.e. we have
ϕ(P)|xℓ=0 = ψ0(p0). In particular, ψ0 is an automorphism that maps P |xk=0 to ϕ(P)|xℓ=0
and thus |Si,k,0| = |Ti,ℓ,0| for all i ∈ {0, 1, . . . ,m− 1} by Theorem 1.

18 Breaking BASS

B Success probability of trivial attacks with alternative
verification

The following plots depict the success probability of our trivial attacks, where one signs
with the encoded hash of the message Q or the zero-polynomial, when the number of
zeroes (instead of the number of positive values) are counted during signature verification.
The public key and message pairs used are the same as used in the experiments to generate
Fig. 1.

0 2 4 6 8 10 12 14 16
Public key

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

Q
0

Signature

0.000
0.001
0.002
0.003

0.004

0.005

Variance

Probability of accepting a signature
Fixed public key, random message

0 5 10 15 20 25 30
Message

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

Q
0

Signature

0.000
0.002
0.004
0.006

0.008

Variance

Probability of accepting a signature
Fixed message, random public key

Figure 2: Given randomly chosen pairs of public key and message, we estimated the
probability of accepting Q or 0 as a valid signature for each pair. The probabilities were
approximated by running the verification algorithm 100 times for all (pk,m)-pairs, counting
how often the verification succeeded when the number of zeroes was compared. Mean and
variance of the probabilities are computed for all the pairs (pk,m) that share either the
public key (left) or the message (right).

	Introduction
	Notation
	The BASS signature scheme
	Correctness of the verification algorithm

	Space of equivalent private keys
	A sufficient condition for equivalent private keys
	Solutions to pro:problem as permutations

	Signing with trivial signatures
	Sufficiently good signatures
	Experimental observations

	Recovering and signing with equivalent private keys
	FIFO attack
	Further improvements of the attack

	Conclusion
	References
	Proofs
	Success probability of trivial attacks with alternative verification

