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Abstract. The round complexity of interactive proof systems is a key question of
practical and theoretical relevance in complexity theory and cryptography. Moreover,
results such as QIP = QIP(3) (STOC’00) show that quantum resources significantly
help in such a task.
In this work, we initiate the study of round compression of protocols in the bounded
quantum storage model (BQSM). In this model, the malicious parties have a bounded
quantum memory and they cannot store the all the qubits that are transmitted in
the protocol.
Our main results in this setting are the following:

1. There is a non-interactive (statistical) witness indistinguishable proof for any
language in NP (and even QMA) in BQSM in the plain model. We notice that
in this protocol, only the memory of the verifier is bounded.

2. Any classical proof system can be compressed in a two-message quantum proof
system in BQSM. Moreover, if the original proof system is zero-knowledge, the
quantum protocol is zero-knowledge too. In this result, we assume that the
prover has bounded memory.

Finally, we give evidence towards the “tightness” of our results. First, we show that
NIZK in the plain model against BQS adversaries is unlikely with standard techniques.
Second, we prove that without the BQS model there is no 2–message zero-knowledge
quantum interactive proof, even under computational assumptions.

1 Introduction
The round complexity of interactive proof systems1 is a central question in complexity
theory and cryptography. For example, while it is expected that not all interactive proof
systems can be compressed to a constant number of rounds, showing such a result would
have major implications in complexity theory such as P ̸= PSPACE. In cryptographic
settings, the round complexity is very relevant to the practical applications of protocols,
specially in the setting of zero-knowledge (ZK) proof systems 2. While there exist 4-
messages ZK protocols for NP [FS90b], it is known that 2-messages ZK protocols for NP
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1In an interactive proof system, an all-powerful prover wants convince a computationally bounded

verifier that x ∈ L for some language L by exchanging polynomially many messages. We want such
interactive protocols such that the prover can convince the verifier if x ∈ L, whereas if x /∈ L the prover
cannot convince the verifier except with negligible probability

2In a zero-knowledge interactive proof system, the verifier “learns nothing” from the interaction with
the prover. This is formally defined as requiring the existence of a simulator which can produce the same
output as the verifier, but without the help of the prover. Zero-knowledge proofs are extremely useful in
building other cryptographic primitives, such as a maliciously secure multiparty computation [GMW86],
IND-CCA encryption [BFM88], identification and digital signatures schemes [FS87].
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are impossible [GO01]; and in specific settings such as black-box zero-knowledge, even
3-message private-coin protocols and constant-round public-coin protocols are known
to be impossible [GK96]. These negative results on the round complexity can often be
circumvented through additional resources. For example, in the random oracle model,
any public-coin zero-knowledge proof can be made non-interactive through the use of the
Fiat-Shamir heuristic [FS87]. While it has been shown that such a heuristic cannot be
implemented in a black-box way [GK03; BDG+13], it is possible to instantiate it in specific
settings and achieve, for example, non-interactive ZK for NP in the common reference
string (CRS) model from standard cryptographic assumptions [BFM88; PS19].

With the development of quantum computing, the notion of interactive protocols has
been also extended to the quantum setting. Here, the prover and verifier are now allowed
to exchange quantum messages back-and-forth to prove that x ∈ L. One of the first results
in this direction already indicated that quantum resources are useful in reducing the rounds
of protocols: it was shown that any quantum interactive protocol can be compressed to a
3-message protocol [KW00]. The natural question raised by such a result is the power of
two-messages quantum interactive proof systems. More concretely, can we compress any
quantum (or less ambitiously classical) protocol into a one-round protocol with quantum
communication? This is tightly connected with the question of instantiation of Fiat-Shamir
with quantum resources which was recently shown black-box impossible in [DLS12].

In this work, we make progress in this direction by studying round compression of
protocols in the bounded quantum storage model (BQSM). In this model, we assume that
the malicious parties have a bounded quantum memory. In particular, the quantum
messages are transmitted in a sequential manner, qubit by qubit, and at every instant,
the memory bound holds. We notice that in our protocols, the honest parties do not
need quantum memory at all: they measure the qubits as soon as they are received. This
model has been shown very powerful, allowing the implementation of several important
cryptographic primitives with information-theoretic security [DFSS08; DFR+07; DFSS07;
BS06]. In this work, we show that such a powerful tool is also relevant for round-efficient
interactive protocols. More concretely, we show the following:

1. There is a non-interactive (statistical) witness indistinguishable proof for any language
in NP (and even QMA) in the plain model against BQS adversaries. We notice that
in this protocol, only the memory of the verifier is bounded.

2. Any classical proof system can be compressed in a two-message quantum proof
system in BQSM. Moreover, if the original proof system is zero-knowledge, the
quantum protocol is zero-knowledge too. In this result, we assume that the prover
has bounded memory.

We present now our results in more detail and give a brief overview on the techniques
to prove them.

1.1 Our Results
As previously mentioned, in this work, we investigate the round complexity of proof systems
in the bounded quantum storage (BQS) model. It is based on the physical assumption
that the adversary has a bounded-size quantum memory of q(λ) qubits where λ is the
security parameter. Our main results are two compilers for reducing the round complexity
of proofs in the BQS model. Each one operates differently and has its own applications.
The bounded party differs in each of our main results; either the verifier or the prover
has bounded quantum memory, but never both. The memory bound q on the malicious
party is independent of the underlying proof system and a larger bound can be tolerated
by increasing the size of the quantum messages.
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Non-interactive proof for NP. In our first result, we provide a compiler NIP that takes
a 3–message public-coin interactive proof system with 1-bit challenges and compresses
it to one message. The main idea of the compiler is to use non-interactive oblivious
transfer (OT) in non-interactive proofs, an idea which was introduced by [KMO90] and
first appeared in writing in [BM90].

More concretely, the starting point of our protocol is the non-interactive quantum
oblivious transfer protocol of [DFR+07] which is secure against BQS receivers. We can
construct a non-interactive proof by having the prover send its first message3 a in the
clear and input the responses r0, r1 to both possible challenges c ∈ {0, 1} as its inputs
to OT. Our compiler preserves the soundness of the underlying interactive proof, and it
can be amplified through parallel repetition. Intuitively, the security of BQS-OT implies
that a quantum memory bounded verifier will only receive one of the two transcripts,
which reveals no information since accepting transcripts can be simulated if the underlying
Σ-protocol is honest-verifier zero-knowledge.

While we manage to prove that the protocol satisfies the witness indistinguishable
property, proving zero-knowledge is challenging since it is hard for the simulator to “decode”
the measurements of a potentially malicious verifier. In particular, we prove in Section 3.1
that a “natural” simulation technique cannot work.

Result 1. Let Π be a Σ–protocol. Then NIP[Π] preserves soundness and preserves witness
indistinguishability against BQS verifiers.

Our compiler can be extended in a trivial way to Σ–protocols with logarithmic challenge
length (by using a 1-out-of-2p OT with p ∈ O(lg(λ))). Furthermore, the first message of
the prover may be quantum, so our compiler can be applied to Ξ–protocols as long as the
verifier is receive-and-measure. Our result thus implies a NIWI for QMA based on the
Ξ–protocol from [BG22] which has short challenges and is receive-and-measure for the
verifier.

This compiler allows us to achieve a non-interactive (statistically) witness indistinguish-
able proof for all languages in NP in the BQS model without any prior setup.

Result 2. For any L ∈ NP, there is a quantum non-interactive proof system for L with
unconditional soundness and witness indistinguishability against BQS verifiers.

To obtain Result 2, we apply our compiler to the typical proof system for the NP–
complete language of graph Hamiltonicity. This would normally introduce a computational
assumption on either the prover or the verifier since the proof uses a commitment scheme,
however we can instead use a quantum bit commitment, which only needs to satisfy a very
weak notion of binding.

A stronger notion than witness indistinguishability (yet still weaker than zero-knowledge)
is witness hiding. We show that witness hiding can be preserved by our compiler in a
regime where the soundness error is inverse polynomial. See Appendix B for details.

A Round Collapse Theorem in the BQSM. We show that under the BQS assumption,
the round complexity of proof systems essentially collapses to two messages (one round).
We present a round reduction compiler RR that takes as input a poly(λ) rounds interactive
proof Π and produces a single round (2 messages) proof for the same language with the
following properties.

Result 3. Let Π be a poly(λ)–round public-coin4 interactive proof system, then there is a
1–round quantum interactive proof RR[Π] such that

3The first message may be classical in a Σ–protocol or quantum, in which case we call it a Ξ–
protocol [BG22].

4We actually only require that the verifier messages at each round are independent from the previously
exchanged messages and do not use fact that they are uniformly distributed.
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1. soundness is preserved against BQS provers;

2. zero-knowledge is preserved.

Our compiler RR is conceptually very simple. It relies on a distinctive property of
the original bit commitment in the BQSM, in that the committer commits to a bit b
by measuring a state it gets from the receiver. This allows us to remove one round of
interaction by having the verifier send a state |ψ⟩ for the commitment at the same time
as its next challenge ci (we assume this challenge is sampled independently of the prior
messages). The prover commits to its message ai by measuring |ψ⟩, then receives ci, and
can respond with its next message ai+1. Since the prover has bounded quantum memory, it
will have to perform a (partial) measurement on |ψ⟩ before receiving the verifier’s challenge
ci. By the binding property of the commitment against BQS provers, this implies that ai

is independent of ci, and thus any attack against this protocol is also an attack against Π.
By repeating this technique for every round in protocol Π, we end up with a protocol with
one round that has the same soundness error, plus a negligible term from the BQS-BC
binding theorem.

By using the correspondence IP = PSPACE [Sha92], we obtain the following.

Result 4. PSPACE = QIP(2)BSQM, i.e., there exists a 2–message quantum protocol for
every problem in PSPACE if the computationally unbounded prover has a bounded quantum
memory.

Furthermore applying our compiler to the doubly efficient protocols for delegation of
classical computation [GKR15; RRR21], we achieve the following application.

Result 5. In the BQSM, there is a quantum interactive protocol for any language in P
such that the honest prover runs in polynomial time, the verifier runs in linear time and
logarithmic space, and there is a single round of communication.

By applying our compiler to a concrete scheme, we get the first 1–round interactive
proof for NP that is both statistically sound (against BQS provers) and statistically ZK
against arbitrary verifiers.

Other Contributions. We give evidence towards the “tightness” of our results. We
show that NIZK in the plain model against BQS adversaries is unlikely with standard
techniques. We also show that an assumption such as the BQSM is necessary for our
round compression result by proving that there is no 2–message zero-knowledge quantum
interactive proof system when the prover is not memory-bounded. This result is an
extension of the impossibility of Goldreich and Oren [GO01] to the quantum case and is
presented in Appendix C.

Our round reduction transform uses a string commitment built by parallel composition
of the original BQS-BC scheme. To commit to n(λ) ∈ O(λ) bit strings requires sending
λ · n(λ) ∈ O(λ2) qubits against a O(λ)–bounded adversary. Thus, the memory bound is
sublinear in the number of transmitted qubits. In Appendix A, we propose a new string
commitment where the length of committed strings, the number of transmitted qubits
and the memory bound are all linear in λ. While we were unable to prove that this new
commitment meets the definition of binding required by our RR transform, we can show
that it is sum-binding, so it might be useful in improving the efficiency of other BQSM
schemes.

1.2 Related Work
Classical non-interactive witness indistinguishable proof systems can be built from strong
computational assumptions such as a derandomization circuit complexity assumption [BOV03;
BP15] and the decision linear assumption on bilinear groups [GOS06].
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Quantum NIZK for QMA can be achieved in the following models: in the secret
parameter model [BG22], in the QROM with quantum preprocessing [MY22], in the
designated verifier model [Shm21], using pre-shared EPR pairs and subexponential assump-
tions [BKS23], and with a CRS with an instance-dependent quantum message from the
verifier to the prover [CVZ20]. While we call the bounded quantum storage assumption a
“model”, our results do not rely on any prior setup.

The bounded quantum storage model was introduced in [DFSS08] as a physical as-
sumption upon which information theoretically secure two-party cryptographic primitives
such as oblivious transfer (OT) and bit-commitment (BC) could be built. The BQSM has
found further application to quantum key distribution [DFR+07; DFSS07] and to secure
identification [DFSS07]. The noisy quantum storage model [WST05; STW09; KWW03]
(NQSM) is a generalization of the BQSM, where the adversary’s quantum memory is
subject to noise, that enables protocols for OT and BC. There are OT protocols in the
BQSM and NQSM where the tolerated bound or noise level is an arbitrary large fraction
of the number of exchanged qubits [DFW02]. The model was recently exploited to achieve
strong primitives such as one-time programs [BS06]. Composability frameworks have been
proposed for the BQSM [Unr11; WW08; FS09]. These results and that of [BS06] require
extracting the malicious party’s input, which in general is inefficient. This is not a problem
when the class of adversary is quantum memory bounded and computationally unbounded,
but it doesn’t work when simulation needs to be efficient, as in ZK proofs. Finally,
post-quantum zero-knowledge against BQS adversaries was recently studied [AG22] in the
context where all information exchanged by the parties is classical, but the adversaries
may be quantum.

2 Preliminaries
For a set S we write 2S to denote the powerset, or set of subsets, of S. We let x ∈R S
denote that x is chosen uniformly at random in S. We let ∆ : {0, 1}n × {0, 1}n → [0, 1]
denote the relative Hamming distance between two n–bit strings. It is a well-known fact
that for any x ∈ {0, 1}n, |{x′ : ∆(x, x′) < δ}| ≤ 2H(δ)n where H is the binary Shannon
entropy. A universal set of hash function is functions H mapping n–bit strings to ℓ–bit
strings such that for any a, b ∈ {0, 1}n, Prh∈RH[h(a) = h(b)] ≤ 2−ℓ.

We let {|0⟩, |1⟩} denote the computational basis states for a single qubit register.

The Hadamard basis is denoted {H|0⟩, H|1⟩} where H = 1√
2

(
1 1
1 −1

)
is the Hadamard

transform. We often specify the basis using a bit and write |x⟩θ := Hθ|x⟩ for x, θ ∈ {0, 1}.
We also use the “+” and “×” notation to refer to the computational and Hadamard basis,
respectively (i.e. |b⟩+ = |b⟩ and |b⟩× = H|b⟩ for b ∈ {0, 1}).

A matrix U ∈ Cn×n is unitary if U∗U = UU∗ = I where U∗ is the conjugate transpose
of U . We refer to a general quantum state as a density operator, i.e. a positive semidefinite
matrix ρ ∈ Cn×n with trace equal to 1. Quantum transformations are modeled as
completely positive trace-preserving (CPTP) maps, i.e. transforms that map density
operators to density operators.

Throughout this paper, ∥·∥ denotes the trace norm ∥A∥ = tr(
√
A∗A) when its argument

is an operator and the Euclidean norm ∥|ψ⟩∥ =
√
⟨ψ|ψ⟩ when its argument is a vector.

The trace norm has the following properties. Let E be a quantum operation modeled as a
completely positive trace-preserving (CPTP) map, then ∥E(A)∥ ≤ ∥A∥. Let ρ, σ be two
density operators, the maximal probability with which ρ can be distinguished from σ is
1
2 + 1

4∥ρ− σ∥.
For a string a ∈ {0, 1}n, we let aj

i for 1 ≤ i < j ≤ n denote the substring of a composed
of the bits ai, . . . , aj . When a1, . . . , ak are Boolean strings, we let (ai)j denote the jth bit
of the ith string.
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The min-entropy of a classical random variable X conditioned on an event Ψ is
H∞(X|Ψ) = − log maxx Pr[X = x|Ψ]. Conditioned on a random variable Z, it is defined
as H∞(X|Z) := minz H∞(X|Z = z). The max-entropy of a quantum or classical register
A in state ρ is H0(A)ρ = log rank(ρA). A trivial upper-bound on H0(A) is dimA. The
min-entropy splitting lemma will also be useful. For a proof of this lemma, please refer to
the full version of [DFR+07].

Lemma 1 (Min-entropy splitting). Let X0, X1 and Z be random variables with H∞(X0X1|Z) ≥
α. Then there exists a random variable C with support over {0, 1} such that H∞(X1−C |ZC) ≥
α/2− 1.

2.1 The Bounded Quantum Storage Model
In the BQSM, the adversary has access to a quantum memory of at most q qubits. The
assumption is that the bound q holds at every stage in the protocol. Quantum messages are
transmitted sequentially (qubit by qubit). There are no other restrictions on the adversary,
in particular they can store an unbounded number of classical bits and can perform
arbitrarily long computations. The BQSM allows for the honest parties to have a (smaller
than the adversary) quantum memory, and some recent works [BS06] exploit this. However,
in this paper only the malicious parties are assumed to have a (bounded size) quantum
memory. Our protocols are prepare-and-measure and only require the honest participants
to prepare, send and measure qubits from the set of states {|0⟩, |1⟩, H|0⟩, H|1⟩}.

We assume that the parties share a single bidirectional quantum communication channel.
Qubits arrive at their destination in the order that they are sent. A classical message is
transmitted over this channel by encoding it in the computational basis (|0⟩ and |1⟩). This
model of communication5 is consistent with known methods for quantum communication
via optical fibers (e.g. QKD). For the BSQM, it has the advantage that it removes timing
issues with a separate classical channel where security does not hold if a classical message
arrives prior to the quantum transmission.

We review two important protocols in the BQSM and state their security properties
below.

2.1.1 Bit Commitment in the BQSM.

We begin by discussing the bit commitment scheme of [DFSS08]. One of the unique
features of this protocol is that the committer commits to a bit through the measurement
of a received quantum state, and does not need to send any message back to the receiver
of the commitment. The opening phase consists of the transmission of the committed bit
and along with measurement outcome, which will enable the consistency verification. This
commitment scheme is perfectly hiding since no information is sent to the receiver prior to
the reveal phase. The original [DFSS08] bit commitment protocol in the BQSM proceeds
as described below.

Protocol dfss-bc

Input: a bit b ∈ {0, 1} for the committer.
Commit phase:

5One could consider a different model where qubits don’t necessarily arrive in order. Each qubit would
need a “classical header” indicating their order, otherwise the receiver could not reorder them, but then
the classical header would be transmitted in a separate channel of the quantum data. Thus, synchronizing
them would actually be harder than sending qubits sequentially.
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1. V sends |x⟩θ for x ∈R {0, 1}n and θ ∈R {+,×}n to the committer.
2. C commits to bit b by measuring all qubits in basis + if b = 0 and in basis
× if b = 1, obtaining a measurement outcome x′.

Reveal phase:

1. To open the commitment, C sends b and x′ to V who checks that x′
i = xi

whenever θi = b.

Binding Property of BC in the BQSM. Since unconditionally secure bit commitment
is impossible in the quantum setting [LC01; May28], binding relies on the quantum storage
bound of the malicious committer. A malicious committer C̃ is bound to a single value by
the fact that it is forced to perform a partial measurement on the register it receives. This
notion is formalized by the following definition. We first introduce some notation. Let W
be C̃’s classical register, E be C̃’s q–qubit quantum register and V be the receiver’s state.
The joint state ρEW V of the committer and receiver at the end of the commit phase after
the memory bound is applied can be expressed as

ρEW V =
∑
w,v

PW V (w, v) · ρw,v
E ⊗ |w⟩⟨w| ⊗ |v⟩⟨v| (1)

where PW V is some probability distribution and ρw,v
E are density operators that may

depend arbitrarily on w and v.

Definition 1. A commitment scheme in the bounded-quantum-storage model is called
ϵ-binding, if for every (dishonest) committer C̃, inducing a joint state ρEW V of the form of
(1) after the commit phase, there exists a classical random variable B′ with support in
{0, 1}n, given by its conditional distribution PB′|W V , such that for any b′ ∈ {0, 1}n, the
state

ρb′

EW V =
∑
w,v

PW V |B′(w, v|b′) · ρw,v
E ⊗ |w⟩⟨w| ⊗ |v⟩⟨v| (2)

satisfies the following condition. When executing the opening phase on the state ρb′

EW V ,
for any strategy of C̃, the honest verifier accepts an opening to b ̸= b′ with probability at
most ϵ.

It was shown in [DFR+07] that dfss-bc satisfies the above definition (for b ∈ {0, 1}).
This implies a string commitment protocol where C commits bit-wise to bi using protocol
dfss-bc.

Theorem 1 (Security of DFSS-BC). The quantum bit commitment scheme dfss-bc is
ϵ–binding according to Definition 1 against q–bounded committers where ϵ(n) is negligible
in n if n/4− q ∈ Ω(n).

2.1.2 Oblivious Transfer in the BQSM.

The original OT protocol in the BQSM was a Rabin OT (where the sender has one input
and the receiver gets to see it with probability 1

2 ). We use the
(2

1
)
–OT from [DFR+07]

which is presented below. It is a non-interactive protocol which consists of a single message
with quantum and classical parts from the sender to the receiver. The memory bound is
applied after the transmission of the quantum state.
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Protocol dfrss-ot

Input: two bits s0, s1 ∈ {0, 1}ℓ for the sender. A bit c ∈ {0, 1} for the receiver.
Sender:

• Pick x ∈ {0, 1}n and θ ∈ {+,×}n.
• Pick two universal hash functions h0, h1 ∈ H and set m0 = s0 ⊕ h0(x0)

and m1 = s1 ⊕ h1(x1) where x0 (resp. x1) is the substring of x for which
θi = + (resp. ×).

• Prepare the quantum state |x⟩θ and the classical message (θ, h0, h1,m0,m1).
• Send |x⟩θ|θ, h0, h1,m0,m1⟩ to the receiver.

Receiver:

• Measure each qubit of the first register in basis [+,×]c to get a result x′.
Measure the remaining registers in the computational basis.

• Compute x′
c using θ and output mc ⊕ hc(x′

c).

Correctness of the protocol follows from the fact that x′
c = xc if both parties follow the

protocol. The security is established by the following result.

Theorem 2 (Security of DFRSS-OT [DFR+07]). Let R be a malicious q-bounded receiver
against ℓ–bit dfrss-ot and let ρM0M1H0H1E be the state of R right after the classical
message from the sender (where dimE ≤ 2q). Then there exists a random variable C such
that ∥∥∥∥ρM1−C MC CH0H1E −

IM1−C

2ℓ
⊗ ρMC CH0H1E

∥∥∥∥ ≤ 2− n
4 +ℓ+q (3)

Parallel repetition of DFRSS-OT. While protocol dfrss-ot does not generally
compose in parallel6, it does compose in the case where the same party is the sender in
every instance. By parallel repetition, we mean the protocol where the sender prepares
and sends a quantum state of the form

⊗
i |xi⟩θi followed by

⊗
i |θi, hi

0, h
i
1,m

i
0,m

i
1⟩ to the

receiver (as opposed to the alternating quantum and “classical” messages that would occur
in sequential repetition).

Corollary 1 (Parallel repetition of DFRSS-OT). Let R be a malicious q-bounded receiver
against k parallel repetitions of ℓ–bit dfrss-ot. Let ρM⃗0M⃗1H⃗0H⃗1E be the state of R right
after the sender’s transmission (where dimE ≤ 2q). Then there exist random variables
C⃗ = C1, . . . , Ck such that∥∥∥∥∥ρM⃗¬C⃗M⃗C⃗ C⃗H⃗0H⃗1E −

IM⃗¬C⃗

2k·ℓ ⊗ trM⃗¬C⃗

(
ρM⃗C⃗C⃗H⃗0H⃗1E

)∥∥∥∥∥ ≤ k · 2− n
4 +ℓ+q (4)

where M⃗¬C⃗ denotes registers M i
1−Ci for i ∈ [k] and MC⃗ denotes registers M i

Ci .

Proof. Consider the purified variant of the scheme, where the sender sends halves of EPR
pairs in the first step and measures its halves in basis θ. Consider k parallel executions
of this purified scheme. Let Xi and Θi be the measurement result and basis for the ith
repetition. The distribution (Xi,Θi) is independent from that of (Xj ,Θj) for j ̸= i. Since

6See [WW08] for a counter-example. The issue occurs when Alice acts as the receiver of an OT instance
while simultaneously acting as the sender in another. If she receives a commitment to b from Bob, she can
commit to b to Charlie by forwarding Bob’s message.
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H∞(Xi|Θi) ≥ ( 1
2 − ϵ)n, by the min-entropy splitting lemma there exists Ci such that

M1−Ci is indistinguishable from uniform. Note that the min-entropy bound holds even if
we condition on the random variables from other executions and on the receiver’s registers:

H∞(Xi|(Θj)j(Xj)j ̸=iZE) ≥ H∞(Xi|Θi)−H0(E) ≥ (1
2 − ϵ)n− q

Also note that the random variable Ci depends only on the conditional distribution PXi|Θi ,
so the Cis are simultaneously well-defined for each i ∈ [k]. We have that for each i,∥∥∥∥∥ρMi

1−Ci
Mi

Ci
CiHi

0Hi
1E −

IMi

1−Ci

2k·ℓ ⊗ trMi

1−Ci

(
ρMi

Ci
CiHi

0Hi
1E

)∥∥∥∥∥ ≤ 2− n
4 +ℓ+q (5)

and, by starting with ρM⃗¬C⃗ M⃗C⃗C⃗H⃗0H⃗1E and invoking the triangle inequality k times (where
each time we replace M i

1−Ci with the completely mixed state), we get the corollary’s
statement.

2.2 Quantum Interactive Proofs and Quantum Zero-Knowledge
An interactive proof system is a protocol between two participants, a prover P and a
verifier V. We consider proofs of language membership where each participant receives a
common input x, and the prover may receive an additional input w, such as a witness that
x is a member of a NP language. A proof system is classical if the message exchanged are
classical, but P and V are allowed to be quantum. We say that a classical or quantum proof
system is public coin if the verifier’s messages are uniformly and independently distributed.

We denote by P(x) ⇋ V(x) the output of the verifier after the interactive proof. An
interactive proof system for a language L is δ–correct if for all x ∈ L,

Pr[P(x) ⇋ V(x) = 1] ≥ δ . (6)

It is (computationally) ϵ–sound if for all (QPT) malicious prover P̃, for all x /∈ L,

Pr[P̃(x) ⇋ V(x) = 1] ≤ ϵ . (7)

We now define quantum zero-knowledge [Wat01].

Definition 2 (Indistinguishability of Quantum States). Let L be an infinite set of strings
and let ψ = {ψx}x∈L and ϕ = {ϕx}x∈L be two families of quantum states. We say that
ψ and ϕ are computationally indistinguishable if for all x ∈ L for every poly(|x|)–time
quantum algorithm D and for all state σ over H⊗poly(|x|),

∥D(ψx ⊗ σ)− D(ϕx ⊗ σ)∥ ≤ negl(|x|) .

ψ and ϕ are statistically indistinguishable the above holds with respect to all D and all
states σ.

Definition 3 (Indistinguishability of Quantum Channels). Let L be an infinite set of
strings and let Ψ = {Ψx}x∈L and Φ = {Φx}x∈L be two families of CPTP maps agreeing
on their input and output spaces: Ψx,Φx : H⊗n(|x|) → H⊗m(|x|). We say that Ψ and Φ
are computationally indistinguishable if for all x ∈ L, for every poly(|x|)–time quantum
algorithm D : H⊗m(|x|)+k(|x|) → H and for every σ ∈ H⊗m(|x|)+k(|x|),

∥D(Ψx ⊗ I⊗k(|x|)(σ))− D(Φx ⊗ I⊗k(|x|)(σ))∥ ≤ negl(|x|) (8)

where m(|x|), n(|x|) and k(|x|) are poly(|x|). Ψ and Φ are statistically indistinguishable if
the above holds with respect to all CPTP map D and all states σ (for unbounded k(|x|)).
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Definition 4 (Quantum Zero-Knowledge). An interactive proof system Π = ⟨P,V⟩ for a
language L is computationally quantum zero-knowledge (qZK) if for every poly(|x|)–time
verifier V∗ receiving the common input x ∈ L, there exists a poly(|x|)–time simulator SimV∗

that receives the same inputs and such that the quantum channel families {P ⇋ V(x, ·))}x∈L

and {SimV∗(x, ·)}x∈L are computationally indistinguishable. We say that Π is statistically
quantum zero-knowledge if the two channel families are statistically indistinguishable. We
say it is (computationally or statistically) quantum honest verifier zero-knowledge (qHVZK)
if indistinguishability holds with respect to the honest verifier V∗ = V.

We point out that the concept of quantum zero-knowledge can be extended to quantum
memory bounded verifiers (see, e.g. [AG22]). When the verifier is limited in some way
(in memory or computation time), the goal is for the simulator to mimic the verifier’s
actions with comparable resources. For our results of Section 4, we only need to bound the
memory of adversaries in the soundness against malicious provers, while the zero-knowledge
property holds even against verifiers that have an unbounded quantum memory. We notice
that in this case, it is natural that Sim is allowed to have unbounded quantum memory as
well.
Definition 5 (Ξ–protocols). A Ξ–protocol for a language L is an interactive proof system
Π = (P1,P2,V) with the following structure.

1. The prover receives as input x and a witness |w⟩, computes |ϕ⟩AB ← P1(x) and
sends ϕA to the verifier.

2. The verifier chooses a uniformly random challenge c ∈ {0, 1}ℓ and sends c to the
prover.

3. The prover computes r ← P2(x, ϕB , c) and sends r to the verifier.

4. The verifier accepts if V(x, ϕA, c, r) = 1 and rejects otherwise.
A Σ–protocol is a Ξ–protocol where |w⟩ and |ϕ⟩AB are classical. A Ξ–protocol is prepare-
and-measure for the verifier if the verifier measures ϕA upon reception in a basis chosen by
c and the predicate V is applied on the measurement outcome.

3 Non-Interactive Proofs in the BQSM
We present a generic transform to turn arbitrary Σ–protocols with small challenge space to
non-interactive proofs. We actually consider a slight generalization of Σ–protocols where
the first message send by the prover can be a quantum state, while the challenge by the
verifier should be uniformly random bits and the third message by the prover is classical.
Broadbent and Grilo [BG22] called this type of protocols as Ξ–protocols (Definition 5),
and we will use their notation to stress that the first message can be quantum.

The soundness of our transform does not rely on any setup assumption. We will show
later that while we cannot show zero-knowledge for such a transform, we can prove some
weaker notions. We notice that since we are working in the bounded storage model, we
consider Ξ protocols where an honest verifier measures the qubits of the first message as
they arrive based on the chosen challenge.

Protocol NIP[Π] for a Ξ–protocol Π

Prerequisite: A 3–message, 1-bit public coin, interactive proof Ξ =
(P1,P2,V).

Prover:
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1. For i ∈ [k],
1.1 Compute |ϕi⟩ ← P1 with fresh randomness each time
1.2 Prepare the n–qubit state |xi⟩θi

1.3 Compute responses rc
i using P2 for c ∈ {0, 1}

1.4 Sample two universal2 hash functions h0
i and h1

i

1.5 Compute m0
i = r0

i ⊕ h0
i (x+

i ) and m1
i = r1

i ⊕ h1
i (x×

i ) where x+
i (resp.

x×
i ) is the substring of xi corresponding to the + (resp. ×) basis.

2. Send
⊗

i |ϕi⟩|xi⟩θi
|θi, h

0
i , h

1
i ,m

0
i ,m

1
i ⟩ to the verifier.

Verifier:

3. Pick a k random selection bits c1, . . . ck

4. For i ∈ [k],
4.1 Measure |ϕi⟩ according to V to get an outcome ai

4.2 Measure |xi⟩θi
on basis ci getting x′

i

4.3 Compute xci
i from θi and x′

i; and compute rci from xci
i , hci

i and mci
i

4.4 Check that for all i ∈ [k] V(ai, ci, r
ci
i ) = 1, otherwise abort

The soundness of the protocol follows from the fact the prover is oblivious to which
response the verifier has learned. Since BQS-OT is secure against unbounded senders, the
soundness of NIP[Π] is unconditionally reducible to the soundness of Π.

We notice that this technique can be used to compress logn rounds protocols with
logn bit challenges by using poly(n) instances of OT. Let’s say for simplicity that we
have a k rounds protocol with 1 bit challenges with k ∈ O(logn), and have access to a(2k

1
)
–OT. Then for each of the 2k inputs 0 ≤ j < 2k, the prover sends the transcript it

would produce if j’s bits were the challenges. We can extend this to m = O(logn) bit
challenges by considering j ∈ {0, 1}2m+k .

Theorem 3. Let Π be a 1-bit challenge Ξ–protocol with soundness 1
2 against quantum

adversaries. Then NIP[Π] is an unconditionally sound quantum non-interactive proof with
soundness error 1

2k .

Proof. Let A be a malicious prover against NIP[Π]. We construct a reduction R against
(the k-wise parallel repetition of) Π that has the same success probability as A. The
reduction simulates the OT instances while being able to recover both messages sent by A
by having a sufficiently large quantum memory. Thus we reduce to the soundness of Π
against quantum adversaries.

When A sends the quantum state ρA1X1...AkXk
in the first step, where Ai is the register

that is supposed to have the state |ϕi⟩ and Xi is the register supposed to have |xi⟩θi
,

R stores the qubits. When A sends the classical message (θi, h
0
i , h

1
i ,m

0
i ,m

1
i , ai)i∈[k], R

measures the register Xi in basis θi and compute the responses to each possible challenge
r0

i and r1
i .

Now R acts as the sender in protocol Πk. It sends the state ρA1...Ak
as the first message

of the Π protocol. Upon reception of the challenges c1, . . . , ck ∈ {0, 1} from the verifier, R
replies with rc1

1 , . . . r
ck

k .
It remains to argue that the verifier accepts in Πk against R with the same probability

that the verifier accepts in NIP[Π] against A. This follows from the observation that ai, ci

and rci
i are identically distributed in both cases. Therefore, the success probability of R

against Πk is exactly that of A against NIP[Π].
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Remark 1. We notice that the soundness of NIP[Π] actually follows from a weaker notion of
soundness that we call oblivious soundness, which intuitively says that the Prover cannot
simultaneously answer the two challenges. More concretely, NIP[Π] is sound if Π has the
following property: for any no instance x /∈ L and first message ρ, no prover can create, at
the same time, a valid answer for c = 0 and a valid answer for c = 1. More concretely, for
all possible values (r0, r1)

sup
M

∑
b∈{0,1}

∑
r0,r1

tr ((Mr0,r1 ⊗ V (x, b, rb))ρAB) ≤ 1 + negl(n). (9)

where Mr0,r1 consists of a measurement made by the prover to answer r0 to the first
challenge and r1 to the second challenge. While this property is implied by standard
soundness, we will see a protocol later in this section that only satisfies oblivious soundness.

3.1 Security Against Malicious Verifier
We now turn to the security against malicious verifiers of NIP[Π]. A verifier with an
arbitrarily large quantum memory may postpone its measurement and learn both transcripts
of Π. If for example Π is special-sound, it would allow them to recover an NP witness.
Thus, we focus the security against bounded quantum storage verifiers. The question
remains as to exactly what properties can be proven in this setting.

In this section, we give evidence that proving zero-knowledge for NIP[Π] (or variations
of it) might be out of reach for non-interactive proofs in the BQSM. However, we show
that this protocol preserves some properties of the Π such as Witness Indistinguishability
and Witness Hiding properties.

3.1.1 Impossibility of “Black-Box” Non-Interactive Zero-Knowledge in the
BQSM.

In order to achieve (computational) zero-knowledge, one would need to construct a simulator
that can produce an output that is indistinguishable from the output in the real protocol
by polynomially bounded distinguishers. For that, the simulator should have minimal
access to the verifier’s state and be able to run its program. We show here that only
looking at the state of the verifier after a partial measurement is not sufficient to prove
zero-knowledge. To overcome such an impossibility, we would need a “white-box” simulator
that take advantage from the code of the verifier.

We notice that we will show the impossibility result for Σ protocols (i.e. the first
message is classical), and that the verifier does not have access to quantum auxiliary input.
These two cases usually makes proving quantum zero-knowledge much simpler, making
our no-go result stronger.

We define an adversarial verifier strategy as a pair of unitaries V = (V1, V2) where V1
maps |ϕ⟩|x⟩θ and an auxiliary register initialized in state |0⟩ (and potentially an auxiliary
quantum input) to registers E and Z where dimE ≤ 2q and the register Z is measured in
the computational basis to enforce the memory bound. The unitary V2 acts on registers EZ
and a register T containing the rest of the prover’s transmission (in state |θ, h0, h1,m0,m1⟩),
and produces the verifier’s output.

We define a special type of black-box simulator for the NIP scheme, which we call
“BQS-BB”, as a QPT algorithm Sim that has black-box access to the unitaries V1, V

∗
1 , V2

and V ∗
2 . In particular, the simulator is allowed to “look” at the state of the verifier between

application of these unitaries, and can even purify the verifier’s action (i.e. without the
measurement on Z). We show that this simulation technique cannot be used to prove
zero-knowledge. Intuitively, the reason why simulation is impossible in this setting is
that the simulator cannot (efficiently) retrieve which challenge the verifier could have
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information about. This prevents, for instance, the simulator from applying the rewinding
technique.

This impossibility holds regardless of whether or not the verifier receives an auxiliary
input.

Lemma 2. Let Π be an arbitrary 1–bit challenge special-sound Σ–protocol for a language
L ∈ NP \ BQP (assuming such a language exists) and let V = (V1, V2) be an adversarial
verifier strategy. If post-quantum one-way functions exists, then non-interactive proof
NIP[Π] is not zero-knowledge with BQS-BB simulation.

Proof. We assume that we are running NIP[Π] on a single instance of Π, i.e. with k = 1.
Let (Enc,Dec) be a symmetric encryption scheme with semantic security against quantum
adversaries [ABF+16], which are implied by the existence of one-way functions. We
consider a family of malicious verifiers that collude with the distinguisher in order to
thwart any simulation attempt. Let {(Dk, V k = (V k

1 , V
k

2 ))}k∈{0,1}λ be described as follows.
The unitary V k

1 does the following in a purified manner.

1. Initialize register Z = (Θ, X, P ) in state |0⟩Z .

2. Upon reception of an n-qubit state |Ψ⟩, move it to register P .

3. Apply H to register Θ to obtain a uniform superposition over {0, 1}.

4. Perform a purified measurement on each qubit of register P in basis Θ to get x, i.e.
apply the unitary |θ⟩Θ|ψ⟩P |0⟩X 7→ |θ⟩

∑
x |x⟩⟨x|(Hθ)⊗n|ψ⟩|x⟩X .

5. Encrypt all registers in Z in place using the unitary |m⟩ 7→ |Enck(m)⟩ (which is
possible if Enck is perfectly correct).

6. The state of register Z is now

1√
2
∑
θ,x

⟨x|(Hθ)⊗n|ψ⟩ · |Enck(θ, x, x)⟩Z (10)

We set V k
2 as the identity, i.e. it just outputs everything it receives: the classical memory

register Z from V k
1 and the classical message M from P.

The distinguisher Dk receives register Z containing the encryption (under key k) of
the verifier’s classical memory and a register M containing the prover message in protocol
NIP[Π]. It decrypts z to get the verifier’s measurement basis θ and outcome x, uses it to
recover one of the two transcripts contained in M and outputs 1 if the transcript obtained
is accepting and 0 otherwise.

We now argue that it is impossible to simulate such a verifier efficiently. First, we
notice that in a real execution (where V interacts with P), Dk always outputs 1 assuming
perfect correctness of Π. In a simulated execution, we can use the fact that the language
is hard (so that Sim cannot produce two accepting transcripts) and that the verifier’s
memory is encrypted (so that Sim cannot guess the verifier’s challenge) to show that the
distinguisher outputs 0 with probability close to 1

2 .
By the semantic security of Enc [ABF+16], for any QPT Sim there exists a QPT

simulator Sim′ that, whenever Sim calls V k
1 and receives register Z which contains the

encryption of the memory of an honest verifier, Sim′ ignores register Z, but is still able to
produce an output indistinguishable from Sim. Then, for any i ∈ L with corresponding
witness w,
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|Pr[Dk(⟨P(i, w)→ V(i)⟩) = 1]− Pr[Dk(Sim(i)) = 1]|
= 1− Pr[Dk(Sim(i)) = 1]
≤ 1− Pr[Dk(Sim′(i)) = 1] + ∥Sim′(i)− Sim(i)∥

≤ 1− 1
2 + Pr[(i, w′) ∈ RL | w′ ← Sim′(i)] + negl(n)

In the last inequality, we used the special soundness of Π which says that producing two
accepting transcript for the same commitment a is as hard as producing a witness for i ∈ L.
By the assumed quantum hardness of L, the probability of this happening is negligible,
and if the output of Sim′ contains only one accepting transcripts, then Dk outputs 0 with
probability 1

2 .

Lemma 2 indicates that techniques restricted to evaluating V and V ∗ will not suffice
for proving zero-knowledge of NIP[Π]. White-box techniques exist for “looking inside” the
verifier to infer the index c̄ of the OT message on which it has uncertainty. See Section 1.2
for examples. These techniques rely on computing the exact probability distributions
induced by the adversary’s actions and inferring the random variable C̄ whose existence
is established by the min-entropy splitting lemma (Lemma 1). Extraction is therefore
inefficient, which makes these results inapplicable in the context of zero-knowledge.

Nevertheless, it would be surprising if the verifier could learn anything from the non-
interactive proof that it could not learn in the Σ–protocol. The security of BQS-OT ensures
that the response to one of the two possible challenges is hidden information theoretically.
The impossibility of zero-knowledge appears to be more due to a lack of ways in which the
simulator can “cheat” than to an actual leakage of information. We can therefore show
that other security properties against malicious verifiers – e.g. witness hiding and witness
indistinguishability – are preserved by our transformation.

3.1.2 Honest Verifier Zero-Knowledge.

It is trivial to show that a simulator able to read the honest verifier’s memory after the
honest measurement is able to produce a valid proof. The simulator acts as both the
prover and the honest verifier: for each i ∈ [k], it prepares the states |xi⟩θi

, picks a bit
ci ∈ {0, 1} at random and measures the state in basis ci. After the measurements with
outcomes x′

1, . . . , x
′
k, the simulator uses the HVZK simulator for Σ on input ci to produce

a valid transcript (ai, ci, r
ci
i ). For the classical prover message, the simulator chooses h0

i , h
1
i

at random and sets mci
i = rci

i ⊕h
ci
i (xci

i ) and m1−ci
i uniformly random. The simulator runs

V on the message (θi,m
0
i ,m

1
i , ai, h

0
i , h

1
i )i∈[k] outputs whatever V outputs.

3.1.3 Witness Indistinguishability.

Witness indistinguishability was introduced in [FS90a] as a relaxation of zero-knowledge.
We adapt the definition to quantum proof systems.

Definition 6 (Witness Indistinguishability). Let R be an NP relation and let Π be a
quantum proof system for R. We say that Π is computationally (resp. statistically) witness
indistinguishable (BQS-WI) if for any V ′, for any instance x and witnesses w1, w2, and
any auxiliary input y, the quantum states

⟨P (x,w1), V ′(x, y)⟩ and ⟨P (x,w2), V ′(x, y)⟩

are computationally (resp. statistically) trace-indistinguishable. We say Π is WI in the
BQSM (BQS-WI) if indistinguishability holds for any q–bounded V ′.
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Theorem 4. If Π is a (computational/statistical) witness indistinguishable proof system,
then NIP[Π] is (computational/statistical) witness indistinguishable in the BQSM against
q–bounded verifiers for n/4− q ∈ Ω(n).
Proof. Let w,w′ be two witnesses for x ∈ L. Let ρT ZE be the state of the q–bounded
verifier after interacting with P(x,w) where E is the q-qubit quantum memory of V, Z
is its classical partial measurement outcome and T = (Θ(i), H

(i)
0 , H

(i)
1 ,M

(i)
0 ,M

(i)
1 , A(i)) is

the classical register sent by the prover. Let σT ZE be the state where the prover uses the
witness w′ instead.

By the security of BQS-OT (Theorem 2), for each i there exists a random variable
Ci such that M (i)

1−Ci
is statistically close to independently and uniformly random. Let

c = c1 . . . ck and let ρc denote the state where M (i)
1−ci

is replaced with the completely mixed
state for each i:

ρc = 1
2ℓ

IMc̄ ⊗ trMc̄ (ρ) . (11)

We define σc in the same way. By Theorem 2, ρ ≈ϵ
∑

c∈{0,1}k pcρ
c where pc = Pr[C = c]

for a negligible ϵ as long as n/4− q is linear in n. By the witness indistinguishability of Π,
we have that

∥D(ρ)− D(σ)∥ ≤ ∥D(
∑

c

pcρ
c)− D(

∑
c

pcσ
c)∥+ 2ϵ

≤
∑

c

pc∥D(ρc)− D(σc)∥+ 2ϵ

≤ ν + 2ϵ

since the distinguishing advantage between ρc and σc is at most the advantage to distinguish
between a transcript for Π with challenge c and witness w and one with witness w′.

3.2 Non-interactive statistical WI proofs for NP
We describe now the application of our protocol for (statistical) WI non-interactive proofs
for NP. Before discussing such a protocol, we first describe a new non-interactive weak
bit-commitment, which may have independent interest.

3.2.1 A new non-interactive weak BC.

The previous protocols for bit commitment in the BQSM had the weird property that the
sender commits by measuring a quantum state created by the receiver. For example, in
[DFSS08], in order to commit to a message m ∈ {0, 1}, the sender would get a message
|x⟩θ, measure it in basis m and take note of the outcome x′. To open its commitment,
it would send m and x′ to the receiver who could check that x′

i = xi whenever θi = m.
This quirk of dfss-bc is actually the reason why our round compression transform can go
down to two messages as we will see in Section 4. But in the context of our non-interactive
proof using dfss-bc applied to commit-and-open protocols, we cannot replace the classical
commitments with dfss-bc since it would introduce communication form the verifier to
the sender.

Intuitively, it does not matter who prepares the state and who measures it since by a
purification argument, the state preparation of dfss-bc can be seen as measuring halves
of EPR pairs. Formally proving that this is still secure is more difficult, and the tools
to do so were only discovered a couple of years later in [DFLS16], which can show that
it is still sum-binding. For our purpose, we actually need a weaker security notion than
sum-binding. We first present the “reversed” protocol and then describe and prove the
security notion it needs to satisfy.
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Protocol weak-BC

Commit Phase

• Committer(b): Choose x ∈R {0, 1}n. Send |x⟩b.
• Receiver: Measure qubits upon reception in a random basis θ ∈R {0, 1}n,

gets outcome x′.

Open Phase

• Committer(b): Send x and b. Receiver checks that xi = x′
i whenever

θi = b.
• Receiver: Check that xi = x′

i whenever θi = b.

The usual sum-binding criteria asks that, for a fixed commitment ρAB, if the sender
succeeds in opening b with probability pb, then p0 + p1 ≤ 1 + negl(n). In this context, the
malicious sender can measure its part of the state A adaptively based on the knowledge of
the target bit b. We consider a weaker task where the sender must provide both openings
simultaneously, and does not know which will be tested. This is strictly weaker than
sum-binding since, as the following theorem shows, this is achieved unconditionally by the
above protocol.

Theorem 5. The above weak-BC protocol is perfectly hiding and is binding according
to the following. Let ρAB be an arbitrary density operator describing the joint state of
the committer and the receiver after the commit phase. Let {V x,b

acc , V
x,b

rej } be the verifier’s
measurement for opening (x, b). Then

sup
M

∑
b∈{0,1}

∑
x0,x1

tr
(
(Mx0,x1 ⊗ V xb,b

acc )ρAB

)
≤ 1 + 2− n

2 +2h(δ)n + 2−δn+1 (12)

where h(·) is the binary entropy and δ > 0 is an arbitrary constant.

Proof. Hiding follows from the fact that∑
x∈{0,1}n

|x⟩⟨x| =
∑

x∈{0,1}n

H⊗n|x⟩⟨x|H⊗ = I
2n

We will bound the weak binding criteria through a series of hybrids which each
negligibly change the success probability. Let pb = supM

∑
x0,x1

tr((Mx0,x1 ⊗ V xb,b
acc )ρAB)

be the probability of acceptance when the opening to bit b is checked, where of course M
cannot depend on b.

Hybrid 1. The receiver holds on to the qubits in the commit phase and waits for the
committer to send its opening before measuring in a random basis Θ. The trace in (12) is
unchanged by this modification.

Hybrid 2. As Hybrid 1, but instead of choosing Θ at random and measuring in basis
Θ, the receiver measures all the qubits in the basis b sent by the committer. Then, the
receiver chooses a subset T ⊆ [n] uniformly at random and rejects if for any i ∈ T , the
result x′

i is different from xi. The probability distributions are also unchanged as this is
equivalent to the checking procedure with Θi = b if i ∈ T and Θi = 1− b if i /∈ T . The
marginal distribution of Θ is still uniform.



Alex B. Grilo, Philippe Lamontagne 17

Hybrid 3. As Hybrid 2, but instead of comparing the positions for a random subset T ,
the receiver rejects if the measurement outcome x′ is at Hamming distance greater than
δn from x. The receiver will reject more often in this hybrid. The probability that the
verifier rejects in Hybrid 3 and not in Hybrid 2 is the probability that ∆(x′, x) > δn, yet
x′

i = xi for all i ∈ T . Since T is chosen uniformly at random, this probability is at most
2−δn. Let p′

b be the probability that the receiver accepts an opening to b in Hybrid 3, then
pb ≤ p′

b + 2−δn.
We now bound the sum of probabilities for Hybrid 3. Let

∑
x′≈x |x′⟩⟨x′|b be the

projector onto accepting outcomes for the opening of b ∈ {0, 1} in Hybrid 3. We have that

p′
0 + p′

1 = sup
M

∑
b∈{0,1}

∑
x0,x1

tr
(

(Mx0,x1 ⊗
∑

x≈xb

|x′⟩⟨x′|b)ρAB

)

≤ sup
x0,x1

tr
(∑

x≈x0

|x⟩⟨x|0 · ρ

)
+ tr

(∑
y≈x1

|y⟩⟨y|1 · ρ

)

≤

∥∥∥∥∥∑
x≈x0

|x⟩⟨x|0 +
∑

y≈x1

|y⟩⟨y|1

∥∥∥∥∥
∞

≤ 1 +
∥∥∥∥∥∑

x≈x0

|x⟩⟨x|0 ·
∑

y≈x1

|y⟩⟨y|1

∥∥∥∥∥
∞

≤ 1 + 22h(δ)n−n/2

where we use the inequality ∥A+B∥ ≤ 1 + ∥A ·B∥ for projectors A and B (a fact whose
proof can be found in [BFGS13]), the fact that there are at most 2h(δ)n strings at distance
δn from xb and that ⟨x|0|y⟩1 = 2− n

2 for any x, y.
Compiling the error introduced with Hybrid 3, we have that

(12) = p0 + p1 ≤ 1 + 22h(δ)n−n/2 + 2 · 2−δn

3.2.2 A non-interactive statistical WI proof for NP in the BQSM.

We now consider the following Ξ protocol for the NP-complete Lham corresponding to
graphs that have a Hamiltonian cycle. It consists of the original Σ protocol for this problem,
but using weak BC as the commitment.

Protocol Ξ protocol Πham for Hamiltonian cycle

1. Prover: Using weak BC, commits to the adjacency matrix of a random
permutation σ of the graph G

2. Verifier: Send a random bit b
3. Prover: If b = 0 open the whole adjacency matrix and provide the

permutation σ. If b = 1, open the edges corresponding to the Hamiltonian
cycle.

4. Verifier: Check the consistency of the Prover’s opening.
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The completeness of the protocol follows directly from the completeness of the original
protocol, and zero-knowledge follows from [Wat01].

However, since we use weak BC, this protocol does not satisfy the standard sound-
ness definition (in particular, the Prover can answer the two challenges by keeping the
purification of the commitment and measuring it accordingly).

However, we prove now that it satisfies the oblivious soundness property that we
mentioned in Remark 1.

Lemma 3. Πham satisfies oblivious soundness.

Proof. Let G /∈ Lham. Let G′ be the graph corresponding to the answer r0. If G′ has a
Hamiltonian cycle, it cannot be a permutation of G, therefore the first check will fail with
probability 1. Moreover, if r1 does not open to a Hamiltonian cycle, the second check will
fail with probability 1. In this case, for the two checks to pass, there is at least one entry
i, j of the adjacency matrix whose opening oi,j is b in r0 and whose opening o′

i,j is ¬b in
r1.

Therefore, in order to make the verifier accept, the prover has to provide values (r0, r1)
such that Equation (9) holds, which is upper-bounded by the probability that the prover
can provide simultaneously two different openings to the commitment, which is impossible
by Theorem 5.

By observing that Πham is perfectly witness indistinguishable because weak-BC is
perfectly hiding, and combining Lemma 3 and Remark 1, we obtain the following result.

Corollary 2. There is a non-interactive quantum proof system for Lham which is uncon-
ditionally sound and witness indistinguishable against BQS verifiers.

4 A General Round-Compression Transform in the
BQSM

In this section, we present and prove the soundness of the general transform mapping
k–round interactive proofs for k = poly(λ) to 2–message quantum proofs.

We assume for simplicity that all the prover messages are of length ℓ = ℓ(λ) and all the
verifier challenges are of length m = m(λ) for some polynomials ℓ,m : N→ N, and that
the prover sends the first and last messages. We let a1, . . . , ak+1 denote the k + 1 prover
messages and c1, . . . , ck the k verifier challenges, where ai+1 responds to challenge ci. Let
PΠ

i denote the next-message function of the prover in protocol Π that takes as input the
partial transcript so far and outputs ai. The RR transform is presented below.

Protocol RR[Π]

Parameter: A k–round interactive proof system Π = (PΠ,VΠ) for a language
L.

Verifier message:

1. For i ∈ [k]:
1.1 V runs the commit phase of the dfss-bc string commitment to get a

quantum register Pi.
1.2 V picks ci ∈R {0, 1}m to initialize a register Ci in state |ci⟩

2. V sends the registers P1C1 . . . PkCk to P.
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Prover message:

3. On input x ∈ L, P first computes a1 = PΠ
1 (x).

4. For i ∈ [k],
4.1 On reception of register Pi, P commits to ai as in the commit phase

of dfss-bc.
4.2 P measures register Ci in the computational basis to obtain ci. P

computes ai+1 = PΠ
i+1(a1, . . . , ai, c1, . . . , ci, x).

5. P runs the reveal phase of dfss-bc, sending every ai and opening string
to V.

Verification:

6. V performs the verification for every instance of dfss-bc. It accepts
if every opening is valid and if a1, . . . , ak+1, c1, . . . , ck is an accepting
transcript for Π on input x. Otherwise, it rejects.

Theorem 6. Let dfss-bc be the δ–binding BQS-BC from Section 2.1.1. If Π is a k–round
public-coin interactive proof with soundness error ϵ against unbounded (resp. QPT) provers,
then RR[Π] is a 1–round quantum interactive proof (resp. argument) with soundness error

ϵ+ k2 · δ (13)

against q–bounded adversaries where δ is negligible if n/4− q ∈ Ω(λ) where n = n(λ) is
the number of qubits sent in dfss-bc and q = q(λ) is the quantum memory bound on the
prover.

Proof. We use a hybrid argument to prove the soundness of RR[Π]. Consider the following
hybrid protocols where in Hyb i the round-compression transform is applied up to the ith
prover message, and the rest of protocol is interactive.

• Hyb 0: same as protocol Π

• Hyb i: apply transformation RR to the messages of Π up to round i.

1. V prepares i registers P1 . . . Pi and i random values c1, . . . , ci in registers
C1 . . . Ci and sends

⊗i
j=1 PjCj .

2. On reception of a message (a1 . . . ai+1, z1 . . . zi) from the prover, V checks that
(aj , zj) is valid opening for j ∈ [i] and rejects if any are invalid.

3. V and P continue as in protocol Π: V sends cj and P responds with aj+1 for
j = i+ 1, . . . , k. V checks that (a1 . . . ak+1, c1 . . . ck) is an accepting transcript
for Π.

• Hyb k: same as in RR[Π]

The difference between two hybrids i − 1 and i is that in hybrid i − 1, A1 . . . Ai are
sent to V before it sends Ci whereas in hybrid i, the adversary receives Ci before opening
its commitments to A1 . . . Ai. We will show that this only confers a negligible advantage
to an adversary.

Consider a q–bounded adversary Ai against Hyb i. By the definition of binding for
BQS-BC (Definition 1), after the commit phase of the jth commitment (i.e. after the
transmission of register Pj for j ≤ i), there is a random variable A′

j such that conditioned
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on A′
j = a′

j , Ai has negligible probability of opening the jth commitment to aj ̸= a′
j . This

random variable is defined by the partial measurement Ai is forced to make on register Pj

before V begins transmission of register Cj , so it is independent of Cj .
This independence means that learning Ci before sending A1 . . . Ai does not give a

noticeable advantage to the adversary. We make this formal by constructing, from the
adversary Ai that has success probability ϵi against Hyb i, an adversary Ai−1 against
hybrid i − 1 that has success probability at least ϵi − negl(λ). Ai−1 performs the same
strategy as Ai on reception of the registers P1C1 . . . Pi−1Ci−1. For producing the next
value ai, Ai−1 simulates the verifier in the ith commitment, i.e. creates the register Pi

just as V would in hybrid i, again applying Ai’s strategy, and checking that the resulting
opening is valid.

Adversary Ai−1

1. While receiving registers
⊗i−1

j=1 PjCj from the verifier, forward them to Ai.
For the last registers PiCi that Ai expects, Ai−1 simulates the verifier,
i.e. constructs register Pi from the commit phase and sends Pi followed
by a random challenge c to Ai.

2. Ai−1 now receives a message (a1 . . . ai+1, z1 . . . zi) from Ai. It checks
(ai, zi) is a valid opening of the commitment and aborts if the check fails.
It discards ai+1 and sends (a1 . . . ai, z1 . . . zi−1) to the verifier.

3. After receiving the challenge cj for i ≤ j ≤ k from the verifier, it computes
and sends aj+1 using the same strategy as Ai.

Observe the following facts about Ai−1:

• The quantum memory required to perform attack Ai−1 against Hyb i− 1 is the same
as attack Ai against Hyb i.

• Ai cannot distinguish whether it is interacting with V in Hyb i or with Ai−1 in
Hyb i− 1.

• The random variables A′
1, . . . , A

′
i have the same distribution in both experiments

(Ai against Hyb i and Ai−1 against Hyb i− 1).

Let us fix some arbitrary values a′
1 . . . a

′
i for A′

1 . . . A
′
i. Assume for now that a1 . . . ai =

a′
1 . . . a

′
i. Since these values are independent of Ci, they would remain unchanged for any

value ci that Ai−1 had given to Ai. And since Ai−1 answers the rest of the challenges
exactly as Ai would, the whole transcript is identically distributed in both experiments,
thus the probability of the verifier accepting is the same.

Now for the other case (there is some j ≤ i such that aj ̸= a′
j), the verifier will reject

the opening to the ith commitment with overwhelming probability. By the definition of
δ–binding for BQS-BC schemes (Definition 1), the probability that Ai+1 can announce a
basis Aj ̸= A′

j is upper-bounded by δ. By a union bound, the probability that there is a
1 ≤ j ≤ i such that Aj ≠ A′

j is at most i · δ. Therefore if we let ϵj denote the soundness
error of Hyb j for j = 0 . . . k, then

ϵi ≤ ϵi−1 + i · δ . (14)

Since by assumption, Π is ϵ–sound, then RR[Π] is ϵ′–sound for

ϵ′ ≤ ϵ+ k2 · δ (15)
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where the k2 comes from the fact that when going from hybrid i to hybrid i + 1, we
introduce the negligible term i ≤ k times, and there are k hybrids. If δ is negligible, then
the above is arbitrarily close to ϵ. By Theorem 1, this happens if the memory bound on
the prover satisfies n/4− q ∈ Ω(λ)

4.1 Application: Two-Message Zero-Knowledge in the BQSM
The goal of this section is to construct a two-message zero-knowledge proof for any NP
language in the BQSM. We begin by proving that our transform produces a zero-knowledge
2–message quantum proof when applied to proof systems that satisfy the following notion
of honest-verifier zero-knowledge, which is a generalization of special HVZK to multi-round
protocols.

Definition 7. We say that a Π protocol is special qHVCZK (special HVSZK) if for any
given challenge (c1, ..., ck), there is an efficient simulator S(c1, ..., ck) such that for every
QPT (unbounded) distinguisher D,

|Pr[DS(x,·)(1λ) = 1]− Pr[DP⇋V(x,·)(1λ) = 1]| ≤ negl(λ),

where D can query its oracle with (classical) values c1, ..., ck. In the first term, it receives
S(x, c1, ..., ck) and in the second term, it receives the transcript P ⇋ V(x, c1, . . . , ck) that
come from the real protocol when the challenges are fixed.

We now show that if RR is applied to a special-HVZK k–round protocol for k = poly(λ),
then the resulting scheme is zero-knowledge against quantum verifiers. To prove zero-
knowledge, instead of producing a simulator for the malicious verifier, we show that there
exists a simulator which does not interact with the prover and that can simulate the actions
of P. One can easily see that this implies (auxiliary-input) zero-knowledge by running any
malicious verifier Ṽ with this simulated prover.

At first glance, the existence of this simulator appears to be at odds with the soundness
of our transform. For example, if the prover relies on the knowledge of a witness w that
x ∈ L for L ∈ NP, then the simulator can convince the verifier that x ∈ L without access
to w. This matter is resolved by observing that the quantum memory of the simulator is
not bounded, unlike the (malicious) prover. This fact is crucial, as we show in Section C
that there are no 2–message quantum proof systems for hard languages that are both
sound and zero-knowledge when the quantum memory of the prover is not bounded.

Furthermore, the existence of a fully quantum simulator for a BQS adversary appears
vacuous, since the simulator might be more powerful than the adversary it simulates.
However, we need to emphasize that the party we are simulating – the verifier – is
not assumed to be quantum memory bounded, only the prover is. Thus, we show that
zero-knowledge holds against fully quantum verifiers using a fully quantum simulator.

Theorem 7. If Π = (PΠ,VΠ) is a special qHVZK Σ–protocol for a language L, then RR[Π]
is qZK. The type of zero-knowledge (computational or statistical) is preserved by RR.

Proof. We construct a simulator for the prover instead of the verifier; i.e. this simulator
mimics the actions of the prover from the verifier’s point of view and does not have access
to the real prover. Turning this simulator into one for the verifier is then just a question
of making the verifier interact with this simulated prover.

First observe that from the verifier’s point of view, the action of the quantum memory-
less honest prover P is perfectly indistinguishable from the action of a “semi-honest” prover
P∗ that does have a quantum memory and that delays its commitment to ai using Pi until
after every challenge ci was measured.
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Now since the prover messages ai are committed to after every challenge is learned,
we can employ the simulator SimΠ for the Σ-protocol to obtain a simulated transcript
(a1, . . . , ak+1) indistinguishable from a real transcript. In more details, we construct the
simulator Sim for RR[Π] as follows:

1. Receive the registers P1, C1, ..., Pk, Ck from Ṽ, delaying any measurement

2. Measure registers C1, ..., Ck in the computational basis and get outcomes c1, ..., ck

3. Compute SimΠ(c1, ..., ck) = (a1, ..., ak+1), where SimΠ is the special qHVZK simulator

4. Perform the commitment phase of BQS-BC on register Pi by committing to ai and
get the opening string zi

5. Return (a1, ..., ak+1, z1, ..., zk) to Ṽ

We now show that this simulator indistinguishable from P. For that, let us assume
towards a contradiction that there exists a distinguisher D and a state ρQE , where
Q = P1C1 . . . CkPk is sent to the prover/simulator and E is kept by the distinguisher, such
that

∥D(P⊗ IE(ρ))−D(Sim⊗ IE(ρ))∥ ≥ λ−d (16)
for d ∈ O(1). Then, we can construct a distinguisher DC

Π that can break the special qHVZK
property of Π with probability at least λ−d, where C is an oracle for either PΠ ⇋ VΠ(x, ·)
or SimΠ(x, ·). It works as follows:

1. Compute the state ρQE which allows to distinguish Sim and P

2. Measure registers C1, . . . , Ck of ρQ and get outcome (c1, ..., ck)

3. Query C(c1, ..., ck) and get the output (a1, ..., ak+1)

4. Commit to ai using register Pi and get opening string zi

5. Output D(a1, ..., ak+1, z1, ..., zk)

Notice that when C = SimΠ(x, ·), then the output of DC
Π is D(Sim⊗ IE(ρ)). Moreover,

when C = PΠ ⇋ VΠ(x, ·), we have that DC
Π is D(P∗ ⊗ IE(ρ)) where P∗ is the semi-honest

prover introduced earlier. In this case, we have that

∥DPΠ⇋VΠ(x,·)
Π (1λ)−DSimΠ(x,·)

Π (1λ)∥ = ∥D(P∗ ⊗ IE(ρ))−D(Sim⊗ IE(ρ))∥ ≥ λ−d,

which contradicts the qHVZK of Π by recalling that the actions of P∗ and P are per-
fectly indistinguishable. Therefore we conclude that the CPTP maps P and Sim are
(computationally or statistically) indistinguishable if Π is (computationally or statistically)
qHVZK.

4.1.1 Quantum statistical zero-knowledge proofs.

In this section, we show that using the statistically binding and hiding BQS-BC scheme of
Section 2.1.1, we can achieve 2–message quantum statistical zero-knowledge proofs in the
BQSM.

In the previous subsection, we showed that special qHVZK Σ protocols can be converted
into 2-messages QZK protocols in the BQSM. However, (honest verifier) ZK proofs for NP-
complete languages rely on computational assumptions, usually to implement commitment
schemes. Since we are in BQSM, we can instead use quantum commitment schemes with
perfect hiding and statistical binding and achieve statistical ZK proofs in the BQSM.

For simplicity, we will prove the result for a single-shot run of 3-coloring, but the result
follows analogously with the parallel repetition of the protocol.
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2–message perfect zero-knowledge proof

Input: Graph G = (V,E) with |V | = n.
Verifier message:

1. For i = 1, ..., n, V runs the commit phase of the dfss-bc string commit-
ment to get a quantum register Pi.

2. V picks c ∈R E to initialize a register C in state |c⟩
3. V sends the registers P1 . . . PnC to P.

Prover message:

3. P first computes a random 3-coloring of the graph G. Let w1,...,wn be
the color of each vertex of the graph. P commits to each of the colors
independently: for i ∈ [n],

4. On reception of register Pi, P commits to wi as in the commit phase of
dfss-bc.

5. P measures register C in the computational basis to obtain {i, j} ∈ E.
6. P runs the reveal phase of dfss-bc for wi and wj .

Verification:

6. V runs the verification of dfss-bc for wj and wi and checks that wj ̸= wi.
7. If verification or the check failed, it aborts. Otherwise, it accepts.

Theorem 8. The protocol described above is a two-message perfect zero-knowledge proof
for 3-coloring which is statistically sound against q–bounded provers with n/4− q ∈ Ω(n).

Proof. Completeness follows straightforwardly if the P follows the honest strategy.
To prove soundness, we use the ϵ-binding property of the commitment scheme. For that,

let w′
1, ..., w

′
n be values of the the random variables b′

1, ..., b
′
n that come from Definition 1

corresponding to the commitment of the color of each node. We notice that since the
graph is not 3-colorable, there exists at least one edge {i, j} ∈ E such that w′

i = w′
j . We

also have that the V’s challenge is {i, j} with probability 1
m , and let us consider this case.

If P opens the commitments to the values w′
i and w′

j , V rejects with probability 1. If P
opens the commitments to values w̃i ̸= w′

i or w̃j ̸= w′
j , V rejects except with probability ϵ.

In this case, if the graph is not 3-colorable, V rejects with probability at least 1−ϵ
m .

The simulator and the zero-knowledge proofs follow closely the proof of Theorem 7. The
fact that the flavour of zero-knowledge is perfect comes from the fact that the commitment
scheme has perfect hiding since no information of non-open values is sent to V.

4.2 Applications: Two-Message Interactive Proof for PSPACE
In this section, we describe applications of our round compression transform RR presented
in 4 when applied to a specific interactive proof system.
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4.2.1 Sum-Check Protocol.

The sum-check protocol is the key ingredient of several fundamental results in complexity
theory and cryptography. In this protocol, the prover aims to prove that∑

x1,...,xn∈{0,1}

f(x1, . . . , xn) = B,

for some given value B and function f an n-variate polynomial of degree at most d. The
idea of the sum-check protocol is to consider a field H, where F2 ⊆ H and |H| ≫ d,

Sum-check Protocol

Prover 1st message: P computes g1(x1) =
∑

x2,...,xn∈{0,1} f(x1, . . . , xn)
and sends g1 to V, who checks that g1 is an univariate polynomial of degree at
most d and that g1(0) + g1(1) = B. If any of the checks failed, reject.

Verifier 1st message: V sends a uniformly random r1 ∈ H to P.

Prover ith message: P computes

gi(xi) =
∑

xi+1,...,xn∈{0,1}

f(r1, . . . , ri−1, xi, xi+1, . . . , xn)

and sends gi to V, who checks that gi is an univariate polynomial of degree at
most d and that gi(0) + gi(1) = gi−1(ri−1). If any of the checks failed, reject.

Verifier ith message: V sends a uniformly random ri ∈ H to P.

Prover last message: P computes gn(xn) = f(r1, . . . , rn−1, xn) and sends
gn to V, who checks that gn is an univariate polynomial of degree at most d and
that gn(0)+gn(1) = gn−1(rn−1). Moreover, V also checks that gn(r1, . . . , rn) =
f(r1, . . . , rn), for a random rn ∈ H. If either of these tests do no pass, reject.
If all tests passed, V accepts.

The main result regarding the sum-check protocol is the following [LFKN92; Sha92].

Theorem 9. The sum-check protocol presented above has the following properties:

• Completeness: If
∑

x1,...,xn∈{0,1} f(x1, . . . , xn) = B, there is a strategy for P such
that V accepts with probability 1.

• Soundness: If
∑

x1,...,xn∈{0,1} f(x1, . . . , xn) ̸= B, for any strategy for P, V accepts
with probability at most nd

|H| .

• Complexity: The honest prover runs in time poly(|H|n), the verifier runs in time
poly(|H|, n) and space O(n log |H|). The communication complexity is poly(|F|, n)
and the number of bits sent by the verifier is O(m log |H|). Moreover, the protocol is
public-coin.
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We notice that the sum-check protocol is a multi-round interactive proof where V
only sends random coins (interpreted as field elements) as messages. In this case, we can
apply the RR transformation to it to achieve a one-round quantum protocol with similar
guarantees of the classical sum-check protocol in the quantum bounded storage model.
Corollary 3 (2–Message Quantum Sum-Check Protocol). For any q ∈ N, there is a
2–message quantum proof for the sum-check problem in the bounded storage model with
negligible soundness error against q–bounded provers where the communication grows as a
polynomial in q.
Proof. Apply the RR compiler to the sum-check protocol. There are n + 1 messages
exchanged each of whom is poly(n) in length. Committing to an ℓ–bit string using dfss-bc
requires ℓ× λ qubits for security against q–bounded committers with λ/4− q ∈ Ω(λ).

The sum-check protocol is a crucial tool in results in complexity theory and cryptography,
especially regarding delegation of (classical) computation. We can easily replace the classical
sum-check protocol by its quantum version to to achieve round-efficient protocols, that we
describe below.
Corollary 4. Every language in PSPACE has a 2–message quantum protocol in the bounded
storage model.

Notice that if we do not consider provers with bounded memory, we have that PSPACE =
QIP(3), and if we define QIP(2)BQSM as the class of problems with two–message quantum
interactive proof systems where the prover has bounded quantum memory (but unbounded
computational power), we have that PSPACE = QIP(2)BQSM.

More recently, the sum-check protocol has been also used to achieve protocols for
doubly-efficient delegation of computation. In this setting, the goal is to achieve a protocol
where V interacts with a P in order to delegate the computation of an arithmetic circuit
with the following properties:

• The honest prover’s computation should not be much more costly than running the
original circuit.

• The running time of the verifier should be linear in the input size of the circuit.
Such a protocol was originally proposed by Goldwasser, Kalai and Rothblum [GKR15]

and later improved by Reingold, Rothblum and Rothblum [RRR21]
Lemma 4 (Corollary 1.4 of [GKR15]). Let L be a language in P, that is, one that can
be computed by a deterministic Turing machine in time poly(n). There is an interactive
proof for L where:

• the honest prover runs in time poly(n) and the verifier in time poly(n) and space
O(log(n));

• the protocol has perfect completeness and soundness 1/2; and

• the protocol is public coin, with communication complexity poly(n).
Again here, the interaction between the verifier and the prover consists of multiple

instances of the classical sum-check protocol. Therefore, using Corollary 3, we achieve the
following.
Corollary 5. Let L be a language in P. L has a quantum interactive proof in the bounded
storage model where:

• the honest prover runs in time poly(n) and the verifier in time poly(n) and space
O(log(n));

• the protocol has perfect completeness and soundness 1/2; and

• there is one round of communication.
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n log c2. The
uncertainty relation is as follows.

Theorem 10 (Theorem 9 of [BFGS13]). Let ρ be an arbitrary N–qubit state, let J be
a random variable over [n] with distribution PJ , and let X be the outcome of measuring
ρ in basis BJ . Then for any 0 < ϵ < δ/4, there exists a random variable J ′ with joint
distribution PJJ ′X such that
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H∞(X|J = j, J ′ = j′,Ψ) ≥
(
δ

2 − 2ϵ
)
N − 1 (17)

for all j, j′ ∈ [n] with j ̸= j and PJJ ′|Ψ(j, j′) > 0.

As emphasized in [BFGS13], the distribution of J does not need to be set for J ′ to be
well defined. In particular, the distribution of J ′ is fully determined by ρ.

We now present how to efficiently construct a family of bases with large overlap δ. Let
G be the generator matrix of a linear [N,n, d]–error correcting code. Then for the family
of bases defined by

Bj := {(Hc1 ⊗ · · · ⊗HcN )|x⟩ | x ∈ {0, 1}N , c = G · j} (18)

for j ∈ {0, 1}n satisfies δ = d
N .

A.2 The Commitment Scheme
Our new bit commitment scheme is presented below. The intuition behind the scheme is
that the basis used by the committer to commit to a string a should be far from the basis
of a′ ≠ a. Therefore, we can use code words of an error correcting code as the bases to
ensure this distance holds. The original dfss-bc scheme (presented in Section 2.1.1) can
be seen as employing the repetition code (where one commits to a bit b by measuring in
basis bb . . . b).

Protocol abo-bc

Setup: The generator matrix G of a [N,n, d] linear error correcting code.
Commit phase:

1. V sends |x⟩θ for x ∈ {0, 1}N and θ ∈ {+,×}N to the committer.
2. C commits to a string a ∈ {0, 1}n by measuring each qubit i in basis

(G · a)i, obtaining a measurement outcome z ∈ {0, 1}N .

Reveal phase:

3. To open the commitment, C sends a and z to V who checks that zi = xi

whenever θi = (G · a)i.

Intuitively, we would like the basis J ′ from Theorem 10 to define the value to which
the sender is committed in the sense of Definition 1. The proof would have the verifier
purify its actions and perform the measurement in basis a when the sender opens the
commitment. Theorem 10 would ensure the existence of an a′ such that the sender is
committed to a′. There is a subtle issue that prevents us from applying this argument:
the random variable J ′ whose existence is stated by Theorem 10 exists in the probability
space of X, the measurement outcome of the receiver in the opening phase. Therefore,
we cannot assert that J ′ exists and that the sender is committed to it in the sense of
Definition 1. Nevertheless, the techniques from [BFGS13] allows us to prove a weaker
statement, namely that the commitment scheme is sum-binding.

Theorem 11. The string commitment protocol abo-bc is sum–biding:∑
a

pa ≤ 1 + negl(n) (19)
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Proof. We consider an equivalent protocol (from the committer’s point of view) where the
verifier purifies its actions:

1. Commit phase: V prepares N EPR pairs
⊗N

i=1
1√
2 (|00⟩PiVi

+ |11⟩PiVi
) and sends

registers P1 . . . PN to C.

2. Reveal phase: After receiving (a, z) ∈ {0, 1}2N from C, V measures its register V
in basis a and checks that the result x matches z for each position i in a random
sample I ⊆ [N ].

Let EP →EW be the CPTP map describing the partial measurement of C̃ after the
commit phase, where dimE ≤ 2q. The joint state of V and C̃ is the density operator

ρEW V :=
∑

w

PW (w)|w⟩⟨w| ⊗ ρw
EV = (EP ⊗ IV )(|EPR⟩⊗N

P V ) . (20)

In general, C̃ may perform a measurement on its quantum register E to decide which
string a to announce in the reveal phase. The most general strategy for C̃ is a POVM
M = {Ma,z

EW }(a,z)∈{0,1}2N where tr(Ma,z · ρEW ) gives the probability that C̃ sends (a, z)
in the reveal phase. The probability that C̃ successfully decommits to a is given by

Pr[A = a ∧ V accepts] =
∑

z

tr (Ma,z
EW ⊗ Va,z

V ρEW V ) (21)

where Va,z is the projective measurement operator corresponding to V’s check in the reveal
phase.

Consider a fixed W = w and the reduced state ρw
EV . For a ∈ {0, 1}n, let Sa :=

{x | ⟨x|aρw
V |x⟩a ≤ 2−ϵN} be the set of outcomes x that have small probability of being

observed and let La = {0, 1}N \Sa its complement. Let Qa(x) = ⟨x|aρw
V |x⟩a and Qa(X ) =∑

x∈X Qa(x) for X ⊆ {0, 1}N . By Theorem 7 of [BFGS13],∑
a∈{0,1}n

Qa(La) ≤ 1 + c · 2n ·max
a̸=a′

√
|La||La′ | (22)

where c = maxa ̸=a′,x,y ⟨x|a|y⟩a′ ≤ 2− d
2 . Since Qa(x) forms a probability distribution over

x and Qa(x) > 2−ϵN for all x ∈ La, we have that |La| < 2ϵN . We thus have that (22) is
bounded above by 1 + 2n−d/2+(1−ϵ)N . Let η = 2n−d/2+ϵN .

Define La and Sa the projectors onto La and Sa, respectively. Observe that La +Sa = I.
The probability of successful opening to any a is at most∑

z

tr (Ma,z
E ⊗ Va,z

V ρw
EV )

=
∑
a,z

tr (Ma,z
E ⊗ Va,z

V (La + Sa)ρw
EV )

≤
∑

a

tr (La · ρw
V ) +

∑
a,z

tr (Ma,z
E ⊗ Va,z

V · Sa · ρw
EV )

The first operand in the sum above corresponds to
∑

a Q
a(La) which is bounded above by

1 + η. The second operand can be upper-bounded by

2q max
a,z

tr (Va,z
V · Sa · ρw

V ) ≲ 2q− ϵ
2 N

since the trace corresponds to the probability of guessing a random subset of a low-
probability (2−ϵN ) outcome.
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The term η can be made negl(n) with an appropriate choice of parameters7, if we let
pa denote the probability that C̃ successfully opens string a, we have that∑

a

pa ≤ 1 + negl(n) (23)

Observe that to commit to a string of length n, protocol dfss-bc above requires sending
n2 qubits from the verifier to the committer.

B Witness hiding of NIP[Π]
Definition 8 (Witness Hiding). Let R be an NP relation, let G be a hard instance
generator for R and let Σ be a proof system for R. We say that Σ is witness hiding (WH)
if there exists a PPT witness extractor M such that for any non-uniform PPT V ′, for any
instance x,

Pr[(x,w′) ∈ R | w′ = ⟨P (x,w), V ′(x)⟩] ≤ Pr[(x,w′) ∈ R | w′ = MV ′,G(x)] + negl(n)

where the probability is (in part) over x = G(1n).

We can show that if a Σ–protocol Π is witness hiding, so is NIP[Π]. We notice that this
could also be extended to a Ξ–protocol with an inverse polynomial multiplicative factor
on the success of the extractor M .

Theorem 12. If Π is a witness hiding Σ–protocol with O(lg λ)–bit challenges, then NIP[Π]
is witness hiding8.

Proof. We want to reduce the witness hiding property of NIP[Π] to that of Π. That is, given
a malicious BQS verifier V against NIP[Π] that produces a witness with some probability,
we construct a verifier VΠ against Π that produces a witness with essentially the same
probability. For simplicity, we assume challenges are single bits c ∈ {0, 1}. The proof for
logarithmic length challenges is almost identical.

Verifier VΠ is constructed as follows: in its interaction with the prover PΠ, it selects
its challenge c uniformly at random. After the interaction with PΠ, VΠ is left with a
transcript (a, c, r). Now to produce a witness, VΠ acts as the prover in an interaction with
V . It prepares and sends the quantum state for the oblivious transfers as P would. For its
classical message, VΠ uses a and rc from the transcript received from P for and sets r1−c

to a uniformly random value. By Theorem 2, there exists a random variable C such that
the value of r1−C is statistically hidden from V . With probability Pr[C = c], the view of
V in its interaction with VΠ will be indistinguishable to its view in an interaction with P .
If V produces a valid witness with some probability p, the probability that VΠ outputs w
is at least Pr[C = c] · p.

At this point, an issue occurs if C never takes value c, i.e. Pr[C = c] = 0 for the
particular choice of c by VΠ. This can easily be fixed by having the prover in protocol
NIP[Π] randomize the transcript order. With equal probability, the prover uses either
(r0, r1) or (r1, r0) as inputs for the OT. The transcript that V receives is now uniformly
random, such that Pr[C = c] = 1

2
In the context of witness hiding, there is no auxiliary input to the verifier, so VΠ can run

V again with the same transcript multiple times such that with overwhelming probability,
7If we pick 0 < ϵ ≪ 1

2 and a code with N = c · n for big enough c and optimal distance O(N/2), then
η = negl(n). For concreteness, pick ϵ = 1

16 and N = 8n, we have that η ≤ 2− n
2 .

8With a slight modification explained in the proof.
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at least one of the runs will provide V with the correct view (i.e. it will obtain the transcript
(a, c, r) that VΠ received from PΠ), in which case it will produce a witness with probability
p. The strategy of VΠ is to simulate V k times and if any of the simulations V produces a
witness w, VΠ outputs w. Using this strategy, we have

Pr[(x,w′) ∈ R | w′ ← ⟨PΠ(x,w), VΠ(x)⟩]
= Pr[(x,w′) ∈ R | w′ ← ⟨VΠ(x), V (x)⟩]
≥ Pr[(x,w′) ∈ R | w′ ← ⟨VΠ(x), V (x)⟩ | ∃i : Ci = c] · Pr[∃i : Ci = c]
≥ Pr[(x,w′) ∈ R | w′ ← ⟨P (x,w), V (x)⟩]− 2−k − 2− n

4 +ℓ+q

where the last inequality follows from the fact that conditioning on Ci = c, the view of V
in the i simulated execution has trace distance at most 2− n

4 +ℓ+q from the view in the real
execution by Theorem 2.

C Triviality of Quantum 2–Message Zero-Knowledge
Proofs

In this section, we present a quantum version of the impossibility of zero-knowledge
2–message quantum proof systems for hard languages. This generalizes the impossibility
of [GO01] to quantum protocols.

Theorem 13. Let Π = ⟨P,V⟩ be a 2–message quantum proof system for a language L. If Π
is computationally ϵ–sound for ϵ < 1

3 and computationally zero-knowledge, then L ∈ BQP.

We assume, without loss of generality, that the the verifier is purified, i.e., we assume
that the general structure of the two-message protocol is as follows:

1. V prepares a state |ψ⟩P V and sends register P to P.

2. P applies some transform on register P and returns a register P ′ to V.

3. V applies a binary-outcome measurement {V x
0 , V

x
1 } on registers P ′V and accepts iff

outcome is 0.

Let us assume that this protocol is auxiliary-input quantum ZK, i.e., there exits a
polynomial time quantum simulator Sim such that for any Ṽ the output of Ṽ on input x
and ρ in a real interaction is indistinguishable from SimṼ(x, ρ).

Consider the cheating verifier V ∗ that

1. On common input x and auxiliary input register E (of same dimension as P ), sends
register E as the first message.

2. On reception of the prover message in quantum register P ′, output this register P ′.

This verifier runs in polynomial time, and so does its simulator.
Then consider the following QPT machine ML for deciding if x ∈ L. Lemmas 5 and 6

below show that this is indeed a QPT algorithm for deciding L which errs with probability
at most 1

3 .

BQP algorithm ML

1. Run the first message function of the honest verifier V on input x to get a
register P and an internal register V .
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2. Run the simulator for V∗ on input x and register P . Let P ′ be the output
register.

3. Run the verification circuit of V on registers P ′V . Output “yes” if V
accepts and “no” otherwise.

Lemma 5 (BQP Completeness). If Π is an 2
3–correct quantum auxiliary-input zero-

knowledge proof of language membership for L, then for all x ∈ L, ML accepts on input x
with probability at least 2

3 .

Proof. Since Π is zero-knowledge, for any cheating verifier V∗, there exists a BQP machine
SimV∗ such that the quantum map induced by the interaction of P and V∗ on the auxiliary
input of V∗ is indistinguishable from the quantum map SimV∗(x, ·).

Let ψP V = V(x) and let D(ρ) := tr(V x
0 ρ). Let Ψx := P(x,w) ⇋ V∗(x, ·) and Φx :=

SimV∗(x, ·) be the real and simulated maps acting on the auxiliary information of the
verifier. Observe that the quantity D(Ψx ⊗ IV (ψP V )) corresponds to the probability that
the verifier accepts in the real protocol and D(Φx ⊗ IV (ψP V )) is the probability that ML

accepts on input x ∈ L. By the assumption that the scheme is zero-knowledge,

∥D(Ψx
P ⊗ IV (ψP V ))− D(Φx

P ⊗ IV (ψP V ))∥ ≤ negl(n) . (24)

This means that ML accepts with essentially the same probability with which V accepts
in the interactive proof, which is at least 2

3 .

Lemma 6 (BQP Soundness). If x /∈ L, then ML rejects input x with probability ϵ > 2
3 .

Proof. Consider the cheating prover P∗ that acts as follows: on common input x and
register P received from V, compute P ′ = SimV∗(x, P ) and reply P ′ to V. Then the
probability that V accepts in this interaction with a cheating prover is equal to the
probability that ML accepts, which by soundness of the interactive proof is at most ϵ.
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