
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 40 pages.

https://doi.org/10.62056/ah5w7ta5v
Check for updates

Unsupervised Horizontal Attacks against
Public-Key Primitives with DCCA

- From Deep Canonical Correlation Analysis
to Deep Collision Correlation Attacks -

Dorian Llavata1,2, Eleonora Cagli1, Rémi Eyraud2, Vincent Grosso2 and
Lilian Bossuet2

1 Univ. Grenoble Alpes, F-38000, Grenoble, France, CEA, LETI, MINATEC Campus, F-38054
Grenoble, France.

2 Univ. Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Lab. Hubert
Curien UMR 5516, F-42023, SAINT-ETIENNE, France.

Abstract. In order to protect against side-channel attacks, masking countermeasure
is widely considered. Its application on asymmetric cryptographic algorithms, such
as RSA implementations, rendered multiple traces aggregation inefficient and led to
the development of single trace horizontal attacks. Among these horizontal attacks
proposed in the literature, many are based on the use of clustering techniques or
statistical distinguishers to identify operand collisions. These attacks can be difficult to
implement in practice, as they often require advanced trace pre-processing, including
the selection of points of interest, a step that is particularly complex to perform in a
non-profiling context. In recent years, numerous studies have shown the effectiveness
of deep learning in security evaluation for conducting side-channel attacks. However,
few attentions have been given to its application in asymmetric cryptography and
horizontal attack scenarios. Additionally, the majority of deep learning attacks tend
to focus on profiling attacks, which involve a supervised learning phase. In this paper,
we propose a new non-profiling horizontal attack using an unsupervised deep learning
method called Deep Canonical Correlation Analysis. In this approach, we propose to
use a siamese neural network to maximize the correlation between pairs of modular
operation traces through canonical correlation analysis, projecting them into a highly
correlated latent space that is more suitable for identifying operand collisions. Several
experimental results, on simulated traces and a protected RSA implementation with
up-to-date countermeasures, show how our proposal outperformed state-of-the-art
attacks despite being simpler to implement. This suggests that the use of deep
learning can be impactful for security evaluators, even in a non-profiling context and
in a fully unsupervised way.
Keywords: Horizontal Collision Side-Channel Attacks · Single Trace Attacks ·
Non-Profiling Attacks · RSA · Exponentiation · Unsupervised Deep Learning

1 Introduction
General context. Nowadays, side-channel attacks (SCA) are recognized as a critical
attack vector, representing a serious security threat. This type of attack can allow an
attacker or security evaluator to compromise the security of a cryptographic device, even if

E-mail: dorian.llavata@cea.fr (Dorian Llavata), eleonora.cagli@cea.fr (Eleonora Cagli),
remi.eyraud@univ-st-etienne.fr (Rémi Eyraud), vincent.grosso@univ-st-etienne.fr (Vincent
Grosso), lilian.bossuet@univ-st-etienne.fr (Lilian Bossuet)

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-13 Accepted: 2025-03-11

https://doi.org/10.62056/ah5w7ta5v
https://crossmark.crossref.org/dialog/?doi=10.62056/ah5w7ta5v&domain=pdf&date_stamp=2025-03-31
mailto:dorian.llavata@cea.fr
mailto:eleonora.cagli@cea.fr
mailto:remi.eyraud@univ-st-etienne.fr
mailto:vincent.grosso@univ-st-etienne.fr
mailto:lilian.bossuet@univ-st-etienne.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

the embedded cryptographic protocols are robust against theoretical cryptanalysis. Indeed,
the implementation of these cryptographic protocols on embedded devices, such as smart
cards, can lead to physical leakages during their execution. An in-depth analysis of these
side-channel leakages (sometimes called traces), such as power consumption [KJJ99] or
electromagnetic emissions [GMO01], can allow a security evaluator to retrieve sensitive
information from the implementation.

One of the most powerful types of SCA is the profiling attack (e.g. template attacks
[CRR03]), involving a scenario in which the evaluator has full control over a clone device,
which he can use to perform a fine characterization of the leakages through a supervised
manner. If this scenario is not available, the evaluator should consider a non-profiling attack,
that is, any attack that does not require a leakage characterization through supervised
manner. In SCA, we can also distinguish two attack modus operandi [BJPW13]. One
is vertical attack, which exploits multiple traces leakage from several executions of the
implementation (by varying the inputs) and use statistical tools to aggregate and extract
the information [KJJ99, BCO04]. The other is horizontal attack, which thoroughly exploits
information of a single trace (divided into several parts) from a single execution of the
implementation [Wal01].

In RSA-based protocols, modular exponentiation is the most common critical operation
targeted by a key recovery side-channel attack. Nowadays, modern implementations of
RSA cryptosystems in embedded devices incorporate countermeasures to vertical attacks,
thus numerous works have investigated the application of horizontal attacks. These include
horizontal collision attacks [Wal01, CFG+10, CFG+12] which exploit the leakage from the
manipulation of the same operand in two computationally expensive operations (e.g. long
integer multiplications) as well as horizontal clustering attacks [HIM+13, SHKS15, PC15]
which exploit the leakage from directly bit-dependent operations (e.g. the bit reading
itself). This type of attacks, while highly effective, can be extremely complex to implement
in practice. Indeed, they require the acquisition of additional internal information, such as
detailed knowledge of the implementation of modular multiplication. In addition, horizontal
attacks suffer from the same constraints as vertical attacks (e.g. noise, dimension, points
of interest selection), but to an even greater extent due to the need to find the secret
exponent using a single exponentiation trace.

Since the last decade, deep learning techniques have been widely used to perform
profiling SCA, proving their effectiveness in both vertical [MPP16, CDP17, BPS+20,
ZBHV19] and horizontal contexts [CCC+19, ZBHV21, SKF+22, BCM+22]. More recently,
non-profiling vertical attacks using deep learning, known as Differential Deep Learning
Attacks and Collision Deep Learning Attacks, have begun to emerge as a popular research
direction [Tim19, DLH+22, SM23]. In these works, even in absence of profiling, deep
learning is used in a supervised way and several traces may be used jointly to gain
information about the target. These two properties make these works very different from
the approach proposed in the present paper. Concerning the horizontal side and the
single trace attack context, few studies have investigated the interest of unsupervised deep
learning. To the best of our knowledge, only two papers propose the use of unsupervised
deep learning to perform horizontal clustering attacks [PCBP21, LHK22]. On balance, both
of these works are relevant, however, they may be difficult to implement in realistic attack
scenarios, where the acquired traces are highly noisy and extensive, while containing few
points of interest. In addition, if there is no leakage from directly bit-dependent operations,
these attacks cannot be trivially implemented. Consequently, in most real-world scenarios,
only horizontal collision attacks are available.

Contributions. In this paper, we propose a non-profiling horizontal collision attack on
a binary Square-and-Multiply Always RSA implementation, using an unsupervised deep
learning method called Deep Canonical Correlation Analysis. Our approach, introduces

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 3

the use of a siamese neural network to extract common features from pairs of modular
operation traces. To the best of our knowledge it is the first time that siamese neural
network are used for non-profiling horizontal collision attacks.

We take advantage of properties of siamese neural network that maximize the correlation
in a latent space, i.e. a space of smaller dimension that project important information and
try to discard non informative data. In this way, the modular operation traces are put
into a latent space where operand collisions are more easily distinguishable, enabling more
efficient collision correlation attacks. Our approach allows us to be more robust to noise
than classical technique of the literature.

Our theoretical approach is validated thanks to a broad experimental exploration of
this approach, in simulation and against real traces measured from a device, to assess the
soundness of such a technique in non-profiling contexts and to highlight its advantages
and inconvenients. In our experiments, we first provide results on simulated traces,
demonstrating the benefit of the proposed attack, the DCCA, in distinguishing the presence
of collisions between operands compared to state-of-the-art methods. Our proposed attack
simplifies the trace pre-processing and leakage characterization phases, making it possible
to attack high-dimensional noisy traces without the need to select Points Of Interest
(POIs). Our approach requires that traces are properly cut into sub-traces and realigned.
To the best of our knowledge, all unsupervised horizontal attacks in the literature operate
under this assumption.

Then, we assess the benefits of our proposed attack from a closer point of view to a
real evaluation on the protected RSA implementation introduced in [CCC+19]. While
state-of-the-art correlation collision attacks reach an accuracy of 96.21%, our attack reaches
an accuracy of 99.33%, reducing significantly the remaining brute-force complexity required
by the evaluator to recover the erroneous bits. Notably, our proposed attack enables key
recovery with feasible remaining complexity in a realistic scenario for potential adversaries,
making it a major security flaw. Thus, we believe that the practicability of our DCCA
attack can turn potential vulnerabilities into exploitable ones, raising serious security
concerns and the need for dedicated countermeasures against horizontal attacks. Moreover,
our DCCA attack yields results close to the supervised one reported in [CCC+19], whereas
the one we propose works in a completely unsupervised way. In this way, we considerably
reduce the gap between supervised and unsupervised attacks in the context of horizontal
collision attacks.

In this paper, we present a case study of an operand collision attack against a binary
Square-and-Multiply Always RSA implementation. As our attack uses a single expo-
nentiation trace, classical exponent masking countermeasure is automatically ineffective.
However, our attack scheme is inherent to this type of exponentiation and is therefore
ineffective against other exponentiation approaches such as the Montgomery Ladder or
Windowed exponentiation, which operate on fundamentally different principles that do
not present the same operand collision vulnerabilities. Nevertheless, our attack can be
effectively extended to elliptic curve cryptography (ECC), as long as the implementation
is based on similar algorithms, such as the Double-and-Add Always method. We also
believe that the siamese DCCA model approach, which consists in seeking for a highly
correlated trace representation that improves collision detection, could be generalized to
other cryptographic contexts involving horizontal collision vulnerabilities, although its
adaptability may require adjustments to align with the specific properties of the targeted
implementation.

Paper organization. The paper is organized as follows. Section 2 provides background
about RSA embedded implementations, horizontal attacks, neural networks and deep
canonical correlation analysis. Section 3 presents our deep collision correlation attack and
explains how to implement it efficiently. Section 4 presents our experiment settings, in

4 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

particular the datasets used along with the attack baselines and the evaluation metrics
considered. Section 5 validates the benefits of our proposed attack through experimental
results. Section 6 discuss about results. Section 7 reports a brief investigation of hyperpa-
rameterization in order to deduce some general properties for DCCA model design. Finally,
Section 8 and Section 9 discuss about applicability to other implementations and future
research directions.

2 Preliminaries

2.1 Notations
In this paper, we use the calligraphic letter, e.g. X to denote sets. The uppercase letter X
(resp. Xi when an indexation is needed) to denote random variables and the corresponding
lowercase letter x (resp. xi) to denote their realizations. Vectors and matrices are denoted
with bold uppercase letters X. The SCA traces are considered as realizations of a random
vector X ∈ Rd, where d defines the dimension of each trace. The i-th entry of a vector X
(resp. x) is denoted by X[i] (resp. x[i]). We denote the non-linear mapping implemented
by a deep neural network model as F (X, θ), where θ represents the vector of learnable
parameters of the model (including weights and biases).

Our attack exploits a single trace of the exponentiation, called the exponentiation trace,
but we chop this trace into sub-traces corresponding to modular operations. We call these
sub-traces modular operation trace.

2.2 RSA Embedded Implementations
RSA is an asymmetric cryptographic primitive, widely adopted in smart cards and em-
bedded systems. Other algorithms such as DSA, ECDH and ECDSA, based on modular
exponentiation or scalar multiplication, are also commonly used. All these algorithms
exploit underlying modular operations of long integers. The RSA algorithm, in particular,
is based on modular exponentiation of very large integers, typically 1 024, 2 048 or 4 096
bits. Such exponentiation can be easily performed on an ordinary workstation, but is very
computationally expensive for smart cards and other embedded devices. From a practical
point of view, the RSA exponentiation is subject to many attacks if straightforwardly
implemented. The basic implementation of binary RSA exponentiation, called Square-and-
Multiply, works by sequentially scanning the secret exponent bits and performing a modular
square operation followed by conditional modular multiplication which is performed only
when the corresponding exponent bit is equal to 1. This type of exponentiation is partic-
ularly vulnerable to SCA, which aim to distinguish a difference in behavior on modular
operation traces when an exponent bit is a 0 or a 1.

Most of the exponentiation algorithms use a Long Integer Multiplication (LIM) algo-
rithm to perform long integer multiplication by repeatedly calling an internal multiplier
operating on t-bit words. The Schoolbook method (depicted in Algorithm 2) represents the
most straightforward way to realize a long integer multiplication. Let x and y be long inte-
gers of the same size and their respective decompositions are x = (x[l−1], x[l−2], · · · , x[0])b

and y = (y[l − 1], y[l − 2], · · · , y[0])b in base b = 2t with l = ⌈logb(x)⌉. The product x× y
is performed by the algorithm with a nested-loop structure and performs l2 inner-products
on t-bit integers x[i] × y[j]. Thus, this algorithm gives l2 intermediate results on 2t-bits.
Other more advanced LIM algorithms may also be used such as Comba [Com90], Karatsuba
[Kar63], and Montgomery multiplication [Mon85]. For a detailed analysis of the different
LIM, the reader may refer to [RMH17].

Nowadays, modern implementations of RSA incorporate some countermeasures to
prevent SCA, that act at two different levels. The masking of the modulus, of the

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 5

Algorithm 1: Square-and-
Multiply Always

Input: m, n ∈ N, m < n,
d = (d[k − 1], d[k − 2], · · · , d[0])2
Output: md mod n

1 R0 ← 1
2 R1 ← 1
3 for i = k − 1 to 0 do

// Square R1 ×R1
4 R1 ← LIM(R1, R1) mod n

// Multiply R1 ×m
5 Rdi

← LIM(R1, m) mod n

6 end
7 return R1

Algorithm 2: Schoolbook
Long Integer Multiplication (LIM)

Input: x, y
x = (x[l − 1], x[l − 2], · · · , x[0])b

y = (y[l − 1], y[l − 2], · · · , y[0])b

Output: x× y = w
= (w[2l − 1], w[2l − 2], · · · , w[0])b

1 w ← (00 · · · 0)
2 for i = 0 to l − 1 do
3 c← 0
4 for j = 0 to l − 1 do
5 (uv)b ← w[i+j]+x[i]×y[j]+c
6 w[i + j]← v
7 c← u

8 end
9 w[i + l]← c

10 end
11 return w

message and of the exponents [Cor99] acts directly on sensitive data and has as effect the
randomization of the intermediate values handled during the exponentiation. In this way,
it is effective against multiple trace attacks. Countermeasures that act at the operation
level consist in the choice of regular and/or atomic exponentiation algorithms, and aim at
protecting the implementation against single trace attacks. Common example of this type
of regular exponentiation with constant operation sequences is the Square-and-Multiply
Always with the addition of dummy multiplications (depicted in Algorithm 1) [Cor99].
This exponentiation always performs squaring and multiplication operations, regardless of
bit values. For this purpose, when the current bit is 0 (line 5 of Algorithm 1 when di = 0),
a dummy multiplication is performed and stored in a register dedicated to dummy values
(R0), which does not impact the exponentiation flow stored in the valid register (R1).
This ensures a consistent operation sequence and side-channel leakage. Other algorithms
may also be used such as the Montgomery Ladder [JY03], or the atomic exponentiation
Multiply Always which uses the same function for both modular operations [CCJ04].

In the rest of the paper we will consider implementation using masking of the modulus,
the message and the exponent as protection for the implementation, the exponentiation
use Square-and-Multiply Always method with a same atomic operation for both squaring
and multiplication, thus, the result patterns display the same processing time.

2.3 Horizontal Attacks
Horizontal attacks are constrained to exploit a single exponentiation trace, due to exponent
masking, which makes the key ephemeral and prevents multi-trace attacks. Hence, horizon-
tal attacks need to extract as much information as possible from the exponentiation trace.
To achieve this, most of the horizontal attacks aim to exploit the leakages at modular
level rather than at exponentiation level. In other words, the evaluator is looking for finer
granularity in the leakage analysis, coming from each t-bit words multiplication of the LIM,
in order to obtain much more information from a single exponentiation. One common
strategy in horizontal attacks is the search for collisions. This type of attack employs an
analogous methodology to the chosen-message collision attack [FV03, HMA+08]. Instead
of looking for collisions between two related executions of exponentiation, the horizontal
collision attack aims to determine whether or not two distinct modular operations per-

6 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

formed at different times during the same execution share common operands. It must be
noted that chosen-message collision attacks are not effective in presence of countermeasures
such as message randomization, while the horizontal collision attacks can be.

Attack scheme for the Square-and-Multiply Always implementation. This
exponentiation (depicted in Algorithm 1) always performs squaring and multiplication
operations, regardless of bit values. For this purpose, when the current bit is 0 (line
5 of Algorithm 1 when di = 0), a dummy multiplication is performed and stored in a
register dedicated to dummy values (R0), which does not impact the exponentiation flow
stored in the valid register (R1). Although this implementation is regular and protects
against numerous side-channel attacks, a horizontal collision attack may allow to identify
dummy multiplications and infer secret key bits. Indeed, despite the presence of dummy
multiplications, the content of R1 will not be modified during the multiplication operation
when the exponent bit di is equal to 0. Thus, for the processing of the next exponent bit
di−1, the algorithm will manipulate the same value of R1 during the square operation. A
potential collision occurs between one operand of the multiplication operations Mdi and
one operand of the consecutive square operations Sdi−1 . By detecting these collisions, the
evaluator can infer all bits of the secret exponent except the last one. In the context of a
profiling attack, Carbone et al. [CCC+19] realized this attack scheme with a deep learning
technique against an RSA implementation running on a certified arithmetic co-processor
and equipped with full masking countermeasures i.e., masking of the message, masking
of the exponent and masking of the modulus, we refer the reader to [CCC+19] for more
details.

The limitation of the profiling scenario is that the evaluator must have in his possession
a clone under evaluation, which the evaluator must be able to control fully. Indeed, if
the device contains an exponent masking countermeasure, the evaluator must be able to
turn it off in order to perform his profiling phase. In other words, the evaluator must
know/choose the random values used during their executions. This is generally not the
case in practice, as these values are generated in a protected manner and are inaccessible
(even in many evaluation contexts). Consequently, in most real-world scenarios, only
non-profiling horizontal attacks are available.

Non-Profiling Horizontal Attacks. In the non-profiling scenario, Walter presents the
first horizontal collision attack with the Big Mac attack [Wal01]. This attack performs
a signal pre-processing by averaging modular operation traces according to one of the
long integer multiplication operands. This pre-processing improves collision detection
and makes it easier to distinguish between square and multiplication operations from a
single exponentiation trace. Clavier et al. [CFG+10] extend this work with the so-called
horizontal correlation analysis, which exploits correlations between intermediate values
and leakage traces (assuming knowledge of the message). Subsequent works have proposed
other horizontal collision attacks [CFG+12, BJPW13, PZS17]. An alternative to collision
is the use of clustering techniques, e.g. K-means, that have been studied for horizontal
attacks. In these studies, the aim is to directly attack the secret key bits by automatically
detecting patterns in the modular operation traces [HIM+13, PITM14, SHKS15, PC15].
Recently, iterative deep learning frameworks have emerged to simplify or redress horizontal
clustering attacks. Perin et al. [PCBP21] proposed an iterative deep learning framework
to perform wrong bits correction after an unsupervised horizontal clustering attack on
a protected ECC implementation. Subsequently, Lee et al. [LHK22] proposed another
horizontal clustering attack framework on the same implementation based on one-shot
learning and a convolutional siamese neural network for iterative identification of points
of interest. On balance, both of these works are relevant, however, they may be difficult
to implement in realistic attack scenarios, where the acquired traces are highly noisy

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 7

and extensive, while containing few points of interest. In addition, if there is no leakage
from directly bit-dependent operations, these attacks cannot be trivially implemented.
Consequently, in most real-world scenarios, only horizontal collision attacks are available.

Rise of Collision Attacks on Square-and-Multiply Always. In the case of an attack
on a Square-and-Multiply Always implementation with dummy multiplications, some works
have proposed horizontal collision attacks using the cross-correlation of modular operations.
Witteman et al. [WvM11] are the first to propose the use of correlation to exploit the
collision of operands between two consecutive operations (multiply, square). However,
their attack requires several exponentiation traces to work. This attack was generalized
to use a single exponentiation trace by Hanley et al. [HKT15], and then improved by
Sugawara et al. [SSS15] with the integration of the Big Mac signal pre-processing which
we describe below.

Let M = R1×m be a modular multiplication and let S = R1×R1 be the following
modular squaring operation in Algorithm 1. Both include long integer multiplication in the
form X × Y and their partial products x[i]× y[j] (line 5 of Algorithm 2). The leakage of
each x[i]× y[j] is denoted by ti,j . To highlight the left-hand operand and improve collision
detection, the modular operation trace is compressed into l-dimensional vectors tx such
that:

tx[i] = 1
l

l−1∑
j=0

ti,j . (1)

The averaged trace tx = [tx[0], . . . , tx[l − 1]] is the concatenation of each compressed
segments traces. The averaged traces of multiplication and squaring operations denoted
by tx and t′

x are compared with correlation distinguisher (as depicted in Figure 1). The
correlation coefficient is assumed to be high if there are collisions.

Figure 1: Collision correlation attack with Big Mac pre-processing between a multiply
modular operation M and its consecutive square modular operation S.

Non-Profiling Horizontal Attacks in Practice. Horizontal attacks are theoretically
effective approaches, but their implementation remains a major issue, particularly in
non-profiling contexts. They require advanced trace pre-processing, involving careful
leakage assessment. Indeed, an accurate extraction of points of interest is necessary, as
a high proportion of non-informative points can compromise the success of most of the
above-mentioned attacks. In particular, the feasibility of a horizontal collision attack,
which exploits leakage information from LIM multiplier, depends heavily on the assumption

8 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

that the evaluator is able to extract these leakages from a raw trace. For this purpose, the
evaluator must have specific informations, such as detailed knowledge of the implementation
of modular multiplication. Furthermore, even with this knowledge, performing this analysis
in a non-profiling context is challenging, as the leakage assessment techniques traditionally
used, such as SNR/TVLA, cannot generally be applied in a non-profiling context.

In the specific case of Square-and-Multiply Always exponentiation scheme (e.g., RSA-
1024), a tricky unsupervised approach may be used. In such an exponentiation, there
are 1023 pairs of consecutive multiplication and square operations. Roughly half of them
are colliding and there are also numerous pairs that we know not to be colliding, those
that are not consecutive. Hence, comparing these two sets offers a potential strategy for
identifying POIs. For that, an evaluator could compute the time-sample wise absolute
difference between the modular operation trace of each multiplication and their respective
consecutive squares, denoted as |Mdi

− Sdi−1 |, assuming they have the same number of
samples. Then, classical leakage assessment tools such as SNR/TVLA may be applied
between this set, labelled e.g. by 1, and a set of absolute difference of non-consecutive
operation modular traces, labelled e.g. by 0. Even if roughly a half of the data labelled by
1 is wrongly labelled, if the leakage is strong enough this should give the POIs. However,
this strategy is not trivially applicable in a real-world scenario, with low leakage due to
noise. Indeed, if leakage is not sufficiently high, the leakage assessment is likely to be
strongly impacted by the erroneous pseudo-labeling.1

In another way, Sugawara et al. [SSS15] performed unsupervised leakage assessment
using a correlation matrix obtained by applying Witteman et al. collision correlation
attack [WvM11]. However, the authors had to disable the masking countermeasure in
order to exploit many exponentiation traces. In practice, this requirement is only satisfied
if the same co-processor for exponentiation is used for other purposes without exponent
masking. For example, in encryption or signature verification operations where no secret is
involved. When such a scenario is not feasible, unsupervised selection of points of interest
is currently mainly performed by projecting the modular operation traces into a lower-
dimensional subspace using linear transformations such as Principal Component Analysis
(PCA) [SHKS15] or univariate analysis with heuristic algorithms [PITM14]. Applying
these methods to highly dimensional data is also a challenge. As a result, these methods
may not be applicable in realistic attack scenarios, as the typical length of a modular
operation trace is often very high. In addition, the presence of high noise and the low
proportion of points of interest considerably reduces their effectiveness. Consequently, in
certain experimental situations, existing horizontal attacks may not be applicable.

2.4 Neural Networks and Siamese Architecture
In the field of deep learning, we can distinguish two kinds of learning tasks: classification
and verification. The first one consists in assigning a label or class to a given observation,
while the second one consists in determining whether or not two observations belong to the
same class. Let us assume a profiling scenario where an evaluator has acquired a training
set of traces such that for each trace X ∈ Rd we have the correct associated label Z ∈ Z
(e.g. the value of the target variable handled during the acquisition). These two tasks can
be expressed as:

• Classification scenario: if the evaluator wishes to classify some side-channel traces
xi in order to associate to each of them a label zi, classical neural networks, such as
feedforward neural networks, are perfectly suited to handle this classification problem
[BPS+20].

1In this work, we explore a strategy that does not depend on POI selection. Studying the practical
implementation of this unsupervised leakage assessment on real devices is left for future works.

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 9

• Verification scenario: if the evaluator is looking to associate for some pairs of traces
(xi, xj) a label zi,j ∈ {0, 1} that indicates whether or not xi and xj belong to a
same class, a siamese neural network is specifically designed to handle this task.
In comparison with classification, which can be extremely complex for an attack
scenario involving a large number of classes, verification removes this complexity by
focusing on the comparison of two traces to determine whether or not they belong to
the same class, making it more scalable for some attack scenarios involving a large
number of classes.

Neural Network. The non-linear mapping implemented by a deep neural network model
can be represented as a function F (X, θ) : Rd → R|Z| where X is the trace input, and θ
denotes a set of trainable parameters. These parameters are usually initialized with small
random values and are iteratively tuned during the training phase to minimize a defined loss
function L based on the desired output Z of the training set. In deep learning, a common
optimization method is Stochastic Gradient Descent (SGD) with backpropagation algorithm
[GBC16], enabling the network to progressively optimize its parameters and enhance its
performance. There are various neural network architectures, the most commonly used
to date in SCA are MultiLayer Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs). Notably, CNNs are particularly effective for feature extraction in side-channel
contexts, due to their translation invariance property, which is beneficial when dealing
with desynchronized traces [CDP17]. For a detailed description of the MLPs and CNNs
models and how they work in SCA context, the reader may refer to [BPS+20].

Siamese Neural Network. The architecture of a siamese neural network is specifically
designed to compare two inputs [BC93]. It consists in evaluating in parallel two instances
of the neural network F by passing it two inputs X1, X2 through two distinct branches.
The outputs of these branches represent the latent spaces (sometimes called embeddings)
of the two instances, and the role of the network is to extract class discriminative features
from these two latent spaces. Indeed, their two outputs F (X1, θ) and F (X2, θ) are
interpreted as new representations of the two inputs and a distance function D is applied
to them. Such a function is assumed to show a somehow small output when applied to
representations of two class-colliding inputs, and a somehow large output when applied
to representations of two non-class-colliding inputs. The output of the distance function
D(F (X1, θ), F (X2, θ)) is used to compute a loss function L that must be minimized
during the training phase. The trainable parameters θ of the two network instances are
constrained to be the same, to ensure that both network branches learn similar features
in a common latent space. Various distance and loss functions have been proposed in
the literature, a commonly used approach being contrastive loss and euclidean distance
[CHL05]. For some applications of such models in SCA context, the reader may refer to
[MBPK22, LHK22, LLO24]. Modern siamese architectures are often composed of two main
blocks: a feature extraction block, typically involving convolutional layers for their strong
ability to efficiently capture spatial information, and a projector block, usually consisting
of dense layers to project the data into a fully connected latent space. A classification
head may potentially be added onto the projector to perform the contrastive task.

Behind Convolution lies Cross-correlation. The convolution operation is very
similar to the cross-correlation [LHRB16]. Both slide a kernel window through an input
by computing a weighted combination with the kernel values. The two operations mainly
differ because the convolution flips the kernel along all spatial dimensions before computing
the weighted combination while the cross-correlation does not. Here are the equations for
a basic example of cross-correlation (⋆) and convolution (∗) side-by-side for h-size signal S

10 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

and kernel K:

G = S ⋆ K : G[i] =
h∑

u=0
S[i + u]K[u],

G = S ∗K : G[i] =
h∑

u=0
S[i− u]K[u].

(2)

When using the well-known convolutional layers in a deep learning model, the kernel
weights are trainable parameters learned during the training process. Thus, these layers
operations may be interpreted as both convolutions or cross-correlations. Interestingly, the
commonly used TensorFlow2 and Pytorch3 deep learning libraries are implemented using
cross-correlation for efficient implementation. Since the kernel parameters in a siamese
CNN model are shared for both inputs, the learning process consists in finding the kernel
parameters such that cross-correlation on both inputs minimizes the learning objective.
This strong relationship between convolution and cross-correlation makes a siamese CNN a
well-suited tool for performing correlation collision attacks, assuming that we can properly
control the learning of the kernel parameters. In this work, we propose unsupervised
parameter learning using a canonical correlation loss as objective function, as it will be
detailed in next section.

2.5 Deep Canonical Correlation Analysis
In this section, we begin with a brief introduction to the canonical correlation analysis
(CCA), then we provide details of the deep learning extension known as deep canonical
correlation analysis (DCCA). In particular, we provide a detailed description of the
canonical correlation loss used to train the DCCA models. Finally, we explain how we
use these tools to extract the maximally correlated latent spaces from pairs of modular
operation traces.

Basics of Canonical Correlation Analysis. The CCA [Ket71] is a multivariate sta-
tistical technique used to project two sets of variables into a common latent space that
maximizes their correlation through linear combinations called canonical variates. CCA is
often used in the field of multi-view learning, which aims to exploit information from multi-
ple data sources (sometimes called views) to improve model performances. In this context,
CCA can notably help to combine information from heterogeneous sources (e.g. text, audio
and video [SSSL20]) by projecting them into a common latent space which is as correlated as
possible, in order to obtain a more complete and accurate representation of a given problem.

Let X1 ∈ Rd1 and X2 ∈ Rd2 denote random vectors. CCA aims to find pairs of linear
combinations from the two vectors, (W ∗

1 X1, W ∗
2 X2), such that the resultant projections

are maximally correlated:

(W ∗
1 , W ∗

2) = argmaxW1,W2Corr
(

W1
T X1, W2

T X2

)
,

= argmaxW1,W2

W1
T Σ12W2√

W1T Σ11W1W2T Σ22W2
,

(3)

where (Σ11, Σ22) and Σ12 are the covariance and cross-covariance matrices, and
(W1 ∈ Rd1 , W2 ∈ Rd2) are the pairs of canonical directions. Several solutions exist
to solve the problem. One of the methods proposed by Martin and Maes [MM79] performs

2https://www.tensorflow.org/api_docs/python/tf/nn/convolution
3https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

https://www.tensorflow.org/api_docs/python/tf/nn/convolution
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 11

singular value decomposition (SVD) on a matrix T = Σ−1/2
11 Σ12Σ−1/2

22 .

Classical CCA is limited due to its ability to discover only linear relationships between
two views. To overcome this limitation, various non-linear extensions of CCA have been
introduced, including Kernel CCA [LF00] and Deep CCA [AABL13].

Deep Canonical Correlation Analysis. The DCCA, is a non-linear extension of canon-
ical correlation analysis using neural networks [AABL13], which has grown in popularity
due to its ability to handle complex non-linear relationships, as opposed to traditional
CCA. The use of neural networks provides also a particular flexibility to address the
problem of high-dimensional CCA computation, which is an open issue in the literature
[SXW+23]. DCCA has been explored in various feature learning applications, including
image and text matching [YM15] and cross-modal subspace clustering [GLWS20]. A DCCA
model conjointly trains two distinct neural networks with the aim of finding non-linear
transformations that maximize the correlation of the two latent spaces. For this purpose,
each input is passed through a neural network (encoder) and a canonical correlation
analysis is performed on their outputs.

Let X1 ∈ Rd1 and X2 ∈ Rd2 denote two random vectors. X1 and X2 are passed as
inputs to deep encoders, and we obtain the latent representations F1(X1, θ1) ∈ Ro and
F2(X2, θ2) ∈ Ro, where o is the output dimension of the encoders and θ1, θ2 are their
corresponding parameters. The objective of a DCCA architecture is to determine the
parameters of the two encoders such that:

(θ∗
1 , θ∗

2) = argmax(θ1,θ2) Corr
(

F1(X1, θ1), F2(X2, θ2)
)

. (4)

To find (θ∗
1 , θ∗

2), one estimates the correlation objective from the training data according
to the Andrew et al. calculation method [AABL13]. Let Z1 and Z2 be the representation
matrices produced by the two encoders for n training data.

Z1 =
(

F1(x1,1, θ1), · · · , F1(x1,n, θ1)
)
∈ Ro×n

Z2 =
(

F2(x2,1, θ2), · · · , F2(x2,n, θ2)
)
∈ Ro×n (5)

In the seminal work, Andrew et al. [AABL13] uses full-batch gradient descent to train
the model. In this way n is set to the size of the training set. Subsequent works
[JYP17, QLL18, SSSL20] proved that stochastic gradient descent can also be used, whereby
n refers to the size of a mini-batch.

Let (Σ11, Σ22) and Σ12 be the covariance and cross-covariance matrices. When the
dimensionality of the features d1 (or d2) is high, the covariance matrix Σ11 (or Σ22) may
be singular, making the optimization problem underdetermined. To address this issue, the
covariance matrices can be regularized [DBDM03] and Z1, Z2 are centralized beforehand:

Σ̂11 = 1
n− 1 Z̄1Z̄1

T + r1I, Σ̂22 = 1
n− 1 Z̄2Z̄2

T + r2I, Σ̂12 = 1
n− 1 Z̄1Z̄2

T ,

with Z̄1 = Z1 −
1

n− 1Z11, Z̄2 = Z2 −
1

n− 1Z21,

(6)

where r1 > 0 and r2 > 0 are regularization constants that must be set to relatively small
values,4 I and 1 are respectively the identity matrix and an all-1 matrix of dimension n×n.

4The official implementation of the mvlearn library fixes both constants to 1e−3.

12 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

The total correlation of Z1 and Z2 can be calculated by the sum of the top k singular
values of the matrix T = Σ̂

−1/2
11 Σ̂12Σ̂

−1/2
22 . If we consider the case of k = o, the correlation

is exactly the matrix trace norm of T :

(θ∗
1 , θ∗

2) = argmax
√

tr(T T T), (7)

where tr(.) is the trace function of the matrix.
The final optimization goal for DCCA loss is:

LDCCA = −min
√

tr(T T T). (8)

In this work, we consider stochastic gradient descent and the backpropagation algorithm.
In this way, a random mini-batch of n pairs of training modular operation traces is fed
forward to the DCCA model, enabling us to calculate Z1 and Z2 and the correlation
matrix T , to adjust the encoders parameters according to the aforementioned objective.5

3 Deep Collision Correlation Attack
In this section, we first present the attack concept and the underlying intuitions that led
to its design. Then, we describe the different implementation steps from a more practical
point of view.

3.1 Attack Motivation
Inspired by the profiling deep learning attack on operand manipulation present in [CCC+19],
and the design of traditional horizontal collision attacks such as the Big Mac [Wal01], we
have developed a deep collision correlation attack performed by an unsupervised neural
network. In this approach, we propose to train a DCCA model to maximize the correlation
between pairs of modular operation traces through canonical correlation analysis (as
depicted in Figure 2), projecting them into a highly correlated latent space that is more
suitable for identifying operand collisions. We modified the DCCA approach by using a
siamese architecture. This choice results from the fact that in our targeted implementation,
squares are not optimized and are performed as multiplications (to avoid trivial simple
power analysis). This leads squares and multiplications execution to be enough similar to
bring to indistinguishable patterns with the same processing time. Therefore, unlike the
traditional method, which aims to combine data of heterogeneous natures (e.g. audio/video
[SSSL20] or image/text [YM15]) and requires architectures adapted to each type of input,
our approach uses a single architecture adapted to both inputs.

The use of a siamese architecture introduces an additional regularization constraint,
as the trainable parameters θ of the two network instances are constrained to be the
same. This ensures that both network branches learn similar features in a common latent
space, facilitating the correlation objective while providing a commutative function. Note
that, in our collision attack, both inputs correspond to the same exponentiation operation,
hence the leakage are similar, and the use of the same parameters for both inputs should
enhance the latent representation. In this way, the latent representation assigned to a
modular operation input trace remains the same, regardless of which network branch it was
given as input. Therefore, the correlation between the two latent spaces remains the same
regardless of the order of the modular operation input traces. As a result, our siamese
DCCA model seeks to determine network parameters such that:

θ∗ = argmaxθ Corr
(

F (X1, θ), F (X2, θ)
)

. (9)

5We provide in Appendix A a TensorFlow implementation of the DCCA loss as well as a skeleton
algorithm that instantiates a siamese DCCA model and performs the deep collision attack.

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 13

Figure 2: Deep Collision Correlation Attack with siamese DCCA model.

The application of this constraint of weights sharing results in the search for a single
transformation for both modular operation input traces that maximizes their correlation.
Such a constrained canonical correlation analysis using a single transformation has already
been suggested in the literature under the name of common canonical variates [NF95].

Our proposal is based on the assumption that the presence of operand collisions should
enhance the ability of the DCCA model to maximize the correlation of the two modular
operation traces. Consequently, we expect latent spaces to be more strongly correlated if
modular operations share some operands. This would make collision correlation attacks
more effective. For the sake of clarity, we hereafter refer to the siamese DCCA neural
network as the DCCA model and to our collision correlation attack performed on the
correlated latent space as the DCCA attack.

3.2 Attack in Practice
Unsupervised neural networks training can be a difficult process, due mostly to the impact
of random weights initialization. In order to address this issue and optimize our DCCA
attack, we may need to train the DCCA model several times, using different random
weights initializations. This process allows us to explore different starting points in the
parameter space, increasing the chances of finding an initial configuration suitable for
convergence towards latent representations favorable to the detection of collisions. As a
result, the practical implementation of our attack may involve several steps, which we
describe below.

Step 1. Correlation on DCCA model latent space. In this work, we consider a
collision correlation attack on a regular Square-and-Multiply Always implementation. We
follow the attack scheme described in Section 2.3. Therefore, we use a siamese DCCA
model to maximize the latent space correlation of all pairs of modular operation traces (one
multiplication and one squaring) that potentially contain collisions. Some pairs contain
collisions while others do not, but in our unsupervised setting, we do not have access to
the class’s information during the learning phase. The DCCA loss function does not take
any labeling into account.

Once all pairs of latent spaces (M̂ = F (X1, θ), Ŝ = F (X2, θ) ∈ Ro) have been
obtained, we compute their correlation using the Pearson correlation (obtaining a cloud of
correlation values, as it is depicted later in Figure 5).

ρ(M̂ , Ŝ) =
∑o

i=1(m[i]− m̄)(s[i]− s̄)√∑o
i=1(m[i]− m̄)2

√∑o
i=1(s[i]− s̄)2

(10)

14 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

Step 2. Collision threshold identification. A threshold must be selected to determine
the presence of operand collisions (i.e. assign colors in Figure 5). When attacking a regular
algorithm with a random secret exponent, it is often assumed that the distribution of null
and non-null bits is balanced. In this respect, some approaches have suggested dividing
the correlation coefficients into upper and lower halves, using a median [SSS15]. However,
even if the bit distribution is balanced, it is very unlikely that the number of 0 and 1
bits are strictly identical,6 so that using the median would inject errors in the threshold
placement. Therefore, to propose a more generalizable solution, we decided to identify the
collision/no-collision correlation threshold using a clustering algorithm. We chose to use the
K-means algorithm due to its relevance in the image binarization process [GBB06, LY09].
The K-means algorithm aims to form k7 distinct clusters from n unlabeled data. It starts
by choosing k initial centroids and assigns each data point to the nearest centroid, then
updates the centroids by recalculating the average distance of the points in each cluster.
This process is repeated until convergence is achieved and the objective is to minimize
total intra-cluster variance:

LK−means =
k∑

j=1

n∑
i=1
∥(xj

i − cj)∥2. (11)

Remark. Although the K-means algorithm is effective in determining a threshold to
separate correlation coefficients, in some cases, a poor DCCA model weights initialization
can lead to overly correlated latent spaces, resulting in a failure of the K-means algorithm
to identify a collision threshold. In addition, the presence of outliers (i.e. points that differ
significantly from the rest of the data) can significantly affect the result. Indeed, a single
outlier with a large distance can strongly influence the result, leading to the formation of
a cluster around this outlier. To address these issues, the next two steps in our attack may
be considered.

Step 3. Rejecting unlikely attacks. Under the assumption that the secret exponent
is roughly balanced, a significant cluster imbalance is considered to be an unlikely attack.
Therefore, in order to reject all such unlikely attacks, we propose to identify those clusters
with non-negligible class imbalance, using the cumulative distribution function (CDF)
which gives the probability of a random variable X taking a value less than or equal to a
value k.

CDF (k, n, p) = P (X ≤ k) =
k∑

i=0

(
n

i

)
pi(1− p)n−i (12)

Where k is the value for which we want to calculate the cumulative probability, n is
the total number of trials and p is the probability of success in an individual trial.

Based on the CDF analysis, we define a threshold (arbitrarily set to 1−32) beyond
which we consider the cluster to be non-negligibly imbalanced. Therefore, if one of the
two clusters is below this threshold, we consider the attack unlikely and we reject it.

Step 4. Ranking likely attacks. Given a set of clustering outputs from multiple
attacks, we computed an unsupervised cluster validity index to evaluate the best among
them. Arbelaitz et al. [AGM+13] propose an experimental work that compares 30 cluster
validity indices in many different environments, and the so-called silhouette score obtained
the best results in many of them. The silhouette score [Rou87] is a measure of clustering
quality that evaluates how points in the same cluster are similar to each other, and how

6See Step 3 for a more formal statistical test.
7In our proposed framework, K-means clustering is used to identify a flexible collision/no-collision

threshold in the correlation coefficients. Consequently, we set k = 2.

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 15

different they are from points in other clusters. It assumes that a good clustering solution
encompasses compact and well-separated clusters. The silhouette score S(x) computation
proceeds by evaluating the individual silhouette coefficient s(xi) for each data point xi.
This coefficient is calculated as the difference between intra-cluster cohesion a(.) and
inter-cluster separation b(.), divided by the higher of these two values.

S(x) = 1
n

n∑
i=1

s(xi), with s(xi) = b(xi)− a(xi)
max(a(xi), b(xi))

,

a(xi) = 1
|CI | − 1

∑
j∈CI ,i̸=j

d(xi, xj), b(xi) = min
J ̸=I

1
|CJ |

∑
j∈CJ

d(xi, xj),
(13)

where d(xi, xj) denotes the distance between points xi and xj , a(xi) is the average distance
between point xi and the other points in the same cluster CI and b(xi) is the average
distance between point xi and all points in the nearest cluster CJ , where the nearest
cluster is the one that minimizes this distance. For a global evaluation of a clustering,
the silhouette score S(x) represents the average s(xi) coefficients for all n points xi. An
overall silhouette score close to 1 indicates a good clustering quality, while a score close to
−1 indicates that the points could be better allocated to a different cluster.

4 Experiments Settings
In this section, we present the experiment settings, including the datasets (simulated and
real), model architectures and evaluation metrics we used during our experiments. All the
experiments are implemented in Python 3.9 using the Keras 2.8 library with TensorFlow
2.8 backend and are run on a workstation equipped with 32GB RAM and an NVIDIA
Quadro P4000 with 8GB memory.

4.1 Datasets and Neural Network Architectures
Simulated traces. We generated simulated exponentiation traces of a Square-and-
Multiply Always 2 048-bit exponentiation, implementing Schoolbook LIM with an internal
multiplier of 32×32 bits. For each exponentiation trace, we randomly generated the message,
modulus and exponent to simulate a fully masked environment. As generally considered in
the literature, we assume a linear leakage model with respect to the Hamming weight of
the intermediate values manipulated during algorithm execution. For our simulated traces,
we deliberately chose to place the leakage only on the LIM output.8 In this way, each t-bit
words multiplication of the LIM generates a single leakage point HW (x[i] × y[j]). The
result is a modular operation trace of 4096 time points. The complete exponentiation trace
is 2 048× 2× 4 096 points long (i.e. 16 777 216 time points). Additionally, Gaussian noise
with mean µ = 0 and standard deviation σ is added to the traces to test the behavior
of the attacks in different noise conditions. To get closer to the experimental setup of
Clavier et al. [CFG+12], we used similar levels of noise (i.e. 0 ≤ σ ≤ 7). In the following
experiments, we notably consider σ = 0 a null noise, σ = 2 a moderate noise, σ = 4 a
substantial noise and σ = 7 a strong noise.

During our experiments, we also added non-informative points within the modular
operation traces that will be denoted PONI. For this purpose, we used a normal distribution
N (µ, σ) with a mean µ = 30 and a standard deviation σ according to the noise. These
parameters have been arbitrarily chosen to ensure that non-informative points blend
visually with the rest of the trace, making them indistinguishable from visual inspection.

8By removing the leakage from the input operands HW (x[i]), HW (y[j]), we get a more complex
problem, as operand collisions will have to be identified only upon the output. We also experimented with
input leakage and found it was a trivial problem.

16 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

Table 1: Configuration of the addition of non-informative points (PONI) in traces.
Dataset Modular trace dimension Nb PONI % of PONI

Without PONI 4 096 - -
Moderate PONI 8 192 4 × 1 024 50

Substantial PONI 12 288 4 × 2 048 66
Strong PONI 20 480 4 × 4 096 80

We tested several configurations with moderate, substantial and strong addition of PONI.
Table 1 illustrates the different configurations and their impact on trace dimensions. In
order to simulate an environment close to the traces of the protected RSA dataset, we
added these non-informative points in distinct blocks of the modular operation traces (i.e.
every 1 000 time samples of the original traces). Figure 3a illustrates the operand collision
leakage on the resultant traces with strong PONI configuration and a null noise σ = 0.

(a) Simulated dataset with Strong PONI and
Null noise (σ = 0).

(b) Protected RSA dataset.

Figure 3: SNRs of operand collision leakage computed with the time-sample wise absolute
difference between the modular operation traces of multiplications and their respective
consecutive squares, denoted as |Mdi − Sdi−1 |. Here the labelling is correct, obtained with
the perfect knowledge of the colliding and non-colliding consecutive modular operations.

Protected RSA dataset. We use the dataset used in [CCC+19] to validate our ap-
proach with real traces, the targeted constant time RSA implementation is based on a
1 088 bits binary Square-and-Multiply Always exponentiation algorithm combined with
three countermeasures: message randomization, modulus randomization and exponent
randomization. Note that in the implementation the multiplication and the squaring are
called with the same function. The detailed implementation is given in Appendix B.

For two 512-bit primes p and q, the combination of the three masking countermeasures
corresponds to the following equation:

md mod N =
(

(m + k1 ·N)d+k2·ϕ(N) mod (k0 ·N)
)

mod N, (14)

where m is the plaintext, d is the private exponent, k0, k1, k2 denote three random positive
integers of bit-length 64, N = p× q the modulus of 1 024 bits and ϕ(N) = (p− 1)(q− 1), is
the Euler’s totient function. By consequence all the values involved in the exponentiation
have size n = 1 024 + 64 = 1 088 bits.

In addition, the RSA multiplications and squarings are performed with the same
operation of the embedded arithmetic co-processor which includes a dedicated memory
area based on Montgomery arithmetic. Therefore, both modular operations display similar

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 17

patterns with the same processing time. For more information on the embedded arithmetic
co-processor and the acquisitions campaign, we suggest readers refer to [CCC+19]. The
implementation runs on a 0.13um 32-bit contact Smartcard IC and features an ARM
core SC 100 with an EAL4+ arithmetic co-processor certified in Asia. The software part
of the targeted RSA implementation does not provide specific security mechanisms to
defeat horizontal attacks. For more information on the target device, we suggest readers
refer to [CCC+19]. For the sake of completeness, the electromagnetic exponentiation
traces we used have been cut by modular operation, and each modular operation trace
consists of 50 000 points. The modular operation traces have been realigned,9 and we can
clearly identify by SNR computation the leakage of operand collisions during the LIM
computations as shown in Figure 3b.

We are aware that this dataset has not yet been published. It was part of a challenge
organized by the hardware security laboratory of the French Cybersecurity Agency (ANSSI)
for industrial partners. We note that this dataset has already been used in the literature on
previous works, presenting supervised deep learning attacks against RSA implementations
[CCC+19, ZBHV21]. Therefore, this dataset provides the perfect context to allow a fair
comparison with supervised attacks. Obviously, as we do not own the dataset, we are not
allowed to publish it. By now, there does not exist a publicly available dataset that would
allow us to carry out the operand collision attack, and validate the effectiveness of our works.
To overcome this lack of other available datasets, we supported our experimentations with
various experiments on simulated traces.

Neural Network models. Two convolutional siamese neural network architectures
were used in our experiments.

• The first one used for simulated datasets is a siamese CNN with a feature extractor
block consisting of one convolution layer of 4 filters of size 64, in order to take the
same window size as the average segment size of the Big Mac pre-processing in
the scenario without PONI. This is followed by a pooling layer of size 32 to reduce
dimensionality. Finally, the projector uses a dense layer of 400 neurons to obtain the
latent space. We used the same architecture for all simulation experiments, even in
cases where we added non-informative points.

• The second one used for the experiments on the RSA dataset has been slightly
modified. This architecture has been defined thanks to a brief hyperparameteri-
zation study reported in Section 7. The convolutional feature extractor uses two
convolutional layers. In addition, we experimentally found on real traces that a
large convolution window produced overly correlated latent spaces, resulting in an
inability to distinguish collisions. To address this issue, we reduced the size of the
convolution window to 8. The pooling was removed to avoid losing collision leakage
information in the downsizing. Latent space is obtained with a dense layer projector
of 1600 neurons.

In our simulation experiments, convolution layers use the ReLU activation function,
while for experiments on the protected RSA dataset, we use SeLU activation to avoid
potential vanishing and exploding gradient problems [KUMH17]. The dense projector
always uses Sigmoid activation function.

The correlation objective is optimized using the RMSProp optimizer, with a learning
rate set to 0.0001 and a mini-batch size of 100. This mini-batch size was chosen due to its
satisfying performance in works using DCCA models on EEG signals [QLL18, LQZL19].

9We also tried our attack on desynchronized traces, nevertheless tests showed unsatisfying results. As it
is common in unsupervised horizontal attack literature to assume that the trace realignment and cutting
steps have been properly executed, we did not report the results.

18 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

The DCCA models were trained during 5 learning epochs for simulation experiments
and 20 learning epochs for RSA dataset experiments. To enhances training stability and
convergence speed, we pre-processed each dataset such that all trace samples in a batch
are normalized between 0 and 1 [IS15].

The hyperparameters optimization is out of the scope of the experimental campaign.
An investigation of the hyperparameters, and notably the impact of the convolutional
window size on DCCA model performance, is left for future works.

4.2 Evaluation Metrics and Baselines
Evaluation Metrics. Unlike vertical attacks, where the accuracy is not considered
to be an appropriate evaluation metric [CDP17], in the case of horizontal attacks, the
accuracy is perfectly appropriate due to the constraint of finding all the secret bits of the
exponent using a single exponentiation trace. Therefore we use this metric to evaluate the
performance of our attacks. In most cases, a horizontal attack does not reveal 100% of the
secret bits, and the missing bits must be recovered by some brute-force. The remaining
attack complexity is an open problem in the literature, Zaid et al. [ZBHV21] experimen-
tally evaluate how the accuracy impacts the final attack complexity. Following the same
approach as the authors, we define the brute-force complexity for N remaining operations
as log2(N). According to the European SOG-IS evaluation scheme,10 a practical threshold
for brute-force complexity is considered to be around 2100 operations, thus beyond this
threshold, we consider the remaining attack infeasible.

From the point of view of an evaluator who knows the location of each potential
erroneous bits, each assumption error has 2 possible values of equal probability. Assuming
that the evaluator has recovered K bits of the secret exponent and the total size of the
exponent is N bits, the remaining brute-force complexity for the N − K bits can be
expressed as:

C2n = log2

(
2N−K

)
. (15)

In the case where the position of the potential erroneous bits is not known to the
evaluator (i.e. from a point of view closer to an attacker), the evaluator has to try all
possible combinations for each wrong assumption, which increases complexity. We call
this complexity naive complexity, expressed as:

CNC = log2

(
N−K∑
i=0

(
N

i

))
. (16)

Helpful post-analysis techniques called key enumeration algorithms [PSG16] may help
to reduce this brute-force complexity thanks to a more efficient key enumeration. However,
such an approach is not considered in this work.

Baselines. In order to compare our proposed DCCA attack, we perform several collision
correlation attack baselines11 on different trace representations which we summarize below:

• Raw traces: collision attack on raw modular operation traces as a fundamental
baseline

10https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
11We do not compare our results with horizontal clustering methods, as the attack paths are different

from collision attacks: for horizontal clustering attacks the exploited vulnerability is the presence of
directly bit-dependent operations, often very fast and low consuming (e.g. the bit reading itself), while
for horizontal collision attacks, the exploited vulnerability is the manipulation of a same operand in two
computationally expensive operations (such as long integer multiplications).

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 19

• PCA: collision attack after PCA dimensionality reduction. We set the number of
principal components to the same value as the dimension of the latent space of our
DCCA model for fair comparison.

• Big Mac: collision attack after Big Mac signal pre-processing. In order to stay in a
realistic scenario, we always used the method naively in a totally unsupervised way,
i.e. without extracting the LIM leakage points beforehand.

As multiplication and squaring operations are performed in the same way and display
similar patterns with the same processing time, this makes it possible to apply Big
Mac averaging pre-processing. Similarly, this uniformity supports the use of a siamese
architecture for our proposed DCCA model.

In the following sections, we present an experimental analysis of our proposed DCCA
attack. Notably, in Section 5 we present the results of our experiments on both simulated
and real-trace datasets, highlighting the strengths and limitations of our approach. Then,
Section 6 addresses the instability issue observed during our experiments due to the random
initialization of DCCA model weights, proposing a practical way to handle this limitation.
Additional details on the study of our DCCA attack on the real-trace dataset are presented
in Section 7, in order to deepen our insights in a real-world context.

5 Experiments Results
This section proposes an experimental exploration of our Deep Collision Correlation Attack.
Notably, in Section 5.1 we evaluate our attack on simulated traces with a progressive
addition of Gaussian noise and non-informative points (PONI). Next, in Section 5.2 we
apply our DCCA attack on the protected RSA dataset introduced in [CCC+19].

5.1 Results on Simulated Dataset
With regard to the simulation experiments, we reduced the experimental scope to the
first two steps of the proposed attack. Therefore, we did not attempt to identify the
most likely attack. For training our DCCA models, a total of 10 exponentiation traces
were generated, 9 traces were used for training the DCCA models (without using label
knowledge) and 1 exponentiation trace was kept and used to evaluate the attacks (test
traces). In other words, our training set (resp. test set) contains 18 423 (resp. 2 047) pairs
of modular operation traces (multiply/square). To take into account the impact of the
weights initialization, we trained our DCCA models 10 times on each experiment and
we consider the 95% confidence interval of the attack performance. The results of our
experiments are summarized in Figure 4.

Impact of noise. First of all, we investigated the impact of noise on the performance of
our attacks (Figure 4a). We observe a significant improvement in the performance of our
DCCA attack in comparison with collision correlation attacks on raw modular operation
traces or those reduced by PCA.12 Indeed, the DCCA models have successfully put the
modular operation traces into highly correlated latent spaces, preserving and amplifying

12Interestingly, despite all the points in the simulated traces being informative, the dimensionality
reduction via PCA still improved the detection of collisions in the correlation coefficients. This improvement
may be explained by the fact that, although the points are all informative, they are not entirely independent.
For instance, during the multiplication of two integers x = (x[l − 1], x[l − 2], · · · , x[0])32 and y =
(y[l − 1], y[l − 2], · · · , y[0])32, intermediate operations such as x[0] × y[0] and x[0]] × y[1] have dependencies,
and these dependencies extend across many operations. Thus, PCA projection successfully extracted the
most relevant variance from the leakage of these intermediate operations.

20 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

(a) Without PONI. (b) Moderate PONI.

(c) Substantial PONI. (d) Strong PONI.

Figure 4: Experiment results on simulated datasets for different levels of noise and
proportions of non-informative points. The blue curve represents the average performance
of our DCCA attacks over 10 runs, along with the 95% confidence interval.

collisions, even in the presence of significant noise. However, the Big Mac attack was
the most effective. It is worth noting that the Big Mac attack excels since the context
is favorable for it (i.e. the modular operation traces correspond only to the leakage of
the multiplier). In addition, pre-processing involving segment averaging in the Big Mac
attack reduces the impact of Gaussian noise, while highlighting the targeted operand. The
DCCA attack achieves comparable results to the Big Mac attack up to a substantial level
of noise (σ = 4), but is less robust in the case of a strong level of noise (σ = 7). Despite
this, the DCCA attack may result in successful attack for all considered levels of noise (i.e.
C2n ≤ 100). Furthermore, in cases where the Big Mac attack is more effective (σ > 4),
both of these attacks fail to allow a naive remaining attack (i.e. CNC ≤ 100).

Impact of non-informative points (PONI). Then we analyzed the impact of the addi-
tion of non-informative points in the modular operation traces (Figure 4b,Figure 4c,Figure 4d).
The DCCA attack proved to be more robust in the presence of non-informative points
than the Big Mac attack, used here in a scenario that is no longer optimal for the latter.
The Big Mac attack is particularly impacted by a strong level of PONI (Figure 4d), while
there is only a slight impact on the DCCA attack up to a substantial level of noise (σ = 4).
The robustness of DCCA attack can be explained by the high ability of CNN to extract
features, notably thanks to their sliding window approach on the input traces. We note
that in the most extreme scenario, with strong PONI, the DCCA attack is the only one
able to allow successful remaining attacks (i.e. C2n ≤ 100). In addition, the DCCA attack
allows remaining naive attacks (i.e. CNC ≤ 100) up to a moderate level of noise (σ = 2).
Figure 5 depicts the distinguishability of collisions in the correlation coefficients for a

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 21

(a) Raw Traces. (b) PCA.

(c) Big Mac. (d) DCCA.

Figure 5: Distinguishability of collisions with Strong PONI and Substantial noise (σ = 4).
The correlation coefficients are colored with their ground-truth labels. Blue (resp. orange)
values represent pairs of modular operation traces without collision (resp. with collision).

substantial level of noise and a strong level of PONI. We can clearly visualize the benefit
of our DCCA attack to distinguish the presence of collisions in comparison to the attack
baselines. It is worth noting that the DCCA attack becomes increasingly unstable above a
substantial level of noise (σ = 4). This instability is even more pronounced in the presence
of a large number of non-informative points (Figure 4d). This suggests that the DCCA
attack could be particularly unstable in a real attack environment. This assumption is
confirmed in the next section, where we present our experiments on the protected RSA
dataset, thus confronting our approach with conditions closer to a real-world application.

5.2 Results on Protected RSA Dataset
In this section, we propose to apply our DCCA attack on real traces from the protected
RSA dataset and assess the gain in remaining attack complexity. For that purpose, we
randomly selected 10 000 pairs of modular operation traces (multiply/square) to train
the DCCA models (without using label knowledge) and 2 000 pairs of modular operation
traces to evaluate the performance of our DCCA attack. This experiment used a single
DCCA model architecture, designed using the hyperparameterization campaign reported
in Section 7. This experiment was repeated 5 times, and for each repetition, the DCCA
models were trained 100 times to assess the impact of random weights initialization.13

The results of our experiments are depicted in Figure 6a, which represents the accuracy
distribution of the 100 DCCA attacks from the 5 experiments. We observed a high degree
of instability in our attacks, whose success depended heavily on the initialization of random

13Training a DCCA model 100 times takes around 22 hours on our workstation.

22 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

weights in the DCCA models. Despite this instability, we observed similar behavior
across our 5 experiments, with similar median and maximum attack performance for all
experiments. Some variability was noted with regard to the worst attacks, generally due to
the presence of outliers resulting from an under-correlated or, conversely, over-correlated
pairs of modular operation traces. Using the procedure described in Section 3.2 (steps 3
and 4), those attacks considered unlikely due to an excessive class imbalance were discarded
and the remaining attacks were ranked by decreasing likelihood of success according to
the silhouette score calculated on the clustering results. Figure 6b depicts the top 50
most likely DCCA attacks with their true accuracy. We can observe the close relationship
between silhouette score and true attack accuracy. We observe that the accuracy, although
less stable in the rank, follows the same trend as the silhouette score. Therefore, ranking
attacks according to silhouette score allows us to approximate in a fully unsupervised way
their accuracy and correctly distinguish the most likely successful attacks. Notably, we
observe a high confidence for the 5 attacks with the highest silhouette scores.

(a) Accuracy distribution of the 100 DCCA
attacks from the 5 experiments.

(b) Top 50 most likely attacks ranking by sil-
houette score (blue curve) and their true corre-
sponding accuracy (green dotted curve).

Figure 6: Experiment results on protected RSA dataset.

Table 2: Attack evaluation for 1088 bits exponent (average over the 5 experiments). Green
(resp. red) values are considered as practicable complexity (resp. unpracticable).

Attack Acc. CNC C2n

Raw traces 92.31 428 84
PCA 96.21 258 42

Big Mac 58.62 1068 451
DCCA 99.33 68 8

Table 2 summarizes our average 5-experiments and illustrates the benefits of our DCCA
attack in comparison with the attack baselines. The average performance of the DCCA
attack has been calculated, taking into account for each experiment the DCCA attack
identified in an unsupervised way as the most likely. First of all, we note that the dataset
is particularly vulnerable to horizontal collision attacks, since a simple collision correlation
attack on raw modular operation traces allows us to recover more than 92% of the secret
exponent bits and may result in successful attack (i.e. C2n ≤ 100), assuming the position
of the potential erroneous bits is known to the evaluator. This is due to the fact that
the dataset does not contain any specific countermeasure for horizontal attacks, and the
noise level is relatively low. It is noteworthy that the second best approach on simulation
experiments, namely the Big Mac attack, did not work on this dataset despite the absence
of countermeasures against horizontal attacks. In fact, Big Mac pre-processing has even

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 23

led to a loss of information and a drastic drop of performance compared to the collision
attack on raw traces. This highlights once again that, despite the applicability of Big Mac
pre-processing has been confirmed by simulation experiments, it still needs to be assessed
with a real device [CCC+19, SIUH22]. It is worth noting that Big Mac pre-processing relies
heavily on the assumption that the evaluator is able to extract LIM multiplier leakage from
a raw trace. Indeed, even in our simulation experiments, we observed the strong impact of
non-informative points on Big Mac pre-processing. Moreover, this pre-processing is not
effective if noise cannot be sufficiently suppressed by the segment averaging. Under these
conditions, we experimentally found that collision detection with Big Mac pre-processing
was not successful in our real trace environment.

We observe a significant improvement when DCCA attack is used in comparison with
attack baselines. While a collision correlation attack performed on a linear dimensionality
reduction by PCA reaches 96.21% of accuracy,14 the DCCA attack reaches 99.33% of
accuracy and the remaining brute-force complexity is reduced from 242 to 28 (resp. from
2258 to 268) when the evaluator wants to evaluate a C2n remaining attack complexity (resp.
CNC remaining attack complexity). As a result, the remaining brute-force complexity
to be performed by the evaluator is significantly reduced. Notably, our DCCA attack
may enables key recovery with naive remaining complexity (i.e. CNC ≤ 100) in a realistic
scenario for potential adversaries, making it a major security flaw.

Indeed, according to the criteria established by the French National Security Agency15

during evaluations carried out as part of the French scheme, if the complexity of completing
the attack is equal to, or less than, 270 invocations of the cryptographic algorithm concerned
(DES, AES, modular exponentiation, scalar multiplication, etc.), the cost of the effort
required to recover the residual information is deemed to be negligible. In this context, our
DCCA attack achieves performances that meet these criteria, underlining the seriousness
of the threat it poses to the targeted implementation previously considered robust against
unsupervised attacks.

Moreover, our DCCA attack yields similar results to the supervised one reported in
[CCC+19], whereas the one we propose works in a completely unsupervised way, implying
that our current work reduces the gap between supervised and unsupervised attacks.

All our experiments where run on (re)-aligned traces. We tried to apply our methodology
to not so well aligned traces, and obtain poor result, especially for real traces. The trace
were realigned with classical tool of signal processing. However, it could be an interesting
challenge to see if better result could be obtain for DCCA with other network architectures
in presence of desynchronization countermeasure, to have a more automatic tool.

6 Handling Attack Instability
In this section, we discuss the instability of our proposed attack, related to the weights
initialization and the unsupervised learning objective of the DCCA model. The impact of
weights initialization remains an open issue in deep learning literature [NBS22]. A poor
initialization may have a significant impact on the learning process, making convergence
more difficult or even impossible. In the context of an unsupervised objective, weights
initialization is particularly important since there are no labels to guide the task. Thus,
the unsupervised model is expected to discover patterns and representations by itself.
Indeed, most unsupervised deep learning approaches require some form of pre-training.
Furthermore, the DCCA model is trained to maximize the correlation between pairs of

14With regard to the PCA attack results, considered the most representative baseline in this experiment,
we thoroughly investigated it by varying the number of principal components from 100 to 1600 by steps of
100. As these alternative number of principal components did not yield better performances, we ensured a
fair comparison with the DCCA attack results.

15https://cyber.gouv.fr/sites/default/files/2022-08/anssi-cc-note-23-remaining-strength_
v1.0[1].pdf

https://cyber.gouv.fr/sites/default/files/2022-08/anssi-cc-note-23-remaining-strength_v1.0[1].pdf
https://cyber.gouv.fr/sites/default/files/2022-08/anssi-cc-note-23-remaining-strength_v1.0[1].pdf

24 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

modular operation traces. Hence, the DCCA model can correlate patterns that do not refer
to collisions and successfully solve its learning objective. As a result, an overly correlated
latent space may result in an inability to distinguish collisions (as depicted in Figure 7a).

(a) Unsuccessful DCCA attack. (b) Successful DCCA attack.

Figure 7: Visual interpretation of successful attack. The correlation coefficients are colored
with their ground-truth labels. Blue (resp. orange) values represent pairs of modular
operation traces without collision (resp. with collision).

With regard to the DCCA model, in the seminal paper Andrew et al. [AABL13]
initializes the parameters of each layer of the DCCA model with a denoising autoencoder.
This instability handling approach based on autoencoder proposed in the DCCA literature is
not well suited to the collision SCA attack problem. In particular, training an autoencoder
with high-dimensional traces requires very complex architectures with a large number of
parameters to be learned. Furthermore, the reconstruction loss does not guarantee the
preservation of the collision points of interest.

To handle the instability, we propose to explore different starting points in the parameter
space. In this way, we are looking for a weights initialization allowing convergence towards
latent representations suitable to the distinguishability of collisions. For this purpose, our
unsupervised framework consists of training the DCCA model several times with different
weight initalizations, then identifying the best attacks in an unsupervised way, thanks to
the silhouette score (which effectively approximates the accuracy one could estimate in a
supervised way).

Our experiments proved that the silhouette score is a suitable tool for identifying
successful attacks among several runs in a completely unsupervised way, by analyzing the
separability of clusters in the correlation coefficients. The reason behind the success of
the silhouette score is that, in a one-dimensional context with only two classes, clustering
becomes remarkably interpretable and easy to evaluate visually. Indeed, a simple scatter
plot can be used to display the correlation coefficients, enabling an intuitive assessment of
the effectiveness of the attack. We expect a clear separation between the two clusters for a
successful attack (as depicted in Figure 7b).

7 DCCA Model Design on Protected RSA Dataset
In this section, we present a brief study of some of the hyperparameters of the siamese
DCCA model. The aim here was to deduce some general properties in order to identify
and construct a suitable model for our experiments on the protected RSA dataset reported
in Section 5.2.

General settings. For this campaign, we randomly selected 10 000 pairs of modular
operation traces (multiply/square) to train the DCCA models (without using label knowl-

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 25

edge) and 2 000 pairs of modular operation traces to evaluate the performance of our
DCCA attack. To enhance training stability and convergence speed, we pre-processed the
modular operation traces such that all samples in a batch are normalized between 0 and 1.

In order to analyze the impact of learning time, the models were trained from 5 to 40
epochs. The RMSProp optimizer, with a learning rate of 0.0001 and a mini-batch size
of 100, is used to optimize the correlation objective. For all architectures, convolutional
layers used SeLU activation function and dense layers used Sigmoid activation function.

The DCCA models were trained 100 times to assess the impact of random weights
initialization. In order to analyze both the success and stability of our attack, we evaluated
the median attack performance as well as the performance of the best attack, i.e. the most
likely one, ranked after performing the unsupervised framework described in Section 3.2
(steps 3 and 4). The latter reflects the actual capability an attacker could have by exploiting
the framework in a real attack scenario.

(a) DCCA results for 5 training epochs. (b) DCCA results for 40 training epochs.

(c) Median of DCCA attacks. (d) Most likely DCCA attack.

Figure 8: Experiment results on protected RSA dataset for different convolutional feature
extractors without downsizing.

Feature extractor. We first studied the impact of the feature extractor block on the
success of the DCCA attack. For this purpose, we experimented with several DCCA
models based on a convolutional feature extractor block comprising a variable number of
convolutional layers (from 1 to 4) without downsizing (i.e. without pooling operations),
each with 4 filters and a convolution window of size 8. Following this, the extracted
representations are projected into a fully connected latent space in the same way as the
simulation experiments, using a dense layer of 400 neurons acting as a projector. This
exploration summarized in Figure 8 enabled us to identify the complexity required for the
feature extractor to successfully extract fine-grained operand collision leakage.

26 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

We observed that using a feature extractor with a large number of convolutional layers
does not necessarily offer significant advantages. Although the addition of convolutional
layers does enable finer-grained feature extraction, this advantage seems to be limited
to the early learning phases, as depicted in Figure 8a. Indeed, during the first learning
epochs, a more complex feature extractor may speed up initial convergence thanks to the
richness of the representations. However, as learning progresses, increasing the size of the
feature extractor may lead to a drop in attack stability, as depicted in Figure 8b, with the
median attack performance decreasing as the feature extractor grows.

Figure 8c, and Figure 8d provide a detailed overview of these trends, showing respectively
the median DCCA attack performance and the most likely DCCA attack identified in the
unsupervised way by our framework for different learning stages. First of all, we observed
that, except for single convolutional feature extractor (DCCA-1C), extended training of
DCCA models had only a slight impact on the performance of the most likely DCCA
attacks (depicted in Figure 8d). Then, we observed that simple architectures, such as those
with one or two convolutional layers, tended to lead to DCCA models whose performance
gradually stabilized during training (depicted in Figure 8c). Conversely, models with
three or four layers feature extractor tended towards a gradual drop in stability beyond
10 learning epochs. Indeed, we observed that these more complex models tended to over-
correlate latent spaces, preventing collisions detection. As a result, a two convolutional
feature extractor trained for 20 epochs, seems to be a good balance between stability and
best attack performance. Therefore, we used these settings for our experiments.

(a) DCCA results for 5 training epochs. (b) DCCA results for 40 training epochs.

(c) Median of DCCA attacks. (d) Most likely DCCA attack.

Figure 9: Experiment results on protected RSA dataset for different convolutional feature
extractors with downsizing.

Dimensionnality reduction The feature extractor block previously considered only
involved convolutional layers, without intermediate pooling layers. In this way, the

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 27

spatial dimensionality is not compressed throughout the feature extractor, meaning that
dimensionality reduction is entirely carried out in the fully connected dense projection layer.
Thus, the projector, whose job is to produce the final latent space where the loss function
is computed, acts as a genuine bottleneck, compressing drastically the extracted features.
This architectural design comes with its own challenges. Although this design preserves
spatial granularity up to the projection stage, which in some cases may be advantageous
for capturing meaningful local relationships in the traces, the lack of downsizing in the
feature extractor may limit the ability of the DCCA model to reduce noise and redundant
information. Furthermore, the drastic bottleneck constraint imposed on the dense projector
can lead to a significant loss of collision leakage.

In order to reduce the complexity of intermediate representations in a structured way,
while at the same time reducing the downsizing task of the projector, we experimentally
tried to integrate a progressive dimensionality reduction directly into the feature extractor
block. To this end, we added successive averaged pooling layers with a pool size and stride
of 2 after each convolutional layer.

The results of these experiments are depicted in Figure 9. We observed significant
negative impacts from this downsizing. The overall DCCA attack performance was
considerably degraded with increased instability. These results highlight the inherent
difficulty of performing effective dimensionality reduction in unsupervised contexts. In
comparison to the simulation, where large pooling layers efficiently reduced noise and
improved collision detection (in a similar way to the Big Mac pre-processing), performing
such a downsizing on real traces remains an open issue. As a result, it is preferable to keep
the spatial granularity to ensure that collision leakage is preserved.

Need for translational invariance. The lack of downsizing with pooling operations
in the feature extractor limits the DCCA model’s ability to learn translational invariant
representation [JSZK15, MMD20]. Indeed, pooling operations ensure that small spatial
shifts or translations in the input data do not significantly affect the extracted features.
In contrast, for a feature extractor without such a downsizing, the translational invariance
property is limited, relying solely on convolution operations due to shared weights and
kernel shifts. This limitation may explain why some experiments we performed on badly
resynchronised datasets16 showed unsatisfying results, given that translation invariance
property is the basis for CNN to handle desynchronization [CDP17, Tim19]. Exploring al-
ternative methods to improve translation invariance, such as strided convolutions [HZRS16]
or specific data augmentation techniques [CDP17, Kau18], and determine whether better
results could be achieved for DCCA in presence of desynchronization, is left for future
tracks.

Figure 10: Impact of projector size on the DCCA attack.

16Such experiments are not reported in the present paper.

28 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

Projector. Since downsizing is performed entirely by the projector, we studied the
impact of its size on our DCCA attack. The results of these experiments are depicted in
Figure 10. We observed that, although the projector size does not have a direct impact on
the performance of the best attacks, it can strongly impact their stability. By choosing a
large projector size, we limited the drastic bottleneck constraint and improved the overall
performance of the DCCA models.

However, considering a large-scale projector brings some architectural constraints.
First of all, it significantly increases the number of model parameters, due to the fully
dense connections with the feature extractor output, which is extremely high (i.e. 200 000
dimensions in our experiments17). This increases the memory and computational costs of
training.18 Furthermore, DCCA loss requires costly operations such as matrix inversions,
which cannot be efficiently computed on such a high dimension. As a result, these
limitations underline the importance of striking a balance between the feature extractor
that expands dimensionality and the preservation of information in the projector to
handle the practical constraints imposed by available computing resources. Therefore, we
performed our experiments with a projector of 1600 neurons.

General remarks. The results of our experiments validated the relevance of the DCCA
model for projecting modular operation traces into a highly correlated latent space, ampli-
fying collisions and significantly improving their detection. However, our approach suffers
from some limitations: the model’s dependence for proper random weight initialization
makes our proposed attack unstable. Furthermore well-aligned traces are still mandatory.
These limitations stem from the unsupervised nature of the DCCA loss function, which
seeks only to maximize the correlation without any regularization mechanism to control
the learning process. Consequently, the DCCA model may produce an overly correlated
latent space, compromising the ability to distinguish collisions.

In addition, this issue brings several architectural constraints. Notably, we observed in
our experiments that a complex feature extractor may produce an over-correlated latent
space, which may increase the instability of the DCCA attack. Beyond this, integrating
dimensionality reduction into the DCCA model proved to be a challenging task on real
traces. During our experimental campaign, we observed that it is preferable to keep
the spatial dimensionality in the feature extractor and only perform the dimensionality
reduction at the dense projector level. This architectural constraint may explains the
limitation of our approach on desynchronized traces, as the absence of pooling limits the
translational invariance properties of the convolutional feature extractor. Furthermore, the
dimensionality reduction performed only at the dense projector level acts as a bottleneck
that may lead to a loss of collision leakage, especially since it is difficult to consider a
high-dimensional projector for computational capacity reasons. This bottleneck constraint
may explain the dependence on proper initialization of random DCCA model weights and
the instability of our attack.

As a result, to effectively handle this instability issue, the evaluator needs to carefully
design the DCCA model according to its computational capacity, striking a balance
between the richness of the feature extractor that can explode latent dimensionality and
the preservation of essential information within the projector. For our protected RSA
dataset, we identified an architecture with a 2-layer convolutional feature extractor, each
consisting of 4 filters of size 8 followed by a dense projector with 1600 neurons as a suitable
DCCA model.

In order to further handle the instability issue, we also proposed in our framework a
weight initialization search strategy, where the attack is run multiple times with different

17The input modular operation traces consist of 50 000 points and all convolution layers contain 4 filters,
thus the feature extractor always keeps a dimensionality of 200 000 up to its output.

18With our computational resources, we could not exceed a projector size of 1600.

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 29

starting weights, and the most likely attacks are identified in an unsupervised manner
using the silhouette score, a widely used clustering metric in machine learning community.
Exploring the integration of a loss function regularization or architectural design improve-
ments to better handle dimensionality reduction within the feature extractor could be an
interesting challenge for future tracks, moving towards better attack stability and a more
automated approach to deal with desynchronized traces.

8 Applicability to Other Cryptosystems
We presented our analysis on a standard implementation of the RSA algorithm, which
mainly involves binary Square-and-Multiply Always exponentiation with a secret exponent.
However, as our attack uses a single exponentiation trace and no message or modulus
information is required, the methodologies and tools we propose are widely applicable to
other implementations. Therefore, RSA-CRT exponentiation and other exponentiation
schemes using random exponents, such as DSA and Diffie-Hellman exponentiation, are
prone to this attack. It is also worth noting that elliptic curve primitives are as well
vulnerable to our attack, as long as operand collisions reveal information about the secret
and that the scalar multiplication uses the same type of algorithm (i.e. Double-and-Add
Always). We also believe that the siamese DCCA model approach, which consists in
seeking for a highly correlated trace representation that improves collision detection, could
be generalized to other cryptographic contexts involving horizontal collision vulnerabilities,
although its adaptability may require adjustments to align with the specific properties of
the targeted implementation. With regard to Post Quantum Cryptography (PQC), recent
works such as those presented in [GCCD23, BDK+25] involve the detection of operand
collisions in computational loops. Hence, we conjecture that the ability to identify and
exploit operand collisions of our approach may be exploited in the context of PQC to
improve the effectiveness of such attacks. However, the application may not be trivial and
could be an interesting direction for future research.

Considering the ability of our attack to affect a wide range of cryptosystems while
simplifying the implementation of horizontal attacks, it becomes crucial to consider dedi-
cated countermeasures against such attacks. Classical exponent masking countermeasure
in asymmetric implementations prevent multiple exponentiation trace attacks and in most
cases make supervised attacks impractical. As our approach is unsupervised and uses a
single exponentiation trace, this kind of masking is automatically ineffective. Although
various countermeasures against horizontal side-channel attacks aiming to implement mask-
ing [ISW03] or shuffling [HOM06] at the modular operation level (i.e in the underlying
long integer multiplication algorithm) have been proposed in the literature [BJP+15], they
are generally not implemented in practice as unsupervised horizontal attacks are often con-
sidered too difficult to implement. Indeed, state-of-the-art unsupervised horizontal attacks
require in-depth knowledge of the implementation to be effective, especially knowledge
about the underlying long integer multiplication algorithm, to accurately select points
of interest. Furthermore, even with this knowledge, performing this points of interest
selection in a non-profiling context is challenging, as the leakage assessment techniques
traditionally used, such as SNR/TVLA, cannot be trivially applied in a non-profiling
context. In contrast, our attack is robust even with many non-informative points, allowing
us to avoid the need for points of interest selection. Thus, we believe that the practicability
of our DCCA attack, making it possible to attack high-dimensional noisy traces,19 can
turn potential vulnerabilities into exploitable ones, raising serious security concerns and
the need for dedicated countermeasures against horizontal attacks.

19Our attack only requires preliminary cutting of the exponentiation trace into modular operation traces
and their realignment. In the unsupervised horizontal attack literature, it is common to assume that these
steps have been properly executed.

30 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

9 Conclusion
This paper presents a new method for conducting horizontal collision attacks using an
unsupervised deep learning method called Deep Canonical Correlation Analysis. Among
the thousands of existing deep learning architectures, we propose in this approach to train
a siamese DCCA model to maximize the correlation between pairs of modular operation
traces, projecting them into a highly correlated latent space that is more suitable for
identifying operand collisions. Our proposal is supported by several experimental results on
simulated traces and a protected RSA implementation with state-of-the-art vertical attack
countermeasures. In particular, we reduce some of the practical problems of horizontal
attacks thanks to the flexibility of neural networks, notably the ability to consider large-
scale noisy traces with a large number of non-informative points. This property represents
a major practical advantage over state-of-the-art non-profiling horizontal collision attacks,
which require extensive and complicated trace pre-processing to be effective. To assess the
benefits from an evaluation point of view, we evaluate the remaining attack complexity
and show a significant complexity reduction with our proposed deep collision attack in
a real attack scenario, raising the need to implement dedicated countermeasures against
horizontal attacks. Following the SOG-IS and the French National Security Agency security
guidances, the improvement in remaining complexity provided by our DCCA attack lead
to a reconsideration of the security level of the targeted system.

However, our attack sometimes proved to be unstable, especially when experimenting
on real traces. The performance of the attack strongly depends on the random initialization
of the model weights. Consequently, to be effective, our attack may need to be performed
several times. To address this well-known issue in unsupervised deep learning, we proposed
a strategy to identify and rank the most likely attacks based on an unsupervised cluster
validity metric called silhouette score. Although our study is based on standard Square-
and-Multiply Always RSA implementations, the ideas and tools we propose may also be
applied to other collision attack contexts, such as RSA-CRT and elliptic curve algorithms,
as long as operand collisions reveals information about the implementation.

Future works. We plan to investigate a way to stabilize our attack in order to limit the
impact of the random initialization of the DCCA model weights. For this purpose, we are
looking for an approach to modify the canonical correlation loss to take into account the
silhouette score during the learning process, in order to ensure latent spaces suitable for
collision detection. We also think it would be interesting to adapt the method to target
atomic algorithms without dummy multiplications. It could be interesting to adapt our
method to desynchronize traces to remove the signal pre-processing step to realign the
traces. Finally, we believe that the fusion method of DCCA model could be useful in
multi-probe attacks to pre-process the signal captured by different probes during the same
operation, which is expected to be highly correlated between the different probes.

Acknowledgements
This work was financially supported by the Defense Innovation Agency (AID) from the
french ministry of armed forces. The protected RSA implementation used in this paper was
developed by CryptoExperts (https://www.cryptoexperts.com/) as part of a challenge
organized by the ANSSI hardware security laboratory for industrial partners.

References
[AABL13] Galen Andrew, Raman Arora, Jeff A. Bilmes, and Karen Livescu. Deep canoni-

cal correlation analysis. In Proceedings of the 30th International Conference on

https://www.cryptoexperts.com/

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 31

Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28
of JMLR Workshop and Conference Proceedings, pages 1247–1255. JMLR.org,
2013. URL: http://proceedings.mlr.press/v28/andrew13.html.

[AGM+13] Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M. Pérez, and Iñigo
Perona. An extensive comparative study of cluster validity indices. Pattern
Recognit., 46(1):243–256, 2013. URL: https://doi.org/10.1016/j.patcog
.2012.07.021, doi:10.1016/J.PATCOG.2012.07.021.

[BC93] Pierre Baldi and Yves Chauvin. Neural networks for fingerprint recognition.
Neural Comput., 5(3):402–418, 1993. URL: https://doi.org/10.1162/neco
.1993.5.3.402, doi:10.1162/NECO.1993.5.3.402.

[BCM+22] Alessandro Barenghi, Diego Carrera, Silvia Mella, Andrea Pace, Gerardo
Pelosi, and Ruggero Susella. Profiled side channel attacks against the RSA
cryptosystem using neural networks. J. Inf. Secur. Appl., 66:103122, 2022.
URL: https://doi.org/10.1016/j.jisa.2022.103122, doi:10.1016/J.JI
SA.2022.103122.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Heidelberg, August
2004. doi:10.1007/978-3-540-28632-5_2.

[BDK+25] Sebastian Bitzer, Jeroen Delvaux, Elena Kirshanova, Sebastian Maaßen,
Alexander May, and Antonia Wachter-Zeh. How to lose some weight: a prac-
tical template syndrome decoding attack. Designs, Codes and Cryptography,
pages 1–17, 2025. doi:10.1007/s10623-025-01603-1.

[BJP+15] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard, and
Justine Wild. Horizontal collision correlation attack on elliptic curves - -
extended version -. Cryptogr. Commun., 7(1):91–119, 2015. URL: https://do
i.org/10.1007/s12095-014-0111-8, doi:10.1007/S12095-014-0111-8.

[BJPW13] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal
and vertical side-channel attacks against secure RSA implementations. In
Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 1–17. Springer,
Heidelberg, February / March 2013. doi:10.1007/978-3-642-36095-4_1.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, June 2020.
doi:10.1007/s13389-019-00220-8.

[CCC+19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornélie, François Dassance,
Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff, and Alexandre Venelli.
Deep learning to evaluate secure RSA implementations. IACR TCHES,
2019(2):132–161, 2019. https://tches.iacr.org/index.php/TCHES/a
rticle/view/7388. doi:10.13154/tches.v2019.i2.132-161.

[CCJ04] Benoît Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost solutions for
preventing simple side-channel analysis: Side-channel atomicity. IEEE Trans.
Computers, 53(6):760–768, 2004. doi:10.1109/TC.2004.13.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures - profil-
ing attacks without pre-processing. In Wieland Fischer and Naofumi Homma,

http://proceedings.mlr.press/v28/andrew13.html
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/J.PATCOG.2012.07.021
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1162/NECO.1993.5.3.402
https://doi.org/10.1016/j.jisa.2022.103122
https://doi.org/10.1016/J.JISA.2022.103122
https://doi.org/10.1016/J.JISA.2022.103122
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/s10623-025-01603-1
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/S12095-014-0111-8
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/s13389-019-00220-8
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.1109/TC.2004.13

32 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

editors, CHES 2017, volume 10529 of LNCS, pages 45–68. Springer, Heidelberg,
September 2017. doi:10.1007/978-3-319-66787-4_3.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In Miguel
Soriano, Sihan Qing, and Javier López, editors, ICICS 10, volume 6476 of
LNCS, pages 46–61. Springer, Heidelberg, December 2010. doi:10.1007/97
8-3-642-17650-0_5.

[CFG+12] Christophe Clavier, Benoit Feix, Georges Gagnerot, Christophe Giraud, Mylène
Roussellet, and Vincent Verneuil. ROSETTA for single trace analysis. In
Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012, volume
7668 of LNCS, pages 140–155. Springer, Heidelberg, December 2012. doi:
10.1007/978-3-642-34931-7_9.

[CHL05] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2005),
20-26 June 2005, San Diego, CA, USA, pages 539–546. IEEE Computer Society,
2005. doi:10.1109/CVPR.2005.202.

[Com90] Paul G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Syst.
J., 29(4):526–538, 1990. URL: https://doi.org/10.1147/sj.294.0526,
doi:10.1147/SJ.294.0526.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, CHES’99,
volume 1717 of LNCS, pages 292–302. Springer, Heidelberg, August 1999.
doi:10.1007/3-540-48059-5_25.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES 2002,
volume 2523 of LNCS, pages 13–28. Springer, Heidelberg, August 2003. doi:
10.1007/3-540-36400-5_3.

[DBDM03] Tijl De Bie and Bart De Moor. On the regularization of canonical correlation
analysis. Int. Sympos. ICA and BSS, pages 785–790, 2003.

[DLH+22] Ngoc-Tuan Do, Phu-Cuong Le, Van-Phuc Hoang, Van-Sang Doan, Hoai Giang
Nguyen, and Cong-Kha Pham. Mo-dlsca: Deep learning based non-profiled
side channel analysis using multi-output neural networks. In 2022 International
Conference on Advanced Technologies for Communications (ATC), pages 245–
250. IEEE, 2022. doi:10.1109/atc55345.2022.9943024.

[FV03] Pierre-Alain Fouque and Frédéric Valette. The doubling attack - Why Upwards
Is Better than Downwards. In Colin D. Walter, Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2003,
5th International Workshop, Cologne, Germany, September 8-10, 2003, Pro-
ceedings, volume 2779 of Lecture Notes in Computer Science, pages 269–280.
Springer, 2003. doi:10.1007/978-3-540-45238-6_22.

[GBB06] Ursula Gonzales-Barron and Francis Butler. A comparison of seven thresholding
techniques with the K-means clustering algorithm for measurement of bread-
crumb features by digital image analysis. Journal of food engineering, 74(2):268–
278, 2006. doi:10.1016/j.jfoodeng.2005.03.007.

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-34931-7_9
https://doi.org/10.1007/978-3-642-34931-7_9
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/SJ.294.0526
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1109/atc55345.2022.9943024
https://doi.org/10.1007/978-3-540-45238-6_22
https://doi.org/10.1016/j.jfoodeng.2005.03.007

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 33

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive computation and machine learning. MIT Press, 2016. URL: http:
//www.deeplearningbook.org/.

[GCCD23] Vincent Grosso, Pierre-Louis Cayrel, Brice Colombier, and Vlad-Florin Dragoi.
Punctured syndrome decoding problem - efficient side-channel attacks against
classic mceliece. In Elif Bilge Kavun and Michael Pehl, editors, Constructive
Side-Channel Analysis and Secure Design - 14th International Workshop,
COSADE 2023, Munich, Germany, April 3-4, 2023, Proceedings, volume
13979 of Lecture Notes in Computer Science, pages 170–192. Springer, 2023.
doi:10.1007/978-3-031-29497-6_9.

[GLWS20] Quanxue Gao, Huanhuan Lian, Qianqian Wang, and Gan Sun. Cross-modal
subspace clustering via deep canonical correlation analysis. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3938–3945.
AAAI Press, 2020. URL: https://doi.org/10.1609/aaai.v34i04.5808,
doi:10.1609/AAAI.V34I04.5808.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, CHES 2001, volume 2162 of LNCS, pages 251–261. Springer,
Heidelberg, May 2001. doi:10.1007/3-540-44709-1_21.

[HIM+13] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and
Georg Sigl. Clustering algorithms for non-profiled single-execution attacks on
exponentiations. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart
Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected
Papers, volume 8419 of Lecture Notes in Computer Science, pages 79–93.
Springer, 2013. doi:10.1007/978-3-319-08302-5_6.

[HKT15] Neil Hanley, HeeSeok Kim, and Michael Tunstall. Exploiting collisions in
addition chain-based exponentiation algorithms using a single trace. In Kaisa
Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 431–448. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-319-16715-2_23.

[HMA+08] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi
Shamir. Collision-based power analysis of modular exponentiation using chosen-
message pairs. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 15–29. Springer, 2008. doi:10.100
7/978-3-540-85053-3_2.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart
card implementation resistant to power analysis attacks. In Jianying Zhou,
Moti Yung, and Feng Bao, editors, ACNS 06, volume 3989 of LNCS, pages
239–252. Springer, Heidelberg, June 2006. doi:10.1007/11767480_16.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society, 2016. doi:10.1109/CVPR.2016.90.

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1007/978-3-031-29497-6_9
https://doi.org/10.1609/aaai.v34i04.5808
https://doi.org/10.1609/AAAI.V34I04.5808
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-319-16715-2_23
https://doi.org/10.1007/978-3-540-85053-3_2
https://doi.org/10.1007/978-3-540-85053-3_2
https://doi.org/10.1007/11767480_16
https://doi.org/10.1109/CVPR.2016.90

34 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org, 2015.
URL: http://proceedings.mlr.press/v37/ioffe15.html.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.
doi:10.1007/978-3-540-45146-4_27.

[JSZK15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
Spatial transformer networks. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
pages 2017–2025, 2015. URL: https://proceedings.neurips.cc/paper/2
015/hash/33ceb07bf4eeb3da587e268d663aba1a-Abstract.html.

[JY03] Marc Joye and Sung-Ming Yen. The Montgomery powering ladder. In Burton S.
Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES 2002, volume
2523 of LNCS, pages 291–302. Springer, Heidelberg, August 2003. doi:
10.1007/3-540-36400-5_22.

[JYP17] Zhong Ji, Xuejie Yu, and Yanwei Pang. Zero-shot learning with deep canonical
correlation analysis. In Jinfeng Yang, Qinghua Hu, Ming-Ming Cheng, Liang
Wang, Qingshan Liu, Xiang Bai, and Deyu Meng, editors, Computer Vision -
Second CCF Chinese Conference, CCCV 2017, Tianjin, China, October 11-14,
2017, Proceedings, Part III, volume 773 of Communications in Computer and
Information Science, pages 209–219. Springer, 2017. doi:10.1007/978-981
-10-7305-2_19.

[Kar63] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Soviet physics doklady, volume 7, pages 595–596, 1963.

[Kau18] Eric Kauderer-Abrams. Quantifying translation-invariance in convolutional
neural networks. CoRR, abs/1801.01450, 2018. URL: http://arxiv.org/ab
s/1801.01450, arXiv:1801.01450.

[Ket71] Jon R Kettenring. Canonical analysis of several sets of variables. Biometrika,
58(3):433–451, 1971.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999. doi:10.1007/3-540-48405-1_25.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 971–980, 2017. URL: https://proc
eedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f
6c4-Abstract.html.

http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1007/978-3-540-45146-4_27
https://proceedings.neurips.cc/paper/2015/hash/33ceb07bf4eeb3da587e268d663aba1a-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/33ceb07bf4eeb3da587e268d663aba1a-Abstract.html
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/978-981-10-7305-2_19
https://doi.org/10.1007/978-981-10-7305-2_19
http://arxiv.org/abs/1801.01450
http://arxiv.org/abs/1801.01450
https://arxiv.org/abs/1801.01450
https://doi.org/10.1007/3-540-48405-1_25
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 35

[LF00] Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis.
Int. J. Neural Syst., 10(5):365–377, 2000. doi:10.1142/S012906570000034X.

[LHK22] Nayeon Lee, Seokhie Hong, and Heeseok Kim. Single-trace attack using one-
shot learning with siamese network in non-profiled setting. IEEE Access,
10:60778–60789, 2022. doi:10.1109/ACCESS.2022.3180742.

[LHRB16] Shan Sung Liew, Mohamed Khalil Hani, Syafeeza Ahmad Radzi, and Rabia
Bakhteri. Gender classification: a convolutional neural network approach.
Turkish Journal of Electrical Engineering and Computer Sciences, 24(3):1248–
1264, 2016. doi:10.3906/elk-1311-58.

[LLO24] Di Li, Lang Li, and Yu Ou. Side-channel analysis based on siamese neural
network. J. Supercomput., 80(4):4423–4450, 2024. URL: https://doi.org/
10.1007/s11227-023-05631-3, doi:10.1007/S11227-023-05631-3.

[LQZL19] Wei Liu, Jie-Lin Qiu, Wei-Long Zheng, and Bao-Liang Lu. Multimodal emotion
recognition using deep canonical correlation analysis. CoRR, abs/1908.05349,
2019. URL: http://arxiv.org/abs/1908.05349, arXiv:1908.05349.

[LY09] Dongju Liu and Jian Yu. Otsu method and k-means. In Ge Yu, Mario Köppen,
Shyi-Ming Chen, and Xiamu Niu, editors, 9th International Conference on
Hybrid Intelligent Systems (HIS 2009), August 12-14, 2009, Shenyang, China,
pages 344–349. IEEE Computer Society, 2009. doi:10.1109/HIS.2009.74.

[MBPK22] Naila Mukhtar, Lejla Batina, Stjepan Picek, and Yinan Kong. Fake it till
you make it: Data augmentation using generative adversarial networks for
all the crypto you need on small devices. In Steven D. Galbraith, editor,
Topics in Cryptology - CT-RSA 2022 - Cryptographers’ Track at the RSA
Conference 2022, Virtual Event, March 1-2, 2022, Proceedings, volume 13161
of Lecture Notes in Computer Science, pages 297–321. Springer, 2022. doi:
10.1007/978-3-030-95312-6_13.

[MM79] Nick Martin and Hermine Maes. Multivariate analysis. London, UK: Academic,
1979.

[MMD20] Coenraad Mouton, Johannes C. Myburgh, and Marelie H. Davel. Stride
and translation invariance in cnns. In Aurona J. Gerber, editor, Artificial
Intelligence Research - First Southern African Conference for AI Research,
SACAIR 2020, Muldersdrift, South Africa, February 22-26, 2021, Proceedings,
volume 1342 of Communications in Computer and Information Science, pages
267–281. Springer, 2020. doi:10.1007/978-3-030-66151-9_17.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy,
and Applied Cryptography Engineering - 6th International Conference, SPACE
2016, Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076
of Lecture Notes in Computer Science, pages 3–26. Springer, 2016. doi:
10.1007/978-3-319-49445-6_1.

[NBS22] Meenal V. Narkhede, Prashant P. Bartakke, and Mukul S. Sutaone. A review on
weight initialization strategies for neural networks. Artif. Intell. Rev., 55(1):291–
322, 2022. URL: https://doi.org/10.1007/s10462-021-10033-z, doi:
10.1007/S10462-021-10033-Z.

https://doi.org/10.1142/S012906570000034X
https://doi.org/10.1109/ACCESS.2022.3180742
https://doi.org/10.3906/elk-1311-58
https://doi.org/10.1007/s11227-023-05631-3
https://doi.org/10.1007/s11227-023-05631-3
https://doi.org/10.1007/S11227-023-05631-3
http://arxiv.org/abs/1908.05349
https://arxiv.org/abs/1908.05349
https://doi.org/10.1109/HIS.2009.74
https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.1007/978-3-030-66151-9_17
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/s10462-021-10033-z
https://doi.org/10.1007/S10462-021-10033-Z
https://doi.org/10.1007/S10462-021-10033-Z

36 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

[NF95] Beat E Neuenschwander and Bernard D Flury. Common canonical variates.
Biometrika, 82(3):553–560, 1995.

[PC15] Guilherme Perin and Lukasz Chmielewski. A semi-parametric approach for
side-channel attacks on protected RSA implementations. In Naofumi Homma
and Marcel Medwed, editors, Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 34–53. Springer, 2015. doi:10.1007/978-3-319-31271-2_3.

[PCBP21] Guilherme Perin, Łukasz Chmielewski, Lejla Batina, and Stjepan Picek. Keep
it unsupervised: Horizontal attacks meet deep learning. IACR TCHES,
2021(1):343–372, 2021. https://tches.iacr.org/index.php/TCHES/a
rticle/view/8737. doi:10.46586/tches.v2021.i1.343-372.

[PITM14] Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine. At-
tacking randomized exponentiations using unsupervised learning. In Emmanuel
Prouff, editor, COSADE 2014, volume 8622 of LNCS, pages 144–160. Springer,
Heidelberg, April 2014. doi:10.1007/978-3-319-10175-0_11.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple
key enumeration (and rank estimation) using histograms: An integrated
approach. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 61–81. Springer, Heidelberg, August 2016. doi:
10.1007/978-3-662-53140-2_4.

[PZS17] Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert. A sys-
tematic approach to the side-channel analysis of ECC implementations with
worst-case horizontal attacks. In Wieland Fischer and Naofumi Homma, edi-
tors, CHES 2017, volume 10529 of LNCS, pages 534–554. Springer, Heidelberg,
September 2017. doi:10.1007/978-3-319-66787-4_26.

[QLL18] Jie-Lin Qiu, Wei Liu, and Bao-Liang Lu. Multi-view emotion recognition using
deep canonical correlation analysis. In Long Cheng, Andrew Chi-Sing Leung,
and Seiichi Ozawa, editors, Neural Information Processing - 25th International
Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018,
Proceedings, Part V, volume 11305 of Lecture Notes in Computer Science,
pages 221–231. Springer, 2018. doi:10.1007/978-3-030-04221-9_20.

[RMH17] Ciara Rafferty, Máire McLoone, and Neil Hanley. Evaluation of large integer
multiplication methods on hardware. IEEE Trans. Computers, 66(8):1369–1382,
2017. doi:10.1109/TC.2017.2677426.

[Rou87] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.

[SHKS15] Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. Improving
non-profiled attacks on exponentiations based on clustering and extracting
leakage from multi-channel high-resolution EM measurements. In Stefan
Mangard and Axel Y. Poschmann:, editors, COSADE 2015, volume 9064 of
LNCS, pages 3–19. Springer, Heidelberg, April 2015. doi:10.1007/978-3-3
19-21476-4_1.

[SIUH22] Kotaro Saito, Akira Ito, Rei Ueno, and Naofumi Homma. One truth prevails:
A deep-learning based single-trace power analysis on RSA-CRT with windowed

https://doi.org/10.1007/978-3-319-31271-2_3
https://tches.iacr.org/index.php/TCHES/article/view/8737
https://tches.iacr.org/index.php/TCHES/article/view/8737
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.1007/978-3-319-10175-0_11
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-319-66787-4_26
https://doi.org/10.1007/978-3-030-04221-9_20
https://doi.org/10.1109/TC.2017.2677426
https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/978-3-319-21476-4_1

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 37

exponentiation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):490–
526, 2022. URL: https://doi.org/10.46586/tches.v2022.i4.490-526,
doi:10.46586/TCHES.V2022.I4.490-526.

[SKF+22] Seiya Shimada, Kunihiro Kuroda, Yuta Fukuda, Kota Yoshida, and Takeshi
Fujino. Deep learning-based side-channel attacks against software-implemented
RSA using binary exponentiation with dummy multiplication. In Hiroki
Nishikawa and Xiangbo Kong, editors, Proceedings of the 4th International
Symposium on Advanced Technologies and Applications in the Internet of
Things (ATAIT 2022), Ibaraki and Virtual, Japan, August 24-26, 2022, volume
3198 of CEUR Workshop Proceedings, pages 75–84. CEUR-WS.org, 2022. URL:
https://ceur-ws.org/Vol-3198/paper10.pdf.

[SM23] Marvin Staib and Amir Moradi. Deep learning side-channel collision attack.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):422–444, 2023. URL:
https://doi.org/10.46586/tches.v2023.i3.422-444, doi:10.46586/T
CHES.V2023.I3.422-444.

[SSS15] Takeshi Sugawara, Daisuke Suzuki, and Minoru Saeki. Two operands of mul-
tipliers in side-channel attack. In Stefan Mangard and Axel Y. Poschmann:,
editors, COSADE 2015, volume 9064 of LNCS, pages 64–78. Springer, Heidel-
berg, April 2015. doi:10.1007/978-3-319-21476-4_5.

[SSSL20] Zhongkai Sun, Prathusha Kameswara Sarma, William A. Sethares, and Yingyu
Liang. Learning relationships between text, audio, and video via deep canonical
correlation for multimodal language analysis. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 8992–8999. AAAI Press,
2020. URL: https://doi.org/10.1609/aaai.v34i05.6431, doi:10.1609/
AAAI.V34I05.6431.

[SXW+23] Xiang-Jun Shen, Zhaorui Xu, Liangjun Wang, Zechao Li, Guangcan Liu,
Jianping Fan, and ZhengJun Zha. Extraordinarily time-and memory-efficient
large-scale canonical correlation analysis in fourier domain: From shallow to
deep. IEEE Transactions on Neural Networks and Learning Systems, 2023.
doi:10.1109/tnnls.2023.3282785.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR TCHES, 2019(2):107–131, 2019. https://tches.
iacr.org/index.php/TCHES/article/view/7387. doi:10.13154/tches.v
2019.i2.107-131.

[Wal01] Colin D. Walter. Sliding windows succumbs to big mac attack. In Çetin
Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001, volume
2162 of LNCS, pages 286–299. Springer, Heidelberg, May 2001. doi:10.1007/
3-540-44709-1_24.

[WvM11] Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menarini.
Defeating RSA multiply-always and message blinding countermeasures. In
Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 77–88.
Springer, Heidelberg, February 2011. doi:10.1007/978-3-642-19074-2_6.

[YM15] Fei Yan and Krystian Mikolajczyk. Deep correlation for matching images
and text. In IEEE Conference on Computer Vision and Pattern Recognition,

https://doi.org/10.46586/tches.v2022.i4.490-526
https://doi.org/10.46586/TCHES.V2022.I4.490-526
https://ceur-ws.org/Vol-3198/paper10.pdf
https://doi.org/10.46586/tches.v2023.i3.422-444
https://doi.org/10.46586/TCHES.V2023.I3.422-444
https://doi.org/10.46586/TCHES.V2023.I3.422-444
https://doi.org/10.1007/978-3-319-21476-4_5
https://doi.org/10.1609/aaai.v34i05.6431
https://doi.org/10.1609/AAAI.V34I05.6431
https://doi.org/10.1609/AAAI.V34I05.6431
https://doi.org/10.1109/tnnls.2023.3282785
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.1007/3-540-44709-1_24
https://doi.org/10.1007/3-540-44709-1_24
https://doi.org/10.1007/978-3-642-19074-2_6

38 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3441–3450. IEEE
Computer Society, 2015. doi:10.1109/CVPR.2015.7298966.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient CNN architectures in profiling attacks. IACR TCHES,
2020(1):1–36, 2019. https://tches.iacr.org/index.php/TCHES/article
/view/8391. doi:10.13154/tches.v2020.i1.1-36.

[ZBHV21] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Effi-
ciency through diversity in ensemble models applied to side-channel attacks.
IACR TCHES, 2021(3):60–96, 2021. https://tches.iacr.org/index.php/T
CHES/article/view/8968. doi:10.46586/tches.v2021.i3.60-96.

A DCCA Implementation Hints
This section provides some DCCA implementation hints using the Keras 2.8 library and
TensorFlow 2.8 backend.

1 import tensorflow as tf
2 #CCA loss for DCCA model
3 def cca_loss ():
4 def inner_cca_objective (y_true , y_pred):
5 """
6 It is the CCA loss function as introduced in the original paper :

Andrew et al., "Deep Canonical Correlation Analysis .", ICML , 2013.
7 It uses the Keras library with the TensorFlow V2 backend .
8 The implementation is based on github@VahidooX ’s Theano implementation

. As the loss is unsupervised y_true is just ignored
9 """

10 r1 , r2 , eps = 1e-3, 1e-3, 1e -9
11 o1 = o2 = int(y_pred . shape [1] // 2)
12 # unpack (separate) the output of networks for view 1 and view 2
13 H1 = tf. transpose (y_pred [:, 0: o1])
14 H2 = tf. transpose (y_pred [:, o1:o1 + o2])
15 m = tf. shape (H1)[1]
16

17 H1bar = H1 - tf.cast(tf. divide (1, m), tf. float32) * tf. matmul (H1 , tf.
ones ([m, m]))

18 H2bar = H2 - tf.cast(tf. divide (1, m), tf. float32) * tf. matmul (H2 , tf.
ones ([m, m]))

19

20 SigmaHat12 = tf.cast(tf. divide (1, m - 1) , tf. float32) * tf. matmul (
H1bar , H2bar , transpose_b =True)

21 SigmaHat11 = tf.cast(tf. divide (1, m - 1) , tf. float32) * tf. matmul (
H1bar , H1bar , transpose_b =True) + r1 * tf.eye(o1)

22 SigmaHat22 = tf.cast(tf. divide (1, m - 1) , tf. float32) * tf. matmul (
H2bar , H2bar , transpose_b =True) + r2 * tf.eye(o2)

23 # Calculating the root inverse of covariance matrices by using eigen
decomposition

24 [D1 , V1] = tf. linalg .eigh(SigmaHat11)
25 [D2 , V2] = tf. linalg .eigh(SigmaHat22)
26 # get eigen values that are larger than eps
27 posInd1 = tf. where (tf. greater (D1 , eps))
28 D1 = tf. gather_nd (D1 , posInd1)
29 V1 = tf. transpose (tf.nn. embedding_lookup (tf. transpose (V1), tf. squeeze (

posInd1)))
30

31 posInd2 = tf. where (tf. greater (D2 , eps))
32 D2 = tf. gather_nd (D2 , posInd2)
33 V2 = tf. transpose (tf.nn. embedding_lookup (tf. transpose (V2), tf. squeeze (

posInd2)))

https://doi.org/10.1109/CVPR.2015.7298966
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8968
https://tches.iacr.org/index.php/TCHES/article/view/8968
https://doi.org/10.46586/tches.v2021.i3.60-96

D. Llavata, E. Cagli, R. Eyraud, V. Grosso and L. Bossuet 39

34

35 SigmaHat11RootInv = tf. matmul (tf. matmul (V1 , tf. linalg .diag(D1 ** -0.5)
), V1 , transpose_b =True)

36 SigmaHat22RootInv = tf. matmul (tf. matmul (V2 , tf. linalg .diag(D2 ** -0.5)
), V2 , transpose_b =True)

37

38 Tval = tf. matmul (tf. matmul (SigmaHat11RootInv , SigmaHat12),
SigmaHat22RootInv)

39 corr = tf.sqrt(tf. linalg . trace (tf. matmul (Tval , Tval , transpose_a =True)
))

40 return -corr
41 return inner_cca_objective

Implementation 1: DCCA loss function.

1 def DCCA_model (input_shape =50000 , nb_neurons =400) :
2 Xinput = Input (shape =(input_shape ,1))
3 Yinput = Input (shape =(input_shape ,1))
4 model = Sequential ()
5 model .add(Conv1D (filters =4, kernel_size =8, activation ="selu",padding ="same

",name=" conv1 "))
6 # model .add(AveragePooling1D (2 ,2))
7 model .add(Flatten ())
8 model .add(Dense (nb_neurons , activation =" sigmoid "))
9 encoded_l = model (Xinput)

10 encoded_r = model (Yinput)
11 # Concatenate latent spaces for CCA loss
12 sub_layer = Concatenate (name=" encoded ")([encoded_l , encoded_r])
13 dcca_model = Model ([Xinput , Yinput], sub_layer)
14 return dcca_model
15

16 # Instantiation of the siamese DCCA model
17 dcca_model = DCCA_model (input_shape = input_shape , nb_neurons = nb_neurons)
18 optimizer = RMSprop (learning_rate = learning_rate)
19 dcca_model . compile (optimizer =optimizer ,loss =[cca_loss ()])
20

21 # train DCCA model to put pairs of modular operation traces in a correlated
latent space

22 dcca_model .fit(training_generator , epochs =nb_epochs , verbose = verbose)
23 #get correlated latent space for the attack
24 new_traces = dcca_model . predict (testing_generator)
25 # compute the correlation on the new trace representation
26 corr = compute_corrcoeff (new_traces)
27 # compute Kmeans to identify the collision threshold
28 pred = compute_kmeans (corr)

Implementation 2: Collision attack with a siamese DCCA model.

B Protected RSA Implementation Hints
This section provides some details about the software part of the protected RSA imple-
mentation targeted in our experiments. For more information on the embedded arithmetic
co-processor and the acquisitions campaign, we suggest readers refer to [CCC+19].

Implementation details (described in [CCC+19]). The targeted RSA implementa-
tion given in Algorithm 3 is based on a left-to-right binary Square-and-Multiply Always
exponentiation algorithm combined with three countermeasures: message randomization,
modulus randomization and exponent randomization. The processing flow is regular
and independent of the exponent value thanks to the addition of dummy multiplications.
Morever, the modular multiplications and squarings operations are performed with the
same LIM operation of the embedded arithmetic co-processor which includes a dedicated

40 Unsupervised Horizontal Attacks against Public-Key Primitives with DCCA

Algorithm 3: Exponentiation Square-and-Multiply Always (from [CCC+19])
Input: the masked input m′ in Montgomery representation, the masked exponent

d′ of size n bits, the function MMM initialized with the modulus N ′ and
the Montgomery factor R, and four memory segments @(j) with j ∈ [1..4].

Output: address @(1) contains m′d′

mod N ′

1 @(1)← m
2 @(2)← 1
3 segin ← 1
4 segacc ← 2
5 segdum ← 3
6 for i = 0 to n− 1 do
7 s← d′[n− 1− i] ▷ Read from left to right
8 segfree ← 9− segacc − segdum
9 MMM(segfree, segacc, segacc) ▷ SQUARE

10 segacc ← segfree
11 segfree ← 9− segacc − segdum
12 MMM(segfree, segacc, segin) ▷ MULTIPLY
13 segacc ← s× segfree + (1− s)× segacc
14 segdum ← s× segdum + (1− s)× segfree
15 end
16 @(segdum)← 1
17 MMM(segacc, segacc, segdum) ▷ Montgomery representation to integer normal form
18 return @(1)← @(segacc)

memory area based on Montgomery arithmetic, referred as MMM in Algorithm 3. The
implementation uses 4 memory segments that respectively contain the input of the ex-
ponentiation and the intermediate values resulting from the bit-by-bit exponentiation
processing. These addresses are denoted by @(j) with j ∈ [1..4]. The input is stored at
address @(j) with j = segin and the value of segin does not vary during the processing. At
each loop, a squaring then a multiplication are always executed. So two computations are
processed during the exponentiation: the true one is stored at address @(j) with j = segacc,
whereas the dummy one is stored at address @(j) with j = segdum. The values of the
two indices segacc and segdum vary according to the value of the exponent bit which is
treated. Their updating is done without conditional branch thanks to the use of a third
index segfree.

	Introduction
	Preliminaries
	Notations
	RSA Embedded Implementations
	Horizontal Attacks
	Neural Networks and Siamese Architecture
	Deep Canonical Correlation Analysis

	Deep Collision Correlation Attack
	Attack Motivation
	Attack in Practice

	Experiments Settings
	Datasets and Neural Network Architectures
	Evaluation Metrics and Baselines

	Experiments Results
	Results on Simulated Dataset
	Results on Protected RSA Dataset

	Handling Attack Instability
	DCCA Model Design on Protected RSA Dataset
	Applicability to Other Cryptosystems
	Conclusion
	References
	DCCA Implementation Hints
	Protected RSA Implementation Hints

