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Abstract. When designing filter functions in Linear Feedback Shift Registers
(LFSR) based stream ciphers, algebraic criteria of Boolean functions such as the
Algebraic Immunity (AI) become key characteristics because they guarantee the
security of ciphers against the powerful algebraic attacks. In this article, we abstract
the algebraic attacks proposed by Courtois and Meier on filtered LFSR twenty years
ago, considering how the standard algebraic attack can be generalized beyond filtered
LFSR to stream ciphers that employ a Boolean filter function to an updated state.
Depending on the updating process, we use different sets of annihilators than those
used in the standard algebraic attack; it leads to a generalization of the concept of
algebraic immunity, and in some particular cases, potentially more efficient attacks.
Motivated by the filter permutator paradigm, we focus on the case where the update
function is a bit-permutation, since it maintains the degree of the monomials. For
example the degree of the monomials of degree up to d and from n − d to n remains
invariant, which leads us to consider annihilators having only monomials of these
degrees. If this number of monomials is sufficiently low, linearization is feasible,
allowing the linear system to be solved and revealing the key, as in the standard
algebraic attack. This particular characteristic is restricted by the standard algebraic
attacks and to analyze it we introduce a new notion called Extremal Algebraic
Immunity (EAI).
We perform a theoretic study of the EAI criterion and explore its relation to other
algebraic criteria. We prove the upper bound of the EAI of an n-variable Boolean
function and further show that the EAI can be lower bounded by the AI restricted
to a subset, as defined by Carlet, Méaux and Rotella at FSE 2017. We also exhibit
functions with EAI guaranteed to be lower than the AI, in particular we highlight a
pathological case of functions with optimal algebraic immunity and EAI only n/4. As
applications, we determine the EAI of filter functions of some existing stream ciphers
and discuss how extremal algebraic attacks using EAI could apply to variations of
known ciphers.
The extremal algebraic attack does not give a better complexity than Courtois and
Meier’s result on the existing stream ciphers. However, we see this work as a study
to avoid weaknesses in the construction of future stream ciphers.
Keywords: Algebraic immunity · Annihilators · Boolean functions · Stream ciphers

1 Introduction
The security of stream ciphers often relies on the complexity of recovering the secret key
from keystream bits produced by applying a nonlinear Boolean function (called a filter) to
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evolving internal states.
In this work, we study a specific class of algebraic attacks that exploit the structure

of monomials that appear in the algebraic normal form of the annihilators of the filter’s
function - namely, those of extremal Hamming weight. Our motivation stems from a
particular stream cipher design: the Filter Permutator (FP) paradigm, introduced with the
FLIP cipher [MJSC16] for use in Hybrid Homomorphic Encryption (HHE) [NLV11]. Our
proposed Extremal Algebraic Attack (EAA) is a restriction of the classical Courtois–Meier
algebraic attack [CM03], tailored to settings where the updating process preserves sets of
monomials with fixed Hamming weight. This condition is notably met in designs such as
FLIP and (to a lesser extent) FiLIP [MCJS19b]. While the attack does not break any known
cipher, it provides insight into how algebraic structure interacts with monomial stability,
raising new design considerations for symmetric primitives in constrained environments
like homomorphic encryption.

1.1 Filter Permutator Paradigm and Monomial Stability
The Filter Permutator paradigm, introduced in [MJSC16] (Figure 1), defines a family of
stream ciphers designed to be efficiently evaluable under homomorphic encryption. Each
keystream bit is obtained by applying a Boolean function f to a permuted version of the
key. The permutation is publicly derived from a pseudorandom generator and varies at
each round. This structure ensures that the input to the filter function always contains
the same key bits, just reordered. Crucially, this means that the set of monomials with
a given Hamming weight remains invariant under the updating process. A generaliza-
tion of the paradigm, called Improved Filter Permutator (IFP) and associated ciphers
FiLIP [MCJS19b], restricts the filter’s input to a subpart of the key and adds a random
whitening vector. Although this reduces the algebraic predictability of the filter input,
some structural similarities remain.

These properties led us to consider a variation of the classical algebraic attack of
Courtois and Meier [CM03] where, instead of targeting low-degree monomials, we focus on
extremal monomials — those of very low or very high Hamming weight. This variant, which
we call the Extremal Algebraic Attack (EAA), applies to FP-type designs due to their
monomial stability under permutations. We consider the application of the attack on FLIP,
FiLIP, variations of these schemes and of Goldreich’s local pseudorandom generator [Gol00].

Nevertheless, our analysis shows that EAA does not yield more effective attacks than
existing ones against published FLIP or FiLIP instances. Either the Algebraic Immunity
(AI) of the filter function already leads to a better algebraic attack, or the whitening
destroys the required monomial structure. However, the attack exposes a class of functions
for which Extremal Algebraic Immunity (EAI) is a more meaningful criterion than classical
AI.

We summarize the scope of EAA and its limitations in Section 6.3, and show that
while direct attacks are limited, EAA highlights a structural vulnerability that designers
should be aware of.

1.2 Courtois-Meier algebraic attack
Twenty years ago, at Eurocrypt 2003 Courtois and Meier [CM03] presented an algebraic
attack on filtered Linear Feedback Shift Registers (LFSR), that broke two stream ciphers
Toyocrypt and LILI-128 [SDGM00]. Throughout this paper, we call the attack (stan-
dard/classical) algebraic attack (AA). The attack impulsed a change in the design of
stream ciphers, showing that using a high-degree filter function is not sufficient to prevent
attacks. More precisely, the attack showed that even using a Boolean function of maximal
degree, say n, as a filter, an adversary can always create an algebraic system of equations of
degree at most ⌈n/2⌉ in the key variables (in a known plaintext/ciphertext attack model).
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Figure 1: Filter permutator and improved filter permutator paradigms.

We recall the principle of this attack to show its generalization. First we give some
necessary notations for filtered LFSRs. An LFSR is a finite state machine updated by a
linear function of its previous state. It consists of a register of length N and a polynomial
that defines the linear update function. The LFSR is applied to a binary key (alone or
concatenated with an Initial Value) that we denote by x, hence the state of the LFSR at
time i can be written as L(i)(x) where L is the linear transformation induced by the LFSR
updating process. At time i, the filter function is applied to the LFSR state to give the
i-th bit of the keystream: si = f(L(i)(x)).

If we denote by d the degree of f , since L is linear, each si can be written as an equation
of degree at most d in the key variables (composing x). The first attack considering the
algebraic properties of f consists in trying to solve this algebraic system of degree d. There
are many advanced approaches to solve algebraic systems over F2, such as Gröbner bases
algorithms e.g. [Fau99, Fau02] or XL-algorithms [Cou02], but for simplicity of exposition
we will recall the one based on linearization. The linearization approach treats each
monomial of degree higher than one as a separate variable, and then solves the linear
system newly obtained. Since there are at most D =

∑d
j=0

(
n
j

)
= Dn

d monomials of degree
up to d in n variables, the complexity of this attack can be estimated by O(Dω) where we
denote by ω the exponent for linear algebra.

The algebraic attack proposed by Courtois and Meier [CM03] improves this complexity
by not considering (the degree of) f , but the one of its products by low degree functions.
This corresponds to use Boolean functions g and h of low degree such that f · g = h. From
the keystream, the adversary can derive equations of the form si · g(L(i)(x)) = h(L(i)(x)),
which are of degree at most e = max(deg(g), deg(h)). In [CM03], the authors prove that
for any function f there exist functions g and h such that e ≤ ⌈n/2⌉, and e ≤ d. This result
directly leads to a linearization attack with complexity O(Eω) where E =

∑e
j=0

(
n
j

)
= Dn

e ,
giving an attack that would outperform an attack which would just consider the degree in
most of the cases.

It has been shown later that finding low degree functions g and h is equivalent to
finding low degree annihilators1 of f or f + 1. The minimal value e (relatively to the
function f) is in fact the minimal degree of a non null function g annihilating f or f + 1.
Thereafter, e has been known as the notion of algebraic immunity [MPC04] of a Boolean
function, and this parameter is the one used to bound the complexity of the algebraic
attack.

1We say that g is an annihilator of f if ∀x ∈ Fn
2 , f(x) · g(x) = 0.
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1.3 Our Contributions
1.3.1 Generalizing the Courtois-Meier algebraic attack

We show how to generalize the attack in [CM03] to a larger family of stream ciphers.
Instead of considering a filtered LFSR, we generalize to any binary stream cipher design
defined by an updating process and a (Boolean) filter function f . We still denote x the
initial state (key of the cipher), and denote by U (i)(x) the state at time i, obtained by
applying the updating process U i times. The keystream bit si is obtained by applying f
to U (i)(x). The updating process is the first part to define the attack generalization. It is
a linear update L for the case of filtered LFSR, but can be quadratic for stream ciphers
using Nonlinear Feedback Shift Registers (NFSR) or more complex.

The second part consists in determining subsets of monomials that appear in the
Algebraic Normal Form (ANF, the representation as a multivariate polynomial over F2)
of the annihilators of f or f + 1. For u ∈ Fn

2 , we denote xu the monomial defined by
xu =

∏
j∈[n] x

ui
j =

∏
j∈supp(u) xj , here [n] denotes the set of integers from 1 to n both

included. Thereafter the sets of monomials we consider are denoted by subsets S ⊆ Fn
2 ,

and we focus on sets containing all the monomials appearing in the ANF of an annihilator.
Following these notations, let g be an annihilator of f , m ∈ N be the keystream size,

for i ∈ [m] when si = 1 we define Si as the set of monomials in the ANF of g(U (i)(x)).
We define SI as the union of the Si for i ∈ I. When |I| ≥ |SI |, there are fewer monomials
than equations given by the keystream, then we can apply the aforementioned linearization
technique and solve the linear system to obtain the value of each monomial and then the
key value. As for the algebraic attack described above, if the system is not too redundant,
it gives an attack with time complexity O(|SI |ω).

In order to further improve the efficiency of algebraic attacks, several approaches
are proposed, leading to variants of algebraic attacks. One approach is to consider an
annihilator h of f+1, to use equations when si = 0. Another approach is to take advantage
of multiple linearly independent annihilators instead of one to produce more equations.
For all these variants, the crucial point is the size of the union of sets where the monomials
in the ANF of the updated annihilators belong to. The validity of the attack lies in the
fact that the support of the ANF of the annihilators should remain in a subset of small
cardinality.

The traditional attack on filtered LFSR uses that U(x) is linear, therefore g(U (i)(x))
has the same degree as g(x) and therefore Si is included in the set of monomials of degree
at most deg(g) for all i ∈ [m] such that si = 1. Accordingly, the subset targeted by the
algebraic attack is {v ∈ Fn

2 | 0 ≤ wH(v) ≤ d}, where wH(v) denotes the Hamming weight
of v. Thereafter, around Dn

deg(g) such keystream bits are sufficient to determine the key.
Therefore, the standard algebraic attack is a particular case of the general algebraic attack
we describe. In the following we introduce another particular case.

1.3.2 A study of one restriction in Courtois-Meier algebraic attack

We focus on the case where the updating process is given by a permutation of the set [n],
that is U (i) ∈ Sn for all i. With such updating process, the sets Ek,n = {v ∈ Fn

2 | wH(v) =
k} remain invariant for all k ∈ [0, n] and we will illustrate the attack using the sets
S =

⋃
k∈[0,d]∪k∈[n−d,n] Ek,n, since these slices are the ones with the smallest number of

elements. In this case |S| = 2Dn
d that enables us to compare easily with the complexity of

the algebraic attack. We call this particular attack “Extremal Algebraic Attack” (EAA)
and related criterion on Boolean functions the “Extremal Algebraic Immunity” (EAI) since
it relies on the subsets of elements with extreme Hamming weight.

We investigate the algebraic attack given by the variant of Courtois and Meier’s attack
to other sets of monomials than the one of low degree. We focus on the notion of extremal
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algebraic immunity, given by the sets of monomials of low (between 0 and d) and high
(between n− d and n) degree.

More precisely, in Section 3 we define properly the notion of extremal algebraic immunity
and the set of annihilators to take in consideration for the data complexity of the attack.
We describe an algorithm to compute the EAI of a Boolean function, and in the main
theorem we prove an upper bound on the EAI. We also compare this upper bound to the
one of the algebraic immunity (that is ⌈n/2⌉) which shows that for most Boolean functions
the complexity of the EAA is lower than the one of the AA.

Then, in Section 4 and Section 5 we study cases where we can show upper bounds
(respectively lower bounds) on the EAI of particular functions. In the first section we
exhibit functions with EAI guaranteed to be lower than the AI. We highlight a pathological
case of functions with optimal algebraic immunity and EAI only n/4. In Section 5 we
show that the EAI can be lower bounded by the algebraic immunity restricted to a subset,
as defined in [CMR17]. We generalize the result of [CMR17] on the algebraic immunity
on a slice, it allows us to derive a lower bound on the EAI of functions obtained by direct
sums. Additionally we exhibit a construction where the EAI and the AI of a function are
the same.

Finally, in Section 6 we discuss the potential applications of the EAA. We study the
value of the EAI for some functions in the literature, together with the dimension of
annihilators that can be used. We also review symmetric primitives that triggered this
attack generalization, and explain why it cannot apply directly. We conclude the paper in
Section 7.

1.4 Related works
Other attacks relying on algebraic properties have been exhibited on filtered LFSR after
Courtois and Meier’s attack, such as the Fast Algebraic Attack (FAA) [Cou03] and
probabilistic algebraic attack [CM03, BP05b]. The FAA considers functions g and h such
that fg = h but with h of higher degree than in the AA, using other techniques to cancel
the high degree monomials by summing particular keystream bits. The attack relies on
the relations given by the linear updating process of the LFSR. We did not find a direct
relationship between the associated criterion (fast algebraic immunity) and EAI, nor works
generalizing the FAA to other updating processes.

In probabilistic algebraic attacks, the attack considers a function not annihilating f
on all inputs, but on most of it. In this case, there are more functions satisfying these
constraints, but the algebraic system to solve is then a noisy system, where the equations
are true with probability 1 − β where β denotes the fraction of inputs where the product
f · g is nonzero. The same relaxation of the annihilators is possible for EAA, directly
giving probabilistic extremal algebraic attacks. We did not explore further this direction
since we are not aware of concrete cryptanalyses using these approaches.

2 Preliminaries
Notations. We use [n] to denote the set of integers from 1 to n both included, and
+ instead of ⊕ for the addition over F2. For an element v ∈ Fn

2 we denote by wH(v) its
Hamming weight wH(v) = #{i ∈ [n] | vi = 1}.

We highlight particular subsets of Fn
2 . Ek,n denotes the set {v ∈ Fn

2 | wH(v) = k}, also
referred as a slice of the Boolean hypercube. We use Pk1,k2,n to refer to a portion of
the hyper-cube, the set Pk1,k2,n =

⋃k2
k=k1

Ek,n = {v ∈ Fn
2 | k1 ≤ wH(v) ≤ k2}. For these

two notations we drop the n part when there is no ambiguity. We use Dn
d to denote the

quantity
∑d

i=0
(

n
i

)
, which is the cardinal of P0,d,n.
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We use capital letters to denote matrices, such as M. For matrices A ∈ Fℓ1×c1
2 ,

B ∈ Fℓ1×c2
2 and C ∈ Fℓ2×c1

2 , we denote the concatenation of columns of A,B as (A|B) ∈
Fℓ1×(c1+c2)

2 , and the concatenation of rows of A,C as (A/C) ∈ F(ℓ1+ℓ2)×c1
2 .

2.1 Boolean Functions, definitions and cryptographic criteria
In this part we provide definitions on Boolean functions and their cryptographic parameters,
we refer to e.g. [Car21] for more details.

Definition 1 (Boolean Function). A Boolean function f with n variables is a function
from Fn

2 to F2. The set of all Boolean functions in n variables will be denoted Bn.

Definition 2 (Support and co-support). Let f be an n-variable Boolean function, we
denote by supp(f) its support, the set: {x ∈ Fn

2 | f(x) = 1}. Additionally we refer to its
co-support as the set {x ∈ Fn

2 | f(x) = 0} = supp(f + 1).

Definition 3 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form
of a Boolean function f its n-variable polynomial representation over F2 (i.e. belonging to
F2[x1, . . . , xn]/⟨x2

1 + x1, . . . , x
2
n + xn⟩):

f(x) =
∑

I⊆[n]

aI

(∏
i∈I

xi

)
=
∑

I⊆[n]

aIx
I , where aI ∈ F2.

• The algebraic degree of f equals the global degree of its ANF: deg(f) = max{I | aI =1} |I|
(with the convention that deg(0) = 0).

• Any term
∏

i∈I xi in such an ANF is called a monomial and its degree equals |I|.

We introduce the following notations to denote sets of functions with monomials of
specific degrees only.

Definition 4 (Function sets Fd and Fd,n−d). Let n, d ∈ N∗ such that d ≤ n, we denote
by Fd and Fd,n−d the sets of Boolean functions having the following properties on their
ANF coefficients (aI)I⊆[n]:

Fd = {f ∈ Bn,∃J ∈ P1,d,n | aJ = 1 and ∀K ∈ Pd+1,n,n aK = 0},

and for d ≤ n/2:

Fd,n−d = {f ∈ Bn,∃J ∈ P1,d,n | aJ = 1 and ∀K ∈ Pd+1,n−d−1,n aK = 0}.

Fd denotes the set of functions of algebraic degree at most d (which are not constant).
Fd,n−d denotes the set of non constant functions with a non empty part of degree at most
d, no monomials of degree between d and n− d− 1 and potentially monomials of degree
between n− d and n (which are not constant).

The following properties hold:

• for d ≤ n/2, Fd ⊊ Fd,n−d,

• |Fd| = 2Dn
d − 2 and for d < n/2, |Fd,n−d| = (2Dn

d − 2) · 2Dn
d = 22Dn

d − 2Dn
d +1.
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Definition 5 (Algebraic Immunity [MPC04]). The algebraic immunity of a Boolean
function f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g ̸=0

{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or
f + 1). Additionally we denote by AN(f) = ming ̸=0{deg(g) | fg = 0}, and by DAN(f) the
dimension of the vector space defined by the annihilators of f of degree at most AI(f).

We recall the generalization of algebraic immunity studied in [CMR17], named restricted
algebraic immunity.
Definition 6 (Restricted Algebraic Immunity). Let n ∈ N∗ and S ⊆ Fn

2 , the algebraic
immunity of a Boolean function f ∈ Bn restricted to the subset S, denoted as AIS(f), is
defined as:

AIS(f) = min
g|∃y∈S, g(y)=1

{deg(g) | ∀x ∈ S, fg(x) = 0 or ∀x ∈ S, (f + 1)g = 0}.

In [CMR17] the restricted AI is studied principally for the slices, i.e., the subsets Ek,n.
In this paper we will focus on results relative to the subsets P0,d,n.
Definition 7 (Reed Muller code). The Reed Muller code RM(r, n) is the binary code of
length 2n whose codewords are the evaluations of all Boolean functions of algebraic degree
at most r in n variables on the 2n entries.

We denote by Mr,n its generator matrix of size
∑r

i=0
(

n
i

)
× 2n whose term at row

indexed by u ∈ P0,r,n and at column indexed by x ∈ Fn
2 is given by xu =

∏n
i=1 x

ui
i .

For a set S ⊆ Fn
2 we denote by Mr,n(S) the matrix obtained by keeping only the

columns of Mr,n whose indexes are in S.
The relations between Boolean functions and Reed Muller codes have been often used

to study the properties of these objects. For example, we recall that if a vector v represents
the ANF’s coefficients of a degree-d function f (in the right order), then v ∗ Mr,n is the
truth table of f .

We recall a property that will be used later in the article.
Proposition 1 (Reed Muller code’s property). Let r, n ∈ N, such that n > 0 and r ≤ n,
the dimension of RM(r, n) is Dn

r .

The algebraic immunity of a function can be determined by considering Reed Muller
codes, as shown in [CM03]. The main idea consists in the following: the generator matrix
of RM(r, n) is split in two parts, one with the columns with entries corresponding to the
support of an n-variable function f , and the other corresponding to the co-support of f .
Accordingly, the first matrix generates the (evaluations of the) functions fg for all g with
degree at most r, and the second matrix generates the products (f + 1)g (recall that for
an input where f takes the value 0, the product fg is 0 regardless of g, and for an input
where f = 1, the product equals the value of g. This is why puncturing the code on the
support of f yields the evaluation of fg). The rank of one of the two matrices being lower
than the dimension of RM(r, n) is equivalent to the existence of a nonzero annihilator of
degree at most r. Accordingly, the algebraic immunity of f is the smallest r such that
rank(Mr,n) ̸= rank(Mr,n(supp(f))) or rank(Mr,n) ̸= rank(Mr,n(supp(f + 1))).

We recall the secondary construction of Boolean functions called direct sum, it will be
used to build examples of functions with particular parameters in the article.
Definition 8 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean
function of m variables, f and g depending on distinct variables, the direct sum ψ of f
and g is defined by:

ψ(x, y) = f(x) + g(y), where x ∈ Fn
2 and y ∈ Fm

2 .



8 Towards a Generalization of the Algebraic Attack on Stream Ciphers

2.2 Symmetric Boolean functions
Symmetric Boolean functions are Boolean functions such that changing the order of the
(binary) input does not change the output. Their cryptographic parameters and properties
have been studied in multiple works.

Definition 9 (Symmetric Functions). Let n ∈ N∗, the Boolean symmetric functions are
the functions which are constant on each Ek,n for k ∈ [0, n]. We focus on 2 families of
symmetric functions:

• Elementary symmetric functions. Let k ∈ [0, n], the elementary symmetric function
of degree k in n variables, denoted σk,n, is the function whose ANF contains all
monomials of degree k and no monomial of other degrees. When n is unambiguous
from the context we denote σk,n by σk.

• Threshold Functions. Let d ∈ [0, n], the threshold function of threshold d is defined
as:

∀x ∈ Fn
2 , Td,n(x) =

{
0 if wH(x) < d,
1 otherwise.

We will provide examples using threshold functions, we recall here some properties on
elementary symmetric and threshold functions necessary for the proofs later on.

Proposition 2. Let n ∈ N∗ and 1 ≤ d ≤ n the following properties hold on symmetric
functions:

1. Simplified representation.
The n-variable elementary symmetric functions form a basis of the n-variable sym-
metric functions, we refer to the Simplified Algebraic Normal Form (SANF) for
the polynomial representation of a symmetric function as the sum of elementary
symmetric functions: f =

∑n
i=0 λiσi, where λi ∈ F2.

2. Product of elementary symmetric functions, e.g. [BP05a] Lemma 1.
Let a, b ∈ N, σaσb = σc where c = bin(a) ∪ bin(b) where bin(·) represents the binary
decomposition (bin(a) = (a0, a1, . . . , at) and a =

∑t
i=0 ai2i).

3. Algebraic immunity of threshold functions e.g. [CM22], Proposition 3.
AI(Td,n) = min(d, n− d+ 1), AN(Td,n) = n− d+ 1, AN(1 + Td,n) = d.

4. SANF structure of threshold functions [Méa19]:

• The SANF is periodic with period D = 2⌈log(d)⌉: ∀i ∈ [n] λi = λi mod D, where
mod D in this context denotes the integer between 1 and D in such congruence
class.

• The elements in the SANF mod D belongs to an interval: λi = 1 ⇒ i mod D ∈
[d,D].

• The border of the intervals are in the SANF: ∀i ∈ [n] such that i = d mod D
or i = D mod D, λi = 1.

3 Extremal algebraic immunity
In this section we define the extremal algebraic immunity. This criterion is designed for
the case where the set defined by the union of monomials of degree from 0 to d and from
n− d to n is kept invariant by the updating process.
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First, we define the criterion of EAI of a Boolean function , and the associated set of
annihilators to take into consideration for the (data) attack complexity. Then, we exhibit
the relationship between EAI and (punctured) Reed Muller codes. Finally, we prove the
maximum value that the EAI can reach in the main theorem of the section, and discuss
its impact on the attack compared to the standard algebraic immunity.
Definition 10 (Extremal Algebraic Immunity). The extremal algebraic immunity of a
Boolean function f ∈ B∗

n, denoted as EAI(f), is defined as:

EAI(f) = min
1≤d≤n/2

{d | ∃ g ∈ Fd,n−d, fg = 0 or (f + 1)g = 0}.

The EAI criterion generalizes the one of AI, instead of considering the smallest d such
that f (or f + 1) admits an annihilator in Fd it considers the smallest d such that Fd,n−d

contains an annihilator.
Note that, by definition of Fd,n−d, such annihilator have a degree at most d part which

is not null. The reason to consider such annihilators, rather than the ones having only
monomials of degree at least n−d is to prevent to mount an attack with equations allowing
to recover only the value of the high degree monomials, and not the variables. For example,
the function

∏n
i=1 xi annihilates all functions not null in 1n, that is half of Bn.

For the data complexity of the extremal algebraic attack the number of annihilators of
f or f + 1 inside Fd,n−d is important since as for the algebraic attack, linearly independent
annihilator can be used to produce more than one equation per keystream bit. Similarly to
the DAN for the algebraic attack (giving 2DAN(f) − 1 non-zero annihilators), we consider
the cardinal of the set of annihilators of f that can be used for the attack.
Definition 11 (Set of usable annihilators). We denote by CEAN(f) the cardinal of the
set of annihilators of f from FEAI(f),n−EAI(f).

In Definition 11, the annihilators considered have at least one monomial in the part
of degree up to d, since annihilators that would be null on this part lead to equations
allowing to recover only the high degree monomials, as noted previously. We consider this
set rather than all linear combinations obtained from the annihilators in FEAI(f),n−EAI(f)
since some linear combinations could have no monomials in the part of degree between 1
and EAI(f).

In the following proposition we exhibit the relationship between extremal algebraic
immunity and (punctured) Reed-Muller codes. It generalizes the result of Courtois and
Meier on the algebraic immunity. Thereafter we prove an upper bound on the EAI of
any function in the main theorem of this section. First we introduce sub-matrices of the
generator matrix of Reed Muller codes defined relatively to a Boolean function f .
Definition 12 (S and C matrices). Let n ∈ N∗ and f ∈ Bn, a non constant function.
We denote by S = Mn,n(supp(f)), C = Mn,n(supp(f + 1)) and Sj

i (respectively Cj
i ) the

sub-matrix of S (respectively C) formed by the rows indexed by the monomials from
degree i to j.
Proposition 3. Let f be an n-variable Boolean function which is not constant, and the
matrices S, C, Sj

i and Cj
i as in Definition 12. Then, EAI(f) is the smallest d such that

either rank(Sd
0/Sn

n−d) < Dn
d + rank(Sn

n−d) or rank(Cd
0/Cn

n−d) < Dn
d + rank(Cn

n−d).
Proof. We prove the statement by showing that f (respectively (f + 1)) has an annihilator
in Fd,n−d if and only if rank(Sd

0/Sn
n−d) < Dn

d + rank(Sn
n−d) (respectively rank(Cd

0/Cn
n−d) <

Dn
d + rank(Cn

n−d)). Without loss of generality we consider the case of f having such
annihilator.

Assume f admits an annihilator g ∈ Fd,n−d, then g can be written as gℓ + gh with gℓ

containing monomials with degree belonging to [d] and gh containing the ones of degree at
least n− d, and gℓ is not null. (gℓ + gh)f = 0 therefore gℓf = ghf , and we consider the
two cases gℓf = 0 and gℓf ̸= 0:
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• If gℓf = 0, then a non null linear combination of the products of f by the monomials
of degree at most d is giving the null function. That is, a non null linear combi-
nation of the rows of Sd

0 gives 02n , therefore rank(Sd
0) <

∑d
i=0
(

n
i

)
= Dn

d . Hence
rank(Sd

0/Sn
n−d) <

∑d
i=0
(

n
i

)
= Dn

d + rank(Sn
n−d).

• If gℓf ̸= 0, then a (non null) linear combination of the products of f by the monomials
of degree at most d equals a (non null) linear combinations of the products of f by
monomials of degree at least n− d. That is rank(Sd

0/Sn
n−d) < rank(Sd

0) + rank(Sn
n−d).

Since rank(Sd
0) ≤ Dn

d , it gives the final result.

For the reverse implication, if rank(Sd
0/Sn

n−d) < Dn
d +rank(Sn

n−d), then either rank(Sd
0) <

Dn
d or rank(Sd

0) = Dn
d and there is at least a non null element belonging to the span of

both matrices. In the first case it implies that f has an annihilator in Fd and therefore
in Fd,n−d. The second case implies that a linear combination of the products of f by
monomials of degree at least n− d give the same function as another non null combination
of products of f by monomials of degree at most d. Therefore, f admits an annihilator in
Fd,n−d.

Theorem 1. Let n ∈ N, n ≥ 2 and f ∈ Bn, then:

EAI(f) ≤ min
(
d
∣∣Dn

d >
1
3 · 2n

)
.

Proof. In this proof, first using the notations from Proposition 3 we show that rank(Sn
n−d|Cn

n−d)
is Dn

d and then we use it to determine a value of d such that the equalities rank(Sd
0/Sn

n−d) =
Dn

d + rank(Sn
n−d) and rank(Cd

0/Cn
n−d) = Dn

d + rank(Cn
n−d) are not both possible.

First, we show that for d ∈ [0, n] rank(Sn
n−d|Cn

n−d) = Dn
d . Since S and C are defined by

the support and co-support of f , permuting the columns of Sn
n−d,Cn

n−d we obtain Mn
n−d

the sub-matrix of Mn,n restricted to the rows corresponding to degree at least n− d. Since
RM(n, n) has length 2n and dimension 2n (Proposition 1), Mn

n−d has rank Dn
d . Thereafter

we use the following fact:

R = max{rank(Sn
n−d), rank(Cn

n−d)} = ⌈Dn
d

2 ⌉ + r, (1)

where r is a positive integer.
Then, we derive conditions on d such that one of the two equalities cannot be satisfied

anymore. Since S has |supp(f)| columns (i.e., S ∈ F2n×| supp(f) |
2 ) and C has |supp(f + 1)|

columns (i.e. C ∈ F2n×| supp(f+1) |
2 ), the rank of sub-matrices obtained by these matrices is

upper bounded by these quantities. Abstracting which matrix corresponds to f or f + 1,
(since |supp(f)| + |supp(f + 1)| = 2n), without loss of generality, we assume the maximum
column number is the one of supp(f), that is 2n−1 + u, and for supp(f + 1) it is 2n−1 − u
with u a positive integer no greater than 2n−1. Then we consider two possibilities:

a) The biggest support is the one where the Dn
d last rows of Sn

n−d have rank R, i.e.,
R = rank(Sn

n−d), which is depicted in Figure 2a. In this case both equalities are
possible only if:

Dn
d +R ≤ 2n−1 + u, and 2Dn

d −R ≤ 2n−1 − u.

Equation (1) implies:
3
2Dn

d + r ≤ 2n−1 + u, and 3
2Dn

d − r ≤ 2n−1 − u.

That is:
3
2Dn

d ≤ 2n−1 + (u− r), and 3
2Dn

d ≤ 2n−1 − (u− r).
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|suppf | = 2n−1 + u

S
|suppf+1| = 2n−1 − u

C

Sn
n−d

Sd
0

Cn
n−d

Cd
0

(a) Case a

|suppf | = 2n−1 + u

S
|suppf+1| = 2n−1 − u

C

Sn
n−d

Sd
0

Cn
n−d

Cd
0

(b) Case b
Figure 2: Two cases considered in the proof of Theorem 1

Therefore:
3
2Dn

d ≤ 2n−1 − |u− r|, (2)

where | · | denotes the absolute value.

b) The smallest support is the one where the Dn
d last rows of Cn

n−d have rank R, i.e.,
R = rank(Cn

n−d), which is depicted in Figure 2b. In this case both equalities are
possible only if:

Dn
d +R ≤ 2n−1 − u, and 2Dn

d −R ≤ 2n−1 + u.

Equation (1) implies:

3
2Dn

d + r ≤ 2n−1 − u, and 3
2Dn

d − r ≤ 2n−1 + u.

That is:
3
2Dn

d ≤ 2n−1 − u− r, and 3
2Dn

d ≤ 2n−1 + u+ r.

Therefore:
3
2Dn

d ≤ 2n−1 − |u+ r|. (3)

Since both u and r are positive integers, when d is such that Dn
d >

1
3 · 2n neither of

Equations 2 and 3 holds. Thereafter, either

Dn
d + rank(Sn

n−d) > rank(S) ≥ rank(Sd
0/Sn

n−d)

or
Dn

d + rank(Cn
n−d) > rank(C) ≥ rank(Cd

0/Cn
n−d)

holds. Using Proposition 3, we can conclude EAI(f) ≤ d.

Remark 1. Note that the algebraic immunity is upper bounded by ⌈n/2⌉ as shown in [CM03].
Using the approach displayed in the proof of Theorem 1 it corresponds to the smallest d
such that Dn

d > 2n−1 − u. Since u is positive (null for balanced functions), the bound on
the AI is the smallest d such that Dn

d >
2n

2 . It is to compare with 2n

3 for EAI, thereafter
the upper bound on the EAI is smaller than the one on AI for all odd n greater than 1
and even n greater than 4.
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The theorem shows that the EAI upper bound is smaller than the AI one, since for
each function such that 2Dn

EAI(f) < Dn
AI(f) the EAA has a better time complexity than

the standard AA we can expect the EAA to be more efficient for many functions (some
examples are given in Section 4). We also remark that if other sets than P1,d,n ∪ Pn−d,n,n

are considered, for example with less slices in the the range [n− d, n], Proposition 3 and
Theorem 1 can also be adapted since the same arguments can be applied to other punctured
Reed Muller codes.

4 Functions such that EAI ̸= AI
As a preliminary remark, let us denote by en the bound from Theorem 1, then we obtain
that for any function f such as AI(f) ≥ en it holds EAI(f) < AI(f). This is the case for all
functions with optimal algebraic immunity, and in general for an overwhelming part of

Bn, since most functions have AI larger than n
2 −

√
n
2 ln

(
n

2a ln(2)

)
for all a < 1 when n

tends to infinity, as shown by Didier [Did06]. In the next proposition we give a different
example of constructions such that EAI ̸= AI.

Proposition 4. Let n, t ∈ N∗, t ≤ n/3, and g ∈ Bn non constant such that deg(g) < t
then the following holds on f = g + Tn−t,n:

EAI(f) ≤ t, and AI(f) ≥ t+ 1.

Proof. First, since g has degree lower than t and is not constant, and Tn−t,n has only
monomials of degree at least n− t (Proposition 2 Item 4), f belongs to Ft,n−t. Accordingly,
1 + f also belongs to Ft,n−t and since 1 + f annihilates f it guaranties EAI(f) ≤ t.

Then, we show that AI(f) ≥ t + 1. We show it by contradiction. Let us assume
that there exists h non null of degree at most t such that h(ε+ g + Tn−t,n) = 0, where
ε ∈ {0, 1}. Since g has degree lower than t ≤ n/3 the product h(ε+ g) has degree lower
than 2n/3. Using Proposition 2 Item 3, Tn−t,t has no annihilator of degree lower than
t+ 1, therefore the product h(Tn−t,n) contains terms of degree at least 2n/3. Therefore,
h(ε+ g + Tn−t,n) = 0 is impossible leading to a contradiction. It allows us to conclude
AI(f) ≥ t+ 1.

The gap between EAI and AI can be bigger than in the previous example, we illustrate
it in the following proposition. It allows us to exhibit functions supposed to be safe against
algebraic attacks, that should not be used in contexts where the extremal algebraic attack
can apply.

Proposition 5. Let m ∈ N∗ and k ∈ N such that k < 2m−1, then the threshold function
T2m,2m+2k is such that:

EAI(T2m,2m+2k) = k, and AI(T2m,2m+2k) = 2k + 1.

Furthermore,

EAI(T2m,2m+2k+1) = k + 1, and AI(T2m,2m+2k+1) = 2k + 2.

Proof. First, we obtain the AI of these functions using Proposition 2 Item 3: AI(T2m,2m+2k) =
min(2m, 2m+2k−2m+1) = 2k+1 and AI(T2m,2m+2k+1) = min(2m, 2m+2k+1−2m+1) = 2k
since k < 2m−1.

Then, we prove the value of EAI for f = T2m,2m+2k. We begin by showing that
EAI(f) ≤ k. Using Proposition 2 Item 4 we obtain f = σ2m,2m+2k. The function
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g = σk,2m+2k + σ2m+k,2m+2k annihilates f : fg = σ2m+k,2m+2k + σ2m+k,2m+2k = 0 using
Proposition 2 Item 2. Since g belongs to Fk,2m+2k−k, it gives EAI(f) ≤ k. To prove the
other part, EAI(f) > k− 1, for any function h non null of degree d lower than k, we obtain
that the product hf has degree lower than 2m + k and is not null since AI(f) = 2k + 1
(note that the same arguments apply with 1 + f). The product of f with any function
with monomials of degree between 2m + 2k − d and 2m + 2k is null or with monomials of
degree greater than or equal to 2m + 2k − d > 2m + k. Thereafter, no element of Fd,n−d

annihilates f (nor f + 1), therefore EAI(f) > k − 1, allowing to conclude EAI(f) = k.
Finally, we prove the value of EAI for f = T2m,2m+2k. Using similar arguments

as above for T2m,2m+2k, we can exhibit annihilators of f inside F(k+1),n−(k+1) such as
σk,2m+2k+1 + σ2m+k,2m+2k+1 and σk+1,2m+2k+1 + σ2m+k+1,2m+2k+1. Moreover, there are
no annihilators in Fk,n−k, since functions of degree at most k give non null products
of degree at most 2m + k and product with functions with monomials in the range of
degree [2m + k + 1, 2m + 2k + 1] give products null of with monomials of degree at least
2m + 2k + 1 − k = 2m + k + 1. It allows to conclude, EAI(f) = k + 1.

Note that for such functions the EAI is (around) twice lower than the algebraic immunity.
In particular, some functions from this family are example where the EAA is the most
significant, the functions T2m,2m+1−1 have optimal AI, i.e., (n + 1)/2, but their EAI is
only n/4.

5 Upper bound on EAI and functions such that EAI = AI
In this part we study upper bounds on the EAI and exhibit cases where the EAI is
guaranteed to be not better than the AI. First, we show that the EAI is greater than the
AI restricted to the slices of low Hamming weight. Then, we generalize a result of [CMR17]
related to the algebraic immunity restricted to one slice. We prove in Theorem 2 that for
functions obtained by direct sum, the restricted AI can be upper bounded by the AI of
one component function minus the degree of the other component function. Finally, we
use these results to exhibit cases where the EAI is at least AI plus one, or equal to AI.

Proposition 6. Let n ∈ N∗, and f an n-variable Boolean function, then:

∀k ∈ N∗, k <
n

2 , EAI(f) ≥ AIP0,k,n
(f).

Proof. We fix AIP0,k,n
(f) = t, using Definition 6 it means that f or f + 1 admits an

annihilator of degree t over P0,k,n which is not null over P0,k,n, and this property does
not hold for integers lower than t. Note that in the particular case of the set P0,k,n,
the sub-matrix of Mk,n obtained by taking the columns corresponding to P0,k,n is upper
triangular with ones on the diagonal, then invertible, therefore there are no not null
function of degree at most k null over P0,k,n. Accordingly, using the matrix representation,
AIP0,k,n

(f) = t implies that:

rank(Mt−1,n(suppf ∩ P0,k,n)) = rank(Mt−1,n(suppf ∩ P0,k,n)) =
t−1∑
i=0

(
n

i

)
= Dn

t−1.

Since the rank of the matrix Mt−1,n(suppf ∩ P0,k,n) is already the maximal and it gives
the rank of Mt−1,n(suppf ), and the same argument on Mt−1,n(suppf+1 ∩ P0,k,n) leads to
rank(Mt−1,n(suppf+1)) = Dn

t−1.
We denote by S = Mn,n(suppf ), C = Mn,n(suppf+1) and Sj

i (respectively Cj
i ) the

sub-matrix of S (respectively C) formed by the rows indexed by the monomials from
degree i to j. Then, in the previous paragraph we showed rank(St−1

0 ) = rank(Ct−1
0 ) =
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Dn
t−1 where the rank comes from the P0,k,n part, and in the following we show than

span(Sn
n−k) ∩ span(St−1

0 ) = 02n = span(Cn
n−k) ∩ span(Ct−1

0 ). By construction Sn
n−k,Cn

n−k

is a reordering of the last Dk
0 rows of Mn,n which corresponds to the monomials of degree

at least n− k, therefore being null on all elements of Hamming weight lower than n− k,
a fortiori on P0,k,n since k < n/2. Then, all elements in the span of Sn

n−k (respectively
Cn

n−k) are null on suppf ∩P0,k,n (respectivelysuppf+1 ∩P0,k,n) whereas only the null vector
has this property in the span of St−1

0 (respectively Ct−1
0 ).

Finally, since Sn
n−t−1 is a sub-matrix of Sn

n−k, we obtain rank(St−1
0 |Sn

n−t−1) = Dn
t−1 +

rank(Sn−t−1,n), and the same result relatively to C. Therefore, using Proposition 3 we
can conclude EAI(f) ≥ t hence EAI(f) ≥ AIP0,k,n

(f).

In the case of functions obtained by direct sum, Theorem 1 of [CMR17] gives an
upper bound on the algebraic immunity restricted to a slice depending on the (standard)
algebraic immunity of one of the two functions and the degree of the second one. We
generalize this result, it allows to derive an upper bound on the AI restricted to P0,d,n+m

of f + g depending on the AI of f and the degree of g. Combining it with the bound
of Proposition 6, it gives an upper bound on the EAI of a direct sum, and it allows to
determine functions such that the AI and EAI have the same value.

Theorem 2. Let n,m ∈ N, and S ⊆ Fn+m
2 , if for all elements (a, b) ∈ S with a ∈ Fn

2
and b ∈ Fm

2 there exists a vectorial Boolean function L : Fn
2 → Fm

2 satisfying the following
properties:

• the m coordinate functions of L are affine,

• L(a) = b,

• ∀x ∈ Fn
2 (x, L(x)) ∈ S,

then for all functions f ∈ Bn, g ∈ Bm and their direct sum ψ the following holds:

AIS(ψ) ≥ AI(f) − deg(g).

Proof. Let h(x, y) be a non-null annihilator of ψ over S of degree AIS(ψ)), then there
exists (a, b) ∈ S such that h(a, b) = 1. Assuming the existence of L satisfying the three
requirements, h(x, L(x)) is an n-variable Boolean function annihilator of f(x) + g(L(x))
since (x, L(x)) ∈ S and h annihilates ψ over S. Moreover, the function h(x, L(x)) is not
null since h(a, L(a)) = h(a, b) = 1.

If g(b) = 0 then h(x, L(x))(1 + g(L(x)) is a non null annihilator of f , which gives:

AN(f) ≤ deg(h) + deg(L(g)).

Since h(x, y) is a non null annihilator of ψ over S we get deg(h(x, L(x))) ≤ AIS(ψ), and
since all coordinate functions of L are affine deg(L(g)) ≤ deg(g), it implies AN(f) ≤
AIS(ψ) + deg(g).

If g(b) = 1, then h(x, L(x))g(L(x) is a non null annihilator of 1 + f , which gives
AN(f) ≤ deg(h) + deg(L(g)). Following the same arguments, AN(f + 1) ≤ AIS(ψ) + deg(g),
and combining the two cases for g(b) we obtain: AI(f) ≤ AIS(ψ) + deg(g).

This result has been derived assuming h(x, y) be a non-null annihilator of ψ over S
of degree AIS(ψ), when it is not the case it implies the existence of h(x, y) a non-null
annihilator of 1 + ψ over S of degree AIS(ψ) by definition of AIS . Accordingly, the same
reasoning applies with 1+ψ, f+1 and g, therefore we can conclude AI(f) ≤ AIS(ψ)+deg(g)
or equivalently:

AIS(ψ) ≥ AI(f) − deg(g).
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In particular the result of [CMR17] consists in the case where n ≤ k ≤ m and
S = Ek,n+m. Up to permutations of the variables, L is chosen to give the complement of a
on the first n bits, 1 on k − n remaining bits and 0 on the others. Such L maps a to b, all
elements of Fn

2 to elements of Hamming weight wH(a) + n− wH(a) + k − n = k and each
coordinate function is affine.

Corollary 1. Let k, n,m ∈ N, n ≤ m, n ≤ k ≤ n+m and S = P0,k,n+m, for all functions
f ∈ Bn, g ∈ Bm and their direct sum ψ the following holds:

AIS(ψ) ≥ AI(f) − deg(g).

Proof. Using Theorem 2, it is sufficient to show for (a, b) ∈ S the existence of L satisfying
the requirements. Up to permutations of the variables, the wH(a) = r first bits of a are
equal to one and the n− r others to zero, the wH(a, b) − r = s first bits of b are equal to
one and the m− s others to zero.

If s ≤ n− r we define L as L(x1, . . . , xn) = (1 + xr+1, . . . , 1 + xr+s, 0m−s). It satisfies
L(a) = b, for all element x ∈ F2 the vector (x, L(x)) has Hamming weight at most n then
(x, L(x)) ∈ S, and all coordinate functions of L are affine, therefore L complies with the
requirements of the theorem.

If s > n − r we define L as L(x1, . . . , xn) = (1 + xr+1, . . . , 1 + xn, 1s−n+r, 0m−s). It
satisfies L(a) = b, for all element x ∈ F2 the vector (x, L(x)) has Hamming weight at
most n+ s− n+ r = s+ r = wH((a, b)) then (x, L(x)) ∈ S since all elements of Hamming
wH((a, b)) belong to S, and all coordinate functions of L are affine, therefore L complies
with the requirements of the theorem.

Proposition 7. Let n,m ∈ N∗, m > n, and f an n-variable Boolean functions. We denote
by ψ ∈ Bn+m the function defined for all (x, y) with x ∈ Fn

2 , y ∈ Fm
2 as ψ(x, y) = f(x).

The following holds:
AI(ψ) = EAI(ψ).

Proof. First we apply Corollary 1 with f , the null function in m variables as g and
S = P0,n,n+m, it gives:

AIP0,n,n+m
(ψ) ≥ AI(f).

Then, using Proposition 6 for k = n we obtain:

EAI(ψ) ≥ AIP0,n,n+m
(ψ).

Since the algebraic immunity is an affine equivalent notion AI(ψ) = AI(f) therefore
EAI(ψ) ≥ AI(ψ). Finally, by definition of the EAI, EAI(ψ) ≤ AI(ψ), which allows us to
conclude:

EAI(ψ) = AI(ψ).

From Corollary 1 we can deduce that all functions that are direct sums of an n-
variable Boolean function f and the sum of m variables such that n ≤ m are such that
EAI(f) ≥ AI(f) − 1. The Xor-Threshold functions used to instantiate FiLIP [MCJS19b,
HMR20] belong to this category, therefore the extremal algebraic attack would lead to no
improvement or low improvement of the algebraic attack on these specific functions.

Proposition 7 shows that for all functions with more than half variables with no influence
(variables such that changing their values never changes the output), the EAI and the AI
are equal. There are examples of functions using less than half of the (key/seed) variables
with all instances of the cipher FiLIP, and with the local pseudorandom generator of
Goldreich [Gol00].
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Note that these results can be generalized to other variants of the algebraic immunity
than the EAI. Indeed, Proposition 6 bounds the EAI based on the algebraic properties of
the function only on the set formed by the slices of small Hamming weight, then the same
arguments apply when we consider other set of monomials including the same slices. For
example, the reasoning applies if we consider the set given by P1,d,n and only a subpart of
Pn−d,n,n. Similarly, the generality of Theorem 2 can be used to derive results on variations
of the AI for direct sums, as in Corollary 1 for case of EAI.

6 Applications of EAA for functions in the literature
In this section, we investigate potential applications of the EAA. Firstly, following the
proof strategy for Theorem 1, we determine the EAI of two filter functions used in ciphers
GEA-1/2 and LILI-128 by implementing Proposition 3 to compute the rank of sub-matrices
of the punctured Reed-Muller code, and get the result when the equality does not hold.
More specifically, in Subsection 6.1 for the filter function of GEA-1/2, and in Subsection 6.2
for the filter function of LILI-128, we respectively compute the exact value of the EAI,
and find all the corresponding annihilators and the linearly independent ones among
them which might be used for further attacks. We note the existence of attacks targeting
the initialization and/or the non-linear filter function of GEA-1/2, and the non-linear
filter function of LILI-128. Here, we use their non-linear filter functions as examples
to illustrate the computation of the EAI. Next, in Subsection 6.3, we review existing
symmetric primitives (such as FLIP, FiLIP and variants) that triggered EAA, and we
explain the detailed reason why EAA cannot apply directly.

6.1 GEA-1 and GEA-2
GPRS (General Packet Radio Service) is a mobile data standard that was widely deployed
in the early 2000s. To protect against eavesdropping GPRS between the phone and the
base station, two proprietary stream ciphers GEA-1 and GEA-2 were initially designed
and used for this purpose. GEA-1 is built from three linear feedback shift registers over
F2, together with a non-linear filter function f : F7

2 → F2, which is a Boolean function on
seven variables of degree 4. The first public analysis of GEA-1 was proposed in [BDL+21]
as a key recovery attack utilizing the weakness of the initialization function. Without
such a weakness in the initialization as in GEA-1, the authors also presented key recovery
attacks on GEA-2. The attacks on GEA-1/2 were further improved / complemented by
Amzaleg and Dinur [AD22] and Ding, Wu, Wang, Guan and Li [DWW+22].

As said, our focus is not on the initialization function, but only on the component of
the key generation function f . We take the specification of f = f(x1, x2, . . . , x7) from
[BDL+21] and give it in algebraic normal form as follows:

x1x3x6x7 + x1x4x6x7 + x1x2x6x7 + x2x3x6x7 + x1x3x4x7 + x2x4x5x7 + x2x4x6x7+
x1x3x5 + x1x3x4 + x1x2x4 + x1x3x7 + x1x2x5 + x1x2x7 + x2x3x7 + x3x6x7 + x1x4x6+
x2x5x7 + x2x3x6 + x1x4 + x1x6 + x2x4 + x2x6 + x2x7 + x1x3 + x2 + x3x4 + x3x6+
x3x7 + x5x6 + x6x7 + x3 + x4 + x6.

The GEA-2 cipher is a simple extension of GEA-1. A fourth register of length 29, is added
to the system together with an instance of f . In this paper, we focus only on the filter
function f , and it is the same for GEA-1 and GEA-2, so we can call them uniformly GEA.

According to the definitions of AI and EAI, for the filter function of GEA we have
AI(f) = EAI(f) = 3. In addition, we found CEAN(f) = 64 usable annihilators2, and 48

2We have discarded the annihilators with null part in the set of high degree Fn−d since they are not
interesting for the attacks.
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linearly independent ones. We give one example in the following:

x1x2x4x5x6x7 + x1x2x3x4x5 + x1x2x3x5x7 + x1x2x4x6x7 + x1x3x4x6x7 + x1x4x6x7+
x1x2x3 + x1x2x4 + x1x3x5 + x1x4x5 + x1x2x7 + x1x5x7 + x1x2 + x1x3 + x1x4 + x1x5+
x1x7 + x1.

6.2 LILI-128

LILI-128 is a candidate stream cipher submitted to the NESSIE project by Simpson,
Dawson, Golic and Millan [SDGM00]. It did not pass the first stage of the contest because
the non-linear filter function was successfully reconstructed in [HHL+07]. It uses two
LFSRs, LFSRc and LFSRd. LFSRc has an internal state of 39 bits and is clocked once
for each output bit. LFSRd has an internal state of 89 bits and is clocked 1 to 4 times,
depending on two bits in LFSRc. During key setup phase a 128 = 39+89-bit cryptovariable
is directly loaded into these two registers. If we use u0, u1, . . . , u88 to denote the individual
bits of LFSRd, then the ten bits from LFSRd are fed to a highly nonlinear function,
fd : F10

2 → F2 to generate one output bit z(t) as

z(t) = fd(u0, u1, u3, u7, u12, u20, u30, u44, u65, u80).

The ten-variable Boolean function fd(x1, x2, · · · , x10) has the following ANF:

x2 + x3 + x4 + x5 + x6x7 + x1x8 + x2x8 + x1x9 + x3x9 + x4x10 + x6x10 + x3x7x9+
x4x7x9 + x6x7x9 + x3x8x9 + x6x8x9 + x4x7x10 + x5x7x10 + x6x7x10 + x3x8x10+
x4x8x10 + x2x9x10 + x3x9x10 + x4x9x10 + x5x9x10 + x3x7x8x10 + x5x7x8x10+
x2x7x9x10 + x4x7x9x10 + x6x7x9x10 + x1x8x9x10 + x3x8x9x10 + x4x8x9x10+
x6x8x9x10 + x4x6x7x9 + x5x6x7x9 + x2x7x8x9 + x4x7x8x9 + x4x6x7x9x10+
x5x6x7x9x10 + x3x7x8x9x10 + x4x7x8x9x10 + x4x6x7x8x9 + x5x6x7x8x9+
x4x6x7x8x9x10 + x5x6x7x8x9x10.

According to definitions of AI and EAI, for the filter function of LILI-128 we obtain
AI(f) = EAI(f) = 4. In addition, we found 264 annihilators, and CEAN(f) = 151 of them
having degree up to 4 in the lower part set of Fd. We give one example in the following:
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x1x4x5x7x8x9x10 + x2x4x5x7x8x9x10 + x3x4x5x7x8x9x10 + x1x2x6x7x8x9x10+
x1x3x6x7x8x9x10 + x4x5x6x7x8x9x10 + x5x6x7x8x9x10 + x1x3x7x8 + x3x4x7x8+
x1x5x7x8 + x4x5x7x8 + x1x6x7x8 + x2x6x7x8 + x1x2x7x9 + x1x3x7x9 + x2x3x7x9+
x1x5x7x9 + x2x5x7x9 + x4x5x7x9 + x1x2x8x9 + x1x3x8x9 + x2x3x8x9 + x2x4x8x9+
x4x5x8x9 + x1x6x8x9 + x4x6x8x9 + x1x7x8x9 + x2x7x8x9 + x4x7x8x9 + x2x4x7x10+
x3x4x7x10 + x1x5x7x10 + x3x5x7x10 + x1x6x7x10 + x3x6x7x10 + x4x6x7x10+
x1x2x8x10 + x2x3x8x10 + x1x4x8x10 + x3x4x8x10 + x1x5x8x10 + x2x5x8x10+
x3x5x8x10 + x1x6x8x10 + x2x7x8x10 + x3x7x8x10 + x1x2x9x10 + x1x3x9x10+
x2x3x9x10 + x1x4x9x10 + x2x4x9x10 + x2x5x9x10 + x3x5x9x10 + x1x6x9x10+
x3x6x9x10 + x1x7x9x10 + x1x8x9x10 + x2x8x9x10 + x3x8x9x10 + x1x2x7 + x1x3x7+
x2x3x7 + x1x4x7 + x2x4x7 + x1x5x7 + x2x5x7 + x4x6x7 + x5x6x7 + x1x2x8 + x2x3x8+
x3x4x8 + x1x5x8 + x4x5x8 + x1x7x8 + x3x7x8 + x4x7x8 + x5x7x8 + x1x2x9 + x1x3x9+
x2x3x9 + x2x4x9 + x3x4x9 + x1x5x9 + x3x5x9 + x4x5x9 + x4x7x9 + x2x8x9 + x3x8x9+
x4x8x9 + x5x8x9 + x1x2x10 + x1x3x10 + x2x3x10 + x1x4x10 + x3x4x10 + x1x5x10+
x2x5x10 + x5x6x10 + x2x7x10 + x3x7x10 + x1x8x10 + x4x8x10 + x6x8x10 + x7x8x10+
x1x9x10 + x4x9x10 + x5x9x10 + x6x9x10 + x8x9x10 + x1x2 + x1x3 + x2x3 + x1x4+
x3x4 + x1x5 + x3x5 + x1x7 + x2x7 + x3x7 + x4x7 + x5x7 + x1x8 + x2x8 + x3x8 + x4x8+
x5x8 + x7x8 + x1x9 + x2x9 + x3x9 + x4x9 + x5x9 + x8x9 + x1x10 + x4x10 + x6x10+
x7x10 + x1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + 1.

6.3 Application Scope and limitations of EAA
In this part we discuss the scope of the extremal algebraic attack, that is, symmetric

primitives where other subsets of monomials than the ones of low degree can be kept stable
by the updating process. We explain why a direct application of the extremal algebraic
attack is not possible for these already published designs, and suggest attack modifications.
First we recall the paradigms of the stream ciphers FLIP [MJSC16] and FiLIP [MCJS19b]
since we consider (modifications of) these schemes.

The Filter Permutator (FP) paradigm is a stream cipher paradigm introduced in [MJSC16]
in the context of hybrid homomorphic encryption [NLV11], designed to be efficiently evalu-
ated homomorphically. The filter permutator paradigm is depicted in Figure 1 on the left
side. For each bit of keystream the binary key is permuted by a wire-cross permutation
publicly derived from a pseudorandom generator and then a Boolean function called filter
is applied on this permuted key to give the keystream bit. The improved filter permutator,
introduced in [MCJS19b] modifies the FP paradigm by using only a subpart of the key for
each keystream bit and adding a random vector to the input of the filter function.

The attack based on the extremal algebraic immunity adapts differently to FLIP, FiLIP
and variations of these schemes, as we detail in the following:

FLIP. For FLIP stream ciphers, the inputs of the Boolean function f are always the
variables xi of the secret key K, only permuted by a wire-cross permutation. Accordingly,
the product f ·g with g ∈ Fd,n−d an annihilator of f gives equations with monomials in the
variables xi in Fd,n−d, and the wire-cross permutations stabilize the set P0,d,n ∪ Pn−d,n,n.
Instead of the usual algebraic attack, the extremal algebraic attack can directly be used.
It is the only context we found in open literature where the attack applies.
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Nevertheless, the EAA does not give an attack with better complexity than already
known, nor contradict the 2128 security claim for two reasons. First, the instances of FLIP
(called FLIP functions in [MJSC16]) are direct sums of monomials, they correspond to
functions with AI far from the maximum of ⌈n/2⌉. In this case the AI of the function
comes only from the part of low degree (the ANF contains only elements of low degree),
thereafter the EAI can be bounded from the AI restricted on the slices of low Hamming
weight, following Proposition 6. It results in cases where AI(f) = EAI(f), where the EAA
has a worse time complexity.

Then, since the Hamming weight is constant and known for the keys of FLIP instances,
the attacks using the properties of the filter function on the particular slice of Hamming
weight n/2 from [CMR17] are more adapted.

Note that the extremal algebraic attack can apply to variants of FLIP with different
filters. For example, if the filter is a function XORk in direct sum with the threshold
function T2m,2m+1−1 (an example from Proposition 5), the resulting function has algebraic
immunity equal to 2m. Its nonlinearity can be derived from the formula for the nonlinearity
of xor-threshold functions ([CM22], Proposition 7), which is sufficient to resist correlation-
based attacks in FLIP, provided the parameters are large enough. Therefore, the function
would be considered secure in that context. However, its EAI is only 2m−1 + k + 1 hence
the gap between the EAI and the AI indicates that the function would be secure against
algebraic attacks but not against EAA.

FLIP with whitening. We consider a variant of FLIP where a whitening is added before
the application of the filter, this alternative would be sufficient to avoid the filter to be
evaluated on inputs of Hamming weight n/2 only. We explore two possible strategies to
apply the EAA.

First, we consider the n key bits and their complements as 2n binary variables, in this
case the adversary obtains a system in 2n variables. This choice is motivated by the fact
that Pn−d,n,n is not stable when constants are added: the affine mapping xi 7→ xi + 1 can
generate monomials of lower degree. But as for FLIP, the attack generalization leads to
improvements only for filter functions such that the EAI would be different from the AI. If
we write the filter function as a 2n-variable function in the 2n key variables, it corresponds
to a direct sum of the initial filter and the null function in n variables, therefore a function
such that the EAI equals the AI by Proposition 7.

The other strategy consists in considering only the n original variables, in this case
a variation of the EAA is possible. Each time the Hamming weight of the whitening
is at most t, an annihilator from Fd,n−d gives equations with monomials belonging to
P0,d,n ∪ Pn−d−t,n,n. Then, it is interesting for functions having annihilators with a part
of degree at most d and potentially a part of degree even higher than n − d, such that
subtracting t to the degree does not go lower than n − d (which would result in more
monomials). Indeed, on a monomial of degree d, the mapping x 7→ x+ a with a ∈ Fn

2 of
Hamming weight t ≤ d can generate monomials of any degree between d− t and d. For
example on the monomial

∏d
i=1 xi, the mapping x 7→ x+1d gives the sum of all monomials

of degree between 0 and d in the variables x1 to xd.

FLIP with a large register, and local PseudoRandom Generators (PRG). We
consider an alternative of FLIP where the key register is larger than the number of variables
of the filter function. This setting also corresponds to the local variant of Goldreich’s
PRG [Gol00] where the seed’s size is a parameter n and the number of variables of the
function (called predicate) is a constant. We refer to the survey of Applebaum [App13] for
local PRGs and to [AL16, CDM+18, YGJL22, Üna23] for recent cryptanalyses.

In this context f has n variables but the register has size N > n, that is, the output is
independent of a large number of variables. It is also the case of Goldreich’s PRG with
a constant locality, where N ≫ n. The EAA applies to this context, nevertheless the
filter function corresponds to the direct sum of f in n variables and the null function in
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N − n variables, which is the case of Corollary 1, so the attack does not lead to a better
complexity than the standard algebraic attack.

We can conceive a variant of Goldreich’s PRG with an anti-local property (which would
go against the motivation of the first design and the following lines of works), where each
output bit depends on all or almost all inputs. In this case, the EAI will be a criterion
to consider for the security, since it gives a better attack than the one based on the AI,
and predicates satisfying the requirements of [AL16] will not be immune to the extremal
algebraic attack. Nevertheless, we are not aware of contexts where such anti-local PRG
would be interesting.

FiLIP. FiLIP uses both a large key register and a whitening, which limits the impact of
EAA as explained above. Furthermore, the different filters considered so far are direct sum
of monomials [MCJS19b] and functions obtained as the direct sum of a linear function
and a threshold function [MCJS19a, HMR20]. As for FLIP instances, the first family of
function is such that AI = EAI, and for the second family, the direct sum with a linear
function corresponds to a case covered by Corollary 1 resulting in a difference between
EAI and AI of at most 1.

Beyond variants of FLIP and FiLIP, we discuss variations of the extremal algebraic
attack that could lead to new cryptanalyses on filtered linear feedback shift registers or
nonlinear feedback shift registers.

Adaptation to filtered LFSR. In the context of a filtered LFSR, due to the linear
update of the variables, the monomials of degree at most d stay in P0,d,n, but the high
degree part is not stable. Each affine mapping xi 7→ ε +

∑
j∈J xi can give monomials

of lower degree. An attack strategy consists in selecting only the keystream bits such
that the associated linear updates are only a permutation of the variables of the initial
state, in this case an annihilator from Fd,n−d gives equations only in monomials from
P0,d,n and Pn−d−,n,n. These cases being extremely rare (Over the

∏n−1
i=0 (2n − 2i) possible

non-degenerate linear mappings, only n! correspond to a permutation of the initial n
variables), therefore the adversary should also take into consideration the cases where the
linear update does not reduce too much the degree of the monomials from the Pn−d,n,n

part. Considering n linear (not affine) mappings, the degree can degrade at most from the
maximum occurrence of one variable, that we denote by ℓ, in this case, the monomials
created belong to Pn−d−ℓ,n,n. For example, the attack could be interesting for a function
having AI(f) > d and an annihilator in Fd,n−d where only the monomial of degree n
appears in the Pn−d,n,n part.

Adaptation to filtered Nonlinear Feedback Shift Register (NFSR). In this context,
the update is not linear so the degree of the equations increases, and the same happens for
the monomials of the annihilators. A variant of the attack could be over the monomials
of high degree only, since the degree increases quickly, and the one of the Pn−d,n,n part
decreases less. With a preliminary evaluation, the attack does not appear to achieve better
complexity. A particular study could be performed to verify if the low degree monomials
disappear in specific cases.

7 Conclusion
In this article we propose the new notion of extremal algebraic immunity, to illustrate
and study potential generalizations of the algebraic attack presented by Courtois and
Meier’s twenty years ago. We perform a theoretic study of the EAI criterion and explore
its relation to other algebraic criteria. This algebraic attack does not give a better
complexity than Courtois and Meier’s attacks on the public stream ciphers, but it can help
to understand better the strength of the standard algebraic attack and avoid weaknesses
in the construction of future stream cipher designs.
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As for future works, it might be interesting to determine if variations of the EAA
can be applied to new stream ciphers adapted to advanced applications such as fully
homomorphic encryption, multiparty computation or zero knowledge. Another direction
we can investigate is probabilistic EAA. Similarly to probabilistic AA mentioned in related
work, the high level idea is to find functions annihilating the filter function in most inputs
but not all, this degree of freedom could give a bigger number of exploitable equations in
some cases.

Acknowledgment.
Pierrick Méaux was funded by the European Research Council (ERC) under the Advanced
Grant program (reference number: 787390). Qingju Wang is supported by ANR through
the ANR-23-CE39-0009 TRUST project. The authors thank Lin Jiao and Yonglin Hao for
checking the calculation of EAI for the filter functions in this article, and they thank Willi
Meier for his feedback on an earlier version of this article.

References
[AD22] Dor Amzaleg and Itai Dinur. Refined cryptanalysis of the GPRS ciphers

GEA-1 and GEA-2. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages 57–85. Springer,
2022. doi:10.1007/978-3-031-07082-2_3.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local
functions and their countermeasures. In Daniel Wichs and Yishay Mansour,
editors, STOC 2016, pages 1087–1100. ACM, 2016. doi:10.1145/2897518.
2897554.

[App13] Benny Applebaum. Cryptographic hardness of random local functions-survey.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, page 599. Springer,
2013. doi:10.1007/978-3-642-36594-2_33.

[BDL+21] Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent, Håvard
Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes. Cryptanalysis
of the GPRS encryption algorithms GEA-1 and GEA-2. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume
12697 of LNCS, pages 155–183. Springer, 2021. doi:10.1007/978-3-030-7
7886-6_6.

[BP05a] An Braeken and Bart Preneel. On the algebraic immunity of symmetric
Boolean functions. In INDOCRYPT 2005, volume 3797 of LNCS, pages 35–48.
Springer, 2005. doi:10.1007/11596219_4.

[BP05b] An Braeken and Bart Preneel. Probabilistic algebraic attacks. In Nigel P.
Smart, editor, Cryptography and Coding, pages 290–303, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. doi:10.1007/11586821_20.

[Car21] Claude Carlet. Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, 2021. doi:10.1017/9781108606806.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann
Rotella. On the Concrete Security of Goldreich’s Pseudorandom Generator.
In Thomas Peyrin and Steven D. Galbraith, editors, ASIACRYPT 2018, Part
II, volume 11273 of LNCS, pages 96–124. Springer, 2018. doi:10.1007/97
8-3-030-03329-3_4.

https://doi.org/10.1007/978-3-031-07082-2_3
https://doi.org/10.1145/2897518.2897554
https://doi.org/10.1145/2897518.2897554
https://doi.org/10.1007/978-3-642-36594-2_33
https://doi.org/10.1007/978-3-030-77886-6_6
https://doi.org/10.1007/978-3-030-77886-6_6
https://doi.org/10.1007/11596219_4
https://doi.org/10.1007/11586821_20
https://doi.org/10.1017/9781108606806
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-030-03329-3_4


22 Towards a Generalization of the Algebraic Attack on Stream Ciphers

[CM03] Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers
with linear feedback. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 345–359. Springer, 2003. doi:10.1007/3-540-39200-9_21.

[CM22] Claude Carlet and Pierrick Méaux. A complete study of two classes of Boolean
functions: Direct sums of monomials and threshold functions. IEEE Trans.
Inf. Theory, 68(5):3404–3425, 2022. doi:10.1109/TIT.2021.3139804.

[CMR17] Claude Carlet, Pierrick Méaux, and Yann Rotella. Boolean functions with
restricted input and their robustness; application to the FLIP cipher. IACR
Trans. Symmetric Cryptol., 2017(3), 2017. doi:10.13154/TOSC.V2017.I3.1
92-227.

[Cou02] Nicolas T. Courtois. Higher order correlation attacks, XL algorithm and
cryptanalysis of toyocrypt. In Pil Joong Lee and Chae Hoon Lim, editors,
Information Security and Cryptology - ICISC 2002, volume 2587 of LNCS,
pages 182–199. Springer, 2002. doi:10.1007/3-540-36552-4_13.

[Cou03] Nicolas T. Courtois. Fast algebraic attacks on stream ciphers with linear
feedback. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
176–194. Springer, 2003. doi:10.1007/978-3-540-45146-4_11.

[Did06] Frédéric Didier. A new upper bound on the block error probability after
decoding over the erasure channel. IEEE Transactions on Information Theory,
52(10):4496–4503, 2006. doi:10.1109/TIT.2006.881719.

[DWW+22] Lin Ding, Zheng Wu, Xinhai Wang, Ziyu Guan, and Mingjin Li. New attacks
on the GPRS encryption algorithms GEA-1 and GEA-2. IEEE Trans. Inf.
Forensics Secur., 17:2878–2889, 2022. doi:10.1109/TIFS.2022.3197064.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Groebner
bases. Journal of Pure and Applied Algebra, 139:61–88, june 1999. doi:
10.1016/S0022-4049(99)00005-5.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Grobner bases
without reduction to zero. In Workshop on application of Groebner Bases
2002, Catania, Spain, 2002. doi:hal.inria.fr/inria-00100997.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs.
Electronic Colloquium on Computational Complexity (ECCC), 7(90), 2000.
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-090/index.h
tml,.

[HHL+07] Xiangao Huang, Wei Huang, Xiaozhou Liu, Chao Wang, Zhu jing Wang, and
Tao Wang. Reconstructing the nonlinear filter function of LILI-128 stream
cipher based on complexity, 2007. arXiv:cs/0702128.

[HMR20] Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. Transciphering,
using filip and TFHE for an efficient delegation of computation. In Karthikeyan
Bhargavan, abeth Oswald, and Manoj Prabhakaran, editors, INDOCRYPT
2020, volume 12578 of LNCS, pages 39–61. Springer, 2020. doi:10.1007/97
8-3-030-65277-7_3.

[MCJS19a] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier
Standaert. Improved filter permutators: Combining symmetric encryption
design, Boolean functions, low complexity cryptography, and homomorphic
encryption, for private delegation of computations. Cryptology ePrint Archive,
Report 2019/483, 2019. https://eprint.iacr.org/2019/483.

https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1109/TIT.2021.3139804
https://doi.org/10.13154/TOSC.V2017.I3.192-227
https://doi.org/10.13154/TOSC.V2017.I3.192-227
https://doi.org/10.1007/3-540-36552-4_13
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1109/TIT.2006.881719
https://doi.org/10.1109/TIFS.2022.3197064
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/hal.inria.fr/inria-00100997
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-090/index.html
https://eccc.weizmann.ac.il/eccc-reports/2000/TR00-090/index.html
https://arxiv.org/abs/cs/0702128
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-030-65277-7_3
https://eprint.iacr.org/2019/483


Pierrick Méaux, Qingju Wang 23

[MCJS19b] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier
Standaert. Improved filter permutators for efficient FHE: better instances
and implementations. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta,
editors, INDOCRYPT, volume 11898 of LNCS, pages 68–91. Springer, 2019.
doi:10.1007/978-3-030-35423-7_4.

[Méa19] Pierrick Méaux. On the fast algebraic immunity of majority functions. In Peter
Schwabe and Nicolas Thériault, editors, LATINCRYPT, volume 11774 of
LNCS, pages 86–105. Springer, 2019. doi:10.1007/978-3-030-30530-7_5.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards stream ciphers for efficient FHE with low-noise ciphertexts.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 311–343. Springer, 2016. doi:10.1007/
978-3-662-49890-3_13.

[MPC04] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decompo-
sition of Boolean functions. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 474–491. Springer, 2004.
doi:10.1007/978-3-540-24676-3_28.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homo-
morphic encryption be practical? In Proceedings of the 3rd ACM Work-
shop on Cloud Computing Security Workshop, CCSW ’11, page 113–124,
New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/2046660.2046682.

[SDGM00] Leonie Ruth Simpson, Ed Dawson, Jovan Dj. Golic, and William Millan.
LILI keystream generator. In Douglas R. Stinson and Stafford E. Tavares,
editors, Selected Areas in Cryptography, SAC 2000, volume 2012 of LNCS,
pages 248–261. Springer, 2000. doi:10.1007/3-540-44983-3_18.

[Üna23] Akin Ünal. Worst-Case Subexponential Attacks on PRGs of Constant Degree
or Constant Locality. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part I, volume 14004 of LNCS, pages 25–54. Springer, 2023.
doi:10.1007/978-3-031-30545-0_2.

[YGJL22] Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. Revisiting
the concrete security of Goldreich’s pseudorandom generator. IEEE Transac-
tions on Information Theory, 68(2):1329–1354, 2022. doi:10.1109/TIT.20
21.3128315.

https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-30530-7_5
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-540-24676-3_28
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1007/3-540-44983-3_18
https://doi.org/10.1007/978-3-031-30545-0_2
https://doi.org/10.1109/TIT.2021.3128315
https://doi.org/10.1109/TIT.2021.3128315

	Introduction
	Filter Permutator Paradigm and Monomial Stability
	Courtois-Meier algebraic attack
	Our Contributions
	Related works

	Preliminaries
	Boolean Functions, definitions and cryptographic criteria
	Symmetric Boolean functions

	Extremal algebraic immunity
	Functions such that EAI=AI
	Upper bound on EAI and functions such that EAI=AI
	Applications of EAA for functions in the literature
	GEA-1 and GEA-2
	LILI-128
	Application Scope and limitations of EAA

	Conclusion
	References

