
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 20 pages.

https://doi.org/10.62056/akjbksuc2
Check for updates

The May-Ozerov Algorithm for Syndrome
Decoding is “Galactic”

Charles Bouillaguet1 , Claire Delaplace2 and
Mickaël Hamdad1,2

1 Sorbonne Université, CNRS, LIP6, Paris, France
2 Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France

Abstract. In 2015, May and Ozerov proposed a new method to solve the Nearest
Neighbor Problem. They also observed that it could be used as a subroutine in various
Information Set Decoding (ISD) algorithms for arbitrary linear codes. This led to an
asymptotic improvement in their complexity. However, the proposed improvement
has been widely perceived as impractical because of the huge hidden factors in its
asymptotic complexity. The main contribution of this article is to provide a sound
foundation for this claim. We show that it is indeed “galactic”, namely that it only
improves upon much simpler methods when instances are so large that they fill the
whole universe.
More precisely, we argue that for the May-Ozerov ISD algorithm to require less
operations than a technique based on the Stern ISD algorithm, the length of the code
has to be greater than 1, 874, 400, with a number of operation beyond 263489, making
it practically useless.
Keywords: Code-based Cryptography · Decoding algorithm · Concrete security

1 Introduction
A “galactic” algorithm is

an algorithm that is wonderful in its asymptotic behavior, but is never used to
actually compute anything. [LR13]

There are many well-known examples, the most famous one probably being the notorious
square matrix multiplication algorithm of Coppersmith and Winograd from 1990 [CW90],
with complexity O

(
n2.3755), where n is the size of the matrices.

The analysis of algorithms is often asymptotic, relying on “big O” notations. These
may hide potentially huge constants. In addition, they mean that the complexity is below
the announced value “when the instance is large enough”, but the actual threshold is
usually not known or stated. All of this is well-known.

Cryptanalysts sometimes come up with galactic algorithms. The case of the (binary)
syndrome decoding problem is interesting from this point of view. The computational
hardness of this problem underlies the security of several code-based cryptographic con-
structions, including notably the McEliece cryptosystem [McE78]. The problem consists
in finding sparse solutions to under-constrained linear systems over F2. More precisely,
given an (n− k)-by-n boolean matrix H, a vector s and an integer w, find a vector e such
that He = s and the Hamming weight of e is less than w.

E-mail: charles.bouillaguet@lip6.fr (Charles Bouillaguet), claire.delaplace@u-picardie.fr
(Claire Delaplace), mickael.hamdad@lip6.fr (Mickaël Hamdad)

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-13 Accepted: 2025-03-11

https://doi.org/10.62056/akjbksuc2
https://crossmark.crossref.org/dialog/?doi=10.62056/akjbksuc2&domain=pdf&date_stamp=2025-04-07
https://orcid.org/0000-0001-9416-6244
https://www-almasty.lip6.fr/~bouillaguet
https://orcid.org/0000-0002-5314-1806
https://mis.u-picardie.fr/membre/58/Claire-DELAPLACE
https://orcid.org/0009-0003-0597-6221
https://lip6.fr/Mickael.Hamdad
mailto:charles.bouillaguet@lip6.fr
mailto:claire.delaplace@u-picardie.fr
mailto:mickael.hamdad@lip6.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

Table 1: Some algorithms for the Syndrome Decoding problem. It is assumed that the
number of errors to decode is less than half the minimum distance of the code (“maximum
likelihood decoding”). The algorithms run in time Õ (2τn) using space Õ (2µn).

Algorithm τ µ

Lee-Brickell [LB88] 0.0575 0
Stern [Ste88] 0.0556 0.0135
Ball-collision [BLP11] 0.0556 0.0148
MMT [MMT11] 0.0536 0.0216
BJMM [BJMM12] 0.0493 0.0331
May-Ozerov [MO15] 0.0473 0.0346

The problem is well-known to be NP-complete [BMVT78]. Over the years, several
algorithms have been developed to solve it. Table 1 summarizes some of them. All of them
have exponential complexity, and much effort has been devoted to minimize the exponent
in the worst case. Their complexity is usually given using the “big O tilde” notation that
hides unknown constants and polynomial factors.

To the best of our knowledge, the last algorithm, with the best exponent, has not been
used to solve any serious instance of the problem. On the contrary, the Stern, MMT and
BJMM algorithms have been used to obtain computational records in [BLP08], [EMZ22]
and [NUO+24] respectively. Table 1 shows that the reduction in the complexity exponent
comes at the expense of an exponential increase in memory consumption. Whereas the
Stern and MMT algorithm have M ≤

√
T , this is no longer the case for the most recent

algorithms — this is a serious hint that they are impractical.
Galactic algorithms are clearly impractical, but an algorithm can be impractical for

reasons other than its sheer number of operations. For instance, breaking the double-DES
with a simple meet-in-the-middle attack requires about 257 DES evaluations and enough
memory to store 256 64-bit blocks. The number of operations is not a problem (exhaustive
search on the DES has been done in practice), however the memory requirement is way
above the capacity of largest computing centers at the time of this writing (they have
roughly 255 bits of RAM). This meet-in-the-middle attack is thus quite impractical.

In this article, we revisit the complexity analysis of the algorithm (Decode) presented
by May and Ozerov in 2015 to solve the syndrome decoding problem [MO15]. We focus on
its number of operations and disregard any other practical consideration. We show that
the algorithm is “galactic”.

It relies on a clever procedure that solves the (Hamming distance) Nearest Neighbor
problem (also called the bichromatic closest pair or the light bulb problem): given two lists
of bit vectors L, R ⊆ Fm

2 of size N = 2λm, find x ∈ L and y ∈ R such that the Hamming
distance between x and y is less than γm (if it exists).

Related work The most common subquadratic algorithm to solve the Nearest Neighbor
Problem is based on what is now called locality-sensitive hashing. It is sometimes attributed
to an article of 1998 by Indyk and Motwani [IM98] (cf. for instance [EB22]). We believe
that the actual algorithm goes way back. At the very least, it is discussed in a 1995 article
by Karp, Waarts and Zweig [KWZ95]; its main idea is contained in the ISD algorithm
of Stern from 1988 [Ste88]; a article by Rivest from 1974 [Riv74] attributes it to Peter
Elias, following a technical report from 1971 by Welch [Wel71]. In this article, we call it
the “Projection method” (because the locality-sensitive hash function that we use is just a
projection).

In [MO15], May and Ozerov proposed an improved procedure to solve the nearest
neighbor problem. We refer to it as the MO-NN algorithm here. In [MO15] the authors

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 3

prove the following

Theorem (Theorem 1 in [MO15]). Let H be the binary entropy function. For any constant
ϵ > 0, any (γ, λ) such that 0 < γ < 1

2 and 0 < λ < 1 −H
(

γ
2
)
, the MO-NN algorithm

solves the Nearest Neighbor problem with overwhelming probability in time Õ
(
2(y(γ,λ)+ϵ)m

)
,

with

y(γ, λ) = (1− γ)
(

1−H

(
H−1(1− λ)− γ

2
1− γ

))
.

We note that the “big O tilde” is not strictly necessary and that a simple “big O”
would have been sufficient: an arbitrarily small increase of ϵ is sufficient to absorb any
hidden polynomial factor.

The algorithm is asymptotically better than Projection Method for solving the problem
when m = c(N) log(N) where c(N) ≥ 1

1−H(γ
2) . The exponent y in the complexity is close

to optimal [Dub10].
However, the algorithm has been suspected of being galactic for a while. Already

in [MO15], the authors state that due to hidden factor, their algorithm is not practical.
In [EB22], Esser and Bellini provide an estimator to evaluate the hardness of concrete
instances of the syndrome decoding problem. They explicitly disregard the MO-NN
algorithm, arguing that

“While the algorithm achieves theoretically close to optimal complexities, it
inherits a huge polynomial overhead limiting its practicality, despite recent
efforts to reduce that overhead. As one of the major goals of this work is
to provide precise practical estimates we do not consider the algorithm by
May-Ozerov.” [EB22]

Indeed, there are several reasons why this algorithm could be galactic:

• The success probability could be very small until n becomes very large.

• The polynomial factor hidden in the “big O tilde” could be very large, so that the
small exponent only brings a benefit for extremely large values of n.

• The smaller the value of ϵ, the larger the hidden polynomial factor becomes. In
addition, the threshold at which the actual complexity is less than the function inside
the “big O” may shift towards +∞.

Our main contribution is to show that the MO-NN algorithm is indeed “galactic”,
and compare its complexity to the aforementioned Projection Method. Our new refined
complexity analysis allows us to give an estimation of the threshold value of n for which
the MO-NN algorithm outperform the Projection Method. For instance, if λ = 0.025 and
γ = 0.1, this threshold is beyond m = 336, 017 using t = 20 (hence ϵ = 0.000755...). The
size of the input lists at the crossover point is then 28400. The actual number of operations
is at least 29697. This is a relevant setting, as argued later.

We then consider what happens when the algorithm is used for syndrome decoding,
in particular to attack the McEliece cryptosystem. This yields instances of the Nearest
Neighbor problem where the May-Ozerov ISD algorithm with the MO-NN algorithm is
even more galactic. For example, for R = 0.8 and D = 0.03, the value of n for which the
May-Ozerov ISD algorithm (Decode) with the MO-NN algorithm is better than with the
Projection Method is beyond n = 1, 874, 400. This implies a list size greater than 222282 in
input of the MO-NN algorithm. The estimator code used to produce these numbers is
available as Supplementary Material.

4 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

Organization of this article. In Section 2, we present the problem and important
notations we use in the rest of the paper. We describe the Projection Method and the
MO-NN algorithm in Section 3. In Section 4, we present our main results, namely a lower
bound on the number of operations performed by the the MO-NN algorithm. This allows
us to find a “crossing point” with the folklore Projection Method, that is a value m0 for
which we know for sure that, for all m < m0, the Projection Method will perform better
than the MO-NN algorithm. We give numerical estimation of this m0 value (depending
on various parameters) in Section 5, and show that this value is indeed “galactic”. Finally,
in Section 6, we present a concrete application. Given the May-Ozerov ISD algorithm
(Decode) we estimate the minimum length n a linear code must have for the MO-NN
algorithm to outperform the Projection Method. For a random binary linear code of rate
1/2, n must be larger than 512, 000.

2 Preliminaries
Useful notations. An element u of Fm

2 is an m-bit vector. We denote by wt(u) the
Hamming weight of u. represents the Hamming distance between u and v (the number of
bits that differ in the two vectors).

For x > 0 we denote by log2(x) the logarithm in base 2 of x. For 0 < x < 1, H
represents the binary entropy function:

H(x) = −x log2(x)− (1− x) log2(1− x).

We also use the following bounds:√
n

8k(n− k)2nH(k
n) ≤

(
n

k

)
≤
√

n

2πk(n− k)2nH(k
n), (1)

H(x) ≥ 4x(1− x). (2)

and for all x and for all i ∈ {0, ..., x}(
i
i
2

)(
x− i
x−i

2

)
≤
(

x
x
2

)
(3)

(1) can be obtained from the Stirling formula. A proof of (2) can be found in [Top01]. (3)
is established by a combinatorial argument: the right-hand side of the inequality is the
number of ways to choose half of the elements of the set {1, . . . , x}. The left hand size is
the number of ways to choose half of the elements of the same set but with a restriction —
i
2 elements in the subset {1, 2, . . . , i}. It is therefore smaller.

2.1 The nearest neighbor problem
Definition 1 ((m, γ, λ)-Nearest Neighbor Problem). Let m ∈ N, 0 < γ < 1

2 and 0 < λ < 1.
Given γ and two lists L, R ⊂ Fm

2 of equal size N = 2λm with uniform and independent
vectors, the (m, γ, λ)-Nearest Neighbor Problem consists in exhibiting a pair (u∗, v∗) from
L×R, such that d(u∗, v∗) ≤ γm, or returning ⊥ if none exists.

In this paper, we refer to all pairs (u, v) ∈ L×R such that d(u, v) ≤ γm as good pairs.
We say that an algorithm succeeds in solving the Nearest Neighbor Problem if it returns a
good pair whenever the input lists contain any. We work under the assumption that the
input lists contain a single good pair (u∗, v∗); the algorithms succeed when they return
this specific target pair.

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 5

Computational model. We consider m-bit words to fit our problem instance. All basic
instructions such as reading, writing, comparing, as well as usual binary operations (e.g.
exclusive-OR, AND, negation) and arithmetic ones (e.g. sum, multiplication) on m-bit
words are assumed to be “elementary operations”. We measure the time complexity by
counting the number of such operations.

3 Algorithms for the nearest neighbor problem
A naive “brute-force” technique solves the Nearest Neighbor Problem by simply computing
the Hamming distance of each (u, v) ∈ L × R in quadratic time 22λm. This yields the
QuadraticNN function below.

Algorithm 1 QuadraticNN
1: function QuadraticNN(L, R, ℓ = γm)
2: for all (u, v) ∈ L×R do
3: if d(u, v) ≤ ℓ then
4: return (u, v)
5: return ⊥

3.1 The projection method
Let uJ be the |J |-bit vector formed by the coefficients of u whose indices are in J . The
basic idea consists in guessing a subset J of the indices and making the assumption that
the target solution (u∗, v∗) is such that u∗

J = v∗
J .

This procedure heavily relies upon the Partition routine. Given a list L of m-bit
vectors and a subset J of {1, . . . , m} such that |J | = k, partition L into 2k sublists: all
vectors u inside each sublist coincide on uJ .

This can clearly be implemented in linear time, for instance using a bucket sort that
uses 3N operations, where N is the size of the input list. Put another way, the vectors are
bucketized using a locality-sensitive hash function that returns the k bits designated by J .

Algorithm 2 The Projection Method
1: function ProjectionMTD(ℓ, N, L, R, k) ▷ N = |L| = |R|, ℓ = γm
2: p←

(
m
k

)/(
m−ℓ

k

)
▷ Success probability of a single iteration

3: for 1/p times do
4: J ← random set of k distinct integers from {1, . . . , m}
5: L1, . . . , L2k ← Partition(L, J)
6: R1, . . . , R2k ← Partition(R, J)
7: for 1 ≤ i ≤ 2k do
8: x← QuadraticNN(Li, Ri, ℓ)
9: if x ̸= ⊥ then return x

10: return ⊥

3.2 May-Ozerov’s algorithm
We present an overview of the the MO-NN in Algorithm 3. This procedure takes as input
the two lists of m-bit vectors L and R, of size |L| = |R| = 2λm, the target value γ, as
well as parameters t and ϵ, discussed later. The core idea of this algorithm is to partition
each list into t strips of indices, and solve the problem recursively on each of these strips.

6 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

The j-th strip is made up of indices whose index belongs to the interval Ij such that
I1 = [1 : α1m] and for all j ≥ 2, Ij = [(

∑j−1
x=1 αxm) + 1 :

∑j
x=1 αxm]. We denote by uIj

the |Ij |-bit vector formed by the coefficients of u whose indices are in Ij . For the sake of
simplicity, we will denote by uj (resp. vj) the vector uIj (resp. vIj).

In order to make the MO-NN algorithm work, May and Ozerov first rerandomizes the
input so that the targeted solution (u∗, v∗) satisfies the following conditions with some
probability. For all 1 ≤ j ≤ t:

i) d(u∗
j , v∗

j) = γ |Ij | = γαjm;

ii) wt
(
u∗

j

)
= wt

(
v∗

j

)
= αjm

2 .

The whole procedure is then repeated sufficiently many times in order to guarantee
that the conditions are satisfied in at least one iteration of this “double rerandomization”
with overwhelming probability (lines 6 and 7 of Algorithm 3). The first loop randomly
permutes the indices while the second one XORs a random bit vector r of well chosen
Hamming weight onto each element of the lists. As shown in [MO15], this ensures that if
a solution (u∗, v∗) exists, it will be found with overwhelming probability after restarting
the procedure a polynomial number of times (in m). In section 4.2, we revisit their proof
to present more precise bounds; in particular we give lower-bounds on f1(m) and f2(m).

Algorithm 3 The MO-NN algorithm
1: function MO-NN(L, R, λ, γ, m, t, ϵ)
2: y(γ, λ)← (1− γ)

(
1−H

(
H−1(1−λ)−γ/2

1−γ

))
3: α1 ← (y(γ, λ)− λ + ϵ/2)/y(γ, λ)
4: for 2 ≤ j ≤ t do
5: αj ← λ

y(γ,λ) αj−1 ▷ Divide the lists into t strips of αjm indices
6: for f1(m) uniformly random permutation π of {1, . . . m} do
7: for f2(m) times do
8: r = (r1, . . . , rt)←

(
Random(Fαjm

2)
)t

j=1 s.t. wt(rj) = αj
m
2

9: L̄← π(L) + r
10: R̄← π(R) + r
11: Remove from L̄ and R̄ all vectors that are not of weight αj

m
2 on the j-th

strip
12: C ← RecursiveMO(L̄, R̄, m, t, ϵ, γ, λ, (α)t

j=1, 1)
13: if C ̸= ⊥ then return C

14: return ⊥

The main idea of the MO-NN algorithm lies in the RecursiveMO procedure invoked
on line 12. It takes as input the two “rerandomized” list L and R, the parameters t, ϵ
and γ, as well as (α1, . . . , αt) that give the size of each strip, and an index j (initialized
to the value 1) corresponding to the index of the current strip. As it is assumed that all
vectors of L and R are of Hamming weight αjm/2 on each strip Ij , the list are filtered
beforehand to remove all vectors that do not satisfy this condition.

The recursive procedure is described in Algorithm 4. Its main idea is to compute
exponentially many sublists of L and R of small size and try to solve the problem recursively.
This creates a recursion tree, where each node represents a pair of sublists (L′, R′) of
(L, R). The root of the tree corresponds to original (filtered) pair (L̄, R̄). May and Ozerov
show that, at a given step j, if each node has msj children, then the procedure succeeds
in finding (u∗, v∗) with overwhelming probability, assuming that (u∗, v∗) ∈ (L̄, R̄).

At depth one, we consider I1, the first of the t strips. Each node is built as follows. A
subset A of I1, such that |A| = |I1|/2 = α1m/2 is picked uniformly at random. Then, the

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 7

Algorithm 4 RecursiveMO
1: function RecursiveMO(L, R, m, t, ϵ, λ, γ, (α)t

1, j)
2: if j = t + 1 then
3: return QuadraticNN(L, R, γm)
4: C ← ⊥

5: sj ←

(
αjm

1
2 αjm

)
((1− γ) αjm

2
(1− h− γ

2) αjm
2

)((1− γ) αjm
2

(h− γ
2) αjm

2

)(
γ

αjm
2

γ
2

αjm
2

)2

6: for msj times do
7: Pick a random subset A of αjm

2 indices inside strip j
8: L′ ← {u ∈ L s.t. wt(uA) = H−1(1− λ) αjm

2 }
9: R′ ← {v ∈ R s.t. wt(vA) = H−1(1− λ) αjm

2 }
10: if |L′| and |R′| are not too big then
11: x← RecursiveMO(L′, R′, m, t, ϵ, λ, γ, (α)t

1, j + 1)
12: if x ̸= ⊥ then
13: return x
14: return C

lists L and R are filtered according to the following criteria: only the vectors of Hamming
weight equal to H−1(1− λ) α1m

2 on subset A are kept. If the resulting two lists L′ and R′

are not too big the node is kept, otherwise it is discarded (the precise meaning of “not too
big” is discussed below).

The procedure then works recursively, by moving to the next strip as we go down the
recursion tree. The recursion stops when the (constant) depth t + 1 is reached. At this
stage, the resulting lists should be small enough and an exhaustive search (QuadraticNN)
is performed to find a solution, assuming that it survived the filtering steps on this branch.

The recursion tree is schematized in Figure 1. A node that contains a good pair (u∗, v∗)
is represented by (L∗, R∗). At each level, the lists are smaller and smaller.

May and Ozerov also discuss the case where the size of resulting lists L(j) and R(j) are
“too big”. Given a node at depth j, the recursive procedure stops if the size of the two lists
deviates from their expected size by a factor of (1 + 2 ϵ

2). Using Chebychev bounds this
only happens with probability less than 2−ϵm. So the probability that the procedure stops
at a path of length t while containing the good pair (u∗, v∗) is 2t2−ϵm. However this adds
further constraints on the choice of ϵ, as discussed in section 5.

4 Analysis of both algorithms

The objective of this section is to establish matching bounds on the runtime of both of the
aforementioned methods. More precisely we give an upper bound on the expected time
complexity the Projection Method and a lower bound on that of the MO-NN algorithm. For
fixed values of λ and γ, these bounds allow us to estimate the values of m for which we know
for sure that the Projection Method requires less operations than the MO-NN algorithm.
Indeed, denote by Tproj(m) the expected time complexity of the Projection Method and
by TMO(m) the expected time complexity of the MO-NN algorithm; assume that there
are bounds B1(m) and B2(m) such that Tproj(m) ≤ B1(m) and B2(m) ≤ TMO(m); then
obviously B1(m) ≤ B2(m) implies that Tproj(m) ≤ TMO(m).

In Section 5 and 6, we give some experimental estimation of values of m for fixed γ
and λ.

8 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

L∗ R∗

L R L∗ R∗ L R

L∗ R∗

L R L RL∗ R∗

. . .

...
...

...

. . .

t levels

Figure 1: May-Ozerov recursion tree

4.1 Upper bound on the complexity of the projection method
Recall that N is the size of the input lists and k is the number of indices picked at line 4
of Algorithm 2. We recall the well-known analysis of the Projection Method.

Theorem 1. Let k = λm = log2 N , the Projection Method succeeds with probability greater
than 1− 1

e , in expected runtime Tproj. We have:

log2(Tproj) ≤ g(γ, λ)m + c(γ, λ)

with c(γ, λ) = log2

(
7
√

4(1−γ−λ)
π(1−λ)(1−γ)

)
and g(γ, λ) = λ + H(λ) − (1 − γ)H

(
λ

1−γ

)
. The

success probability depends only on the random coins chosen by the algorithm, while the
expected running time depends on the randomness of the input.

Proof. Using a bucket sort, both lists can be partitioned in less than 2×3N operations. The
total expected number of vector comparisons done in all the invocations of QuadraticNN
is N2

2k . Indeed, let Q denote the number of vector comparisons. If two vectors coincide
on the k indices drawn in J , they belong to the same category. There are 2k possible
categories. Let Ai (resp. Bi) denote the size of Li (resp. Ri), in other words, the number
of vectors in L (resp R) of category i. Then,

Q =
2k∑

i=1
AiBi

For each i, Ai and Bi are independent random variables. Thus,

E[Q] = E

 2k∑
i=1

AiBi

 =
2k∑

i=1
E [AiBi] =

2k∑
i=1

E [Ai)E (Bi] =
2k∑

i=1

(
N

2k

)(
N

2k

)
= N2

2k
.

It follows that one iteration of the algorithm requires an expected number of vector
operations given by Tit ≤ 6N + N2

2k . An iteration succeeds if and only if the target pair

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 9

(u∗, v∗) coincides on the k chosen indices. This happens with probability

p :=
(

m−ℓ
k

)(
m
k

)
The probability that this event happens in less than Nit = 1

p iterations is

P[success] = 1− P[fail at each iteration] = 1− (1− p)
1
p

This is always greater than 1− 1
e ≈ 0.63 (reached when p gets close to zero). Thus, the

Projection Method succeeds with probability greater than 1− 1/e in expected time

Tproj ≤
(

6N + N2

2k

)
1
p

=
(

6N + N2

2k

) (
m
k

)(
m−ℓ

k

)
A well-known tradeoff for k is λm = log2 N . Since we are choosing this particular value
here, then we know that the optimal choice is at least as good. Then,

Tproj ≤ 7
(

m
λm

)(
m−ℓ
λm

)2λm

≤ 7

√
4(1− γ − λ)

π(1− λ)(1− γ)2m(λ+H(λ)−(1−γ)H(λ
1−γ)) using (1)

4.2 Analysis of the MO-NN algorithm

The main technical result of this paper is the following theorem which gives a lower
bound on the expected number of operations of the MO-NN algorithm. In the following,
h = H−1(1− λ).

Theorem 2. Let γ < 1
2 , ℓ = γm, λ < 1

2 . For choices of ϵ and t that guarantee a probability
of success greater than 1

8 , the MO-NN algorithm terminates in expected time TMO with

log2(TMO) ≥
(

y(γ, λ) + ϵ

2

)
m +

(
t

2 + 2
)

log2 m + f(γ, λ, ϵ, t)

where

f(γ, λ, ϵ, t) = log2

K
(1− h− γ

2)(h− γ
2)γ2

(γ(1− γ)) 3
2 −t

(
y(γ, λ)− λ + ϵ

2
y(γ, λ)

) 1
2 (t+3)(

λ

y(γ, λ)

) t(t−1)
4

K =

(
π3/2

2
√

2

)t

× π2

32 .

The best choices of t and ϵ are discussed in Section 5.
We first consider the “double rerandomization”, namely the two nested loops on lines 6

and 7 of Algorithm 3. Recall that its purpose is to ensure that the target pair (u∗, v∗) has
a “good shape” in at least one iteration, in other terms that the two conditions stated in
section 3.2 are satisfied at least once.

We first give a lower bound on the number of iteration of this double rerandomization
that are required if we want to achieve of probability of success of at least 1

4 .

10 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

Lemma 1. Let Nit the number of iterations of the double rerandomization. The solution
(u∗, v∗) satisfies Conditions i) and ii) in at least one of the iterations with probability
greater than 1/4 only if

Nit ≥
1

8
√

2

(
π

3
2

2

)t

mt− 1
2 (γ(1− γ))t− 1

2

(
y(γ, λ)− λ + ϵ

2
y(γ, λ)

)t(
λ

y(γ, λ)

) t(t−1)
2

.

It must be noted that performing more than this number of iterations does not imply
that the probability of success will be greater than 1/4 as we do not know how tight this
bound is. We rather show that performing less iterations implies that the probability of
success would be even smaller than 1/4. This is far from the overwhelming probability
claimed in [MO15] Lemma 1. There, May and Ozerov argued that the probability of success
of one iteration of each randomization is 1/poly(m), and thus the expected number of
iteration of the whole procedure in order to find the solution should be poly(m). Restarting
again poly(m) times should be enough to ensure that the whole procedure succeed with
overwhelming probability. Since the product of two polynomials in m is still a polynomial
in m even though the degree may be huge, they ignored it in the asymptotic analysis of
the runtime.

In order to reach the same ratio of success, we would have to restart the rerandomization
process even more times.

Proof. Let p1 be the probability that one iteration of the first rerandomization succeeds,
that is (u∗, v∗) satisfies d(u∗

j , v∗
j) = γαjm for all 1 ≤ j ≤ t (condition i). As already

discussed in [MO15] Lemma 1,

p1 :=
(

α1m
γα1m

)
...
(

αtm
γαtm

)(
m

γm

) .

This means that if we make f1(m) independent attempts, the probability of succeeding in
at least one of them is upper bounded by f1(m)p1 by a union bound. So if f1(m) < 1

2p1
,

the probability that (u∗, v∗) satisfies Condition i) in at least one of them satisfies

P[i) is satisfied in less than f1(m) attempts] ≤ f1(m)p1 ≤
1
2

Now, assuming that a given attempt succeeded, we still need to have the second
rerandomization to succeed as well. We denote by p2 the probability that wt(u∗

j) =
wt(v∗

j) = αjm/2 after one iteration of the second rerandomization (Condition ii), assuming
Condition i) is satisfied.

Consider a fixed value j ∈ {1, . . . , t}. Let c01 denote the number of indices such that
u∗

j has a coordinate value of 0 and v∗
j has a coordinate value of 1. Define c00, c10 and c11

analogously. Our goal here is to lower-bound the required number of iterations by getting
rid of the unknowns cxy. We choose a uniformly random r = (r1, ..., rt) ∈ Fα1m

2 × ...×Fαtm
2

with weight 1
2 αjm on each of the t strips and add it to all elements in L and R. Consider

the target pair (u∗
j , v∗

j) on strip j. If rj has exactly 1
2 cxy ones in all four parts xy then on

u∗
j and v∗

j half the bits of each of the 4 “xy parts” will be inverted after summing rj . So
the hamming weight of u∗

j + rj and v∗
j + rj will be 1

2 cxy on each of the 4 parts. Hence the
hamming weight of u∗

j + rj and v∗
j + rj will be 1

2 αjm because c00 + c01 + c10 + c11 = αjm.
We say that rj is good on the j-th strip if it has exactly 1

2 cxy ones in all four parts xy.
The probability that this happens is

p2j :=
(

c00
1
2 c00

)(
c11

1
2 c11

)(
c01

1
2 c01

)(
c10

1
2 c10

)/(αjm
1
2 αjm

)

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 11

v∗
j

u∗
j

c00 + c11 = (1− γ)αjm c01 + c10 = γαjm

αjm columns

Figure 2: Bits distribution in May-Ozerov double randomization

In Figure 2, the first part of the vectors corresponds to the indices where (u∗, v∗)
coincide and the second to the one where they do not.

We can therefore rewrite p2j as follows:

p2j =
(

c00
1
2 c00

)((1− γ)αjm− c00
(1−γ)αjm−c00

2

)(
c01

1
2 c01

)(
γαjm− c01

γαjm−c01
2

)/(αjm
1
2 αjm

)
Using (3) we have that:

p2j ≤
((1− γ)αjm

(1−γ)αjm
2

)(
γαjm
γαjm

2

)/(αjm
1
2 αjm

)
.

Moreover, the events are independent on each strip j, therefore if we note p2 the probability
to find the right r, we have :

p2 =
t∏

j=1
p2j

With the same argument than the one we used for the first randomization, if f2(m) ≤
1

2p2
, the probability that the second randomization succeed in less than f2(m) attempts is

less than 1/2.
Denoting by E1 the event “(i) in less than f1(m) attempts” and E2 “(ii) in less than

f2(m) attempts” and combining the two, we obtain:

P[success] = P[E1 and E2] = P[E1]P[E2|E1] = p1p2 < 1/4.

To summarize, we have proved the following: “If Nit = f1(m)f2(m) < 1/(4p1p2) then
the probability of success is lower than 1/4”, taking the reverse statement, it means: “If we
want a probability of success greater than 1/4, then Nit has to be greater than 1/(4p1p2).”

We still have to give a lower bound on 1/(4p1p2). Recall that

1
p1

=
(

m
γm

)(
α1m

γα1m

)
...
(

αtm
γαtm

) ≥ √2πγ(1− γ)t√
8γ(1− γ)

m
t−1

2

t∏
i=1

√
αi using (1) and simplifying.

Then

1
2p1
≥ (2π) t

2

4
√

2
(γ(1− γ))

t−1
2 m

t−1
2

(
y(γ, λ)− λ + ϵ

2
y(γ, λ)

) t
2
(

λ

y(γ, λ)

) t(t−1)
4

.

Similarly

1
p2

= 1
t∏

j=1
p2j

≥
t∏

j=1

π

2
√

2
√

γ(1− γ)√αjm
1
2 using (1) and simplifying.

12 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

Then

1
2p2
≥ 1

2

(
π

2
√

2

)t

m
t
2 (γ(1− γ)) t

2

(
y(γ, λ)− λ + ϵ

2
y(γ, λ)

) t
2
(

λ

y(γ, λ)

) t(t−1)
4

Thus if we want the double re-randomization to succeed with probability greater than
1
4 during at least one of the iterations, the number of iterations Nit needs to satisfy

Nit = f1(m)f2(m) ≥ 1
8
√

2

(
π

3
2

2

)t

mt− 1
2 (γ(1−γ))t− 1

2

(
y(γ, λ)− λ + ϵ

2
y(γ, λ)

)t(
λ

y(γ, λ)

) t(t−1)
2

In the May-Ozerov algorithm, they choose f1(m) and f2(m) such that that d(u∗
j , v∗

j) =
γαjm and wt(u∗

j) = wt(v∗
j) = 1

2 αjm in at least one of the rerandomized input lists with
overwhelming probability. Thus f1(m)f2(m) ≥ Nit. In order to prove Theorem 2, we now
need to give a lower bound on the expected runtime of Algorithm 4, assuming that a
solution (u∗, v∗) exists in L×R. Recall that this procedure forms a recursion tree where
each node is labeled by a pair of lists, and which possess exponentially many children
themselves labeled by pairs of smaller filtered lists.

In [MO15, proof of Lemma 2], May and Ozerov show that at a given step j, the
expected number of iterations until the good pair is found with overwhelming probability
is given by msj . Using the expression of sj in (5) and (1) we obtain

msj ≥
π2
√

2
(1− h− γ

2)(h− γ
2)(γ

2)2

(1− γ)γ α
3
2
j m

5
2 2αjmy(γ,λ)

We are now able to prove theorem 2.

Proof of Theorem 2. We split this proof in two part. First, we give a lower bound on the
runtime of the RecursiveMO procedure from the beginning (j = 1) to the end (j = t+1).
Then we combine this result with Lemma 1, in order to have a lower bound on the expected
runtime of the MO-NN algorithm.

Let us start with the complexity analysis of RecursiveMO. We have seen that at
each call of RecursiveMO with a parameter j ≤ t, the for-loop line 6 does msj iterations.
In particular, for j = 1,

ms1 ≥
π2
√

2
(1− h− γ

2)(h− γ
2)(γ

2)2

(1− γ)γ

(
y(γ, λ)− λ + ϵ

2
y(γ, λ)

) 3
2

m
5
2 2α1my(γ,λ),

by replacing α1 by its actual value as defined in Algorithm 3. Recall that both lists L
and R are filtered during the MO-NN algorithm before entering the recursion tree (cf.
Algorithm 3, line 11). This is to ensure that they consist only of vectors of Hamming
weight |Ij |/2 on every strip |Ij |. As such, the input lists L and R at the root of the tree
are both smaller than their original version.

Let N1 be the expected size of L and R at the root of the tree, and let xj , for 1 ≤ j ≤ t
be a uniformly random vector of Fαjm

2 . We denote by Wj the random variable that gives
the Hamming Weight of xj . It follows a binomial distribution of parameters (αjm, 1/2).
As such

P
[
Wj = 1

2αjm

]
=
(

αjm
1
2 αjm

)
2−αjm. (4)

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 13

Considering the fact that each strip is independent from the others, the probability that
an m-bit vector has Hamming weight 1

2 αjm on each of t strips is

P2 :=
t∏

j=1

(αjm
1
2 αjm

)
2αjm

≥
t∏

j=1

1√
2αjm

using (1) and simplifying

≥
(

1√
2

)t(
y(γ, λ)

y(γ, λ)− λ + ϵ
2

) t
2
(

y(γ, λ)
λ

) t(t−1)
4

m− t
2

It follows that the expected size of L and R at the root of the tree is lower-bounded as
follows:

N1 ≥ 2λm

(
1√
2

)t(
y(γ, λ)

y(γ, λ)− λ + ϵ
2

) t
2
(

y(γ, λ)
λ

) t(t−1)
4

m− t
2 .

Let Tj the expected number of operations at depth j of the tree. Then, in particular
T1 = 2ms1N1 with the 2 factor coming from the fact that both lists are considered.
Expanding the definitions gives:

T1 ≥ p(λ, γ)
(

y(γ, λ)− λ + ϵ
2

y(γ, λ)

) 3
2 − t

2
(

1√
2

)t(
y(γ, λ)

λ

) t(t−1)
4

m
5
2 − t

2 2(α1y(γ,λ)+λ)m,

with p(λ, γ) defined as

p(λ, γ) = π2

2
√

2
(1− h− γ

2)(h− γ
2)γ

1− γ
.

This in fact gives us a lower bound on the running time of the whole recursive procedure,
since at least this step will be performed. The time complexity Trec of RecursiveMO
therefore satisfies Trec ≥ T1.

In addition, Lemma 1 gives us a lower bound of Nit, the number of iterations we have
to repeat the whole process in order to ensure that a solution in “good shape” will be
present at the beginning of the recursion with probability greater than 1

4 . This gives.

TMO ≥ Nit

t+1∑
j=1

Tj

 ≥ NitT1

The probability that a list containing one of the components of the good pair is deleted is
upper-bounded by 2t2−ϵm. Therefore, choosing ϵ greater than ϵ > log2 (4t)

m ensures that a
list containing the desired pair is not deleted with a probability greater than 1

2 .

5 Crossover point between the two algorithms
In this section, we detail a procedure that, given λ and γ finds a threshold T such that
the Projection Method is always faster than the MO-NN algorithm on instances of size
m ≤ T . Because the values of the threshold will often be very large, this will officially
qualify the MO-NN algorithm as “galactic”.

To compare the performance of the two algorithms, we have to choose the parameters
t and ϵ in the MO-NN algorithm. We choose them in a way that minimizes the lower
bound TMO given by theorem 2.

Suppose there is a procedure that, given (λ, γ, m), finds the parameters (t, ϵ) minimizing
the lower-bound TMO. To find the crossover point between the two algorithms, we proceed

14 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

as follows: starting from m = 1, repeatedly double m while Tproj(m) ≤ TMO(m). Then
find the actual threshold inside the interval [m/2; m] using bisection search. The end
result is a m such that Tproj(m) ≤ TMO(m) and Tproj(m + 1) > TMO(m + 1). This is the
crossover point.

It remains to describe the procedure that finds the optimal parameters for the May-
Ozerov algorithm. We recall that, in [MO15], t is defined as follows:

t =
⌈

log (2(y(γ, λ)− λ)/ϵ + 1)
log(y(γ, λ)/λ)

⌉
Observe that t grows when ϵ goes to zero. However, ϵ can not take arbitrary small values
for the following reasons:

1. It is required that γαtm ≥ 1. Otherwise, we could not apply the algorithm because
at each node, on the current strip j, d(u∗

j , v∗
j) must be at least one and the smallest

strip is the t-th.

2. The probability that a list containing one of the components of the good pair is
deleted is upper-bounded by 2t2−ϵm. We therefore consider that this probability
must be smaller than 1/2, i.e. that ϵ > log2 (4t)

m .

3. t must be at least 2, for otherwise the algorithm would have a complexity greater
than 22λm.

When ϵ varies, t may jump from an integer value to the next. There are ranges of ϵ
that leads to the same value of t. A quick examination of the formula for TMO reveals
that, as long as t does not change, TMO is an increasing function of ϵ. Therefore, the
optimal value of ϵ is necessarily one that triggers a jump in t. Because t ≤ m, there is a
finite number of values to test. To find the optimal parameters, we thus use the following
procedure:

• Start from t = 2

• Compute the smallest possible ϵ that yields this value of t

• If ϵ satisfies the constraints given above, evaluate TMO and record it along with t
and ϵ

• Increase t and retry, until t = m

• Return the choice that yield the smallest possible value of TMO

As an example, fix λ = 0.025 and γ = 0.1 (this specific choice of values will be justified
below). Ignoring the polynomial and constant factors, we find that the Projection Method
runs in time Õ

(
20.0289...m

)
while for any ϵ > 0, the MO-NN algorithm runs in time

Õ
(
2(0.02819...+ϵ)m

)
. It wins asymptotically.

The procedure described above shows that the crossover point between the two algo-
rithms is at m = 336, 017 using t = 20 (hence ϵ = 0.000755...). The May-Ozerov algorithm
requires at least 11m1220.02819m operations. The size of the input lists at the crossover
point is then 28400. The actual number of operations is at least 29697. This clearly qualifies
as “galactic”.

6 Application to the syndrome decoding problem
Consider a [n, k, d] binary linear code: it has length n, dimension k and minimal distance d.
It encodes k-bit vectors into n-bit vectors and up to (d− 1)/2 errors can be decoded at

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 15

Table 2: Proposed parameter sets for the McEliece cryptosystem. The star mean that the
target security level is reached by injecting t + 1 or t + 2 errors; list-decoding and some
redundancy in the plaintext are then required.

r n t Code R D Target security level Origin
10 1024 50 [1024, 524, 101] 0.51 0.099 64 [McE78]
11 1632 33 [1632, 1269, 67] 0.78 0.041 80∗

[BLP08]11 2048 27 [2048, 1751, 55] 0.85 0.027 80
11 2960 56 [2960, 2288, 113] 0.77 0.038 128∗

12 3488 64 [3488, 2720, 129] 0.78 0.037 128

[BCL+17]
13 4608 96 [4608, 3360, 193] 0.73 0.042 192
13 6688 128 [6688, 5024, 257] 0.75 0.038 256
13 6960 119 [6960, 5413, 238] 0.78 0.034 256
13 8192 128 [8192, 6528, 257] 0.80 0.031 256

maximum likelihood. The rate of the code is R = k/n and its relative distance is D = d/n.
The code is entirely described by its parity matrix H, of size (n− k)× n, which is such
that Hx = 0 whenever x is a code word. When x̂ = x + e is a noisy codeword (where
e is an error vector), then s := Hx̂ = He is the syndrome, and it depends only on the
error. Solving He = s with |e| ≤ (d− 1)/2 thus reveals the error vector (and indirectly
the original input).

The first direct cryptographic application of decoding arbitrary linear codes consisted
in attacking the McEliece public-key encryption scheme [McE78]. The parameters initially
proposed by McEliece in 1978 are [1024, 524, 101]. They have been practically broken
in [BLP08]. More generally, the binary Goppa code used in McEliece is defined by a square-
free degree-t polynomial over F2r and is usually [n, n− tr, 2t + 1] (under the constraint
that n ≤ 2r). Several sets of parameters have been proposed; they are collected in Table 2.

Random linear codes are also interesting from a cryptographic point of view. They
approximately meet the Gilbert-Varshamov bound: we have R ≈ 1−H (D) for a random
linear code. In particular, we find that H−1(1−R) ≈ D. The decodingchallenge.org
website offers a challenge that consists in finding a lowest possible weight codeword inside
length-1280 code with rate 1/2. The Gilbert-Varshamov bound suggests that it has
minimum distance 144.

To the best of our knowledge, random linear codes have been first used in Stern’s
identification protocol [Ste93]. The Stern-Fischer pseudorandom generator [FS96] is
provably secure under the hardness of the syndrome decoding problem. The FSB hash
function [AFS05] has been submitted to the NIST “SHA-3” competition. Its collision-
resistance relied on the hardness of solving random instances of the (regular) syndrome
decoding problem. More recently, candidate “post-quantum” signature schemes have been
designed around proofs of knowledge of a solution to an instance of the syndrome decoding
problem with a random linear code with rate 0.5 [FJR22]. In SDitH [MGF+23], this is
also a random code of length 1280.

Most algorithms for the Syndrome Decoding problem rely on the idea of Information
Set Decoding. This amounts to make an assumption on the location of the non-zero bits of
the error vector e. Randomly permuting the coordinates of e (and thus the columns of H)
may satisfy this assumption with some non-zero probability. If this assumption is satisfied,
there is an efficient way to recover e entirely. The whole process has to be repeated until
it succeeds.

More concretely, we describe below the Decode algorithm given in [MO15]. It is a
variant of the Leon/Stern/Dumer decoding algorithm that uses nearest neighbor search.

The columns of H are permuted (right-multiplication with a permutation matrix P),
then the result is put into Reduced Row-Echelon Form (left-multiplication by an invertible

decodingchallenge.org

16 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

H̃ =

ẽ1 ẽ2 ẽ3

s̃Q2 Q3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
n− k

n− k k

2
k

2

Figure 3: The technique of Information Set Decoding combined with a Stern-style meet-
in-the-middle.

matrix T), as in Fig. 3. If the principal (n− k)× (n− k) submatrix is not invertible, abort.
This yields H̃ = THP , and the initial instance of the problem then becomes H̃ẽ = s̃ with
s̃ = Ts, P ẽ = e and still |ẽ| ≤ w.

The permuted error vector ẽ is then split in three parts: ẽ1 corresponds to the first n−k
coordinates, ẽ2 and ẽ3 correspond to the next and the last k/2 coordinates, respectively.

The main idea consists in choosing a parameter p (even) and making the assumption
that |e1| ≤ w − p, |e2| = p/2 and |e3| = p/2 (of course this only holds true with some
probability). The full procedure is given below:

1. Apply a random permutation P to the columns of Q

2. Compute an invertible matrix T such that THP = (I|Q2|Q3). If no such T exists,
go back to step 1.

3. Set L← {Q2u ∈ Fn−k
2 , |u| = p/2}

4. Set R← {Q3v + Ts ∈ Fn−k
2 , |v| = p/2}

5. If there is no (x, y) ∈ L×R such that d(x, y) ≤ w − p, go back to step 1.

6. Otherwise, let x = Q2u and y = Q3v + s̃ with |x + y| ≤ w − p. Then ẽ = (x + y|uv)
satisfies H̃ẽ = s̃ and |ẽ| ≤ w.

It is expected that the resolution of the instance of the nearest neighbor problem
dominates all the other steps. Suppose that the input problem admits a solution e∗; this
procedure succeeds when the permutation P is “good”, namely when e∗ has w − p bits in
the first n− k entries, p/2 bits in the next k/2 entries and again p/2 bits in the last k/2
entries. Define p = p/n. The expected number of iterations is therefore

N =
(

n

w

)/[(n− k

w − p

)(
k/2
p/2

)2
]

.

The lists L and R are made up of vectors in Fn−k
2 , they have size(

k/2
p/2

)
≈ 2(n−k) R

2(1−R) H
(

p
R

)

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 17

Table 3: Best parameter choice and instance characteristics at the crossover point.

R D n
Projection method MO-NN log2 T
p λ γ p λ γ t 106ϵ

0.5 0.11 533502 1656 0.0272 0.1038 1894 0.0304 0.1029 20 877 29566
0.8 0.03 1874400 4324 0.0570 0.0635 4546 0.0594 0.0629 30 1276 63487

Table 4: Complexity of both algorithms when using MO-NN potentially becomes better
than using the projection method for decoding. The projection method runs in time
less than γ2αmmβ operations, while the MO-NN algorithm requires at least this many
operations.

λ γ
Projection method MO-NN

α β γ t 106ϵ α β γ

0.0304 0.1029 0.03527 0 7.88 20 877 0.03441 12 24.5
0.0594 0.0629 0.06519 0 7.88 30 1276 0.06419 17 256.5

and the maximum allowed distance is w − p ≈ (n− k)×
(

D
2(1−R) −

p
1−R

)
. It follows that

the corresponding instance of the Nearest Neighbor problem has

λ ≈ R

2(1−R)H

(
p

R

)
, γ ≈ D

2(1−R) −
p

1−R

with m = n− k.
To ascertain how galactic the MO-NN algorithm is in this context, we do the following.

We consider a family of codes (e.g. random linear codes or binary Goppa codes). For a
given length, we exhaustively try all possible values of p; each one yields an instance of
the Nearest Neighbor Problem. We estimate the number of operations needed to solve it
using either the Projection Method or the MO-NN. When the best option is to use the
MO-NN, we stop. Otherwise, we increase the length of the code and retry. Tables 3 and 4
show the results.

A first setting involves random linear codes of rate 1/2. Their minimum distance is
estimated using the Gilbert-Varshamov bound (D ≈ 0.11003). The smallest code length for
which the MO-NN algorithm seems to bring an improvement is greater than n = 533, 500.
The estimated total number of operation of the decoding algorithm is way beyond 229565.
In this case, the instances of the nearest neighbor problem that have to be solved have
λ ≈ 0.03 and γ ≈ 0.1 (this is close to the values we selected earlier to compare the MO-NN
algorithm with the projection method).

Another setting involves binary Goppa codes (as in McEliece). We assumed that they
have rate R = 0.8 and relative distance D = 0.03. The smallest length at which the
asymptotic advantage of the MO-NN algorithm arises is beyond n = 1, 874, 400. Again,
the required number of operation for decoding is beyond 263489. This leads to instances of
the nearest neighbor problem with λ ≈ 0.06 and γ ≈ 0.063.

Table 4 then shows the concrete complexities of both algorithms as a function of m when
using MO-NN becomes better than using the projection method in the Decode algorithm.
It shows that, at the crossover point, the MO-NN is penalized by huge polynomial and
constant factors. This explains why extremely large instance sizes are required to benefit
from the improved exponent in the asymptotic complexity.

Acknowledgements
We thank the anonymous reviewers for their comments. We acknowledge financial support
from the French Agence Nationale de la Recherche under project “GORILLA” (ANR-20-

18 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

CE39-0002).

References
[AFS05] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A family of fast syn-

drome based cryptographic hash functions. In Ed Dawson and Serge Vaudenay,
editors, Progress in Cryptology - Mycrypt 2005, First International Conference
on Cryptology in Malaysia, Kuala Lumpur, Malaysia, September 28-30, 2005,
Proceedings, volume 3715 of Lecture Notes in Computer Science, pages 64–83.
Springer, 2005. doi:10.1007/11554868_6.

[BCL+17] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter
Schwabe, Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic McEliece,
2017.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science,
pages 520–536. Springer, 2012. doi:10.1007/978-3-642-29011-4_31.

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and
defending the mceliece cryptosystem. In Johannes Buchmann and Jintai
Ding, editors, Post-Quantum Cryptography, Second International Workshop,
PQCrypto 2008, Cincinnati, OH, USA, October 17-19, 2008, Proceedings,
volume 5299 of Lecture Notes in Computer Science, pages 31–46. Springer,
2008. doi:10.1007/978-3-540-88403-3_3.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding
exponents: Ball-collision decoding. In Phillip Rogaway, editor, Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 743–760. Springer, 2011. doi:10.1007/97
8-3-642-22792-9_42.

[BMVT78] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Transactions on
Information Theory, 24(3):384–386, 1978. doi:10.1109/TIT.1978.1055873.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990. Computa-
tional algebraic complexity editorial. doi:10.1016/S0747-7171(08)80013-2.

[Dub10] Moshe Dubiner. Bucketing coding and information theory for the statistical
high-dimensional nearest-neighbor problem. IEEE Transactions on Information
Theory, 56(8):4166–4179, 2010. doi:10.1109/TIT.2010.2050814.

[EB22] Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key Cryptography
- PKC 2022 - 25th IACR International Conference on Practice and Theory
of Public-Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings,
Part I, volume 13177 of Lecture Notes in Computer Science, pages 112–141.
Springer, 2022. doi:10.1007/978-3-030-97121-2_5.

https://doi.org/10.1007/11554868_6
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1109/TIT.2010.2050814
https://doi.org/10.1007/978-3-030-97121-2_5

Charles Bouillaguet, Claire Delaplace, Mickaël Hamdad 19

[EMZ22] Andre Esser, Alexander May, and Floyd Zweydinger. Mceliece needs a break -
solving mceliece-1284 and quasi-cyclic-2918 with modern ISD. In Orr Dunkel-
man and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022,
Proceedings, Part III, volume 13277 of Lecture Notes in Computer Science,
pages 433–457. Springer, 2022. doi:10.1007/978-3-031-07082-2_16.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding
in the head: Shorter signatures from zero-knowledge proofs. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO
2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II, volume
13508 of Lecture Notes in Computer Science, pages 541–572. Springer, 2022.
doi:10.1007/978-3-031-15979-4_19.

[FS96] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In Ueli M. Maurer, editor, Advances
in Cryptology - EUROCRYPT ’96, International Conference on the Theory
and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16,
1996, Proceeding, volume 1070 of Lecture Notes in Computer Science, pages
245–255. Springer, 1996. doi:10.1007/3-540-68339-9_22.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Jeffrey Scott Vitter, editor, Proceedings
of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 604–613. ACM, 1998. doi:10.1145/27
6698.276876.

[KWZ95] Richard M. Karp, Orli Waarts, and Geoffrey Zweig. The bit vector intersection
problem (preliminary version). In 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages
621–630. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492663.

[LB88] Pil Joong Lee and Ernest F. Brickell. An observation on the security of
mceliece’s public-key cryptosystem. In Christoph G. Günther, editor, Advances
in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Application of
of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings,
volume 330 of Lecture Notes in Computer Science, pages 275–280. Springer,
1988. doi:10.1007/3-540-45961-8_25.

[LR13] Richard J. Lipton and Kenneth W. Reagan. David Johnson: Galactic Algo-
rithms. In People, Problems, and Proofs: Essays from Gödel’s Lost Letter:
2010, pages 109–112. Springer, 2013. doi:10.1007/978-3-642-41422-0_20.

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory. Deep Space Network Progress Report, 44:114–116, January 1978.

[MGF+23] Carlos Aguilar Melchor, Shay Gueron, Thibauld Feneuil, James Howe, Edoardo
Persichetti, David Joseph, Nicolas Gama, Antoine Joux, Tovohery H. Randri-
anarisoa, Matthieu Rivain, and Dongze Yue. The syndrome decoding in the
head (sd-in-the-head) signature scheme, May 2023.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ

(
20.054n

)
. In Dong Hoon Lee and Xiaoyun Wang, editors,

Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference

https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/3-540-68339-9_22
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1109/SFCS.1995.492663
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/978-3-642-41422-0_20

20 The May-Ozerov Algorithm for Syndrome Decoding is “Galactic”

on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes
in Computer Science, pages 107–124. Springer, 2011. doi:10.1007/978-3-6
42-25385-0_6.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with ap-
plications to decoding of binary linear codes. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 203–228. Springer, 2015.
doi:10.1007/978-3-662-46800-5_9.

[NUO+24] Shintaro Narisada, Shusaku Uemura, Hiroki Okada, Hiroki Furue, Yusuke
Aikawa, and Kazuhide Fukushima. Solving mceliece-1409 in one day - crypt-
analysis with the improved BJMM algorithm. In Nicky Mouha and Nick
Nikiforakis, editors, Information Security - 27th International Conference,
ISC 2024, Arlington, VA, USA, October 23-25, 2024, Proceedings, Part II,
volume 15258 of Lecture Notes in Computer Science, pages 3–23. Springer,
2024. doi:10.1007/978-3-031-75764-8_1.

[Riv74] Ronald L. Rivest. On the optimality of elia’s algorithm for performing best-
match searches. In Jack L. Rosenfeld, editor, Information Processing, Proceed-
ings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974,
pages 678–681. North-Holland, 1974.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In Gérard D.
Cohen and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd
International Colloquium, Toulon, France, November 2-4, 1988, Proceedings,
volume 388 of Lecture Notes in Computer Science, pages 106–113. Springer,
1988. doi:10.1007/BFb0019850.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer
Science, pages 13–21. Springer, 1993. doi:10.1007/3-540-48329-2_2.

[Top01] Flemming Topsøe. Bounds for entropy and divergence for distributions over a
two-element set. JIPAM. Journal of Inequalities in Pure and Applied Mathe-
matics, 2(2):Paper No. 25, 13 p., 2001.

[Wel71] Terry A. Welch. Bounds on information retrieval efficiency in static file
structures, June 1971. Project MAC Report MAC-TR-88.

https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-031-75764-8_1
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/3-540-48329-2_2

	Introduction
	Preliminaries
	The nearest neighbor problem

	Algorithms for the nearest neighbor problem
	The projection method
	May-Ozerov’s algorithm

	Analysis of both algorithms
	Upper bound on the complexity of the projection method
	Analysis of the MO-NN algorithm

	Crossover point between the two algorithms
	Application to the syndrome decoding problem
	References

