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Abstract. We investigate the side-channel security of ISAP against Algebraic Side-
Channel Attacks (ASCA) in a simulated setting where the Hamming weight leakages
of its intermediate computations can be recovered. For this purpose, we first describe
how these attacks, so far only used to target 8-bit implementations, can be applied
to 16-bit or 32-bit implementations. We then use ASCA to discuss the side-channel
security claims of ISAP’s re-keying, where a single bit of nonce is absorbed per
permutation call. Theoretically, this re-keying aims to ensure that attacking more
than one permutation call jointly does not improve over attacking the same number
of permutation calls independently. Yet, while this expectation is expected to be met
for ISAP’s conservative parameters (where permutation calls are made of 12 Ascon
rounds), the extent to which it does (not) hold for ISAP’s aggressive parameters
(where permutation calls are made of a single Ascon round) remains an open question.
We contribute to this question by showing that for 16-bit implementations, combining
the leakages of multiple permutation calls can improve over attacking the same
number of permutation calls independently, which contradicts ISAP’s (theoretical)
leakage-resistance claims. By contrast, for 32-bit leakages, we only show similar
weaknesses by guessing a large part of the target state (i.e., more than 128 bits),
which only impacts the initialization of ISAP’s re-keying and does not contradict its
security reduction. These results confirm that for hardware implementations with a
sufficient level of parallelism, ISAP’s aggressive parameters are probably sufficient,
but that for more serial (e.g., software) implementations, slightly more conservative
parameters, or the addition of implementation-level countermeasures, are needed.
Keywords: Algebraic Side-Channel Attacks (ASCA) · Lightweight Cryptography ·
ISAP · Authenticated Encryption · Re-keying · Leakage-Resistance

1 Introduction
1.1 State of the art
ISAP is a lightweight permutation-based authenticated encryption algorithm from ToSC
2017/2020 [DEM+17, DEM+20], which was finalist of the NIST lightweight cryptography
competition.1 It is designed to ease protection against side-channel attacks.

Informally, this simplified protection is obtained thanks to re-keying: ISAP first
generates a fresh key K∗ thanks to a permutation-based leakage-resilient PRF, which is
used to encrypt and authenticate with a sponge construction that also embeds a re-keying
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process. As a result, the (expensive) requirement of security against Differential Power
Analysis (DPA) of modes without leakage-resistance features is reduced to a (cheaper)
requirement of security against Simple Power Analysis (SPA) [BBC+20]. Precisely, ISAP
limits the adversary to the observation of two (resp., one) input state(s) per permutation
call for its re-keying part (resp., its encryption and authentication parts).

Formally, this reduction is the focus of three independent works [DJS19], [DM19],
[GPPS20]. All three works analyze ISAP in the ideal permutation model, under the addi-
tional (physical) assumption of oracle-free leakage function initially introduced in [YSPY10].
The latter is a convenient solution to avoid artificial “future computation attacks”, where
the execution of one permutation call leaks about following permutation calls. But the use
of idealized primitives is also questioning in the context of side-channel attacks, since the
very notion of leakage is inherently related to the definition of an implementation that ideal
permutations (or random oracles) do not have. So the level of independence between the
inputs and outputs of a leaking implementation that such an analysis requires is a strong
(in part physical) assumption which, to the best of our knowledge, has not been discussed
in the literature so far. Informally, ISAP’s theoretical leakage-resistance claims are made
explicit on page 14 of its specifications, which say: “given two consecutive permutations p
with leakages li and li+1, respectively, the maximum an adversary might learn about the
state is li + li+1”.2 Summing the leakage is possible because the proof assumes an adversary
cannot combine them otherwise than independently. Yet, and even without leakage, the
ideal permutation model that is needed for ensuring this independence is expected to be
approached when using ISAP’s conservative security parameters, where each permutation
(between the absorption of a bit) is made of 12 Ascon rounds [DEMS21], not when using
its aggressive parameters where a single Ascon round is used for this purpose.

Limiting the number of rounds in symmetric primitives up to the point where distin-
guishers exist but have no impact on the security of the modes using such (non-ideal)
primitives has become a standard approach in lightweight cryptography. For permutation-
based designs, it is captured by the difference between the so-called “hermetic sponge
strategy”, which targets the absence of distinguishers in an absolute sense (and therefore
simplifies the interpretation of the proofs), and more efficient non-hermetic designs, where
distinguishers on the underlying primitives are tolerated as long as they do not affect the
security of the mode [BDPA11]. In the case of ISAP’s re-keying with aggressive parameters,
instantiating an ideal permutation with a single round of Ascon’s permutation is obviously
far from hermetic, raising the question whether it can lead to concrete weaknesses.

To some extent, the authors of ISAP already hinted towards the affirmative. For
example, in the first (2017) version of their work, they say that in this case, “the side-
channel leakage between single permutation calls can clearly be combined” [DEM+17].
However, and again to the best of our knowledge, the impact of such combinations on the
gap between the aforementioned theoretical leakage-resistance of ISAP and its practical
side-channel security guarantees has not yet been analyzed in the literature.

1.2 Contribution
Concretely, a minimum security requirement for the ideal permutation model to make sense
is that a side-channel attack against two rounds of ISAP’s re-keying should not significantly
improve over two independent attacks against a single round. Or more generally, for a
number of Ascon permutation rounds r per permutation call in ISAP’s re-keying, it is
expected that the probability of success SR(2r) for twice the number of rounds is not
significantly better than 1−

(
1− SR(r)

)2. Analyzing such a requirement is non-trivial due
to the limitation of ISAP’s attack surface to SPAs, which puts strong constraints on the

2 https://isap.iaik.tugraz.at/files/isapv20.pdf
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exploitation of the side-channel information. As a result, and as an admittedly theoretical
first step in this direction, we analyze the application of Algebraic Side-Channel Attacks
(ASCA) [RS09, RSV09] in a simulated setting where the adversary is assumed to obtain
standard leakages such as noise-free Hamming weights from her implementation.

Our first (technical) contribution in this direction is to describe how to efficiently
encode Hamming weight leakages for intermediate computations of up to 32 bits (while
previously published ASCA results were limited to 8-bit leakages).

We then use this contribution to analyze ISAP’s re-keying against side-channel ad-
versaries able to observe 8-bit, 16-bit and 32-bit Hamming weights. We do that for
2κr-bounded attacks, where the adversary can combine the leakage collected for r Ascon
rounds, with an absorption of κ bits between each round. By computing the probability
of success for different number of rounds, we observe that one round may not be enough
for ISAP’s (theoretical) leakage-resistance claims to hold in software implementations. In
particular, for attacks using 16-bit leakages, we show successful state recoveries against
r = 2 rounds that beat the 1−

(
1− SR(r = 1)

)2 barrier with practical complexity for the
main (nonce absorption) steps of ISAP’s re-keying. By contrast, for attacks using 32-bit
leakages, we can only show similar results by guessing a large proportion of the secret state
(i.e., more than 128 bits). Those results may still have impact to attack the re-keying’s
initialization phase (where 192 bits are public out of 320) but they do not contradict ISAP’s
security reduction, since this initialization uses 12 Ascon rounds and the improvement
of multi-round attacks we show only holds for less rounds. So the 32-bit results rather
show a context where the level of leakage is just too high for this (initialization) part of
the implementation. For completeness, we also show results of a “noise-tolerant” version
of ASCA, introduced in [RSV09] and further elaborated in [ZWG+11], which we apply
to 8-bit Hamming weight leakages. They provide another example where “one round of
Ascon is not enough” for ISAP’s theoretical leakage-resistance claims to hold.

We note that these analysis are inherently heuristic: they are based on combining
guessing (for a part of the state) and ASCA running with bounded time. While the impact
of guessing is easy to predict, the running time of ASCA is much harder to anticipate.
Despite this heuristic nature, our results lead to the important conceptual reminder that
leakage-resistance assumptions can be both algorithm-dependent and implementation-
dependent. We further discuss the impact of these results for ISAP in conclusions.

We also note that our results apply nearly identically to the variant of ISAP using
Keccak’s rounds in place of Ascon’s rounds. The only difference is that (without special
care) Keccak’s baseline implementation leverages 16-bit words whereas Ascon’s baseline
implementation is based on (harder to exploit) 32-bit words [BBC+20, KPP20].

1.3 Related works
In the recent literature, ASCA have essentially been superseded by Soft Analytical Side-
Channel Attacks (SASCA) [VGS14], which have a better tolerance to noise. For example,
[KPP20], [BBC+20], [YK21] and the recent [CDSU23] consider single-trace SASCA against
unprotected implementations of Keccak and Ascon. However, all of them fail to provide
non-negligible success rates against a 32-bit implementation of ISAP’s re-keying, for which
a large proportion of the permutation state has to be recovered. More precisely, [VGS14]
and [BBC+20] are only conclusive for small (8-bit and 16-bit) implementations. As
for [KPP20], [YK21] and [CDSU23], which target the 32-bit case, the two first references
marginalize the distributions on small chunks (hence loose information) to limit the
attacks’ computational cost and the three of them struggle to recover 319 bits out of
the 320 ISAP state bits. As a result, ASCA re-appears as an interesting first step that
may better deal with the combination of large target intermediate variables and large
proportions of permutation states to recover, allowing an admittedly theoretical discussion
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of ISAP’s leakage-resistance assumptions. It also suggests investigating whether improved
noise-tolerant strategies can make our conclusions more concrete as an open problem.

2 Background
2.1 ISAP authenticated encryption
ISAP is an authenticated encryption algorithm designed for improved side-channel security
without strong expertise. The core component enabling this goal is the re-keying scheme
of Figure 1, which can be viewed as a permutation-based leakage-resilient PRF [BSH+14].
After an initialization phase that mixes a 128-bit long-term key K with a 192-bit (constant)
IV, it absorbs a 128-bit nonce Y bit by bit (so that the capacity κ = 1 on the figure and
we call PB , w = 128 times) in order to produce a fresh key K∗.

K‖IV 320 pK
c

⊕κ

Y1

pB

⊕

Yw

c

pB
c

pK

κ

K∗

Initialization Re-keying Squeeze

Figure 1: ISAP’s re-keying function.

The primary instance of ISAP, on which we focus in this work, is using the Ascon
permutation, which essentially alternates a bitslice S-box layer ρS and a linear layer ρL on
a (5× 64) = 320-bit state, as represented in Figure 2. It also includes a constant addition
layer ρC that we do not illustrate. This instance comes with two sets of parameters. A
conservative one where the number of Ascon rounds in pB equals 12 and an aggressive
ones, on which we focus, where the number of Ascon rounds in pB is reduced to 1.

x0 = x0 ⊕ (x0 >>> 19)⊕ (x0 >>> 28)
x1 = x1 ⊕ (x1 >>> 61)⊕ (x1 >>> 39)
x2 = x2 ⊕ (x2 >>> 1)⊕ (x2 >>> 6)
x3 = x3 ⊕ (x3 >>> 10)⊕ (x3 >>> 17)
x4 = x4 ⊕ (x4 >>> 7)⊕ (x4 >>> 41)

Figure 2: Ascon’s permutation: S-box (left) and linear (right) layers.

2.2 Algebraic side-channel attacks
ASCA are a type of horizontal side-channel attack first introduced in the context of block
ciphers [RS09, RSV09]. Their core idea is to represent the target implementation as a
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system of equations. Side-channel information is then added to the system in order to help
its resolution. Once the system is described as a Boolean SATisfiability problem (SAT),
an off-the-shelf solver can be used to try finding a solution. Such an attack is analytical
since contrary to divide-and-conquer attacks, it can (at least theoretically) leverage the
leakage of all the intermediate computations of a block cipher implementation.

Originally, ASCA were presented to break word-oriented implementations of the AES
and other block ciphers. When considering such implementations, one of the main challenge
is the S-box representation. Indeed, the compactness of the representation (i.e., its number
of clauses, number of variables per clause, and number of variables) was shown to have a
hard-to-characterize impact on the solver performances. This challenge turns out to be
less difficult in the context of permutation-based cryptography, which encourages bitslice
implementations allowing a more straightforward correspondence between the algorithm’s
specifications and its implementation (which typically happens for ISAP).

As mentioned in introduction, one of the main drawback of ASCA is that they require
error-free information, whereas actual side-channel attacks generally provide statistical
information. This is a reason why ASCA were gradually superseded by SASCA. Yet, since
the re-keying of ISAP only limits the number of different inputs on which a permutation is
run and does not prevent the adversary to average out the noise, this limitation is less
critical in our context. As a natural starting point, we will therefore assume an adversary
who can measure the Hamming weight of the target intermediate computations. We
nevertheless show in Sections 3.5 and 4.2 that mild amounts of noise can be tolerated with
a SAT-based approach, leading to a tradeoff between the level of noise and the size of the
target implementations’s variables, which both decrease the leakage’s informativeness.

As for the precise solver we used, in 2021 a crypto track was present in the SAT
competition: different solvers had to find a solution for different problems in cryptography
(e.g., proof of work, preimage computation, prime testing, quadratic residue computation,
fault attacks against PRESENT, LED or the AES). Since the results of the competition
do not suggest a clear winner, we decided to use CryptoMiniSat that is often among the
best solvers in SAT competitions and has special treatment for XOR clauses, which is a
significant advantage when considering symmetric key cryptography problem.3

3 Algebraic representation
We now present the choice of representation for the system of equations representing the
Ascon permutation and the Hamming weight leakages that we use in our experiments.

3.1 1-bounded representation
In this setting, we assume an adversary who can observe a single execution of ISAP’s
re-keying function with a nonce set to zero, which prevents her to learn anything from the
absorption (since Hamming weight of the state is the same before and after the absorption).
It is conceptually similar to the ASCA in the context of block cipher implementations:
the goal of the adversary is to recover the internal state (in place of the key). The only
difference is that the secret part of the permutation state can be larger than the size of the
secret key. In Figure 3, we schematize the different rounds’ states we consider. Since in
that case no absorption is performed at the end of each round, we have only one possible
state (which should be compared to the more complex Figure 4 in Subsection 3.2).

For the description of the operations ρC , ρS , ρL, we use the Tseytin transform on
the Boolean operations [Tse83]. It gives a CNF that grows linearly with the size of the

3 https://github.com/msoos/cryptominisat.
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1st round ρC , ρS , ρL

ρC , ρS , ρL
2nd round

3rd round

Figure 3: Rounds’ states representation for 1-bounded attack.

underlying circuit, by adding variables to the representation for the output of each gate.
These variables will also be used to give side-channel information in Section 3.4.

More precisely, and in order to transform an arbitrary combinatorial logic formula, ψ,
into one of its CNF representations, a natural approach is to utilize De Morgan’s laws.
However, employing this strategy will result in an exponential increase in the number and
size of the clauses, rendering the formula incompatible with SAT solvers.

To circumvent this exponential growth, Tseytin proposed a general method for con-
structing a CNF representation of a formula with a linear number of clauses that are small
(i.e., contain few variables per clause) but require additional variables (namely, a number
that is linear with the number of gates needed to represent the initial formula).

For illustration, consider the formula ψ = (a ∧ b)⊕ c. First, we look at the two-input
AND gate. For the variables a and b, we introduce an additional variable d that verifies d =
AND(a, b). The resulting formula is as follows: γ = (¬a∨¬b∨d)∧(a∨¬d)∧(b∨¬d), and ψ =
d⊕c∧((¬a∨¬b∨d)∧(a∨¬d)∧(b∨¬d)). Next, we can write d⊕c with the variable e = d⊕c,
(¬e∨¬d∨¬c)∧(¬e∨d∨c)∧(e∨¬d∨c)∧(e∨d∨¬c) and we obtain a CNF representation of
ψ = (¬e∨¬d∨¬c)∧(¬e∨d∨c)∧(e∨¬d∨c)∧(e∨d∨¬c)∧((¬a∨¬b∨d)∧(a∨¬d)∧(b∨¬d)). In
general, the Tseytin transformation introduces such an additional variable for the output c
of every gate G in ψ. The description of such elementary gates is then directly transformed
into a CNF representation γ through the use of De Morgan’s law. And eventually, all
instances of the gate G are replaced by the additional variables c.

ASCON has a simple description and can be implemented with three gates: XOR,
NOT (for constant addition), and NIMP (for the non-linear part) that inverts one input.
We give the CNF description we use of these three gates in Table 1. We represent constant
additions thanks to NOT gates instead of describing them with XOR gates, in order to
reduce the number of clauses. We use the NIMP representation in order to reduce the size
of the system, and note that no information can be obtained from the Hamming weight
leakages collected for the NOT of a word (since if we know the Hamming weight w of a
fixed length l word, the not of this word has Hamming weight l − w).

Note that the use of a bitslice representation allows having an efficient and compact
representation of the cipher. This contrasts with previous applications of ASCA where the
S-boxes’ table look-up representation was a bottleneck for efficient representation.

Table 1: CNF representation of the building gate of ASCON.

Name Formula CNF
XOR c = a⊕ b (¬c ∨ ¬a ∨ ¬b) ∧ (¬c ∨ a ∨ b) ∧ (c ∨ ¬a ∨ b) ∧ (c ∨ a ∨ ¬b)
NOT c = ¬a (¬c ∨ ¬a) ∧ (c ∨ a)
NIMP c = a ∧ ¬b (¬c ∨ ¬b) ∧ (¬c ∨ a) ∧ (c ∨ ¬a ∨ b)

Looking at the implementation of one permutation, we can infer the number of opera-
tions needed (i.e., the number of additional variables) in Table 2, and deduce the number
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of clauses. In total, we have 6472 clauses and 1732 additional variables per permutation
call. We recall that the constant for the permutation calls has Hamming weight 4.

Table 2: Building gates per layer of the permutation.

XOR NOT NIMP
ρS 64× 11 64× 1 64× 5
ρC 0 HW(cst) 0
ρL 64×10 0 0

3.2 2r-bounded representation
In this setting, we assume an adversary who can observe executions of ISAP’s re-keying
for different strings Y . The strings differ on the first bit, allowing her to exploit a 1-bit
difference for each call to PB. That means the internal state is identical before the first
permutation call, but we have 2 different internal states for the first round (not fully
different since diffusion is not complete) and 2r ones for the rth round.

We can see that the size of the system (i.e., its number of clauses and variables) grows
exponentially with the number of permutation calls. In order to limit this size, we keep
the same representation until the string Y considered differs (e.g., for the first round we
have only 2 systems and not 2r systems). Besides, a naive representation would rewrite a
complete subsystem for each string Y considered. We rather use the tree-based structure
of Figure 4, dividing the system into 2 subsystems if we add a permutation call.

Absorb, ρC , ρS , ρLρC , ρS , ρL1st round

2nd round

3rd round

Figure 4: Rounds’ states representation for 2r-bounded attack.

For the rest, we use the same representation as for the 1-bounded case presented in
Section 3.1. The nonce absorption is included into the system with a NOT when the
string bit is 1. We give numbers for the system size depending on the number of rounds
considered in Table 3. For comparison, the system corresponding to 4 permutation calls in
the 1-bounded case would be composed of 6928 additional variables and 25888 clauses.

Table 3: Equation systems for 2r-bounded attacks.

21 22 23 24

Our representation
# Variables 3465 10 395 24 255 51 975
# Clauses 12 946 38 838 90 622 194 190

Basic representation
# Variables 3465 13 860 55 440 221 760
# Clauses 12 946 51 784 207 136 816 544
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Table 4: Equation systems for 2κr-bounded attacks.

r = 1 2 3
κ = 2

# Variables 6932 34 660 138 640
# Clauses 25 892 129 460 543 732

κ = 3
# Variables 13 867 124 803 -
# Clauses 51 784 466 056 -

3.3 2κr-bounded representation
In this last setting, we consider a slight modification of ISAP’s re-keying, where the
absorption can be done with κ > 1 bits (i.e., a rate that can be more than one in Figure 1).
Hence, the different strings Y can differ on κ bits, which means that the internal state is
identical before the first permutation call, but we have 2κ different internal states for the
first round (not fully different since diffusion is not complete) and 2κr ones for the rth
round. Table 4 reports how the system size increases when κ and r grow.

3.4 Hamming weight encodings
Without additional information, the previous systems of equations are hard to solve.
But in the side-channel context, the adversary is provided with (e.g., Hamming weight)
leakages on the intermediate computations. One important question in this respect is the
representation of such additional information. The basic representation of the Hamming
weight that has been considered so far in the literature would list all possibles words of
fixed Hamming weight in a Disjunctive Normal Form (DNF) and all impossible words in
another DNF, before applying a transformation from DNF to CNF. The representation
can alternatively be found by listing all words of Hamming weight + 1 and encoding in
CNF that all these words should have a variable at 0, which will set an upper bound for
the Hamming weight (with a lower bound that can be set similarly). Yet, these approaches
need to enumerate all candidates, which is possible for the Hamming weight of small words
(e.g., less or equal to 8 bits) but does not scale up for larger ones observed in practice.

The improved solution we follow in this work is to combine a circuit representation of the
Hamming weights with the Tseytin transformation to derive a CNF representation. If the
circuit is linear in the size of the word, then we can have a representation that grows linearly
with this size. For example, Sinz proposed to represent the Hamming weight computation
with (sequential and parallel) counters and derives the formula accordingly [Sin05]. We
use the sequential counter representation with a close number of apparitions for each value
(since solvers generally try to affect a value to the variable that appears the most, having
a bias in the representation of the Hamming weight of a word may be counterproductive).
Using such an encoding, the number of clauses and variables to represent a Hamming
weight is in O(w · h), where w is the size of word and k the hamming weight considered.
In the basic case it would be O

((
w
h

))
. We recall the equations we use for adding Hamming

weight information into the system in Algorithm 1. We denote by (a1, . . . , an) the leaking
word and k its hamming weight. We use bi,j to denote the additional variables and each line
corresponds to a new clause. The number of clauses and additional variables is dependent
both on the size of the word and the Hamming weight guessed. The algorithm gives clauses
for an upper bound on the Hamming weight. The variant using a lower bound uses the
same formula but with (¬a1, . . . ,¬an) and a Hamming weight n− k.

As a result, the solution proposed allows us to have shorter clauses than in previous
works like [RSV09] at the cost of additional intermediate variables. This is overall a good
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Algorithm 1 Clause construction for Hamming weight upper bound.
Require: (a1, . . . , an) a word of size n and an upper bound hamming weight k.
Ensure: A CNF clauses.

1: clauses← ¬a1 ∨ b1,1
2: for 1 < j ≤ k do
3: clauses← clauses ∧¬b1,j

4: for 1 < j < n do
5: clauses← clauses∧¬ai ∨ bi,1
6: clauses← clauses∧¬bi−1,1 ∨ bi,1
7: for 1 < j < k do
8: clauses← clauses∧¬ai ∨ ¬bi−1,j−1 ∨ bi,j

9: clauses← clauses∧¬bi−1,j ∨ bi,j

10: clauses← clauses ∧¬ai ∨ bi−1,k

11: clauses← clauses ∧¬an ∨ bn−1,k

tradeoff since it saves DNF to CNF transformation which were the main source for the
unrealistic increase of the number of variables when the size of the Hamming weights
exploited in an attack increases (e.g., from 8 bits to 16 or 32 bits as we consider next).

3.5 Noise-tolerant encodings

An important, and already recognized, drawback of ASCA is its need of accurate leakages.
Indeed, if an adversary extracts erroneous side-channel information and incorporates it into
her system of equations, it is likely that the system will become inconsistent. Consequently,
the SAT solver will either return UNSAT (which is predominantly the case for block
ciphers when information is available for the plaintext and the ciphertext) or SAT with
an incorrect guess for the secret. As mentioned in introduction, this is an issue that has
been tackled in the literature but that hardly scales with large target intermediate values.
Besides SASCA, which offers a natural way to capture noise in analytical attacks, other
solutions addressed the possibility of imperfect (e.g., Hamming weight) leakage recovery
by rewriting the problem with a different representation. A typical example is to use
pseudo-Boolean optimization [OKPW10, ORSW12], which capture possibly erroneous
leakages by encoding a lower and an upper bound on their observed value. Quite naturally
such an approach can also be exploited with SAT-based ASCA. The resulting “set-ASCA”
was for example introduced in [RSV09] and further elaborated in [ZWG+11].

In the following, and despite our main technical result is to show a feasibility result for
exploiting the leakage of large target intermediate variables with ASCA, we use set-ASCA
to show that our conclusions regarding the number of Ascon rounds needed for ISAP’s
leakage-resistance claims to hold is not specific to perfect (noise-free) leakages. Quite
naturally, such a noise-tolerance (and the reduction of information it implies) has a cost
and we only exhibit attacks with (easier-to-exploit) 8-bit leakages in this case.

4 Simulated experiments
In this section, we report results for 2κr-bounded attacks (for various κ and r values),
both in the noise-free Hamming weight leakage case and with a mild amount of noise. We
ran our experiment on a computing cluster equipped with AMD EPYC 7F72 processors,
running at 3.2 GHz, each experiment is run on 6 cores with 1G of RAM memory.
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4.1 Noise-free 2κr-bounded attacks
For all experiments, we set a solving time limit of 60 minutes (also monitoring intermediate
results for 15 and 30 minutes) and we use CryptoMiniSat v5.8.0. We consider 2 different
word sizes: 16-bit and 32-bit. (We ran experiments with 8-bit leakages but all attacks
trivially succeed in this case). For these 16-bit and 32-bit cases, we additionally consider
that a part of the state is guessed, which implies that the solving should be reproduced for
each guess for the attack to succeed in practice. Concretely, we always give the correct
guess for the state in our experiments. Yet, we note that, in general, giving a bad guess
for the state allows to get an UNSAT from the SAT solver much faster. Our results are
given in Tables 5 to 9. Each success rate is estimated over 100 independent attacks. For
reproducibility, we put the source code of our experiments on an anonymized Git.4

Table 5: Success rates of 2κr-bounded attacks with 16-bit leakage and 32-bit state guess.

κ 0 1
time (min) 15 30 60 15 30 60

1 round 0 0 0 0 0 0
2 rounds 0 0 0 0.07 0.15 0.27
3 rounds 0 0.01 0.01 0.01 0.01 0.02

κ 2 3
time (min) 15 30 60 15 30 60

1 round 0.01 0.02 0.02 0.06 0.11 0.16
2 rounds 0.16 0.34 0.49 0.04 0.1 0.19
3 rounds 0 0 0 0 0 0

Table 6: Success rates of 2κr-bounded attacks with 16-bit leakage and 64-bit state guess.

κ 0 1
time (min) 15 30 60 15 30 60

1 round 0 0 0 0.06 0.09 0.13
2 rounds 0.01 0.05 0.08 0.64 0.81 0.93
3 rounds 0 0.04 0.07 0.16 0.21 0.33

κ 2 3
time (min) 15 30 60 15 30 60

1 round 0.18 0.23 0.28 0.48 0.52 0.55
2 rounds 0.82 0.96 1 0.6 0.67 0.74
3 rounds 0 0 0 0 0 0

Starting with preliminary observations, we see that increasing the adversary’s time
complexity, by giving her more SAT solving time or larger key guesses, always improves the
success rate. By contrast, this is not the case when we provide this adversary with more
information by increasing r or κ. This is because increasing these parameters increases the
size of the systems to solve (as discussed in the previous section). As a result, it can (and
does) happen that for a given SAT solving time bound, the additional information of larger
systems cannot be exploited. Unsurprisingly, increasing the rate (i.e., κ) nevertheless has a
stronger (positive) impact on the attacks’ success, since it increases the amount of leakage
exponentially (vs. only linearly when increasing the number of rounds r).

4 https://anonymous.4open.science/r/ASCA-ISAP-COSADE-F34A.

https://anonymous.4open.science/r/ASCA-ISAP-COSADE-F34A
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Table 7: Success rates of 2κr-bounded attacks with 32-bit leakage and 160-bit state guess.

κ 0 1
time (min) 15 30 60 15 30 60

1 round 0 0 0 0 0 0
2 rounds 0 0 0 0.02 0.11 0.27
3 rounds 0 0 0 0 0.01 0.08

κ 2 3
time (min) 15 30 60 15 30 60

1 round 0.02 0.02 0.05 0 0.02 0.07
2 rounds 0.01 0.04 0.21 0 0 0.04
3 rounds 0 0 0.02 0 0 0

Table 8: Success rates of 2κr-bounded attacks with 32-bit leakage and 192-bit state guess.

κ 0 1
time (min) 15 30 60 15 30 60

1 round 0.13 0.17 0.22 0.13 0.2 0.34
2 rounds 0.41 0.53 0.6 0.22 0.45 0.76
3 rounds 0.33 0.46 0.6 0.14 0.27 0.45

κ 2 3
time (min) 15 30 60 15 30 60

1 round 0.3 0.43 0.46 0.13 0.39 0.63
2 rounds 0.18 0.41 0.77 0.03 0.11 0.36
3 rounds 0.07 0.21 0.38 0 0.01 0.06

Despite this limitation, Tables 5 and 6 exhibit clear cases of attacks with 16-bit leakage
where moving from a 1-round attack to a 2-round attack leads to improvements of the
success rate that beat the SR(2r) ≈ 1−

(
1− SR(r)

)2 barrier, with only a small part of the
target state to guess (e.g., 32 or 64 bits out of 320, which is below 128 bits and concretely
reachable). As a typical illustration, we can mention the success rates in the first two
lines of Table 6 for the κ = 1 case which exactly corresponds to ISAP with aggressive
security parameters. For example with 60 minutes, 1− (1− 0.13)2 = 0.24 is significantly
less than 0.93. So such results show that in the context of software implementations giving
rise to 16-bit Hamming weight leakages, the theoretical leakage-resistance guarantees
of ISAP do not apply because the independence assumption on which they rely is too
significantly contradicted. Concretely, it implies that the security of the full ISAP cannot
always be claimed by ensuring the security of its individual blocks, as its security reduction
conveniently shows. Importantly (and annoyingly), this can theoretically happen even if
each of these individual blocks are SPA-secure when analyzed independently. It is likely
that such examples could be showed with larger number of rounds by better balancing the
(hard to predict) SAT solving time and the key guesses – which we did not do because the
current experiments already correspond to hundreds of hours of computation.

Interestingly, the situation quite significantly differs with 32-bit leakages, as reported
in Tables 7 to 9. Here, much larger parts of the state must be guessed to obtain similar
results, and ISAP’s security reduction is not contradicted. More precisely, our results still
show that the initialization phase of ISAP’s re-keying (see Figure 1) could be the target of
an ASCA, since a much smaller fraction of the state is secret in this case (i.e., 128 bits
out of 320, meaning 192 bits are public). Yet, this initialization uses 12 rounds which is
likely enough to ensure that SR(2r) ≈ 1 −

(
1 − SR(r)

)2. These results match the ones
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Table 9: Success rates of 2κr-bounded attacks with 32-bit leakage and 224-bit state guess.

κ 0 1
time (min) 15 30 60 15 30 60

1 round 0.92 0.93 0.93 0.94 0.94 0.95
2 rounds 1 1 1 0.98 1 1
3 rounds 1 1 1 0.94 0.98 1

κ 2 3
time (min) 15 30 60 15 30 60

1 round 0.95 0.95 0.95 0.92 0.95 0.95
2 rounds 0.92 1 1 0.6 0.87 0.98
3 rounds 0.86 0.97 0.99 0.45 0.71 0.87

Table 10: Success rates of 2κr-bounded attacks with 8-bit noisy leakage (64-bit state guess).

κ 0 1
time (min) 15 30 60 15 30 60

1 round 0.02 0.02 0.02 0 0 0.5
2 rounds 0.99 0.995 1 0.985 0.995 1
3 rounds 0.605 0.635 0.695 0.68 0.705 0.745

κ 2 3
time (min) 15 30 60 15 30 60

1 round 0.065 0.065 0.065 0.55 0.55 0.55
2 rounds 1 1 1 1 1 1
3 rounds 0.26 0.335 0.42 0.36 0.7 0.895

in [CDSU23], which show a SASCA against a software implementation in this case.

4.2 Noisy 8-bit leakage
As already mentioned, all ASCA with perfect 8-bit Hamming weight leakages trivially
succeed (with probability one). This is not the case anymore in case of noisy Hamming
weight leakages. For illustration, we ran set-ASCA with a set corresponding to the two
most likely Hamming weights for each leakage sample, with a (mild) noise variance of
0.1 for which all the pairs of Hamming weights of our target system are recovered with
probability 0.9. The results of this final experiment are reported in Table 10. They lead
to essentially similar conclusions as in the previous sections: a single Ascon round is not
enough in this case, since exploiting two rounds of leakage jointly is significantly more
effective than targeting them independently, and targeting three rounds does not improve
the attacks’ success rates, presumably due to computational constraints.

5 Conclusions
The leakage security of ISAP depends on two conditions: (i) SPA security for each iteration
of the permutation (formally, bounded leakage), which is clearly emphasized by the ISAP
designers, and (ii) that these SPA secure blocks cannot be attacked jointly more efficiently
than independently (formally, the ideal permutation and oracle-free leakage assumptions),
which is less explicitly discussed. We show that this second condition is not implied by the
first one. It implies consequences from the design and evaluation viewpoints.

From the side-channel security evaluation viewpoint, it means that the use of aggressive
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security parameters in a leakage-resilient re-keying scheme leads to the need to question
the number of rounds that must be evaluated jointly. We showed that for 16-bit leakages,
attacking several rounds of ISAP’s re-keying jointly may be the best strategy. Hence,
slightly increasing the number of Ascon rounds in the re-keying’s permutation calls could
be worth to step back in the convenient situation where only 1-bounded attacks must
be evaluated, so that side-channel security evaluators avoid the hassle of combining the
leakage corresponding to different inputs over multiple rounds with 2κr-bounded SPA. For
32-bit leakages, such a weakness did not show up in our simulated experiments.

From the design viewpoint, improvements can be considered at the algorithmic or
implementation level. At the algorithmic level, increasing the number of rounds in ISAP’s
permutations can also contribute to ensure the aforementioned condition (ii), but it
cannot help to ensure condition (i). At the implementation level, our results confirm that
exploiting the leakage of large parallel implementations with SPA is difficult. Hence, using
countermeasures like shuffling that aim to emulate such implementations in software is a
natural option [UBS21], which should contribute to solve problems (i) and (ii) at once.

So overall, increasing the number of rounds in ISAP’s permutation calls appears
as desirable mostly from the evaluation viewpoint. Combined with a large parallel
implementation, it should directly lead to strong security guarantees against leakage. As
for more serial implementations, our results rather suggest the addition of implementation-
level countermeasures like shuffling in order to limit the level of SPA leakage.

We finally note that our heuristic results only put forward that one round may not
be enough for ISAP’s theoretical claims of leakage-resistance to hold. As usual with non-
hermetic design strategies, this does not give any lower bound on the number of rounds
that would be needed to prevent attacks taking advantage of the independence flaw we
exhibit. For example, using two rounds between each bit absorption seems hard to attack
jointly more effectively than independently with the tools considered in this work. But this
may be due to a suboptimal attack strategy. Investigating alternative attack strategies
able to exploit more rounds of leakage efficiently, ideally in a more noise-tolerant manner,
is therefore an interesting scope for further research. A theoretical characterization of the
number of rounds needed to get rid of any distinguishers with leakage (i.e., a generalization
of the hermetic design strategy with leakage) would be interesting as well.
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