
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 73 pages.

https://doi.org/10.62056/av4fe0zn4

Check for updates

Fully Collusion Resistant Traceable Identity-Based
Inner Product Functional Encryption

Subhranil Dutta1 , Tapas Pal2 , Amit Kumar Singh3 and
Sourav Mukhopadhyay4

1 University of St. Gallen, Switzerland
2 Karlsruhe Institute of Technology, KASTEL SRL, Germany

3 Siksha ‘O’ Anusandhan (Deemed to be) University, India
4 Indian Institute of Technology Kharagpur, India

Abstract. We present the first fully collusion resistant traceable functional encryption
(TFE) scheme for identity-based inner product FE (IBIPFE) that directly traces user
identities through an efficient tracing procedure. We name such a scheme as embedded
identity TIBIPFE (EI-TIBIPFE) where secret keys and ciphertexts are computed for
vectors, and decryption recovers the inner product between the vectors given the key
and ciphertext are associated with the same group identity. Additionally, a secret key
corresponds to a user identity for the purpose of tracing. Suppose some of the users
linked to a particular group team up and create a pirate decoder that is capable of
decrypting the content of the group, then the tracing algorithm extracts the identities
of the dishonest users’ given black-box access to the decoder. Previously, such schemes
were designed for usual public key encryptions. In this work, we construct a fully
collusion resistant EI-TIBIPFE scheme from pairings in the standard model. The
ciphertext size of our scheme grows sub-linearly with the number of users in the
system. We achieve many-target security of tracing, namely the adversary is allowed
to ask for multiple secret keys corresponding to many functions, which notably solves
an open problem raised by Do, Phan, and Pointcheval [CT-RSA’2020].
Keywords: embedded identity · traitor tracing · inner product functional encryption
· identity-based inner product functional encryption

1 Introduction
A traditional traitor tracing (TT) [CFN94] scheme is a multi-receiver system that helps to
detect malicious users who deceive the broadcasters by creating a pirate decryption box.
More specifically, contents are encrypted under a public key mpk and each authorized user
indexed with j is given a sophisticated secret key skj to recover the contents. Consider a
scenario where a collection of dishonest users, called traitors, embeds their secret keys into
a pirate decoder which decrypts the ciphertext for unauthorized users, thereby causing
a significant loss to the content providers. To prevent such impermissible theft, there is
a tracing algorithm that uses a dedicated tracing key key to identify the traitors in the
system. The tracing algorithm is called public or private, depending on whether the key is
available publicly or kept secret by the central authority.
In literature, TT schemes are mainly explored in the context of usual public key encryp-
tion (PKE) [BF99, TT01, SW98, KD98, KY02a, CPP05, ABP+17, FT01, SSW01, BZ14,
KY02b, KY02c, LPSS14] or identity-based encryption (IBE) [ADM+07, GMS12, PT11].
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Recently, Do, Phan and Pointcheval [DPP20] bring this feature of traceability into func-
tional encryption (FE) [BSW11], a more fine-grained encryption mechanism. The notion is
called traceable functional encryption (TFE). In particular, they provide a construction
of a traceable inner product functional encryption (TIPFE) scheme where secret keys are
generated for tuples (j,u) representing user indices and vectors. The ciphertexts are
computed for some vectors v in such a manner that the decryption reveals nothing about
the message v except the inner product ⟨u,v⟩. Suppose many secret keys skj,u for vectors
u are provided to different users having distinct indices. It may happen that some of
these users create a pirate decoder embedding their own secret keys in order to sell it for
personal interests. Therefore, anyone from outside who does not have a secret key can
learn the inner product value using the pirate decoder. The tracing algorithm of TIPFE is
employed to identify such dishonest users in the system.
Following the usual tracing procedures [BSW06, BF99], Do et al. [DPP20] design TIPFE
with the following properties:

• Index tracing. Their tracing algorithm is designed to find out a set T index containing
the traitor’s indices associated with the secret keys of IPFE. In order to find the
actual traitors, the indices in T index are mapped back to the identities of traitors.
Thus, the central authority must maintain a map or a look-up table to discover the
identities linked to the indices of T index. More precisely, the key generation process
of [DPP20] encodes the identities as codewords or vectors (having the same length
as the IPFE vectors), and the tracing algorithm needs to access the list of these
codewords. This makes the key generation inherently stateful, which not only dilutes
the whole purpose of tracing but is inconvenient for many practical scenarios.

• Private traceability. The TIPFE only supports private tracing. In other words, the
tracing algorithm requires the master secret key of the system, meaning that only
the central authority can find out the traitors’ identities.

• One-target security. The TIPFE of [DPP20] is proven secure under the assumption
that the adversary queries secret keys skj,u for a fixed target vector u, but with
multiple indices. The notion is called one-target security and constructing TIPFE
with many-target security where any polynomial number of target functions can be
queried, was left as an open problem.

In this work, we follow the definition of fully collusion resistant as proposed by Boneh et al.
[BSW06, BW06] for a TT scheme. We say that a TFE scheme is fully collusion resistant if
an adversary is allowed to query secret keys corresponding to all indices and many-target
functions in the system. In particular, the adversary can query polynomially many secret
keys and there is no predefined bound on the number of key queries. According to our
knowledge, there does not exist a publicly traceable fully collusion resistant TFE scheme.
Nishimaki, Wichs and Zhandry [NWZ16] proposed a framework that publicly traces users’
identities from a decoder box and hence eliminates the requirement of the index-identity
map from the system. However, their TT scheme relies on a heavy cryptographic tool,
namely adaptively-secure collusion resistant public key FE scheme for general circuits
with compact ciphertexts. To avoid the route of full-fledged FE, Goyal, Koppula, and
Waters [GKW19] designed a more efficient identity tracing mechanism and achieved full
collusion resistant TT from standard assumptions based on parings and lattices. However,
all existing TT schemes can trace users’ identities only in plain PKE systems. Recently,
Luo et al. [LAWH22] proposed a generic construction of trace and revoked IPFE which
traces only the indices of traitors. In addition, the encryption algorithm depends on a
public directory containing user-specific information that is sampled while generating keys
for the users in the system.
Another drawback of the current structure of TIPFE is that the ciphertexts do not contain
any information about the source of the message. As a result, the sender can not be
recognized during decryption, although it is an essential and desirable feature for any
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public key infrastructure. If many broadcasters (or content providers) encrypt their data
using the same TIPFE scheme then users having secret keys from one broadcaster can
decrypt the content of others. Further, in the context of tracing, this means the tracing
must be run across all the users’ identities even when the decoder is created to cheat a
specific broadcaster. A naive way to resolve this problem is to sample individual TIPFE
system for each of these broadcasters. However, this requires maintaining a huge database
for storing parameters of all the TIPFE systems, and complications may arise in managing
certificates. This shortcoming of TIPFE can be surpassed by introducing identities assigned
to the broadcasters and enabling them to encrypt contents under their own individual
identities. A secret key can be associated with an additional broadcaster’s identity which
restricts the user to decrypt only the contents released by that broadcaster. Thus, we ask
the following question.
Open Problem. Can we build an efficient broadcaster-identity-based TIPFE under a
standard assumption which satisfies (a) identity tracing, (b) public traceability and (c) fully
collusion resistant security?
Our Contributions. In this work, we affirmatively answer to the above question. More
precisely, our contributions are as follows.
Embedded identity TIBIPFE. We formally introduce the notion of embedded identity
traceable identity-based IPFE (EI-TIBIPFE) where encryption takes place under a broad-
caster’s identity referred to as group-identity in this work. A secret key of user (or
subscriber) corresponds to his/her identity along with a group-identity and decryption is
successful whenever the group-identities of key and ciphertext are equal. In other word,
users who have subscribed to a specific broadcaster are able to decrypt the content of
that broadcaster. There is a dedicated tracing key which is used to trace the dishonest
subscribers that are responsible in creation of a decoder box, through a black-box tracing
algorithm.

An intermediate primitive: EIPL-IBIPFE. To construct fully collusion resistant
EI-TIBIPFE, we formalize an intermediate primitive called embedded identity private linear
IBIPFE (EIPL-IBIPFE). We show a generic transformation to construct EI-TIBIPFE from a
EIPL-IBIPFE without assuming existence of any other primitive. Therefore, the answer to
the above question boils down to construct the intermediate primitive EIPL-IBIPFE. We
build EIPL-IBIPFE under standard group-based assumptions which eventually leads to the
following construction:

– A pairing-based construction. We propose a selectively secure EI-TIBIPFE in a
composite-order pairing group based on the standard decisional 3-party Diffie-
Hellman (D3DH) [BW06, BSW06] and subgroup decision assumptions [GKW19]. We
follow a three step approach to build the primitive. In the first step, we construct
an adaptively secure EI-TIPFE from similar assumption. In second step, we design
a selectively secure IBIPFE scheme in a prime-order pairing group which is secure
under a target-group-based assumption. In third step, we upgrade the EI-TIPFE using
our IBIPFE. This upgradation is non-trivial, and we devise a non-generic binding
randomization technique for the final step. The EI-TIBIPFE is publicly traceable,
and the size of ciphertext, master public keys grow with

√
n and

√
k, where n is the

number of users and k is the length of the embedded user identities.

Our group-based IBIPFE is built upon a target-group-based assumption, namely the
decisional bilinear Diffie-Hellman (DBDH) assumption in the standard model. All existing
group-based IBIPFEs either rely on source group assumptions [ACGU20, AGT21] or the
security is proven in the random oracle model [SP19]. It is well-known that target-group-
based assumptions are qualitatively weaker than the source group ones [Fre10, DKW21].
Hence, it is worth mentioning that our IBIPFE is the first instantiation of a FE scheme
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Table 1: Comparison between Traceable FEs
Size of the component

Scheme Assum.
|mpk| |ct| |sk|

Tracing

mode
(Func., Secu.)

Identity

trace

[DPP20] DBDH m(n+ poly(λ)) m · poly(λ) poly(λ) Private (IPFE, Sel) ×

[LAWH22]† DDH, DCR, LWE m2 · poly(λ) m2 · poly(λ) poly(λ) Public (IPFE, Adp) ×

Sec. 7 D3DH m ·
√
n · k

·poly(λ)
m ·
√
n · k·

poly(λ)
logn+ k

+k′ + poly(λ) Public (IBIPFE, Sel) ✓

n: number of user; m, k, k′: dimension of input vector, user identity and group identity re-
spectively; Func., Secu.: functionality and security model; DDH: decisional Diffie–Hellman;
DCR: Decisional Composite Residuosity; LWE: Learning with Errors; Sel: selective; Adp:
adaptive. [†]: The generic Traceable IPFE of Luo et al. [LAWH22] depends on a unnecessary
public directory which we discuss below.

beyond IPFE that is designed from a simple target-group-based assumption in the standard
model.
Many-target tracing security. We solve the open problem left by Do et al. [DPP20] of
building TIPFE that satisfies many-target tracing security. An adversary of our intermediate
primitive EIPL-IBIPFE can query secret keys for many vectors or functions with multiple
associated identities. As a result, the tracing security of EI-TIBIPFE scheme allow the
adversary to query secret keys for (polynomially) many-target functions which can be
linked to an arbitrary number of users in the system. Such functional keys may involve in
devising the decoder box. Since all our schemes satisfy the many-target tracing security,
we simply ignore the term “many-target” while describing the security of tracing in this
paper. In Table 1, we compare our schemes with the TIPFE of [DPP20] with respect
to efficiency, functionality and hardness assumptions. Like [BSW06, Fre10, GKRW18,
CVW+18, NWZ16, GKW19], our TFE schemes are fully collusion resistant meaning that
there is no bound on adversary’s secret key queries. On the technical side, we extend the
framework of Goyal et al. [GKW19] from tracing the traitors in a normal PKE-system to
tracing in an IBIPFE-system. Since IBIPFE provides more finer access control than PKE
or IPFE [GKW19, DPP20], one of the main technical contribution is to design a tracing
algorithm against more powerful adversaries (with the ability to query more sophisticated
keys), which directly traces user identities in a black-box manner. We think our work
as a stepping stone towards building efficient TFE schemes with such advanced tracing
mechanism for more expressive functionalities beyond IBIPFE. Finally, we summarize our
results in the following Theorem.

Theorem 1 (Informal). Assuming D3DH assumption, there exist a fully collusion resistant
selectively secure EI-TIBIPFE scheme with a public tracing algorithm that can trace user
identities from a pirate decoder.

Recently, Zhandry [Zha21] proposed white-box tracing mechanism for PKE which allows
the tracer to inspect the implementation of decoder and prevents some attack scenarios
that are inherent to black-box traitor tracing such as availability of the decoder to an
outsider. On the other hand, we stress that this work is motivated to design efficient
black-box traitor tracing scheme with public/private tracing for specific FEs which are
fully collusion resistant.

Comparison with Luo et al. [LAWH22]. Luo et al. [LAWH22] addressed the many-
target security challenge in the IPFE setting but with certain limititions. Notably, the
key generation and encryption algorithms can not operate independently. Specifically,
these algorithms rely on a public directory which contains vectors that are related to the
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indices of secret keys, which are sampled during the key generation procedure. During
encryption, the randomness must be sampled based on these vectors, creating an inherent
dependency between the encryption and key generation algorithms. This dependency is
both unnecessary and undesirable for a traceable IPFE scheme. Furthermore, the one-target
secure traceable IPFE proposed by Do et al. [DPP20] does not impose such a restriction.
In this work, we not only resolve the many-target security issue of [DPP20] without relying
on any such public directory but also extend the inner product functionality to a more
natural and practically relevant IBIPFE framework. In terms of efficiency, the ciphertext
and master public key sizes of [LAWH22] scale with O(m2), where m is the size of the
input vector. This is unusual in the context of any plain IPFE schemes [ABCP15, ALS16]
where the master public key and ciphertext grow linearly with the length of the input
vectors. Given these limitations, we believe their protocol is significantly weaker than ours,
both from the functionality and efficiency grounds.

Application. Although there could be many applications of EI-TIBIPFE, we consider a
specific application scenario to understand the importance of the primitive from practical
grounds. Suppose the Department of Health (DOH) of a country authorizes certain labs to
perform a clinical trial of any drug in order to create a medicine as early as possible. Each
lab (playing the role of a broadcaster) encrypts the clinical data of their manufactured
medicine under their lab-id and scientists from different labs receive secret keys directly
from DOH to perform statistical analysis on the encrypted data and learn important
characteristics of the medicine produced by their own labs. Such statistical analysis or
findings should be kept secret within a lab until the medicine is approved by DOH due
to several reasons including financial profits, dignity of the lab. During the trial, it may
happen that a scientist of a particular lab X is compromised and (s)he creates a decoder
box by embedding the secret key to sell out sensitive data about the medicine manufactured
by lab X. To prevent this, DOH can employ our EI-TIBIPFE and encode identification
information of each scientist into their secret keys which is a tuple of the form (index
number, employ-id, lab-id/name) in order to facilitate tracing such culprits via a dedicated
algorithm.

Organization. We discuss our techniques and ideas in Section 2. The notations and
complexity assumptions are given Section 3 and our EI-TIBIPFE notion is defined in Section
4. We formally introduce the notions of EIPL-IBIPFE in Section 5 respectively with their
syntax and security models. Section 6 presents our generic transformation of EI-TIBIPFE
from EIPL-IBIPFE and the security analysis is explicitly discussed in the Appendix B. Next,
we present our pairing-based EIPL-IBIPFE in Section 7 with its formal security analysis.
Finally, our pairing-based IBIPFE from the DBDH assumption is presented in the Appendix
C. We provide additional preliminaries in the Appendix A.

2 Technical Overview
We start by reviewing the embedded identity traitor tracing (EI-TT) framework of Goyal et al.
[GKW19] which is referred to GKW-TT from now on. The tracing algorithm of GKW-TT is
designed to trace traitors’ identities directly in a PKE-system via an intermediate primitive
called embedded identity private linear broadcast encryption (EIPL-BE). We extend their
framework from PKE to IPFE and define the notion of embedded identity traceable IPFE
(EI-TIPFE) for tracing identities of traitors in an IPFE system.

We further extend the notion of EI-TIPFE to embedded identity traceable identity-based
IPFE (EI-TIBIPFE) which allows to trace users that belong to a specific group. We generi-
cally construct EI-TIBIPFE from an intermediate primitive embedded identity private linear
IBIPFE (EIPL-IBIPFE). We emphasize that TIPFE is a particular case of TIBIPFE. Thus in
this overview, we focus on describing the core techniques behind the realization of TIBIPFE.
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The Framework of GKW-TT. Goyal et al. [GKW19] designed EI-TT schemes from
various standard assumptions. The core idea of [GKW19] was to extend the framework of
private linear broadcast encryption (PL-BE) [BSW06] and introduce the notion of EIPL-BE.
An EIPL-BE has a normal and a special encryption algorithms. The special encryption
algorithm of EIPL-BE is associated with the index-position-bit tuple (i, ℓ, b), whereas
in PL-BE [BSW06], it is associated only with the index i. More specifically, GKW-TT
generates secret keys for a tuple (j, id) and encrypts messages under a tuple (i, ℓ, b) using
a tracing key (secret or public) where b represents the ℓ-th bit of users’ identities. The
special encryption algorithm is designed in a way to control the ability of decrypting a
ciphertext depending on the ℓ-th bit of an identity associated with the secret keys. In
particular, a ciphertext computed under the tuple (j, ℓ, idℓ) cannot be decrypted by a secret
key skj,id whereas a ciphertext computed under the tuple (j, ℓ, 1− idℓ) is decryptable. This
extra access control mechanism enables the tracing algorithm to uncover the dishonest
identities in a bit-by-bit manner.

2.1 Defining Embedded Identity Traceable IBIPFE
Inspired by the usual TT schemes, Do et al. [DPP20] introduced the notion of traceable
IPFE (TIPFE) where secret keys of IPFE are additionally associated with an index number
mapping to the identity of a user. A tracing algorithm given a black-box access to a
decoder box Du designed for a vector u can be used to extract a set of indices T index.
The tracing algorithm is said to be correct if T index includes only the indices of users who
embedded their secret keys into the decoder box.

The main downside of the tracing algorithm of [DPP20] is that the indices in T index must
be traced back to the actual identities through a central map, which becomes problematic
for many applications. To overcome this limitation, we extend the notion of TIPFE into
embedded identity TIPFE (EI-TIPFE) where the users’ secret keys are associated with
index-identity pair (j, id) such that j ∈ [n] and id can be a binary string of length k.
The tracing algorithm now directly extracts a set T id containing the identities of traitors.
Hence, there is no need of such unnecessary map of TIPFE [DPP20].

We note that the encryption of EI-TIPFE is performed independently of the sender’s
identity, hence receivers are unaware of the source of plaintexts. Moreover, in real
applications, it is often the case that a group of users (e.g. employees) possesses a
group identity (e.g. the company in which they work). This motivates us to define the
notion of embedded identity traceable IBIPFE (EI-TIBIPFE) where the secret keys of users
are additionally associated with a group identity gid ∈ {0, 1}k′ and the ciphertexts are
computed under a group identity gid′. The decryption successfully recovers the inner
product if these two group identities are the same, i.e. gid = gid′. It becomes more
convenient to trace the traitors since the pirated decoder box Du works with a specific gid
and one needs to only trace over the set of users that are linked with the gid (instead of the
set of all users in the system). More formally, our EI-TIBIPFE scheme is defined as follows:
• Setup(1λ, n, 1k, 1k′

, 1m) → (msk,mpk, key): The setup algorithm generates master key
pairs and a tracing key.
• KeyGen(msk, i, id, gid,u)→ sku: It generates secret keys of a user having index-identity
pair (i, id) and a group identity gid.
• Enc(mpk, gid′,v)→ ctv: It encrypts a vector v under a group identity gid′.
• Dec(sku, ctv) → ζ/⊥: The decryption recovers the inner product ⟨u,v⟩ if gid = gid′;
otherwise returns ⊥.
• TraceDu(key, gid,u,v(0),v(1)) → T id: It outputs a set T id ⊂ {0, 1}k of the identities of
traitors belong to the group identity gid.

We say that the tracing is correct if it does not falsely accuse an honest user as traitor
and T id is a subset of the identities of released secret keys. EI-TIPFE can be viewed as
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a particular case of EI-TIBIPFE when gid = gid′ always holds. In other words, one can
independently define EI-TIPFE from EI-TIBIPFE where KeyGen,Enc,TraceDu do not take
a group identity as input and decryption with an honestly generated secret key is always
successful.

2.2 The framework of EIPL-IBIPFE for tracing identities in IBIPFE
The backbone of constructing EI-TIBIPFE is the notion of EIPL-IBIPFE. The concept of
EIPL-IBIPFE is inspired by the primitive of EIPL-BE introduced by [GKW19]. We extend
their framework from PKE to FE, more specifically to IPFE or even richer functionality of
IBIPFE. Firstly, the EIPL-IBIPFE enables tracing identities directly in an IBIPFE system
and secondly the primitive serves the purpose of surpassing the limitation of one-target
tracing security [DPP20]. In particular, we construct EIPL-IBIPFE where the adversary is
allowed to query secret keys for many functions instead of restricting the queries to a single
function like [DPP20]. More precisely, EIPL-IBIPFE has the same setup, key generation
and encryption algorithms as in EI-TIBIPFE, but there is an additional special encryption
algorithm which is core of our advanced tracing mechanism. The ciphertext obtained from
the special encryption algorithm is associated with a tuple (i, ℓ, b) where b is a bit.
• SplEnc(key, gid′,v, (i, ℓ, b))→ ctv: The special encryption algorithm encrypts a message
vector v for index-position-bit tuple (i, ℓ, b). If (the special encryption key) key is publicly
available then it is called public EIPL-IBIPFE; otherwise it is known as private EIPL-IBIPFE.
• Dec(sku, ctv) → ζ/⊥: If ctv is a ciphertext of normal encryption then the decryption
recovers ⟨u,v⟩ when gid = gid′ holds. On the other hand, if ctv is special-encryption-
ciphertext then the decryption algorithm additionally checks whether the index-identity
tuple (j, id) of sku satisfies the conditions (j > i) or (j = i ∧ ℓ =⊥) or (j = i ∧ idℓ = 1− b)
where idℓ is the ℓ-th bit of id.
We require our EIPL-IBIPFE to satisfy the following security properties:

– Normal-hiding. Enc(mpk, gid∗,v) ≈c SplEnc(key, gid∗,v, (1,⊥, 0)).
– Index-hiding. SplEnc(key, gid∗,v, (i∗,⊥, 0)) ≈c SplEnc(key, gid∗,v, (i∗ + 1,⊥, 0)) if

an adversary is not given a key for (i∗, id, gid∗,u).
– Lower identity-hiding. SplEnc(key, gid∗,v, (i∗,⊥, 0)) ≈c SplEnc(key, gid∗,v, (i∗, ℓ∗,
b∗)) if an adversary is not given a key for (i∗, id, gid∗,u) such that idℓ∗ = b∗.

– Upper identity-hiding. SplEnc(key, gid∗,v, (i∗, ℓ∗, b∗)) ≈c SplEnc(key, gid∗, v, (i∗+
1,⊥, 0)) if an adversary is not given a key for (i∗, id, gid∗,u) such that idℓ∗ = 1− b∗.

– Message-hiding. SplEnc(key, gid∗,v(0), (i∗,⊥, 0)) ≈c SplEnc(key, gid∗,v(1), (i∗,⊥
, 0)) if all the secret keys associated to (i ≥ i∗, id, gid∗,u) satisfy the condition
⟨v(0),u⟩ = ⟨v(1),u⟩.

We call an EIPL-IBIPFE selectively/adaptively secure subject to the selection of the challenge
tuple (gid∗,v(0),v(1)) by an adversary before/after the setup and pre-ciphertext key queries.
The above security properties of EIPL-IBIPFE facilitates revealing a traitor’s identity in
a bit-by-bit manner. The role of a special encryption algorithm is similar to that of the
indexed-encryption algorithm of [BSW06] except it provides an additional feature that
disables the decryption ability of users upon a single bit of the identity. In more detail,
the tracing mechanism follows a two-step process:

1. Index tracing. The first step is similar to the usual Pl-BE or EIPL-BE [BSW06,
GKW19], where the indices of dishonest users’ are traced. Formally, for each
indices i ∈ [n + 1], it finds the probability p̂ind

i of the decoder box for successfully
decrypting special encryptions to the tuple (i,⊥, 0). It outputs Index = {i ∈ [n+ 1] :
p̂ind
i and p̂ind

i+1 are noticeably far}.

2. Identity tracing. The second step is a sub-search technique which is performed to
trace the identity for each i ∈ Index. It checks whether the ℓ-th bit in a (possibly)
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traitor’s identity is zero or one for all index positions ℓ ∈ [k]. Formally, for each
i ∈ Index, and ℓ ∈ [k], it finds the probability q̂id

i,ℓ of the decoder box for successfully
decrypting special encryptions to the tuple (i, ℓ, 0).

Finally, for each ℓ ∈ [k], it sets idℓ = 0 if p̂ind
i and q̂id

i,ℓ are noticeably far; otherwise 1.
The index tracing phase identifies the possible indices of traitors using the index-hiding
property. In the second step, the lower identity-hiding and the upper identity-hiding
properties ensure that estimated q̂id

i,ℓ is either close to p̂ind
i or p̂ind

i+1, which indeed enables it
to extract the correct bit of idℓ with high probability.

Although the high-level tracing mechanism of EI-TIBIPFE proceeds similar to GKW-TT,
it is actually more technically involved than GKW-TT since we need to identify the traitors
belonging to a certain group. From the lens of EI-TIBIPFE, it can be seen that GKW-TT
has only a single group of users (or a single broadcaster) in the system whereas we deal
with multiple group of users (or multiple broadcasters) and the adversary is allowed to
query secret keys of users belonging to different groups. We formalize the above security
properties of EIPL-IBIPFE in order to efficiently trace the traitors from different groups.

2.3 EIPL-IBIPFE from pairing
The generic construction discussed above is not a desirable solution as the ciphertext

size linearly grows with the number of users in the system. In search of a more efficient
solution, we investigate a non-generic group based construction of EIPL-IBIPFE.

Our starting point is the pairing-based EIPL-BE scheme by Goyal et al. [GKW19],
which is built upon the PL-BE scheme by Boneh et al. [BSW06]. Let us fix a few notations.
For an element g of the group G of order N = p · q (where p, q are the primes) and a vector
a = (a1, . . . , am), we denote (ga1 , . . . , gam) by ga. For two vectors a and b, we denote
ga · b = g⟨a,b⟩. Let e : G×G → GT be a bilinear map, and Gp,Gq be the subgroups of
G of orders p and q respectively. Suppose, there are n parties indexing each by i ∈ [n]
which is represented as a pair (x, y) ∈ [

√
n] × [

√
n]. The components associated to x, y

are called the row-specific and column-specific components of i respectively. We say that
i1 ≡ (x1, y1) > i2 ≡ (x2, y2) if either x1 > x2 or (x1 = x2 ∧ y1 > y2).

First step: A simple version without group-identity. As first step, we consider
a simpler situation where the group identity is absent. That is, we first try to build a
pairing-based EIPL-IPFE which will eventually lead to an EI-TIPFE scheme. The EIPL-BE
of GKW-TT considers two PL-BE-subsystems of Boneh et al. [BSW06] for each bit of the
identity, in total, there are 2k such subsystems. While all the subsystems share the same
set of row-specific randomness {αx, rx} associated to x, each of it possesses an individual
and independently sampled column-specific random value {cy =

∑
ℓ cy,ℓ,b} so that the key

generation algorithm can select an appropriate and different cy value for each identity id.
This prevents mixing terms of different secret keys to create a hybrid key. Inspired from
this approach, we carefully upgrade the system of EIPL-BE to make it capable of encrypting
vectors v ∈ Zmq instead of a single integer. More specifically, for each component of v, we
consider 2k PL-BE-subsystems of [BW06], in total, there are 2km such subsystems. In our
EIPL-IPFE, all the subsystems share a set of row-specific random vectors {αx, rx} and each
of it is linked to an independent column-specific random value cy. Since our goal is to build
a selectively secure EIPL-IBIPFE, in this technical overview for the shake of simplicity, we
discuss our EIPL-IPFE with selective security which is based on the selectively secure IPFE
of Abdalla et al. [ABCP15]. We present our adaptively secure EIPL-IPFE. The EIPL-IPFE
is described as follows:

• The setup samples mpk and msk using the following procedure where the components
are written according to their role in the scheme:

– General components: This component is used to blind secret key and linking
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together the message-embedding and id-specific components during decryption.
Explicitly, we sample β ← ZN and include Eq = gβq in mpk.

– Row-specific components: To encrypt the message vector at each row posi-
tion, the row-specific components are used during encryption. Concretely, we
sampleαx, rx ← ZmN and computeEq,x = (gβrx,j

q )j∈[m],Gq,x = (e(gq, gq)βαx,j )j∈[m],
Ex = (grx,j )j∈[m], Gx = (e(g, g)αx,j )j∈[m].

– Column-specific components: These components are used to embed id-
specific components into the ciphertext. We sample cy,ℓ,b ← ZN and compute
Hy,ℓ,b = gcy,ℓ,b .

Collecting all the components together, we set mpk (= key) and msk as

mpk =
(

Eq︸︷︷︸
general

components

,

 Ex, Gx,

Eq,x, Gq,x


x︸ ︷︷ ︸

row-specific
components

,
{
Hy,ℓ,b

}
y,ℓ,b︸ ︷︷ ︸

column-specific
components

)
,msk =

 {αx, rx}x
{cy,ℓ,b}y,ℓ,b

 .

• The user secret key associated to the tuple (i, id,u) is set as follows:

K1 = g
⟨αx,u⟩+⟨rx,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ where i ≡ (x, y)

• To encrypt the message vector v to an index-position-bit tuple (i∗ ≡ (x∗, y∗),
ℓ∗, b∗) using the tracing key key = mpk, the encryptor samples t, sx ← ZN and
compute:

– Row-specific components: The components are categorized according to
x > x∗, x = x∗ and x < x∗ as follows:
For x > x∗:

1. Linking component: Rx = Esx
q,x.

2. Message-embedding components: Ix = e(gq, gq)v ·Gsxt
q,x , Ax = Esxt

q .

For x = x∗:
1. Linking component: Rx = Esx

x .
2. Message-embedding components: Ix = e(gq, gq)v ·Gsxt

x , Ax = gsxt.
For x < x∗: The linking components Ax and message-embedding components
Ix,Rx are randomly chosen from G and Gm respectively.

– Column-specific components: The column components are id-specific com-
ponents which are sampled based on a restriction over y, ℓ, b as follows:
For (y > y∗) or ((y = y∗) ∧ (ℓ, b) ̸= (ℓ∗, b∗)): Cy,ℓ,b = Ht

y,ℓ,b

Otherwise: Cy,ℓ,b = Ht
y,ℓ,b · hp where hp ← Gp.

Putting all the components together, we finally get the ciphertext

ctv = ({Rx, Ix, Ax}x, {Cy,ℓ,b}y,ℓ,b)

The normal encryption is the same as special encryption when run with (i∗, ℓ∗, b∗) =
(1,⊥, 0).

• Recall that the successful decryption occurs when the relation R (say) defined as
i > i∗ or (i = i∗ ∧ ℓ∗ =⊥) or (i = i∗ ∧ idℓ∗ = 1− b∗) between (i, id) of secret key and
(i∗, ℓ∗, b∗) of the ciphertext holds.
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– Checking the relation R: If i > i∗ then either x > x∗ or x = x∗ ∧ y > y∗

holds. To check if the relation R holds, we compute the following term:

Rcheck =
e(Rx,

∏
ℓ∈[k] C

u
y,ℓ,idℓ

)
e(K1, Ax) =

{
(e(gq, gq)βsxt⟨αx,u⟩)−1 if x > x∗

(e(g, g)sxt⟨αx,u⟩)−1 if x = x∗

Finally, we compute ⟨u,v⟩ = loge(gq,gq) ((Ix · u) · Rcheck) where

Ix · u =
{
e(gq, gq)⟨u,v⟩ · e(gq, gq)βsxt⟨αx,u⟩ if x > x∗

e(gq, gq)⟨u,v⟩ · e(g, g)sxt⟨αx,u⟩ if x = x∗

The normal-hiding security directly follows from the construction of the EIPL-IPFE scheme.
The main intuition behind the index-hiding security proof is that if an adversary does not
have a secret key for the index i∗ = (x∗, y∗) then the factor of Cy∗,ℓ,b which belongs to
Gp can be chosen undetectably, added, and removed. Similar techniques are used while
proving the lower identity-hiding and upper identity-hiding security of the scheme. In the
message-hiding security, an adversary can not distinguish between the special encryption
of the challenge vectors v(0),v(1) to the index-position-bit tuple (i∗ = (x∗, y∗),⊥, 0) with
the restriction that the adversary is allowed to query secret keys for i ≥ i∗ satisfying
⟨v(0),u⟩ = ⟨v(1),u⟩. For each index-factor x ∈ [

√
n], there is an IPFE system encrypting the

message vector in the target group GT . Hence, one can hope to prove the message-hiding
security using the technique of [ALS16]. Finally, we note that the size of the ciphertext
grows linearly with

√
n and

√
k, similar to previous TT schemes [BSW06, GKW19].

From EIPL-IPFE to EIPL-IBIPFE. Next, our aim is to upgrade the system into a more
advanced one where a user’s secret key is additionally associated with a group identity
gid and decryption is successful only when the underlying message is encrypted under the
same gid. In particular, we try to build EIPL-IBIPFE which provides more finer access
control than EIPL-IPFE. A natural first attempt is to generically construct EIPL-IBIPFE
from EIPL-IPFE and an IBE scheme. However, any such attempt would fail to provide
the message-hiding security due to common mix and match attacks [ACGU20]. More
specifically, a mixed secret key obtained by combining an authorized IBE key with an
unauthorized EIPL-IPFE key can be used to decrypt an undesirable ciphertext. Thus, it is
advisable to build such a scheme in a non-generic manner.

We see that the above construction of EIPL-IPFE (or EIPL-BE [GKW19]) encrypts the
message in the target group. Thus, one needs to have an IBIPFE scheme based on a target
group assumption so that it is well fitted into our EIPL-IPFE system. However, all known
pairing-based IBIPFE schemes [AGT21, ACGU20] are based on dual system encryption
mechanisms and hence naturally depend on various source group assumptions (such as
subgroup decision assumptions). Therefore, our next step is to construct an IBIPFE scheme
based on the plain DBDH assumption.

Second Step: A DBDH-based IBIPFE. Our starting point is the Water’s IBE [Wat05]
based on the plain DBDH assumption in the standard model. We upgrade their scheme in a
natural way to enable encrypting vectors under a given identity. Although the construction
is simple, it is an interesting extension of [Wat05] and motivates to build primitives like
attribute-based IPFE from target-group-based assumptions in future.

– To compute the master keys, we sample g, g2, u
′ ← G, u = (ui) ← Gk′ , ψ ← Zmp

and set g1 = gψ, g2 = gψ2 and output mpk = (g1, g2, u
′,u, g),msk = g2.

• To generate a secret key corresponding to (gid,y), we first define V = {i ∈ [k′] :
gidi = 1} and set H(gid) = u′

∏
i∈V ui ∈ G. Then, we sample r ← Zp and output the

secret key as sky = (d1 = g
⟨ψ,y⟩
2 ·H(gid)r, d2 = gr).
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• To encrypt a message vector x with respect to a group-identity gid′, we first sample
t← Zp and then output the ciphertext as ctx = (C1 = e(g, g2)ψt+x, C2 = gt, C3 =
H(gid′)t).

• In decryption phase, if gid = gid′, outputs ⟨x,y⟩ = (C1 · y) · e(d2,C3)
e(d1,C2) .

At a very high level, for proving the indistinguishability security of the above IBIPFE, we
partially rely on the ideas of [AGT21] where they use dual system encryption techniques to
prove the security of their attribute-based IPFE scheme based on source group assumptions.
However, we aim to prove security based on the plain DBDH assumption, and there is no
known way to use dual system encryption methodologies in a prime-order group-based
construction. We consider a different approach. Suppose that the challenge message vec-
tors are x(0), x(1) and the challenge identity is gid∗. The reduction begins by sampling a
random orthogonal (full rank) matrix F satisfying the condition F ·(x(0)−x(1)) = e1 where
e1 is the first canonical basis vector. Accordingly the master key component α is switched
to F⊤α̃. As the full rank matrix F is chosen uniformly at random, this transformation
is statistically indistinguishable to the adversary’s view. We observe that the challenge
vectors are used in this hybrid to generate the master key pairs. Hence, we consider
the selective security model where the adversary is restricted to submit the challenge
messages before seeing any public parameter of the system. In the next hybrid, we use the
DBDH assumption in order to hide the information of the challenge bit. Given a DBDH
instance (ga, gb, gc, gabcT ), we can extend the group elements into vectors as ga, gb, gc where
a = (a, a2, . . . , am), b = (b, . . . , b), c = (c, . . . , c). It allows us to embed the DBDH-instance
into the master keys. In the secret key query phase, we define identity encoding functions
based on gid∗ (similar to [Wat05]) to correctly simulate the accepting and non-accepting
key queries. Finally, to simulate the challenge ciphertext we implicitly set g2 = gb and
t = c so that ciphertext component C1 transforms to e(g, g)F⊤·(w−bbe1+bFx(0)) due to the
choice of F, where w represents the component wise multiplication of the vectors a, b and
c. Now, observe that the challenge bit b only occurs in the first entry of (w−bbe1 +bFx(0))
and at the same time the DBDH-challenge element abc is encoded in the first entry of w.
Hence, the security of our IBIPFE follows from the plain DBDH assumption. In Appendix
C, we give the full security analysis with selective identity for simplicity of exposition,
however, we are hopeful that using the techniques of [Wat05, BR09] one can prove the
security with adaptive identity.
Third Step: A combination of our EIPL-IPFE and IBIPFE. The next and final step
towards the goal of achieving EIPL-IBIPFE is to combine the techniques of our EIPL-IPFE
and IBIPFE. Recall that, in EIPL-IBIPFE, the users are linked with different group identities.
Therefore, the secret key of a user is now associated with a tuple of the form (i, id, gid,u).
A trivial combination of a secret key of EIPL-IPFE (which corresponds to the tuple (i, id,u))
and a secret key of IBIPFE (which corresponds to the tuple (gid,u)) takes the form

K1 = g
⟨αx,u⟩+⟨rx,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ︸ ︷︷ ︸
(i,id)-specific key component

, K2 = f ⟨ψx,u⟩H(gid)r̃,K3 = gr̃︸ ︷︷ ︸
gid-specific key component

where r̃ ← Zp,ψx ← Zmp . However, such a combined key would lead to a mix-and-
match attack. For example, given secret keys ski,id,gid = (K1,K2,K3) for (i, id, gid,u)
and ski′,id′,gid′ = (K ′1,K ′2,K ′3) for (i′, id′, gid′,u), an adversary can easily construct a new
legitimate secret key ski,id,gid′ = (K1,K

′
2,K

′
3) for the tuple (i, id, gid′,u) which may lead

to an attack to the system. This is because in the index-hiding security experiment of
EIPL-IBIPFE we allow secret key queries for all tuples but (i∗, id, gid∗,u). Therefore, the
adversary can query secret keys ski∗,id,gid ̸=gid∗ , ski ̸=i∗,id,gid∗ and compute a new secret key
ski∗,id,gid∗ which can be used against the index-hiding security experiment.

To this end, we device a binding randomization mechanism that prevents this mix-and-
match attack. More specifically, we sample a random element r̂ from the underlying ring
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to bind the (i, id)-specific and gid-specific key components as follows:

K1 = g
⟨αx,u⟩+r̂⟨rx,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ︸ ︷︷ ︸
(i,id)-specific key component

, K2 = f ⟨ψx,u⟩H(gid)r̃·̂r,K3 = gr̃·̂r︸ ︷︷ ︸
gid-specific key component

Note that, the binding randomness r̂ also plays the role of binding ciphertext components
of EIPL-IPFE and IBIPFE during encryption. Thus, the binding randomness is also required
in the generation of master public key of the system.

At the time encryption, the message vector v is encrypted under a group identity gid′.
The encoding H(gid′) appears in both the groups G and Gq. Thus, we can not directly
use the encryption mechanism of our IBIPFE for designing the encryption algorithm of
EIPL-IBIPFE. To overcome this obstacle, we define a projection Hq of the group-identity-
encoding function H into the subgroup Gq of G as follows:

Given group elements: ϑ′p, {ϑp,i}i∈[k′], ϑ
′
q, {ϑq,i}i∈[k′] with ϑ′ = ϑ′pϑ

′
q, ϑi = ϑp,iϑq,i

define: H(gid) = ϑ′
∏
i∈V

ϑi, Hq(gid) = ϑ′q
∏
i∈V

ϑq,i

where V = {i ∈ [k′] : gidi = 1}. Equipped with this ideas, we describe our EIPL-IBIPFE as
follows.

• The setup samples mpk and msk using the following procedure where the components
are written according to their role in the scheme:

– General components: This component is used to blind secret key and linking
together the message-embedding, id-specific and gid-specific components during
decryption. Explicitly, we samples β ← ZN and include Eq = gβq in mpk.

– Row-specific components: We sample αx,ψx, rx ← ZmN , r̂ ← ZN and com-
puteEq,x = (gβr̂rx,j

q )j∈[m],Gq,x = (e(gq, gq)βαx,j )j∈[m],Wq,x = (e(fq, gq)βψx,j )j∈[m],
Ex = (gr̂rx,j )j∈[m], Gx = (e(g, g)αx,j )j∈[m], Wx = (e(f, g)ψx,j )j∈[m].

– Column-specific components: We sample cy,ℓ,b ← ZN and compute Hy,ℓ,b =
gcy,ℓ,b .

– gid-specific components: These components are used in the gid-encoding func-
tions H and Hq to embed gid-specific components in the ciphertext. We sample
ϑ′p ← Gp, ϑ′q ← Gq,ϑp ← Gk′

p , ϑq ← Gk′

q and set ϑ′ = ϑ′pϑ
′
q,ϑ = (ϑp,iϑq,i)i∈[k′].

Collecting all the components together, we set mpk (= key) and msk as
mpk =

(
Eq︸︷︷︸

general
components

,

{
Ex, Gx, Wx

Eq,x, Gq,x, Wq,x

}
x︸ ︷︷ ︸

row-specific
components

,

(
ϑ′, ϑ

′β
q ,

ϑ, {ϑβ
q,i
}i

)
︸ ︷︷ ︸

gid-specific
components

,
{
Hy,ℓ,b

}
y,ℓ,b︸ ︷︷ ︸

column-specific
components

)
; msk =

(
{αx, rx,ψx}x

r̂, {cy,ℓ,b}y,ℓ,b

)
.

• The user secret key associated to the tuple (i, id, gid,u) is set as

K1 = g
⟨αx,u⟩+r̂⟨rx,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ︸ ︷︷ ︸
(i, id)-specific key component

, K2 = f ⟨ψx,u⟩H(gid)r,K3 = gr︸ ︷︷ ︸
gid-specific key components

where i ≡ (x, y), r̃ ← ZN and r = r̂ · r̃.
• To encrypt the message vector v under an index-position-bit tuple (i∗ ≡ (x∗, y∗), ℓ∗, b∗)

and a group identity gid′ using the tracing key key(= mpk), the encryptor samples
t, sx ← ZN and compute:

– Row-specific components: The components are categorized according to
x > x∗, x = x∗ and x < x∗ as follows:
For x > x∗:
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1. Linking component: Rx = Esx
q,x.

2. gid-specific component: Bx = Hq(gid′)βsxt.
3. Message-embedding components: Ix = e(gq, gq)v ·Gsxt

q,x ·W sxt
q,x , Ax = Esxt

q .
For x = x∗:

1. Linking component: Rx = Esx
x .

2. gid-specific component: Bx = H(gid′)sxt.
3. Message-embedding components: Ix = e(gq, gq)v ·Gsxt

x ·W sxt
x , Ax = gsxt.

For x < x∗: The linking components Ax, gid-specific components Bx and
message-embedding components Ix,Rx are randomly chosen from G and Gm
respectively.

– Column-specific components: The column components or id-specific compo-
nents are sampled based on a restriction over y, ℓ, b as follows:
For (y > y∗) or ((y = y∗) ∧ (ℓ, b) ̸= (ℓ∗, b∗)): Cy,ℓ,b = Ht

y,ℓ,b.
Otherwise: Cy,ℓ,b = Ht

y,ℓ,b · hp where hp ← Gp.
Putting all the components together, we finally get the ciphertext

ctv = ({Rx, Bx, Ix, Ax}x, {Cy,ℓ,b}y,ℓ,b) .

The normal encryption is the same as special encryption when run with (i∗, ℓ∗, b∗) =
(1,⊥, 0).

• Recall that, the successful decryption occurs when both the relations R (say) defined
as i > i∗ or (i = i∗ ∧ ℓ∗ =⊥) or (i = i∗ ∧ idℓ∗ = 1 − b∗) and R′ (say) defined as
gid = gid′ between (i, id, gid) of secret key and (gid′, (i∗, ℓ∗, b∗)) of the ciphertext
hold.

– Checking the relation R: To check the relation R holds, we compute the
following term:

Rcheck =
e(Rx,

∏
ℓ∈[k] C

u
y,ℓ,idℓ

)
e(K1, Ax) =

{
(e(gq, gq)βsxt⟨αx,u⟩)−1 if x > x∗

(e(g, g)sxt⟨αx,u⟩)−1 if x = x∗

– Checking the relation R′: To check the relation R′ holds, we compute the
following term:

R′check = e(K3, Bx)
e(K2, Ax) =

{
(e(fq, gq)βsxt⟨ψx,u⟩)−1 if x > x∗

(e(f, g)sxt⟨ψx,u⟩)−1 if x = x∗

Finally, we compute ⟨u,v⟩ = loge(gq,gq) ((Ix · u) · Rcheck · R′check) where

Ix · u =
{
e(gq, gq)⟨u,v⟩ · e(gq, gq)βsxt⟨αx,u⟩ · e(fq, gq)βsxt⟨ψx,u⟩ if x > x∗

e(gq, gq)⟨u,v⟩ · e(g, g)sxt⟨αx,u⟩ · e(f, g)sxt⟨ψx,u⟩ if x = x∗

We consider selective security for our EIPL-IBIPFE where the adversary submits both
the challenge message vectors and the challenge group identity before receiving any public
parameter of the system. The security analysis is more involved and challenging in
EIPL-IBIPFE. For instance, the index-hiding security game of EIPL-IPFE (or EIPL-BE of
[GKW19]) does not allow an adversary A to query a secret key for the challenge index
i∗, however, it is not the same for EIPL-IBIPFE. In this case, A can ask for a secret
key associated to the tuple (i∗, id, gid ̸= gid∗) where gid∗ is the challenge group identity.
The binding randomness plays an important role in simulating the additional secret keys
associated to the tuples of the form (i∗, id, gid ≠ gid∗). In particular, we introduce a new
modified version of D3DH assumption and crucially embed some parts of the instance into
the binding randomness r̂ to simulate the additional keys. We show the generic security of
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our modified D3DH assumption in Section 3.1. On the other hand, the message-hiding
security is proved utilizing the techniques that we devise while proving the security of
IBIPFE. However, we need to rely on the D3DH assumption and extend the proof techniques
of IBIPFE from prime-order group to composite-order group setting to make it compatible
with the system of EIPL-IBIPFE. Although the top-level idea is inspired from the proof
analysis of [GKW19], we can not directly use their techniques because our EIPL-IBIPFE
provides more finer access control and the adversary is more powerful in the sense that it
is entitled to query secret keys decrypting the challenge ciphertext. The complete security
analysis is given in Section 7.2.

3 Preliminaries
Notations. Let λ ∈ N be a security parameter and poly(λ) be a polynomial in λ. For a
prime p, let Zp denotes the field Z/pZ. For a set S, we use the notation s← S to indicate
the fact that s is sampled uniformly at random from a finite set S. We write x← X to
denote that the element x is sampled at random according to the distribution X . For any
natural number n, [n] denotes the set {1, 2, . . . , n}. We use a bold lower-case letter e.g., a
to denote a vector, and a bold upper-case letter e.g., A denotes a matrix. The i-th element
of the vector a is expressed as ai, and (i, j)-th element of a matrix A is represented by ai,j .
The transpose of a matrix A is denoted by A⊤. Let u,v ∈ Zm, then the inner product
between the vectors is defined as ⟨u,v⟩ =

∑m
i=1 uivi ∈ Z. A function negl : N → R is

said to be negligible if for all c ∈ N there exists a λc ∈ N such that negl(λ) ≤ 1
λc

for all
λ > λc. An algorithm A is said to be a probabilistic polynomial time (PPT) algorithm if
it is modeled as a probabilistic Turing machine that runs in time poly(λ). If for any PPT
adversary A such that |Pr[A(1λ, X) = 1]− Pr[A(1λ, Y ) = 1]| is negligible in λ, then we
say that the two distributions are indistinguishable, denoted by X ≈ Y.

3.1 Complexity Assumptions
Let BG = (p, q,N,G,GT , g, e(·, ·))← GBG.Gen(1λ) be a bilinear group with composite-order
N = p · q where p, q be two prime integers. We define a series of source and target
group-based assumptions [BSW06, GKW19] that are required for proving security of our
pairing-based schemes.

Assumption 1 (Decisional 3-party Diffie-Hellman). (D3DH)[BSW06]. For every PPT
adversary A, there exists a negligible function negl(·) such that

Pr

A
 BG, gq, gp
gaq , g

b
q, g

c
q, Tb

 = b :
BG; gp ← Gp; gq ← Gq; a, b, c, r ← Zq;

T0 = gabcq ;T1 = grq ; b← {0, 1}

 ≤ 1
2 + negl(λ)

Assumption 2 (Modified-1 Decisional 3-party Diffie-Hellman). (modified-1 D3DH). For
every PPT adversary A, there exists a negligible function negl(·) such that

Pr

A

BG, gp, gq, gap , gbp,

gcp, g
b2

p , g
b3

p , g
b4

p

gb
2c
p , gb

3c
p , Tb

 = b :
BG; gp ← Gp; gq ← Gq; a, b, c, r ← Zp;

T0 = gabcp ;T1 = grp; b← {0, 1}

 ≤ 1
2 + negl(λ)

We prove the generic security of this assumption in the following.

Assumption 3 (Modified-2 Decisional 3-party Diffie-Hellman). (modified-2 D3DH)
[BW06, GKW19]. For every PPT adversary A, there exists a negligible function negl(·)
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such that

Pr

A
BG, gp, gq, gap , gbp,

gcp, g
b2

p , Tb

 = b :
BG; gp ← Gp; gq ← Gq; a, b, c, r ← Zp;

T0 = gabcp ;T1 = grp; b← {0, 1}

 ≤ 1
2 + negl(λ)

This assumption is exactly identical with the modified D3DH assumption of Goyal et
al. [GKW19].

Assumption 4 ((Plain) Decisional Bilinear Diffie-Hellman). (DBDH)[Wat05]. For every
PPT adversary A, there exists a negligible function negl(·) such that

Pr

A
BG, g, ga, gb,

gc, Tb

 = b :
BG; g ← G; a, b, c, r ← ZN ;

T0 = e(g, g)abc;T1 = e(g, g)r; b← {0, 1}

 ≤ 1
2 + negl(λ)

Assumption 5 (Diffie-Hellman Sub-group Decisional). (DHSD) [GKW19]. For every
PPT adversary A, there exists a negligible function negl(·) such that

Pr

A
BG, g, h, gp, gq, gaq , haq ,

gbgcp, h
b, Tb

 = b :

BG; g = gpgq;h = hphq;
gp, hp ← Gp; gq, hq ← Gq;

a, b, c← ZN ;
T0 ← Gq;T1 ← G; b← {0, 1}

 ≤
1
2 + negl(λ)

Assumption 6 (Bilinear Sub-group Decisional). (BSD) [BW06, BSW06, GKW19]. For
every PPT adversary A, there exists a negligible function negl(·) such that

Pr

A
BG, g, gp, gq,

e(Tb, g)

 = b :
BG; g = gpgq;h = hphq;
gp ← Gp; gq ← Gq; g ← G;
T0 ← Gp;T1 ← G; b← {0, 1}

 ≤ 1
2 + negl(λ)

Assumption 7 (Relaxed 3-party Diffie-Hellman). (R3DH) [GKW19]. For every PPT
adversary A, there exists a negligible function negl(·) such that

Pr

A
 BG, g, gp, gq,

gaq , g
ã
pg
a2

q , g
ãc̃
p , g

c̃
pg
c
q, Tb

 = b :
BG; gp ← Gp; gq ← Gq;
ã, c̃← Zp; a, c← Zq;

T0 = ga
2c
q ;T1 ← Gq; b← {0, 1}

 ≤ 1
2 + negl(λ)

Generic Security of Assumption 2: We used two D3DH types assumption which
we call modified-1 D3DH and modified-2 D3DH. Note that, modified-2 is exactly the same
assumption that Goyal et al. [GKW19] used in their bilinear group-based EIPL-BE security
whereas our modified-1 D3DH assumption is a slight modification of modified-2 D3DH.
It is easy to show that our modified-1 D3DH assumption is secure in the generic group
model (GGM) using the techniques of Boneh et al. [BBG05]. We emphasize that all the
well-known group-based assumptions (e.g., DDH, DBDH, D3DH etc.) are proven secure in
GGM only. We do not find any immediate attack on our assumption against a non-generic
adversary. To show the security of modified-2 D3DH in GGM, we use the following Lemma
1 and Definition 1 of [BBG05].

Definition 1. [BBG05] Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polyno-
mials over Fp. Consider P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) with p1 = q1 = 1. We
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say that a polynomial f ∈ Fp[X1, ·, Xn] is dependent on the sets (P,Q) if there exist s2 + s
constants {ai,j}si,j=1, {bk}sk=1 such that

f =
s∑

i,j=1
ai,jpipj +

s∑
k=1

bkqk

Note that, f is independent of (P,Q) if f is not dependent on (P,Q). For a polynomial
f ∈ Fp[X1, . . . , Xn]s, let df denotes the total degree of f . For a set P ⊆ Fp[X1, . . . , Xn]s
consider dP = max{df : f ∈ P}.

Lemma 1. [BBG05] Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials
over Fp and let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df ). If f is independent
of (P,Q) then any PPT adversary A that has advantage 1/2 in solving the decision
(P,Q, f)-Diffie-Hellman Problem in a generic bilinear group G must take time at least
Ω(
√
p/d− s).

Theorem 2. Using n-variate polynomials of P,Q and f as per Definition 1, our modified-1
D3DH assumption 2 is secure in GGM as per Lemma 1.

Proof. We use Lemma 1 of Boneh et al. [BBG05] to prove that our modified-1 D3DH
assumption is secure in GGM. We consider the polynomials P,Q and f as:

P = (1, a, b, c, b2, b3, b4, b2c, b3c) = (pi)i; Q = (1); f = (abc)

We see that P contains s = 9 tuples. It is easy to see that there does not exist a set
of constants {xi,j , z} ⊂ Zp such that f =

∑s
i,j=1 xi,jpipj + z. Thus, f is independent

of (P,Q, f) according to the Definition 1. The maximum total degrees of P,Q, f are
dP = 4, dQ = 0, df = 3 and hence d = max(2dP , dQ, df ) = 8. Therefore, by Lemma 1, any
generic algorithm breaking the modified-1 D3DH assumption with advantage 1/2 must
take time at least Ω(

√
p/8− 9).

4 Definition: Embedded Identity Traceable IBIPFE
An EI-TIBIPFE for a message vector space Y = {Yλ}λ∈N, a predicate vector space
X = {Xλ}λ∈N, a user identity space ID = {{0, 1}k : k ∈ N}, a group identity space GID =
{{0, 1}k′ : k′ ∈ N} consists of five PPT algorithms EI-TIBIPFE = (Setup,KeyGen,Enc,Dec,
Trace). The details about these algorithms are given below.

• Setup(1λ, n, 1k, 1k′
, 1m) → (msk,mpk, key): The trusted authority takes as input the

security parameter λ, an index n, a user identity space parameter k, a group identity space
parameter k′, a vector length parameter m and generates the master secret key msk, a
master public key mpk, and a tracing key key.

• KeyGen(msk, i, id, gid,u)→ sku: On input the master secret key msk, user index i ∈ [n],
a user identity id ∈ {0, 1}k, a group identity gid ∈ {0, 1}k′ , and a vector u ∈ Zm, the
trusted authority outputs a secret key sku.

• Enc(mpk, gid′,v) → ctv: The encryption algorithm takes input the master public key
mpk, a group identity gid′ ∈ {0, 1}k′ , a message vector v ∈ Zm, and produces a ciphertext
ctv.

• Dec(sku, ctv) → ζ/⊥: The decryption algorithm is run by taking input a secret key
sku and a ciphertext ctv. It either outputs a decrypted value ζ or a symbol ⊥ indicating
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decryption failure.

• TraceDu(key, 1
1

ϵ(λ) , gid,u,v(0),v(1))→ T : This algorithm has oracle access to a program
Du associated with the vector u, it takes as input the tracing key key, a group identity
gid, the predicate vector u, two message vectors v(0), v(1) and outputs a set of identities
T ⊆ {0, 1}k. We call the tracing as public or private depending on whether key is equal to
mpk or it is kept secret.

• Correctness. An EI-TIBIPFE = (Setup, KeyGen, Enc, Dec, Trace) scheme is said to be
correct if for all λ, n, k, k′,m ∈ N, i ∈ [n], id ∈ {0, 1}k, gid ∈ {0, 1}k′ and v,u ∈ Zm, there
exists a negligible function negl satisfying gid = gid′ such that the following holds,

Pr

 (msk,mpk)← Setup(1λ, n, 1k, 1k′
, 1m)

Dec(sku, ctv) = ⟨u,v⟩ : sku ← KeyGen(msk, i, id, gid,u)
ctv ← Enc(mpk, gid,v)

 ≥ 1− negl(λ)

where the probability is taken over random coins of Setup,KeyGen and Enc of EI-TIBIPFE.
• Security. We define security notions of the EI-TIBIPFE as follows.

Definition 2 (Adaptive Security of EI-TIBIPFE). An EI-TIBIPFE is said to satisfy adaptive
indistinguishable-based (Adp-IND-CPA) security if for any security parameter λ ∈ N, any
PPT adversary A, there exists a negligible function negl such that the following holds:

Pr[ExptEI-TIBIPFE
A,Adp-IND-CPA(λ) = 1] ≤ 1

2 + negl(λ)

where the experiment ExptEI-TIBIPFE
A,Adp-IND-CPA(λ) is defined as follows:

1. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

2. (v(0),v(1), gid∗)← AKeyGen(msk,·,·,·,·)(mpk)

3. b← {0, 1}

4. ctv(b) ← Enc(mpk, gid∗,v(b))

5. b′ ← AKeyGen(msk,·,·,·,·)(ctv(b))

6. Output 1 if b = b′ else 0.

Figure 1: ExptEI-TIBIPFE
A,Adp-IND-CPA(λ)

In the experiment, all the key queries of A to the KeyGen oracle should be of form
(i, id, gid,u) with i ∈ [n], id ∈ {0, 1}k, gid ∈ {0, 1}k′ and if gid = gid∗ then ⟨u,v(0)⟩ =
⟨u,v(1)⟩ holds.

Remark 1 (Selective Security). We can similarly define the Sel-IND-CPA security of
EI-TIBIPFE (alike to Definition 9) where the adversary submits the challenge tuple
(v(0),v(1), gid∗) before it receives the public parameters.

Definition 3 (Security of Tracing). For any non-negligible function ϵ(·), polynomial p(·)
and for all PPT adversary A, consider the experiment ExptEI-TIBIPFE

A (λ) defined in Fig. 2.
The tracing security of the scheme EI-TIBIPFE = (Setup,KeyGen,Enc,Dec,Trace) is defined
as follows:
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1. (1n, 1k, 1k′
, 1m)← A(1λ)

2. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

3. (Du,u,v(0),v(1), gid∗)← AO(·)

4. T ← TraceDu(key, 1
1

ϵ(λ) , gid∗,u,v(0),v(1))

The oracle O(·) has the msk hardwired in it and on query (i, id, gid,u) the oracle runs
KeyGen(msk, i, id, gid,u) and sends the output iff the pair (i, gid) was not queried before,
otherwise it sends ⊥. Let SuID be the set of all users identities (id’s) queried by A associated
with the vector u. The above model defines the adaptive tracing security. In case of
selective tracing, A selects (v(0),v(1), gid∗) before setup and it outputs the decoder Du
after it queries some secret keys.

Figure 2: ExptEI-TIBIPFE
A (λ)

Based on the above experiment in Fig. 2, we define the following events and corresponding
probabilities.

• Good-Decoder: Pr[Du(ctv(b)) = b : b ← {0, 1}, ctv(b) ← Enc(mpk, gid∗,v(b))] ≥
1
2 + ϵ(λ), Pr -G-DA,ϵ,p(λ) = Pr[Good-Decoder ∧ p(λ) ≥ |SuID|].

• Cor-Tr: T ̸= ϕ ∧ T ⊆ SuID, Pr -Cor-TrA,ϵ,p(λ) = Pr[Cor-Tr].

• Fal-Tr: T ⊈ SuID, Pr -Fal-TrA,ϵ,p(λ) = Pr[Fal-Tr].

The EI-TIBIPFE is said to satisfy secure tracing if for any PPT adversary A, polynomial
q(λ) and non-negligible function ϵ(·), there exists negligible functions negl1, negl2 satisfying
ϵ(λ) > 1/q(λ) with the following conditions,

Pr -Fal-TrA,ϵ,p(λ) ≤ negl1, Pr -Cor-TrA,ϵ,p(λ) ≥ Pr -G-DA,ϵ,p(λ)− negl2.

Note that the notion of EI-TIPFE is a particular case of EI-TIBIPFE where we simply
ignore gid used in the syntax of EI-TIBIPFE.

Remark 2 (Many Target and Fully Collusion Resistance Security). Our many target
security allows the adversary to query polynomially many secret keys corresponding to
many functions. In particular, the adversary can create a pirate box D with many target
functions ui. In that case, the tracing algorithm TraceD(key, 1

1
ϵ(λ) , gid∗,ui,v(0),v(1)) can

be run for each ui to identify the traitors associated with many target functions. In
contrast, the tracing algorithm of [DPP20] is designed to trace traitors holding secret keys
corresponding to a single target function since the adversary can only ask a secret key for
a single vector u. Moreover, we achieve the same fully collusion resistance security for
our EI-TIBIPFE as defined by Boneh et al. [BSW06, BW06] for a normal traitor tracing
scheme which does not impose any bound on the number of secret key queries submitted
by the adversary (althought the total number of users is fixed during setup). This is an
important property to achieve for EI-TIBIPFE as a secret key for a user index i and a
function ui is additionally associated with a user identity id ∈ {0, 1}k and a group identity
gid ∈ {0, 1}k′ , which means there could be an exponential number of keys corresponding
to each user index. Our security model captures a powerful adversary that can query any
polynomial number of secret keys corresponding to each indices in the system, ensuring
fully collusion resistance security for EI-TIBIPFE.
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5 Definition: Embedded Identity Private Linear IBIPFE
An EIPL-IBIPFE for a message vector space Y = {Yλ}λ∈N, a predicate vector space X =
{Xλ}λ∈N, a user identity space ID = {{0, 1}k : k ∈ N} and a group identity space GID =
{{0, 1}k′ : k′ ∈ N} consists of five PPT algorithms EIPL-IBIPFE = (Setup,KeyGen,Enc,SplEnc,
Dec). The details about these algorithms are given below.

• Setup(1λ, n, 1k, 1k′
, 1m) → (msk,mpk, key): The trusted authority takes as input the

security parameter λ, the index space n, the user identity space parameter k, the group
identity space parameter k′, a vector length parameter m, and outputs a master secret
key msk, a master public key mpk and a key key.

• KeyGen(msk, i, id, gid,u)→ sku: On input the master secret key msk, an index i ∈ [n],
an user identity id ∈ {0, 1}k, a group identity gid ∈ {0, 1}k′ and a vector u ∈ Zm, the
trusted authority outputs a secret key sku.

• Enc(mpk, gid′,v)→ ctv: This algorithm is run by an encryptor by taking input as mpk,
a group identity gid′, a message vector v ∈ Zm and generates a ciphertext ctv associated
to the vector v.

• SplEnc(key, gid′,v, (i, ℓ, b))→ ctv: It outputs a ciphertext ctv by taking input a key key,
a group identity gid′, a message vector v ∈ Zm and index-position-bit tuple (i, ℓ, b) ∈
[n+ 1]× ([k] ∪ {⊥})× {0, 1}. If key = mpk, then EIPL-IBIPFE is called public key EIPL-
IBIPFE, else it is called private key EIPL-IBIPFE.

• Dec(sku, ctv)→ ζ/⊥: On input the secret key sku, the ciphertext ctv decryptor outputs
either a decrypted value ζ or a symbol ⊥ indicating failure.

• Correctness. An EIPL-IBIPFE = (Setup,KeyGen,Enc,SplEnc,Dec) scheme is said to be
correct if there exists negligible functions negl1, negl2 such that for all λ, n, k, k′,m ∈ N,
v ∈ Zm, i ∈ [n + 1], j ∈ [n], user identity id ∈ {0, 1}k, group identity gid ∈ {0, 1}k′

, ℓ ∈
([k] ∪ {⊥}), b ∈ {0, 1}, the following holds,

Pr

 (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

Dec(sku, ctv) = ⟨u,v⟩ : sku ← KeyGen(msk, j, id, gid,u)
ctv ← Enc(mpk, gid,v)

 ≥ 1− negl1(λ).

If (j ≥ i+ 1) ∨ (i, ℓ) = (j,⊥) ∨ (i, idℓ) = (j, 1− b) then the following holds,

Pr

 (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

Dec(sku, ctv) = ⟨u,v⟩ : sku ← KeyGen(msk, j, id, gid,u)
ctv ← SplEnc(key, gid,v, (i, ℓ, b))

 ≥ 1− negl2(λ).

Security. We now formalize the IND-CPA security notions of EIPL-IBIPFE. Let q(·) be a
fixed polynomial. The security definitions for EIPL-IBIPFE is a generalization from the
q-query security notions of EIPL-BE [GKW19] as given below.

Definition 4 (q-query Normal-Hiding Security). The EIPL-IBIPFE scheme is said to
satisfy q-query normal-hiding (NH) security if for any security parameter λ ∈ N, any PPT
adversary A, there exists a negligible function negl such that the following holds

Pr[ExptEIPL-IBIPFE
A,NH (λ) = 1] ≤ 1

2 + negl(λ)

where the experiment ExptEIPL-IBIPFE
A,NH (λ) is defined as follows:
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1. (1n, 1k, 1k′
, 1m)← A(1λ)

2. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

3. (gid∗,v)← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)
4. b← {0, 1};
5. ct(0)

v ← Enc(mpk, gid∗,v), ct(1)
v ← SplEnc(key, gid∗,v, (1,⊥, 0))

6. b′ ← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v )

7. Output 1 if b = b′ else 0.

Figure 3: ExptEIPL-IBIPFE
A,NH (λ)

In this experiment, A can make at most q(λ) queries to the SplEnc oracle of the form
(gid∗,v, (1, ℓ, γ)) and all the secret key queries of A to the KeyGen oracle should be of
distinct indices. That is, if A makes the queries (i1, id1, gid1,u1), (i2, id2, gid2,u2), . . . ,
(iκ, idκ, gidκ,uκ), then ia ̸= ib when a ̸= b for all a, b ∈ [κ].

Definition 5 (q-query Index-Hiding Security). The EIPL-IBIPFE scheme is said to satisfy
q-query index-hiding (IH) security if for any security parameter λ ∈ N, any PPT adversary
A, there exists a negligible function negl such that the following holds

Pr[ExptEIPL-IBIPFE
A,IH (λ) = 1] ≤ 1

2 + negl(λ)

where the experiment ExptEIPL-IBIPFE
A,IH (λ) is defined as follows:

1. (1n, 1k, 1k′
, 1m, i∗)← A(1λ)

2. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

3. (gid∗,v)← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)
4. b← {0, 1}
5. ct(0)

v ← SplEnc(key, gid∗,v, (i∗,⊥, 0)), ct(1)
v ← SplEnc(key, gid∗,v, (i∗ + 1,⊥, 0))

6. b′ ← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v )

7. Output 1 if b = b′ else 0.

Figure 4: ExptEIPL-IBIPFE
A,IH (λ)

In this experiment, A can make at most q(λ) queries to the SplEnc oracle of the form
(gid∗,v, (i, ℓ, γ)), where the index i must be equal to either i∗ or i∗ + 1. All the secret key
queries of A to the KeyGen oracle should be of distinct indices and should not be of the
form (i∗, id, gid∗,u). That is, if A makes the key queries (i1, id1, gid1, u1), (i2, id2, gid2,u2),
. . . , (iκ, idκ, gidκ,uκ), then ia ̸= ib when a ̸= b for every a, b ∈ [κ] and ia ̸= i∗ when
gida = gid∗ for every a ∈ [κ].

Definition 6 (q-query Lower Identity-Hiding Security). The EIPL-IBIPFE scheme is said
to satisfy q-query lower identity-hiding (LowIdH) security if for any security parameter
λ ∈ N, any PPT adversary A, there exists a negligible function negl such that the following
holds

Pr[ExptEIPL-IBIPFE
A,LowIdH (λ) = 1] ≤ 1

2 + negl(λ)

where the experiment ExptEIPL-IBIPFE
A,LowIdH (λ) is defined as follows:
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1. (1n, 1k, 1k′
, 1m, i∗, ℓ∗, b∗)← A(1λ)

2. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

3. (gid∗,v)← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)
4. b← {0, 1}
5. ct(0)

v ← SplEnc(key, gid∗,v, (i∗,⊥, 0)), ct(1)
v ← SplEnc(key, gid∗,v, (i∗, ℓ∗, b∗))

6. b′ ← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v )

7. Output 1 if b = b′ else 0.

Figure 5: ExptEIPL-IBIPFE
A,LowIdH (λ)

In this experiment, A can make at most q(λ) queries to the SplEnc oracle of the form
(gid∗,v, (i, ℓ, γ)), where the index i must be equal to i∗. All the secret key queries of A to
the KeyGen oracle should be of distinct indices and should not be of the form (i∗, id, gid∗,u)
such that idℓ∗ = b∗. That is, if A makes the key queries (i1, id1, gid1,u1), (i2, id2, gid2,u2),
. . . , (iκ, idκ, gidκ,uκ), then ia ̸= ib when a ̸= b for all a, b ∈ [κ] and ia ≠ i∗ or (ida)ℓ∗ ̸= b∗

when gida = gid∗ for all a ∈ [κ].

Definition 7 (q-query Upper Identity-Hiding Security). The EIPL-IBIPFE scheme is said
to satisfy q-query upper identity-hiding (UppIdH) security if for any security parameter
λ ∈ N, any PPT adversary A, there exists a negligible function negl such that the following
holds

Pr[ExptEIPL-IBIPFE
A,UppIdH (λ) = 1] ≤ 1

2 + negl(λ)

where the experiment ExptEIPL-IBIPFE
A,UppIdH (λ) is defined as follows:

1. (1n, 1k, 1k′
, 1m, i∗, ℓ∗, b∗)← A(1λ)

2. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

3. (gid∗,v)← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)
4. b← {0, 1}
5. ct(0)

v ← SplEnc(key, gid∗,v, (i∗ + 1,⊥, 0)), ct(1)
v ← SplEnc(key, gid∗,v, (i∗, ℓ∗, b∗))

6. b′ ← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v )

7. Output 1 if b = b′ else 0.

Figure 6: ExptEIPL-IBIPFE
A,UppIdH (λ)

In this experiment, A can make at most q(λ) queries to the SplEnc oracle of the form
(gid∗,v, (i, ℓ, γ)), where the index i must be equal to either i∗ or i∗ + 1. All the secret
key queries of A to the KeyGen oracle should be of distinct indices and should not be
of the form (i∗, id, gid∗,u) such that idℓ∗ = 1 − b∗. That is, if A makes the key queries
(i1, id1, gid1,u1), (i2, id2, gid2,u2), . . . , (iκ, idκ, gidκ,uκ), then ia ≠ ib when a ̸= b for all
a, b ∈ [κ] and ia ̸= i∗ or (ida)ℓ∗ ̸= 1− b∗ when gida = gid∗ for all a ∈ [κ].

Definition 8 (q-query Message-Hiding Security). The EIPL-IBIPFE scheme is said to
satisfy q-query message-hiding (MH) security if for any security parameter λ ∈ N, any
PPT adversary A, there exists a negligible function negl such that the following holds

Pr[ExptEIPL-IBIPFE
A,MH (λ) = 1] ≤ 1

2 + negl(λ)

where the experiment ExptEIPL-IBIPFE
A,MH (λ) is defined as follows:
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1. (1n, 1k, 1k′
, 1m, i∗)← A(1λ)

2. (msk,mpk, key)← Setup(1λ, n, 1k, 1k′
, 1m)

3. (v(0),v(1), gid∗)← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)
4. b← {0, 1}
5. ctv(b) ← SplEnc(key, gid∗,v(b), (i∗,⊥, 0))
6. b′ ← AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ctv(b))
7. Output 1 if b = b′ else 0.

Figure 7: ExptEIPL-IBIPFE
A,MH (λ)

In this experiment, A can make at most q(λ) queries to the SplEnc oracle of the form
(gid∗,v, (i, ℓ, γ)), where the index i must be equal to i∗. All the secret key queries of A
to the KeyGen oracle should be of distinct indices and the form of (i, id, gid∗,u) such that
i ≥ i∗ satisfying the condition ⟨u,v(0)⟩ = ⟨u,v(1)⟩ if gid = gid∗. That is, if A makes the
key queries (i1, id1, gid1,u1), (i2, id2, gid2,u2), . . . , (iκ, idκ, gidκ,uκ), then ia ̸= ib when
a ̸= b for every a, b ∈ [κ], and if ia ≥ i∗ and gida = gid∗ then ⟨u,v(0)⟩ = ⟨u,v(1)⟩ for any
a ∈ [κ].

Remark 3 (Selective Security). Note that, the above security notions are described as the
Adp-IND-CPA security model. In case of Sel-IND-CPA security model, A is restricted to
submit gid∗ before setup for Definitions 4 - 7 whereas A also submits the pair of message
vectors (v(0),v(1)) along with gid∗ before seeing any public parameters in Definition 8.

6 EI-TIBIPFE from EIPL-IBIPFE
Consider an EIPL-IBIPFE scheme EIPL-IBIPFE = EIPL-IBIPFE.(Setup,KeyGen,Enc,SplEnc,
Dec) for a message vector space Y = {Yλ}λ∈N, a predicate vector space X = {Xλ}λ∈N, a user
identity space ID = {{0, 1}k : k ∈ N} and a group identity space GID = {{0, 1}k′ : k′ ∈ N}.
In the following, we provide our EI-TIBIPFE scheme with the same message vector space,
user identity space, and group identity space. Depending on the special encryption
algorithm of the underlying EIPL-IBIPFE scheme, this generic construction of our EI-
TIBIPFE is called public or private EI-TIBIPFE.
• Setup(1λ, n, 1k, 1k′

, 1m) = EIPL-IBIPFE.Setup(1λ, n, 1k, 1k′
, 1m).

• KeyGen(msk, i, id, gid,u) = EIPL-IBIPFE.KeyGen(msk, i, id, gid,u).
• Enc(mpk, gid′,v) = EIPL-IBIPFE.Enc(mpk, gid′,v).
• Dec(sku, ctv) = EIPL-IBIPFE.Dec(sku, ctv).

• TraceDu(key, 1
1

ϵ(λ) , gid,u,v(0),v(1)): Consider the two algorithms Index-Trace and ID-
Trace defined in Fig. 8 and Fig. 9. First, the Index-Trace algorithm runs for each index
i ∈ [n] and find a collection of indices set T index such that the Index-Trace algorithm outputs
1 corresponds to these indices. Next, the ID-Trace algorithm runs on the index set T index,
and uses the decoder box to find the required identity of the particular indexed user. Next
the tracing algorithm runs ID-Trace algorithm for all indices i ∈ T index, and for each index
i where the ID-Trace algorithm does not output ⊥. The tracing algorithm adds the output
of ID-Trace algorithm to the identity-set of traitors T.

1. Set T index := ∅. For i = 1 to n.
– Compute (b, p, q)← Index-Trace(key, 1

1
ϵ(λ) , gid,u,v(0),v(1), i).

– If b = 1, set T index := T index ∪ {(i, p, q)}.
2. Set T := ∅. For (i, p, q) ∈ T index.

– Compute id← ID-Trace(key, 1
1

ϵ(λ) , gid,u,v(0),v(1), (i, p, q)).
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– Set T := T ∪ {id}.
3. Return T.

6.1 Correctness
This follows from the correctness of the underlying EIPL-IBIPFE = (Setup, KeyGen, Enc,
SplEnc, Dec) scheme. If gid = gid′, the decryptor correctly decrypts the ciphertext using a
legitimate secret key; otherwise, it returns ⊥.

Algorithm. Index-Trace(key, 1
1

ϵ(λ) , gid,u,v(0),v(1), i)

Inputs: Key key, parameter 1
ϵ(λ) , a group identity gid, a vector u, messages v(0), v(1), index i.

Output: 0/1
It sets N = λ · n/ϵ, count1 = count2 = 0. For j = 1 to N , it computes the following:

• Choose bj ← {0, 1} and compute ct1
v

(bj ) ← EIPL-IBIPFE.SplEnc(key, gid,v(bj ), (i,⊥, 0)) and send ct1
v

(bj )

to Du. Now Du outputs b′
j .

• If b′
j = bj then count1 = count1 + 1, else count1 = count1 − 1.

• Choose cj ← {0, 1} and compute ct2
v

(cj ) ← EIPL-IBIPFE.SplEnc(key, gid,v(cj ), (i + 1,⊥, 0)) and send

ct2
v

(cj ) to Du. Now Du outputs c′
j .

• If c′
j = cj then count2 = count2 + 1, else count2 = count2 − 1.

If count1−count2
N > ϵ

4n , output
(

1, count1
N ,

count2
N

)
, else output (0,⊥,⊥).

Figure 8: Index-Trace

Algorithm. ID-Trace(key, 1
1

ϵ(λ) , gid,u,v(0),v(1), (i, p, q))

Inputs: Key key, parameter 1
ϵ(λ) , a group identity gid, a vector u, message pair v(0), v(1), index i, probabilities

p, q.
Output: id ∈ {0, 1}k

It sets N = λ · n/ϵ, and countℓ = 0 for ℓ ∈ [k]. For ℓ = 1 to k, it proceeds as follows:
1. For j = 1 to N , it computes the following:

• Choose bj ← {0, 1} and compute ct1
v

(bj ) ← EIPL-IBIPFE.SplEnc(key, gid,v(bj ), (i, ℓ, 0)) and send

ct1
v

(bj ) to Du. Now Du outputs b′
j .

• If b′
j = bj then countℓ = countℓ + 1, else countℓ = countℓ − 1.

Next, let id be an empty string. For ℓ = 1 to k, do the following:

1. If p+q
2 >

countℓ
N , set idℓ = 0. Else set idℓ = 1.

Finally, output id.

Figure 9: ID-Trace

Security: We discuss the security analysis in Appendix B.

7 EIPL-IBIPFE from Pairings
Let us assume GBG.Gen be a bilinear group generator of a composite-order group with order
N = p · q where p, q be two prime integers. Similar to all previous group-based IPFE
constructions, we assume that the inner product value ⟨u,v⟩ belongs to a polynomial
range so that the decryptor can efficiently recover ⟨u,v⟩ via a discrete log computation at
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the end. In the following, we describe our EIPL-IBIPFE = (Setup,KeyGen,Enc,SplEnc,Dec)
scheme using pairings.

• Setup(1λ, n, 1k, 1k′
, 1m): The setup algorithm works as follows:

– Set ñ = ⌈
√

n
k ⌉ and n̂ = ⌈n

ñ
⌉.

– Sample a bilinear group BG = (p, q,N = pq,G,GT , e(·, ·))← GBG.Gen(1λ).
– Choose random generators gp, hp, fp ∈ Gp and gq, hq, fq ∈ Gq and sets g = gpgq, h =

hphq, f = fpfq ∈ G.
– The authority generates the following components:

• General components: Sample β ← Zq and compute Eq = gβq .
• Row-specific components: For all x ∈ [n̂], j ∈ [m] sample rx,j , αx,j ,

ψx,j ← ZN , r̂ ← ZN and compute Eq,x,j = g
βr̂rx,j
q , Fq,x,j = h

βr̂rx,j
q , Gq,x,j

= e(gq, gq)βαx,j ,Wq,x,j = e(fq, gq)βψx,j , Ex,j = gr̂rx,j , Fx,j = hr̂rx,j , Gx,j
= e(g, g)αx,j ,Wx,j = e(f, g)ψx,j .

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1} sample
cy,ℓ,b, δℓ,b ← ZN , γℓ,b ← Zp and compute Hy,ℓ,b = gcy,ℓ,b , Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b =

hδℓ,b .

• gid-specific components: Sample ϑ′p ← Gp, ϑ′q ← Gq such that ϑ′ = ϑ′pϑ
′
q ∈ G

and a k′-length vector ϑ = (ϑi)i∈[k′] = (ϑp,iϑq,i)i∈[k′] whose each ϑp,i, ϑq,i are
chosen at random from the subgroups Gp,Gq respectively. Let gid be a k′-
bit string representing a group identity, where gidi denotes the i-th bit of
gid and V ⊆ {1, 2, . . . , k′} be set of all i for which gidi = 1. Consider two
identity encoding functions H,Hq be defined as H(gid) = (ϑ′pϑ′q)

∏
i∈V ϑp,iϑq,i

and Hq(gid) = ϑ′q
∏
i∈V ϑq,i for gid ∈ GID.

– The authority sets and outputs mpk, msk, key where

mpk = key =


BG, h, g, f, ϑ′, ϑ′β

q ,ϑ, {ϑ
β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j ,

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1}, {Ṽℓ,b, Vℓ,b}(ℓ,b)∈[k]×{0,1}



msk =

BG, g, r̂, {rx,j , αx,j , ψx,j}(x,j)∈([n̂]×[m]),

{cy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1}

 .

• KeyGen(msk, i, id, gid,u): The key generation algorithm works as follows:
– Consider (x, y) ∈ [n̂] × [ñ] be the unique row wise representation of index i (for any

i ∈ [n], the corresponding indices can be defined as y = i mod ñ and x = ⌈ i
ñ
⌉).

– Choose a random r̃ ← ZN and set r = r̃ · r̂ mod N .
– Compute H(gid) = ϑ′

∏
i∈V ϑi where V = {i : i-th entry of gid is equals to 1}.

– Output the secret key sku = (x, y, id, gid,K = (K1,K2,K3)) where

K1 = g⟨αx,u⟩

∏
ℓ∈[k]

Hy,ℓ,idℓ

r̂⟨rx,u⟩

,K2 = f ⟨ψx,u⟩ ·H(gid)r and K3 = gr.

• Enc(mpk, gid′,v): The encryption algorithm is the same as special encryption algorithm
(described below) when run with (i∗, ℓ∗, b∗) = (1,⊥, 0).
• SplEnc(key, gid′,v, (i∗, ℓ∗, b∗)): The special encryption algorithm executes the following
steps:
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– Let (x∗, y∗) ∈ [n̂]× [ñ] be the unique row-wise representation of the index i∗.
– Sample the random exponents τ, t ∈ ZN and compute:

• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m], sx, ex, fx, dx
← ZN for all x ∈ [n̂] and categorize the components according x > x∗, x =
x∗, x < x∗ as follows:
For x > x∗:

1. Linking components: Rx,j = Esx
q,x,j , R̃x,j = F sxτ

q,x,j .

2. gid-specific component: Bx = Hq(gid′)βsxt.
3. Message-embedding components: Ix,j = e(gq, gq)vj · Gsxt

q,x,j ·W
sxt
q,x,j , Ax =

Esxt
q .

For x = x∗:
1. Linking components: Rx,j = Esx

x,j , R̃x,j = F sxτ
x,j .

2. gid-specific component: Bx = H(gid′)sxt.
3. Message-embedding components: Ix,j = e(gq, gq)vj ·Gsxt

x,j ·W
sxt
x,j , Ax = gsxt.

For x < x∗:
1. Linking components: Rx,j = gsxσj , R̃x,j = hsxτνj .

2. gid-specific component: Bx = H(gid′)dx .
3. Message-embedding components: Ix,j = e(g, g)fxϕj · e(f, f)fxϕj , Ax = gex .

• Column-specific components: Sample wy,ℓ,b, vy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generate the components as follows:
For (y > y∗) ∨ (y = y∗ ∧ (ℓ, b) ̸= (ℓ∗, b∗)): Cy,ℓ,b = Ht

y,ℓ,b · hwy,ℓ,bτ , C̃y,ℓ,b =
gwy,ℓ,b .
For (y < y∗) ∨ (y, ℓ, b) = (y∗, ℓ∗, b∗)): Cy,ℓ,b = Ht

y,ℓ,b · hwy,ℓ,bτ · V vy,ℓ,bτ
ℓ,b ,

C̃y,ℓ,b = gwy,ℓ,b · Ṽ vy,ℓ,b

ℓ,b .
– Output the ciphertext ctv associated to the vector v as

ctv =
({

Rx,j , R̃x,j , Bx, Ix,j , Ax

}
x∈[n̂],j∈[m]

,
{
Cy,ℓ,b, C̃y,ℓ,b

}
(y,ℓ,b)∈[ñ]×[k]×{0,1}

)
.

• Dec(sku, ctv): The decryptor uses the secret key sku to decrypt the ciphertext ctv. It
either outputs ζ = loge(gq,gq) η where

η =
∏
j∈[m]

I
uj

x,j · e(Rx,j ,
∏
ℓ∈[k] C

uj

y,ℓ,idℓ
)

e(R̃x,j ,
∏
ℓ∈[k] C̃

uj

y,ℓ,idℓ
)
· e(K3, Bx)
e(K1, Ax) · e(K2, Ax)

or outputs ⊥.

7.1 Correctness
Consider the secret key sku = (x, y, id, gid,K) corresponding to the index i = (x, y), an
user identity id, a group gid, and a predicate vector u. We know that

K = (K1 = g⟨αx,u⟩ · (
∏
ℓ∈[k]

Hy,ℓ,idℓ
)r̂⟨rx,u⟩,K2 = f ⟨ψx,u⟩H(gid)r,K3 = gr)

Here, the ciphertext ctv, which is an encryption of a vector v and index-position-bit tuple
(i∗, ℓ∗, b∗). It consists of {Rx,j , R̃x,j , Ax, Bx, Ix,j}x,j , {Cy,ℓ,b, C̃y,ℓ,b}y,ℓ,b. Let i∗ = (x∗, y∗).
From the definition of EIPL-IBIPFE, correctness holds or the decryption oracle gives the
outputs ⟨u,v⟩ if gid = gid′ and (i ≥ i∗ + 1) ∨ ((i∗, ℓ∗) = (i,⊥)) ∨ ((i∗, idℓ∗) = (i, 1− b∗)).
Consider the index position i, an user identity id and the group identity gid which satisfies
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the above mention constraints then from the representation of i, we can consider the
following cases:
Case 1: x > x∗ : In this case, we have all row components for all x ∈ [ñ], j ∈ [m] as
Rx,j = Esx

q,x,j , R̃x,j = F sxτ
q,x,j , Ax = Esxt

q , Bx = Hq(gid)βsxt, Ix,j = e(gq, gq)vj ·Gsxt
q,x,j ·W

sxt
q,x,j .

The decryption does not depend whether y > y∗ or not. First, we consider (y > y∗)∨ ((y =
y∗) ∧ (ℓ, b) ̸= (ℓ∗, b∗)) and simplify the following components.

∏
j∈[m]

e

Rx,j , ∏
ℓ∈[k]

C
uj

y,ℓ,idℓ

 =
∏
j∈[m]

e

gβr̂rx,jsx
q ,

∏
ℓ∈[k]

gcy,ℓ,idℓ
tujhwy,ℓ,idℓ

τuj


= e(gq, gq)

βr̂sxt⟨u,rx⟩
∑

ℓ∈[k]
cy,ℓ,idℓ · e(gq, hq)

βr̂sxτ⟨u,rx⟩
∑

ℓ∈[k]
wy,ℓ,idℓ (1)

∏
j∈[m]

I
uj

x,j = e(gq, gq)
∑

j∈[m]
ujvj · e(gq, gq)

∑
j∈[m]

βsxtαx,juj · e(fq, gq)
∑

j∈[m]
βψx,jsxtuj

= e(gq, gq)⟨u,v⟩ · e(gq, gq)βsxt⟨αx,u⟩ · e(fq, gq)βsxt⟨ψx,u⟩ (2)∏
j∈[m]

e

R̃x,j , ∏
ℓ∈[k]

C̃
uj

y,ℓ,idℓ

 =
∏
j∈[m]

e

hβr̂rx,jsxτ
q ,

∏
ℓ∈[k]

gwy,ℓ,idℓ
uj


= e(hq, gq)

βr̂sxτ⟨rx,u⟩
∑

ℓ∈[k]
wy,ℓ,idℓ (3)

Also, we have

e(K1, Ax) = e(gq, gq)βsxt⟨αx,u⟩ · e(gq, gq)
βr̂sxt⟨rx,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ (4)
e(K2, Ax) = e(fq, gq)βsxt⟨ψx,u⟩ · e(Hq(gid), gq)βsxtr (5)
e(K3, Bx) = e(gr,Hq(gid)βsxt) = e(gq,Hq(gid))βsxtr (6)

Using Equations 1, 3 – 6 we compute Rcheck and R′check as follows:

Rcheck =
∏
j∈[m]

e(Rx,j ,
∏
ℓ∈[k] C

uj

y,ℓ,idℓ
)

e(R̃x,j ,
∏
ℓ∈[k] C̃

uj

y,ℓ,idℓ
) · e(K1, Ax)

= (e(gq, gq)βsxt⟨αx,u⟩)−1 (7)

R′check = e(K3, Bx)
e(K2, Ax) = (e(fq, gq)βsxt⟨ψx,u⟩)−1 (8)

From Equations 2,7,8, we compute

η =
∏
j∈[m]

I
uj

x,j · e(Rx,j ,
∏
ℓ∈[k] C

uj

y,ℓ,idℓ
)

e(R̃x,j ,
∏
ℓ∈[k] C̃

uj

y,ℓ,idℓ
)
· e(K3, Bx)
e(K1, Ax) · e(K2, Ax) =

 ∏
j∈[m]

I
uj

x,j · Rcheck · R′check


= e(gq, gq)⟨u,v⟩

Next, we consider (y < y∗) ∨ ((y, ℓ, b) = (y∗, ℓ∗, b∗)). Then, we compute the following
components.
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∏
j∈[m]

e

Rx,j , ∏
ℓ∈[k]

C
uj

y,ℓ,idℓ


=
∏
j∈[m]

e

gβr̂rx,jsx
q ,

∏
ℓ∈[k]

gcy,ℓ,idℓ
tujhwy,ℓ,idℓ

τujhτδℓ,idℓ
vy,ℓ,idℓ

uj


= e(gq, gq)

βr̂sxt⟨u,rx⟩
∑

ℓ∈[k]
cy,ℓ,idℓ · e(gq, hq)

βr̂sxτ⟨u,rx⟩
∑

ℓ∈[k]
(wy,ℓ,idℓ

+δℓ,idℓ
vy,ℓ,idℓ

) (9)∏
j∈[m]

e

R̃x,j , ∏
ℓ∈[k]

C̃
uj

y,ℓ,idℓ


=
∏
j∈[m]

e

hβr̂rx,jsxτ
q ,

∏
ℓ∈[k]

gwy,ℓ,idℓ
uj · gδℓ,idℓ

vy,ℓ,idℓ
uj · gγℓ,idℓ

vy,ℓ,idℓ
uj

p


= e(hq, gq)

βr̂sxτ⟨rx,u⟩
∑

ℓ∈[k]
(wy,ℓ,idℓ

+δℓ,idℓ
vy,ℓ,idℓ

) (10)

Also, in this case, we compute Rcheck and R′check as follows:

Rcheck =
∏
j∈[m]

e(Rx,j ,
∏
ℓ∈[k] C

uj

y,ℓ,idℓ
)

e(R̃x,j ,
∏
ℓ∈[k] C̃

uj

y,ℓ,idℓ
) · e(K1, Ax)

= (e(gq, gq)βsxt⟨αx,u⟩)−1 (11)

R′check = e(K3, Bx)
e(K2, Ax) = (e(fq, gq)βsxt⟨ψx,u⟩)−1 (12)

So, correct decryption follows as previous.
Case 2: Otherwise: We have Rx,j = Esx

x,j , R̃x,j = F sxτ
x,j , Ax = gsxt, Bx = H(gid)sxt and

Ix,j = e(gq, gq)vj ·Gsxt
x,j ·W

sxt
x,j , then the correctness holds if (i∗, ℓ∗) = (i,⊥) ∨ (i∗, idℓ∗) =

(i, 1− b∗) or we can write it as (x = x∗) ∧ ((y > y∗) ∨ (y = y∗ ∧ (ℓ, b) ̸= (ℓ∗, b∗))).∏
j∈[m]

e

Rx,j , ∏
ℓ∈[k]

C
uj

y,ℓ,idℓ

 =
∏
j∈[m]

e

gr̂rx,jsx ,
∏
ℓ∈[k]

gcy,ℓ,idℓ
tujhwy,ℓ,idℓ

τuj


= e(g, g)r̂sxt⟨u,rx⟩

∑
ℓ∈[k]

cy,ℓ,idℓ · e(g, h)r̂sxτ⟨u,rx⟩
∑

ℓ∈[k]
wy,ℓ,idℓ (13)∏

j∈[m]

e

R̃x,j , ∏
ℓ∈[k]

C̃
uj

y,ℓ,idℓ

 =
∏
j∈[m]

e

hr̂rx,jsxτ ,
∏
ℓ∈[k]

gwy,ℓ,idℓ
uj


= e(h, g)r̂sxτ⟨rx,u⟩

∑
ℓ∈[k]

wy,ℓ,idℓ (14)

e(K1, Ax)= e(g, g)sxt⟨αx,u⟩ · e(g, g)r̂sxt⟨rx,u⟩
∑

ℓ∈[k]
cy,ℓ,idℓ (15)

e(K2, Ax) = e(f ⟨ψx,u⟩ ·H(gid)r, gsxt)= e(f, g)sxt⟨ψx,u⟩ · e(H(gid), g)sxtr (16)
e(K3, Bx) = e(gr,H(gid)sxt)= e(g,H(gid))sxtr (17)∏
j∈[m]

I
uj

x,j = e(gq, gq)⟨u,v⟩ · e(g, g)sxt⟨αx,u⟩ · e(f, g)sxt⟨ψx,u⟩ (18)

Using Equations 13 – 18 and following similar computations as in Case 1, the correctness
of EIPL-IBIPFE holds.

7.2 Security Analysis
We prove the security of our EIPL-IBIPFE scheme below.
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Theorem 3. If the assumptions 1,2,3,5,6 and 7 hold over the bilinear group BG, then our
EIPL-IBIPFE is selectively secure as per Definitions 4 to 8.

Proof of Theorem 3. We prove that our EIPL-IBIPFE satisfies all five security properties
discussed in Section 5. We significantly modify the proof technique of [BW06, GKW19] to
fit this into our scheme. Before going to the main idea of the proof technique, we would
like to focus on the fact that our EIPL-IBIPFE consists of a public key special encryption
algorithm. Thus, the adversary does not need to make special encryption queries to the
EIPL-IBIPFE challenger. Therefore, the adversary only performs secret key queries to the
challenger throughout the security game.

Lemma 2. Our EIPL-IBIPFE satisfies selective normal-hiding security as per the Definition
4.

Proof. Since the ciphertext distribution of normal encryption and special encryption for
the index-position-bit tuple (1,⊥, 0) are the same, thus the definition of normal-hiding
security follows from the scheme.

Lemma 3. If the assumptions 2,3,5,6 and 7 hold over the bilinear group BG, then our
EIPL-IBIPFE satisfies selective index-hiding security as per the Definition 5.

Proof. As per the definition of the index-hiding game, we show that the adversary
cannot distinguish between the special encryption of the index-position-bit tuple (i∗,⊥, 0)
and (i∗ + 1,⊥, 0). Note that the adversary is not allowed to query for the secret keys
corresponding to the index position i∗ = (x∗, y∗) and the group identity gid∗ at a time.

If y∗ = ñ, we have i∗ + 1 = (x∗ + 1, 1) otherwise, i∗ + 1 = (x∗, y∗ + 1). Similar to
[BW06, GKW19], we consider two cases based on whether y = ñ or not. To prove this
security, we consider the following two claims 7.2 and 7.2.

Claim. For y∗ < ñ, the special encryption to the index-position-bit tuple ((x∗, y∗),⊥, 0)
and ((x∗, y∗ + 1),⊥, 0) are indistinguishable.

Proof. To prove the above claim, we consider 2k + 1 sequences of hybrid games as H0 and
H
ℓ̃,̃b

where ℓ̃ ∈ [k] and b̃ ∈ {0, 1}. The hybrid H0 corresponds to the index-hiding security
game where the challenge ciphertext is a special encryption to the index-position-bit tuple
(i∗ = (x∗, y∗),⊥, 0) and H

ℓ̃,̃b
is the same as H0 except that the column component Cy∗,ℓ,b

for (ℓ, b) ∈ [ℓ̃− 1]× {0, 1} and for ℓ = ℓ̃, b = b̃, we uniformly choose from Gp.

Table 2: Computing column components of the ciphertext in Hybrid H
ℓ̃,̃b

Cy,ℓ,b C̃y,ℓ,b

(y > y∗) ∨ (y = y∗ ∧ ℓ > ℓ̃)∨
(y = y∗ ∧ ℓ = ℓ̃ ∧ b > b̃)

Ht
y,ℓ,b · hwy,ℓ,bτ gwy,ℓ,b

(y < y∗) ∨ (y = y∗ ∧ ℓ < ℓ̃)∨
(y = y∗ ∧ ℓ = ℓ̃ ∧ b ≤ b̃)

Ht
y,ℓ,b · hwy,ℓ,bτV

vy,ℓ,bτ
ℓ,b gwy,ℓ,b · Ṽ vy,ℓ,b

ℓ,b

Here, the hybrid Hk,1 corresponds to the index-hiding game in which challenge cipher-
text is a special encryption to the index-position-bit tuple (i∗+1,⊥, 0) = ((x∗, y∗+1),⊥, 0)
and it is also required that the hybrid H0 and H1,0 are indistinguishable. In the following,
we show that the hybrid H

ℓ̃,̃b
and the hybrid H

ℓ̃+̃b−1,(̃b+1) mod 2 are indistinguishable.
This same proof technique is used to show that all consecutive hybrids are indistinguishable.
By combining all indistinguishability of hybrids, the claim 7.2 follows.
H
ℓ̃,̃b
≈ H

ℓ̃+̃b−1,(̃b+1) mod 2 : Suppose on contrary, there exists a PPT adversary A that can
distinguish between the hybrid H

ℓ̃,̃b
and hybrid H

ℓ̃+̃b−1,(̃b+1) mod 2 with non-negligible
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advantage ϵ(·). We construct a PPT reduction algorithm B which breaks the assumption
2 with the same advantages as follows.

Let the reduction algorithm B first receives the modified-1 D3DH assumption 2 challenge
instance from the challenger as

(BG, gp, gq, A = gap , B = gbp, C = gcp, D = gb
2

p , E = gb
2c
p , F = gb

3

p , G = gb
4

p , H = gb
3c
p , T )

where T is either gabcp or a random element in the subgroup Gp of prime-order p. Next,
it receives the challenge tuple (1λ, 1n, 1k, 1k′

, 1m, i∗ = (x∗, y∗), gid∗) from the adversary
A where y∗ < ñ. Now, B generates the master public key by using the modified-1 D3DH
instance of assumption 2 and sends it to A. Next, the adversary makes secret keys query
for distinct indices i and the group identity gid except for the tuple (i∗, id, gid∗,u) and
sends the challenge message vector v to the challenger. In the following, we show that
how does B generate the master public key and how to answer the queried secret keys and
the challenge ciphertext using the challenge instance. Finally, A outputs its guess, which
B uses to break the modified-1 D3DH assumption 2.

Since, this reduction plays over the subgroup Gp with its challenger, thus it can choose
any required elements from the subgroup Gq. We implicitly set the exponents as rp,x∗,j =
b · r̃p,x∗,j and sp,x∗ = s̃p,x∗/b, r̂p = b2 where the exponents r̃p,x∗,j , s̃p,x∗ are chosen uniformly
random from ZN . Also we set hp = B = gbp, fp = Bd1 , tp = a · b, c

p,y∗,ℓ̃,̃b
= c · c̃

p,y∗,ℓ̃,̃b

for some uniformly chosen d1 ← ZN , c̃
p,y∗,ℓ̃,̃b

← ZN . With these exponents, B correctly
simulates the master public key, secret keys and as well as the challenge group elements T
that can be programmed in the challenge ciphertext components C

y,ℓ̃,̃b
.

Public key simulation. The challenger B chooses two random generators hq, fq ← Gq
such that hq = gdq , fq = gd

′

q for some random exponents d, d′ ∈ ZN and B generates the
following components:

• General component: Sample β ← ZN and compute Eq = gβq .

• Row-specific components: For all x ∈ [n̂], j ∈ [m], sample r̃x,j , αx,j , ψx,j ← ZN ,
r̂q ← ZN and compute Eq,x,j = g

βr̂q r̃x,j
q , Fq,x,j = h

βr̂q r̃x,j
q , Gq,x,j = e(gq, gq)βαx,j ,Wq,x,j

= e(fq, gq)βψx,j ,

Ex,j =

(Dgr̂q
q )r̃x,j if x ̸= x∗,

(Fgr̂q
q )r̃x,j otherwise. ,

Fx,j =

(Fhr̂q
q )r̃x,j if x ̸= x∗,

(Ghr̂q
q )r̃x,j otherwise. ,

Gx,j = e(g, g)αx,j ,Wx,j = e(B, gp)d1ψx,j · e(fq, gq)ψx,j .

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample
c̃y,ℓ,b, δℓ,b ← ZN , γℓ,b ← Zp and compute Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b = hδℓ,b ,

Hy,ℓ,b =
{

(Cgq)c̃y,ℓ,b if (y, ℓ, b) = (y∗, ℓ̃, b̃)
(gpgq)c̃y,ℓ,b otherwise.

• gid-specific components: The challenger B samples group elements ϑ′p ← Gp, ϑ′q ←
Gq and for all i ∈ [k′] chooses ϑp,i ← Gp, ϑq,i ← Gq such that H(gid) = ϑ′pϑ

′
q

∏
i∈V ϑp,iϑq,i

= ϑ′
∏
i∈V ϑi, Hq(gid) = ϑ′q

∏
i∈V ϑq,i where ϑ′ = ϑ′pϑ

′
q ∈ G, ϑ = (ϑi) ∈ Gk′ .

Using the challenge instance of modified-1 D3DH assumption 2, B sets the master
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public key as

mpk =


BG, g = gpgq, h = Bgdq , f = Bd1fq, ϑ

′, ϑ
′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


Secret Key simulation. To answer these queries, challenger returns the secret key sku
corresponding to the tuple (i = (x, y), id, gid,u) as follows: Note that the adversary is
not allowed to secret key queries corresponding to the tuple (i∗, id, gid∗,u) to the key
generation oracle.

If gid = gid∗, then adversary cannot query for the secret key corresponding to the
index position i∗. To generate the secret keys the challenger first computes H(gid∗) =
(ϑ′pϑ′q

∏
i∈V∗ ϑp,iϑq,i) = g

d∗
1
p g

d∗
2
q where the random exponents d∗1, d

∗
2 ← ZN and V∗ is

associated with the non-zero indices of the challenge group identity gid∗. The challenger B
chooses a random value r̃ ← ZN and sets r = r̂ · r̃. Then it simulates the secret keys as
follows:

K1 =


g⟨αx,u⟩(Dgr̂q

q )⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ if x ̸= x∗, y ̸= y∗,

g⟨αx,u⟩(Fgr̂q
q )⟨r̃x,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓ if x = x∗, (y ̸= y∗ ∨ idℓ ̸= b̃),

g⟨αx,u⟩(Dgr̂q
q )⟨r̃x,u⟩

∑
ℓ ̸=ℓ̃

cy,ℓ,idℓ (Egr̂q
q )
⟨r̃x,u⟩̃c

y,̃ℓ,id
ℓ̃ if x ̸= x∗ ∧ (y, id

ℓ̃
) = (y∗, b̃),

K2 = (Bd1fq)⟨ψx,u⟩(Dd∗
1g
d∗

2 r̂q
q )r̃, K3 = (Dgr̂q

q )r̃

For gid ̸= gid∗, the adversary can query for the secret key corresponding to the index i∗.
The challenger B generates the secret key components as follows:

K1 =

g⟨αx,u⟩g
r̂q⟨r̃x,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓ

q (F
∑

ℓ ̸=ℓ̃
c̃y,ℓ,idℓH

c̃
y,̃ℓ,id

ℓ̃ )⟨r̃x,u⟩ if x = x∗, y = y∗, id
ℓ̃

= b̃

g⟨αx,u⟩g
r̂q⟨r̃x,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓ

q F
⟨r̃x,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓ if x = x∗, y = y∗, id
ℓ̃
̸= b̃

Without loss of generality, we assume that the adversary makes the maximum number
of Q queries with the challenge group identity gid∗ and challenge index i∗. Now, the
simulator chooses an integer k′1 ← [k′], sets an integer s = 10Q, a random k′-length vector
z = (zi)← Zk′

s and a value z′ ← Zs. Additionally, the simulator also chooses a random
value w′ ← ZN and an uniformly random k′-length vector w = (wi) ← Zk′

N . All these
values are kept secret to the simulator.

Let us consider V∗ ⊆ {1, 2, . . . , k′} be the set of all i for which the challenge identity
gid∗i = 1. Let V∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which corresponds
to the collection of indices V∗. Then set

∑
i∈V∗ zi = k′1s− z′ for uniformly chosen k′1 ∈ [k′].

Now, we define the function K(gid) as

K(gid) =
{

0, if z′ +
∑
i∈V zi ≡ 0 mod s

1, otherwise

From the above definition of the function K, we can say that K(gid∗) = 0 and for
all gid ̸= gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) =
N − sk′1 + z′ +

∑
i∈V zi and J(gid) = w′ +

∑
i∈V wi. The simulator assigns the public

parameters ϑ′ = fN−k
′
1s+z′ · gw′ = g

d′
p
p g

d′
q
q and ϑi = fzigwi = g

dp,i
p g

dq,i
q . Now B answers
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secret key components K2,K3 as follows:

K2 = g−⟨ψx,u⟩ J(gid)
F(gid) ·Dd∗

1 r̃g
d∗

2 r̂q r̃
q

= g−⟨ψx,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)− ⟨ψx,u⟩
F(gid)

(
fF(gid)gJ(gid)

)r
= f ⟨ψx,u⟩

(
fF(gid)gJ(gid)

)r− ⟨ψx,u⟩
F(gid)

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)r′

= f ⟨ψx,u⟩H(gid)r
′

K3 = (Dr̃gr̂q r̃
q ) · g−

⟨ψx,u⟩
F(gid) = gr−

⟨ψx,u⟩
F(gid) = gr

′

We implicitly set r′ = r− ⟨ψx,u⟩
F(gid) . So from the construction of K function, we get K(gid) ̸= 0

for any key query corresponding to the group identity gid ̸= gid∗. This implies that the
function F(gid) ̸= 0 mod N for the group identity (since we assume N > sk′1 for reasonable
values of N, s and k′1. We prove this in Lemma 9).
Challenge ciphertext simulation. The challenger B samples the exponents τ ∈
ZN , tq ← ZN and for the challenge group identity gid∗, B computes H(gid∗) =
(ϑ′pϑ′q

∏
i∈V∗ ϑp,iϑq,i) = g

d∗
1
p g

d∗
2
q for some d∗1, d

∗
2 ∈ ZN and Hq(gid∗)β = ϑ

′β
q

∏
i∈V∗ ϑ

β
q,i.

Now, B simulates the challenge ciphertext components as follows.

• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m] and ex, fx, dx ←
ZN , s̃x ← ZN , for all x ∈ [n̂] and categorize the components according x > x∗, x =
x∗, x < x∗ as follows:
For x > x∗:

1. Linking components: Rx,j = E s̃x
q,x,j , R̃x,j = F s̃xτ

q,x,j .

2. gid-specific component: Bx = Hq(gid∗)βs̃xtq .

3. Message-embedding components: Ix,j = e(gq, gq)vj ·Gs̃xtq
q,x,j ·W

s̃xtq
q,x,j , Ax = E

s̃xtq
q .

For x = x∗:

1. Linking components: Rx,j = Dr̃x,j s̃xg
r̂q r̃x,j s̃x
q , R̃x,j = F r̃x,j s̃xτ · gr̂q r̃x,j s̃xτ

q .

2. gid-specific component: Bx = (Ad∗
1g
d∗

2tq
q )s̃x .

3. Message-embedding components: Ix,j = e(gq, gq)vj ·e(g,Agtqq )αx,j ,̃sx ·e(A,B)d1ψx,j s̃x ·
e(fq, gq)ψx,jtq s̃x , Ax = (Agtqq )s̃x .

For x < x∗:

1. Linking components: Rx,j = gs̃xσj , R̃x,j = (Bhq)s̃xτνj .

2. gid-specific component: Bx = (gd
∗
1
p g

d∗
2
q )dx .

3. Message-embedding components: Ix,j = e(g, g)fxϕj · e(f, f)fxϕj , Ax = gex .

• Column-specific components: sample w̃y,ℓ,b, vy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generate the components as follows:

For (y > y∗) ∨ (y = y∗ ∧ ℓ > ℓ̃) ∨ (y = y∗ ∧ ℓ = ℓ̃ ∧ b > b̃): Cy,ℓ,b = g
c̃y,ℓ,btq
q hw̃y,ℓ,bτ ,

C̃y,ℓ,b = A−c̃y,ℓ,b/τ · gw̃y,ℓ,b .
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For y = y∗ ∧ ℓ = ℓ̃ ∧ b = b̃: Cy,ℓ,b = g
c̃y,ℓ,btq
q · hτw̃y,ℓ,b · T c̃y,ℓ,b , C̃y,ℓ,b = gw̃y,ℓ,b

For (y < y∗) ∨ (y = y∗ ∧ ℓ < ℓ̃) ∨ (y = y∗ ∧ ℓ = ℓ̃ ∧ b < b̃): Cy,ℓ,b = g
c̃y,ℓ,btq
q ·hτw̃y,ℓ,b ·

g
vy,ℓ,b
p , C̃y,ℓ,b = gwy,ℓ,b

After generating all the ciphertext components, challenger sends these to the adversary
A, then A guesses a bit b′ and sends it to B. It simply forwards it as the guess to the
modified-1 D3DH challenger of assumption 2.
Analysis of simulation. If T = gabcp , then B simulates the view of the hybrid is similar
as H

ℓ̃,̃b
otherwise if T is random group elements from Gp and the view of the hybrid is

similar as H
ℓ̃+̃b−1,(̃b+1) mod 2. Thus, if A wins with the advantages ϵ(·) then B breaks the

modified-1 D3DH assumption 2 with the same advantages.

Claim. If y∗ = ñ, then the special encryption to the index-position-bit tuple (x∗, y∗,⊥, 0)
and ((x∗ + 1, 1),⊥, 0) are indistinguishable.

Proof. To prove the above claim, we consider a sequence of hybrids games. In the following,
we discuss about these hybrids.
Hybrid 1. This hybrid corresponds to the index-hiding game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗), ⊥, 0) for
y∗ = ñ.

Hybrid 2. The hybrid is the same as hybrid 1 except that the challenge ciphertext is
a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗ + 1),⊥, 0) for y∗ = ñ.
Note that, the special-encryption algorithm does not generally encrypt to the position
(x∗, y∗ + 1 = ñ+ 1), however the algorithm can be naturally extended to encrypt to such
position.
Hybrid 3. Hybrid 3 is the same as the previous hybrid 2 except that the row component
Ix∗,j as mentioned in the following Table 3.

Table 3: Computing row components for the ciphertext x ∈ [n̂], j ∈ [m]
Rx,j R̃x,j Ax Bx Ix,j

x > x∗ Esx
q,x,j F sxτ

q,x,j Esxt
q Hq(gid∗)βsxt e(gq, gq)vj ·Gsxt

q,x,j ·W
sxt
q,x,j

x = x∗ Esx
x,j F sxτ

x,j gsxt H(gid∗)sxt e(gq, gq)vj ·Gsxt
x,j ·W

sxt
x,j · L

x < x∗ gsxσj hsxτνj gex H(gid∗)dx e(g, g)fxϕj · e(f, f)fxϕj

where L = e(gp, g)z and z is randomly chosen from Zp.
Hybrid 4. Hybrid 4 is identical to the hybrid 3 except that the row component of the
challenge ciphertext as the Table 3. Here we consider L = e(g, g)z with z is a random
exponent from ZN .

Hybrid 5. Hybrid 5 is the same as hybrid 4 except that row component in the challenge
ciphertext as in Table 4 as mentioned below.

Table 4: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]
Rx,j R̃x,j Ax Bx Ix,j

x > x∗ Esx
q,x,j F sxτ

q,x,j Esxt
q Hq(gid∗)βsxt e(gq, gq)vj ·Gsxt

q,x,j ·W
sxt
q,x,j

x ≤ x∗ gsxσj hsxτνj gex H(gid∗)dx e(g, g)fxϕj · e(f, f)fxϕj
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Hybrid 6. The hybrid 6 is similar to the hybrid 5 except that the column components to
the index-position-bit tuple ((x∗, y∗ = 1), ℓ∗ =⊥, b∗ = 0) of the challenge ciphertext.
Hybrid 7. The hybrid 7 corresponds to the index-hiding security game in which the
challenge ciphertext is a special encryption to the index-position-bit tuple ((x∗ + 1, 1),⊥, 0)
for y∗ = ñ.

In the following, we prove that the adversary’s advantage for all the consecutive hybrids
is negligible in the security parameter which completes the proof of claim 7.2.
Hybrid 1 ≈ Hybrid 2: The indistinguishable proof of the hybrid 1 and hybrid 2 is
identical to claim 7.2.
Hybrid 2 ≈ Hybrid 3: Suppose on the contrary, there exists a PPT adversary A that
distinguishes between the above two hybrids with the non-negligible advantages ϵ(λ). We
construct a PPT reduction algorithm that breaks the modified-2 D3DH assumption 3 with
the same non-negligible advantages as follows:

The reduction algorithm B first receives the modified-2 D3DH assumption 3 challenge
instance from its challenger as given below.

(BG, gp, gq, A = gap , B = gbp, C = gcp, T = e(gp, g)z)

where z is either abc or a random element from ZN . In the setup phase, adversary receives
the challenge tuple (1λ, 1n, 1k, 1m, i∗ = (x∗, y∗), gid∗) from the adversary A satisfying the
condition y∗ = ñ. Since the reduction game plays with its challenger in the subgroup Gp,
thus it can choose any elements from the subgroup Gq by itself. Now B generates the
master public key using the given instance and sends it to the adversary A. Then the
adversary cannot make secret keys query corresponding the index i∗ and gid∗ at a time.
In the following, we show how does B simulate the master public key, secret keys and
challenge ciphertext from the given instance. Finally, A outputs its guess, which is used to
break the modified-2 D3DH assumption 3. For x = x∗, our approach is to implicitly set the
exponents rp,x∗,j = brj , αp,x∗,j = abkr̂rj , tp = c where r̂ ← ZN and rj ← ZN for all j ∈ [m]
. Additionally, we implicitly set cy,ℓ,b = c̃p,y,ℓ,b − a for all (y, ℓ, b) ∈ ([ñ] × [k] × {0, 1}).
According to the exponents as given above, the challenger simulates the master public key,
the secret keys and the challenge ciphertext components.

Public key simulation. The challenger B chooses random generators hq, fq ← Gq and
hp, fp ← Gp such that h = hphq, f = fpfq and sets h = gd, f = gd1 where some exponents
d, d1 ∈ ZN . Now, the challenger B generates the following components:

• General component: Sample β ← ZN and compute Eq = gβq .

• Row-specific components: For all x ∈ [n̂], j ∈ [m], sample r̃x,j , α̃x,j , ψ̃x,j ←
ZN and compute Eq,x,j = g

βr̂r̃x,j
q , Fq,x,j = h

βr̂r̃x,j
q , Gq,x,j = e(gq, gq)βα̃x,j ,Wq,x,j =

e(gq, gq)d1βψ̃x,j ,

Ex,j =
{

(gpgq)r̂r̃x,j if x ̸= x∗

(Brjg
r̃x,j
q )r̂ otherwise

, Fx,j =
{

(gpgq)dr̂r̃x,j if x ̸= x∗

(Brjdg
dr̃x,j
q )r̂ otherwise

,

Gx,j =
{
e(gpgq, gpgq)α̃x,j if x ̸= x∗

e(A,B)kr̂rje(gq, gq)α̃x,j otherwise ,
,Wx,j = e(g, g)d1ψ̃x,j .

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample
c̃y,ℓ,b, δℓ,b ← ZN , γℓ,b ← Zp and compute Hy,ℓ,b = A−1gc̃y,ℓ,b , Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b =

hδℓ,b .
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• gid-specific components: The challenger B samples group elements ϑ′p ← Gp, ϑ′q ←
Gq and for all i ∈ [k′] chooses ϑp,i ← Gp, ϑq,i ← Gq such that H(gid) =
ϑ′pϑ

′
q

∏
i∈V ϑp,iϑq,i = ϑ′

∏
i∈V ϑi, Hq(gid) = ϑ′q

∏
i∈V ϑq,i where ϑ′ = ϑ′pϑ

′
q ∈ G,

ϑ = (ϑi) ∈ Gk′ .

Using the challenge instance of modified-2 D3DH assumption 3, B sets the master public
key as

mpk =


BG, g = gpgq, h = gd, f = gd1 , ϑ′, ϑ

′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


Secret key simulation. The challenger B generates the secret key sku corresponding to
the adversary’s query tuple (i = (x, y), id, gid,u) as below.

First consider gid = gid∗, then the adversary can not query for the secret key associated
with the index position i∗.

K1 =

g
⟨α̃x,u⟩+r̂⟨r̃x,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓA−r̂⟨r̃x,u⟩ if x ̸= x∗

g
⟨α̃x,u⟩+r̂⟨r̃x,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓ

q B
r̂⟨r,u⟩

∑
ℓ∈[k]

c̃y,ℓ,idℓ otherwise
,

K2 = gd1⟨ψ̃x,u⟩H(gid)r, K3 = gr

where r = r̂ · r̃ and r̃ is randomly chosen from ZN . Note that, the adversary A is not
allowed to query for the secret key corresponding to the tuple (i∗ = (x∗, y∗), id, gid∗,u).

If gid ̸= gid∗, then the adversary can query for the index position i∗. Then the challenger
generates the corresponding secret keys as below

K1 = g
⟨α̃x,u⟩+r̂⟨r̃x,u⟩

∑
ℓ∈[k]

c̃
ñ,ℓ,idℓ

q B
r̂⟨r,u⟩

∑
ℓ∈[k]

c̃
ñ,ℓ,idℓ if x = x∗

As the previous case, we assume that the adversary makes the maximum number of Q
queries, the challenge group identity gid∗ and challenge index i∗. Now, the simulator chooses
an integer k′1 ← [k′], sets an integer s = 10Q, a random k′-length vector z = (zi)← Zk′

s

and a value z′ ← Zs. Additionally, the simulator chooses a random value w′ ← ZN and an
uniformly random k′-length vector w = (wi)← Zk′

N . All these values are kept secret to the
B.

Let us consider V∗ ⊆ {1, 2, . . . , k′} be the set of all i for which the challenge identity
gid∗i = 1. Let V∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond
to the collection of indices V∗. Sets

∑
i∈V∗ zi = k′1s − z′ for uniformly chosen k′1 ∈ [k′].

Now, we define the function K(gid) as

K(gid) =
{

0, if z′ +
∑
i∈V zi ≡ 0 mod s

1, otherwise

So, from the above definition of the function K, we can say K(gid∗) = 0 and for all
other gid ≠ gid∗, it becomes non-zero. Additionally, we set two functions as F(gid) =
N − sk′1 + z′ +

∑
i∈V zi and J(gid) = w′ +

∑
i∈V wi. The simulator assigns the public

parameters ϑ′ = fN−k
′
1s+z′ · gw′ = g

d′
p
p g

d′
q
q and ϑi = fzigwi = g

dp,i
p g

dq,i
q . Now B answers
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remaining secret key components as

K2 = g−⟨ψ̃x,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψ̃x,u⟩
(
fF(gid)gJ(gid)

)− ⟨ψ̃x,u⟩
F(gid)

(
fF(gid)gJ(gid)

)r
= f ⟨ψ̃x,u⟩

(
fF(gid)gJ(gid)

)r− ⟨ψ̃x,u⟩
F(gid)

= f ⟨ψ̃x,u⟩
(
fF(gid)gJ(gid)

)r′

= f ⟨ψ̃x,u⟩H(gid)r
′

K3 = gr · g−
⟨ψ̃x,u⟩

F(gid) = gr−
⟨ψ̃x,u⟩

F(gid) = gr
′

We implicitly set r′ = r− ⟨ψ̃x,u⟩
F(gid) . So from the construction of K function, we get K(gid) ̸= 0

for any key query corresponding to the group identity gid ̸= gid∗. This implies that the
function F(gid) ̸= 0 mod N for any such group identity (as we assume N > sk′1 for
reasonable values of N, s and k′1, see Lemma 9).

Challenge ciphertext simulation. The challenger B can compute all the column
components corresponding to (y, ℓ, b) ∈ [ñ]× [k]× {0, 1} on its own, since Gp subgroup
components are random in Cy,ℓ,b, C̃y,ℓ,b terms and for computing remaining terms over the
subgroup Gq, the required exponents are already known to the challenger B. For x < x∗,
all the row components Rx,j , R̃x,j , Ax, Bx, Ix,j are chosen randomly, but for x > x∗, all
the row components are formed over the subgroup Gq which it knows. For the challenge
group identity gid∗, the challenger computes H(gid∗) = (ϑ′pϑ′q)

∏
j∈V∗(ϑp,jϑq,j) = g

d∗
1
p g

d∗
2
q

for some d∗1, d∗2 ∈ ZN and samples s̃x∗ , τ, tq ← ZN . Now, the challenger B simulates the
challenge ciphertext for x = x∗ as follows:
For x = x∗:

1. Linking components: Rx,j = (Brjg
r̃x,j
q )r̂s̃x , R̃x,j = (Brjg

r̃x,j
q )dr̂s̃xτ .

2. gid-specific component: Bx = (Cd∗
1g
tqd

∗
2

q )s̃x .

3. Message-embedding components: Ix,j = e(gq, gq)vj ·e(gq, gq)α̃x,j s̃xtq ·T r̂ks̃xrj ·e(f, Cgtqq )ψ̃x,j s̃x ,
Ax = (Cgtqq )s̃x .

Finally, B gets the guess bit b′ from A and it simply forwards it to the modified-2 D3DH
assumption 3 challenger.
Analysis of simulation. If T = e(gp, g)abc, then B simulates the view of hybrid 2 else if
T = e(gp, g)z for any random z from ZN , adversary’s view same as hybrid 3. Therefore, if
A wins the game with advantages ϵ(·), then B breaks the modified-2 D3DH assumption 3
with the same advantages.
Hybrid 3 ≈ Hybrid 4: To show the indistinguishability of two hybrids 3 and 4, we use a
similar proof technique of [BW06, GKW19]. Here, we discuss the underlying approaches.
Let us consider that B receives the Bilinear Subgroup Decisional (BSD) assumption 6
challenge instance from the challenger consisting the bilinear group BG, e(T, g) where T
is either a random element from the subgroup Gp or a uniform element from the group
G. Then B computes all the components for the master public key mpk honestly and
forwarded it to the adversary. After seeing mpk, adversary can query for the secret key to
the key generation oracle. Finally, B computes all the challenge ciphertext components
honestly except that the value Ix∗,j = e(gq, gq)vj ·Gsx∗ t

x∗,j · e(g, T ) · e(f, g)ψx∗,jsx∗ t where T
is taken from BSD challenge of assumption 2. If T ← Gp, then simulator’s view is the
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same as hybrid 3 otherwise, if T ← G then B perfectly simulates as hybrid 4. Therefore, if
A wins with the advantage ϵ(·), then B breaks the assumption 6 with the same advantage
ϵ(·).
Hybrid 4 ≈ Hybrid 5: Suppose on the contrary, there exists PPT adversary A that
distinguish between the hybrid 4 and hybrid 5 with the non-negligible advantage ϵ(·).
Then, we construct a PPT reduction algorithm which breaks the R3DH assumption 7 with
the same non-negligible advantages.

Let the reduction algorithm B first receives the challenges of R3DH assumption 7 from
the challenger as

(BG, gp ∈ Gp, gq ∈ Gq, A = gaq , B = gãp · ga
2

q , C = gc̃p · gcq, D = gãc̃p , T )

where T is either ga
2c
q or a random element from the subgroup Gq. Next, the challenger B

receives the challenge tuple (1n, 1k, 1k′
, 1m, i∗ = (x∗, y∗), gid∗) from A. Then, B generates

the public keys and sends it to the adversary. After getting the public parameters,
A can secret key query to the key generation oracle corresponding for the tuple (i =
(x, y), id, gid,u) except for the tuple (i∗ = (x∗, y∗), id, gid∗,u). Next the adversary uniformly
chooses a challenge message vector v and sends it to B. To answer the challenge ciphertext,
B randomly chooses a bit b ∈ {0, 1} and generates the challenge ciphertext ct(b)

v . In the
following, we describe how does the challenger simulate the master public key, the secret
key and the challenge ciphertext using the assumption 7 instance. Finally, the adversary A
outputs a guess bit which breaks the assumption 7. As the reduction plays the game with
the challenger in the subgroup Gq, so it chooses all the components from the subgroup Gp
by itself. Although, in the challenge instance of B,C some parts belong to the subgroup
Gp but their exponents depends on ã and c̃ terms. In the following, we implicitly set the
exponents as

gp = gp, gq = A, rq,x∗,j = r̃q,x∗,j/a, rp,x∗,j = r̃p,x∗,j ,

sq,x∗ = c, sp,x∗ = c̃, tq = a, tp = ã,

for all x ∈ [n̂]− {x∗}, sx = s̃x/a

where r̃p,x∗,j , r̃q,x∗,j ← ZN and for all x ∈ [n̂]−{x∗}, s̃x ← ZN . Additionally, the reduction
algorithm samples the exponents uniformly random from ZN . Note that, the reduction
algorithm does not know the factorization so at any point, we do not sample these exponents
from Gp and Gq separately, but instead of sample any exponents directly from ZN and
make sure that the distributions are not affected.
Public key simulation. The challenger B chooses random generators hq, fq ← Gq and
hp, fp ← Gp such that g = gpgq = gpA, h = hphq, f = fpfq and sets h = gd, f = gd1 for
some exponents d, d1 ∈ ZN . Now the challenger B generates the following components:

• General component: Sample β ← ZN and compute Eq = Aβ .

• Row-specific components: For all x ∈ [n̂], j ∈ [m] sample r̃x,j , αx,j , ψx,j ← ZN ,
r̂ ← ZN and compute Fq,x,j = Edq,x,j , Gq,x,j = e(A,A)βαx,j ,Wq,x,j = e(A,A)βd1ψx,j ,

Fx,j = Edx,j , Gx,j = e(gpA, gpA)αx,j ,Wx,j = e(gpA, gpA)d1ψx,j with

Eq,x,j =
{
Aβr̂r̃x,j if x ̸= x∗,

g
βr̂r̃x,j
q otherwise. , Ex,j =

{
(gpA)r̂r̃x,j if x ̸= x∗.

(gpgq)r̂r̃x,j otherwise.

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample cy,ℓ,b,
δℓ,b ← ZN , γℓ,b ← Zp, and compute Hy,ℓ,b = (gpA)cy,ℓ,b , Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b = hδℓ,b .
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• gid-specific components: The challenger B samples group elements ϑ′p ← Gp, ϑ′q ←
Gq and for all i ∈ [k′] chooses ϑp,i ← Gp, ϑq,i ← Gq such that H(gid) = ϑ′pϑ

′
q

∏
i∈V ϑp,iϑq,i

= ϑ′
∏
i∈V ϑi, Hq(gid) = ϑ′q

∏
i∈V ϑq,i where ϑ′ = ϑ′pϑ

′
q ∈ G, ϑ = (ϑi)i∈[k′] ∈ Gk′ .

Now, the challenger B sets the master public key as

mpk =


BG, g = gpA, h = gd, f = gd1 , ϑ′, ϑ

′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


Secret key simulation. First, B computes H(gid) = ϑ′

∏
i∈V ϑi = gd

′ = (gpA)d′ for some
d′ ∈ ZN . In the query phase, the adversary A is not allowed to query for the challenge
index and group identity i∗ = (x∗, y∗), gid∗ together. If gid = gid∗, B answers the secret
key sku corresponding to the tuple (i, id, gid,u) as given below. Note that, the adversary
is not allowed to secret key query for the index position i∗.

K1 =

g⟨αx,u⟩ · (gpA)r̂⟨r̃x,u⟩
∑

ℓ∈[k]
cy,ℓ,idℓ if x ̸= x∗,

g⟨αx,u⟩ · (gpgq)
r̂⟨r̃x,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ otherwise. ,

K2 = (gpA)d1⟨ψx,u⟩H(gid)r, K3 = gr.

If gid ̸= gid∗, then the secret keys corresponding to the index i∗ looks as

K1 = g⟨αx,u⟩ · (gpgq)
r̂⟨r̃x,u⟩

∑
ℓ∈[k]

cy,ℓ,idℓ if x = x∗, y = y∗ = ñ

To simulate the secret key components K2 and K3, the challenger constructs the functions
F, J and K as mentioned in indistinguishability proof of hybrid 2 and hybrid 3. Also, B sets
similar public key parameters ϑ′ and ϑi’s. It answers the remaining secret key components
as follows:

K2 = g−⟨ψx,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)− ⟨ψx,u⟩
F(gid)

(
fF(gid)gJ(gid)

)r
= f ⟨ψx,u⟩

(
fF(gid)gJ(gid)

)r− ⟨ψx,u⟩
F(gid)

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)r′

= f ⟨ψx,u⟩H(gid)r
′

K3 = gr · g−
⟨ψx,u⟩

F(gid) = gr−
⟨ψx,u⟩

F(gid) = gr
′

As in the previous argument, we implicitly set r′ = r − ⟨ψx,u⟩
F(gid) . Therefore, from the

construction of K function, we get K(gid) ̸= 0 for any key query corresponding to the
group identity gid ̸= gid∗. This implies the function F(gid) ̸= 0 mod N for any such group
identity (since we assume N > sk′1, see Lemma 9).
Challenge ciphertext simulation. The challenger B samples the exponents τ ∈ ZN and
for the challenge identity gid∗, B computes H(gid∗) = (ϑ′)

∏
i∈V∗ ϑi = g

d∗
1
p g

d∗
2
q = g

d∗
1
p Ad

∗
2

and Hq(gid∗)β = ϑ
′β
q

∏
i∈V∗ ϑ

β
q,i = g

βd∗
2

q = Aβd
∗
2 for some exponents d∗1, d∗2 ∈ ZN . Now B

simulates the challenge ciphertext components as follows.
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• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m] and ex, fx, dx ←
ZN , s̃x ← ZN , for all x ∈ [n̂] and categorize the components according x > x∗, x =
x∗, x < x∗ as follows:
For x > x∗:

1. Linking components: Rx,j = g
βr̂r̃x,j s̃x
q , R̃x,j = g

βr̂τdr̃x,j s̃x
q .

2. gid-specific component: Bx = Ad
∗
2βs̃x .

3. Message-embedding components: Ix,j = e(A,A)vje(A,A)βαx,j s̃xe(A,A)d1βs̃xψx,j ,
Ax = Aβs̃x .

For x = x∗:

1. Linking components: Rx,j = C r̂r̃x,j , R̃x,j = C r̃x,j r̂τd.

2. gid-specific component: Bx = Dd∗
1T d

∗
2 .

3. Message-embedding components: Ix,j = e(g, g)ϕjfxe(g, g)d2
1ϕjfx , Ax = DT .

For x < x∗:

1. Linking components: Rx,j = gs̃xσj , R̃x,j = gds̃xτνj .

2. gid-specific component: Bx = gd1dx .
3. Message-embedding components: Ix,j = e(g, g)fxϕje(g, g)d2

1ϕjfx , Ax = gex .

• Column-specific components: Sample w̃y,ℓ,b, ṽy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generate the components as follows:

For all y ∈ [ñ]: Cy,ℓ,b = Bcy,ℓ,bhw̃y,ℓ,bτg
ṽy,ℓ,b
p , C̃y,ℓ,b = gw̃y,ℓ,b .

Analysis of simulation. For T = ga
2c
q , B simulates the hybrid 4, otherwise if T is

randomly chosen from the group Gq then B simulates the view of hybrid 5. As the target
row ‘= x∗’ is indistinguishable from the less than row ‘< x∗’. Therefore, if A wins the game
with the advantage ϵ(·) then B breaks the R3DH assumption with the same advantage.

Hybrid 5 ≈ Hybrid 6: To prove the hybrid 5 and 6 are indistinguishable, let us consider
(2ñk+1) sub-hybrid H0, Hỹ,ℓ̃,̃b

for (ỹ, ℓ̃, b̃) ∈ ([ñ]× [k]×{0, 1}). In this game, the sub-hybrid
H0 corresponds to the hybrid 5 as described above. Now the sub-hybrid H

ỹ,ℓ̃,̃b
is same

as the hybrid H0 except that the column components in the challenge ciphertext Cy,ℓ,b
for y < ỹ and (y, ℓ, b) ∈ {ỹ} × [ℓ̃ − 1] × {0, 1} and for y = ỹ, ℓ = ℓ̃, b < b̃ have a random
element in the subgroup Gp. The column components are generated as described below in
the Table 5.

Table 5: Computing column components of the ciphertext in sub-hybrid H
ỹ,ℓ̃,̃b

Cy,ℓ,b C̃y,ℓ,b

(y > ỹ) ∨ (y = ỹ ∧ ℓ > ℓ̃)∨
(y = ỹ ∧ ℓ = ℓ̃ ∧ b ≥ b̃)

Ht
y,ℓ,b · hwy,ℓ,bτ gwy,ℓ,b

(y < ỹ) ∨ (y = ỹ ∧ ℓ < ℓ̃)∨
(y = ỹ ∧ ℓ = ℓ̃ ∧ b < b̃)

Ht
y,ℓ,b · hwy,ℓ,bτ · V vy,ℓ,bτ

ℓ,b gwy,ℓ,b · Ṽ vy,ℓ,b

ℓ,b

Now we show that sub-hybridH
ỹ,ℓ̃,̃b

is indistinguishable with sub-hybridH
ỹ,ℓ̃+̃b−1,(̃b+1) mod 2.

Note that, the sub-hybrid H1,1,0 is identical to the main hybrid 6. It is also required
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that the sub-hybrid H0 ≈ H
ñ,ℓ,1 and sub-hybrid H

ỹ,k,1 ≈ H
ỹ+1,1,0. We now show that

the sub-hybrid H
ỹ,ℓ̃,̃b

and H
ỹ,ℓ̃+̃b−1,(̃b+1) mod 2 are indistinguishable with the similar tech-

niques that are used to prove the indistinguishability of all the consecutive sub-hybrids
for (y, ℓ, b) ∈ [ñ] × [k] × {0, 1}. By combining all claims of sub-hybrids, our required
indistinguishability between hybrids 5 and 6 will follow.
Sub-hybrid H

ỹ,ℓ̃,̃b
≈ Sub-hybrid H

ỹ,ỹ+̃b−1,(̃b+1) mod 2: Suppose on the contrary, there exist a
PPT adversary A that distinguishes sub-hybrid H

ỹ,ℓ̃,̃b
and sub-hybrid H

ỹ,ỹ+̃b−1,(̃b+1) mod 2
with the non-negligible advantage ϵ(·). We construct a PPT reduction algorithm B which
can break the modified-2 D3DH assumption 3 with the same non-negligible advantage as
described above. From the challenger, the reduction algorithm B receives the following
instance as

(BG, gp, gq, A = gap , B = gbp, C = gcp, T )

where T is either gabcp or a random element in the subgroup Gp of prime-order p. Next, it
receives the challenge tuple (1λ, 1n, 1k, 1k′

, 1m, x∗, y∗, gid∗) from the adversary A where
y∗ = ñ. Now, B generates the master public key using the modified-2 D3DH instance 3 and
sends it to the adversary. Then the adversary can make query for the secret keys corre-
sponding to the distinct indices except that the tuple (i∗, id, gid∗,u) to the key generation
oracle. In the following, B generates the master public key, secret keys and the challenge
ciphertext. Finally, A outputs its guess, which B uses to break the given modified-2 D3DH
assumption 3. Since the reduction plays with the challenger over the subgroup Gp, thus it
can choose any elements from the subgroup Gq by itself. Now implicitly sets tp = a · b,
hp = B = gbp and c

p,ỹ,ℓ̃,̃b
= c · c̃

p,ỹ,ℓ̃,̃b
where the exponent c̃

p,ỹ,ℓ̃,̃b
is chosen uniformly

random from ZN . By using these exponents, B simulates the master public key, secret keys
and the group elements T can be programmed in the challenge ciphertext components C

ỹ,ℓ̃,̃b
.

Public key simulation. The challenger B chooses random generators hq, fq ← Gq
and fp ← Gp such that h = hphq, f = fpfq and sets hq = gdq , h = Bhq, f = gd1

p g
d2
q for

some random exponents d, d1, d2 ∈ ZN . Now, the challenger B generates the following
components:

• General components: Sample β ← ZN and compute Eq = gβq .

• Row-specific components: For all x ∈ [n̂], j ∈ [m] sample rx,j , αx,j , ψx,j ← ZN ,
r̂ ← ZN and compute Eq,x,j = g

βr̂rx,j
q , Fq,x,j = h

βr̂rx,j
q , Gq,x,j = e(gq, gq)βαx,j ,Wq,x,j

= e(gq, gq)βd2ψx,j , Ex,j = gr̂rx,j , Fx,j = hr̂rx,j , Gx,j = e(g, g)αx,j ,Wx,j = e(gp, gp)d1ψx,j ·
e(gq, gq)d2ψx,j .

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample
c̃y,ℓ,b, δℓ,b ← ZN , γℓ,b ← Zp and compute Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b = hδℓ,b ,

Hy,ℓ,b =
{

(Cgq)c̃y,ℓ,b if (y, ℓ, b) = (ỹ, ℓ̃, b̃)
(gpgq)c̃y,ℓ,b otherwise.

• gid-specific components: The challenger B samples group elements ϑ′p ← Gp, ϑ′q ←
Gq and for all i ∈ [k′] chooses ϑp,i ← Gp, ϑq,i ← Gq such that H(gid) = ϑ′pϑ

′
q

∏
i∈V ϑp,iϑq,i

= ϑ′
∏
i∈V ϑi, Hq(gid) = ϑ′q

∏
i∈V ϑq,i where ϑ′ = ϑ′pϑ

′
q ∈ G, ϑ = (ϑi)i∈[k′] =

(ϑp,iϑq,i)i∈[k′] ∈ Gk′ .

Using the instance of modified-2 D3DH assumption 3, the challenger B sets the master
public key as
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mpk =


BG, g = gpgq, h = Bhq, f = gd1

p g
d2
q , ϑ

′, ϑ
′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


All the components are generated from the challenge D3DH instance.

Secret key simulation. In the query phase, the adversary A is not allowed to query for
the challenge index i∗ and the group identity gid∗ together. If gid = gid∗, B replies the
secret key to A corresponding to the index i( ̸= i∗) as

K1 =

g⟨αx,u⟩ · g
r̂⟨rx,u⟩

∑
ℓ ̸=ℓ̃

c̃y,ℓ,idℓ (Cgq)
r̂⟨r̃x,u⟩̃c

ỹ,̃ℓ,̃b if (y, id
ℓ̃
) = (ỹ, b̃),

g⟨αx,u⟩ · gr̂⟨rx,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ otherwise. ,

K2 = gd⟨ψx,u⟩H(gid)r, K3 = gr

where r̃ ← ZN and set r = r̃ · r̂. If gid ̸= gid∗, then A can query for the secret for the index
position i∗. Then the secret keys are generated as

K1 =

g⟨αx,u⟩ · g
r̂⟨rx,u⟩

∑
ℓ ̸=ℓ̃

c̃y,ℓ,idℓ (Cgq)
r̂⟨r̃x,u⟩̃c

ỹ,̃ℓ,̃b if y = ỹ = ñ ∧ id
ℓ̃

= b̃,

g⟨αx,u⟩ · gr̂⟨rx,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ if y = ỹ = ñ ∧ id

ℓ̃
̸= b̃,

To simulate the other keys components, the challenger similarly construct the functions
F, J and K as mentioned above indistinguishability proof of hybrid 2 and hybrid 3. Also,
B sets similar public key parameters ϑ′ and ϑi’s. It answers the remaining secret key
components as follows:

K2 = g−⟨ψx,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)− ⟨ψx,u⟩
F(gid)

(
fF(gid)gJ(gid)

)r
= f ⟨ψx,u⟩

(
fF(gid)gJ(gid)

)r− ⟨ψx,u⟩
F(gid)

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)r′

= f ⟨ψx,u⟩H(gid)r
′

K3 = gr · g−
⟨ψx,u⟩

F(gid) = gr−
⟨ψx,u⟩

F(gid) = gr
′

As in the previous argument, we implicitly set r′ = r − ⟨ψx,u⟩
F(gid) . Therefore, from the

construction of K function, it implies that K(gid) ̸= 0 for any key query corresponding
to the group identity gid ̸= gid∗. This implies the function F(gid) ̸= 0 mod N for any
such group identities (since we assume N > sk′1 for reasonable values of N, s and k′1, see
Lemma 9).

Challenge ciphertext simulation. The challenger B samples the random exponents
τ ∈ ZN , tq ← ZN and for the challenge group identity gid∗, B computes H(gid∗) =
(ϑ′pϑ′q)

∏
i∈V∗ ϑp,iϑq,i = g

d∗
1
p g

d∗
2
q ,Hq(gid∗)β = ϑ

′β
q

∏
i∈V∗ ϑ

β
q,i = g

βd∗
2

q for some d∗1, d∗2 ∈ ZN .
Now, B simulates the challenge ciphertext components as follows.
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• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m] and ex, fx, dx, sx ←
ZN for all x ∈ [n̂] and categorize the components according x > x∗, x ≤ x∗ as follows:
For x > x∗:

1. Linking components: Rx,j = Esx
q,x,j , R̃x,j = F sxτ

q,x,j .

2. gid-specific component: Bx = Hq(gid∗)βsxtq .
3. Message-embedding components: Ix,j = e(gq, gq)vj ·Gsxtq

q,x,j ·W
sxtq
q,x,j , Ax = E

sxtq
q .

For x ≤ x∗:

1. Linking components: Rx,j = gsxσj , R̃x,j = hsxτνj .

2. gid-specific component: Bx = H(gid∗)dx .
3. Message-embedding components: Ix,j = e(g, g)fxϕj · e(f, f)fxϕj , Ax = gex .

• Column-specific components: Sample w̃y,ℓ,b, vy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generates the components as follows:

For (y > ỹ) ∨ (y = ỹ ∧ ℓ > ℓ̃) ∨ (y = ỹ ∧ ℓ = ℓ̃ ∧ b > b̃): Cy,ℓ,b = g
c̃y,ℓ,btq
q hw̃y,ℓ,bτ , C̃y,ℓ,b

= A−c̃y,ℓ,b/τ · gw̃y,ℓ,b .

For y = ỹ ∧ ℓ = ℓ̃ ∧ b = b̃: Cy,ℓ,b = g
c̃y,ℓ,btq
q hτw̃y,ℓ,bT c̃y,ℓ,b , C̃y,ℓ,b = gw̃y,ℓ,b .

For (y < ỹ) ∨ (y = ỹ ∧ ℓ < ℓ̃) ∨ (y = ỹ ∧ ℓ = ℓ̃ ∧ b < b̃): Cy,ℓ,b = g
c̃y,ℓ,btq
q hτw̃y,ℓ,bg

vy,ℓ,b
p ,

C̃y,ℓ,b = gw̃y,ℓ,b .

Analysis of simulation. For T = gabcp , then A gets the view of the challenge ciphertext
as the sub-hybrid H

ỹ,ℓ̃+̃b−1,(̃b+1) mod 2, otherwise for any random group element from the
subgroup Gp, the adversary A gets the view of the sub-hybrid H

ỹ,ℓ̃,̃b
. Therefore, if A wins

the with the advantage ϵ(·) then B breaks the modified-2 D3DH assumption 3 with the
same advantage ϵ(·).
Hybrid 6 ≈ Hybrid 7: Suppose on the contrary, there exists a PPT adversary A that
can distinguish between the hybrid 6 and hybrid 7 with non-negligible advantage ϵ(·). Now,
we construct a PPT reduction algorithm B that breaks the DHSD assumption 5 with the
same advantage.

The reduction algorithm B first receives the DHSD challenge instance of assumption 5
from its challenger as

(BG, g = gpgq, h = hphq, A = gaq , B = haq , C = gbgcp, D = hb, T )

where T is either sampled as T = gdq or T = gd where d is a random exponent sampled
as d ← ZN . Next, B receives the challenge tuple (1λ, 1n, 1k, 1k′

, 1m, x∗, y∗, gid∗) from
the adversary for y∗ = ñ. Now, B generates the master public key from the instance of
assumption 5 and sends it to the adversary. The adversary is not allowed to make secret
key queries for the tuple (i∗, id, gid∗,u). Now B simulates the secret keys and the challenge
ciphertext using the instance of DHSD assumption 5. Finally A outputs its guess which B
uses to break the assumption 5. In this proof, the reduction plays with its challenger in the
subgroup Gp thus it chooses any components from the subgroup Gq by itself. Let us con-
sider, B first implicitly sets the random exponents as β = a, sx∗+1 = d · s̃x∗+1, γℓ,b = c · γ̃ℓ,b
and δℓ,b = b · γ̃ℓ,b + δ̃ℓ,b where the exponents γ̃ℓ,b, δ̃ℓ,b are chosen uniformly random from
ZN . Also B implicitly sets hτ = gτ̃ where τ̃ be any random exponent from ZN . In this
simulation, the challenge group element T can be programmed in the challenge ciphertext
to compute the row components for x = x∗ + 1.
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Public key simulation. The challenger B chooses random generators hq, fq ← Gq
and hp, fp ← Gp such that h = hphq, f = fpfq. Sets fq = gd

′

q for some exponent d′ ∈ ZN .
Now, the challenger B generates the following components:

• General components: Compute Eq = A.

• Row-specific components: For all x ∈ [n̂], j ∈ [m] sample rx,j , αx,j , ψx,j ← ZN ,
r̂ ← ZN and computes Eq,x,j = Ar̂rx,j , Fq,x,j = Br̂rx,j , Gq,x,j = e(A, gq)αx,j ,Wq,x,j =
e(fq, A)ψx,j , Ex,j = gr̂rx,j , Fx,j = hr̂rx,j , Gx,j = e(g, g)αx,j ,Wx,j = e(f, g)ψx,j .

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample
cy,ℓ,b, δ̃ℓ,b ← ZN , γ̃ℓ,b ← Zp and computes Hy,ℓ,b = gcy,ℓ,b , Ṽℓ,b = gδ̃ℓ,bC γ̃ℓ,b , Vℓ,b =
hδ̃ℓ,bDγ̃ℓ,b .

• gid-specific components: The challenger B samples random group elements
ϑ′p ← Gp, ϑ′q ← Gq and for all i ∈ [k′] samples ϑp,i ← Gp, ϑq,i ← Gq such that
ϑ′ = ϑ′pϑ

′
q,ϑ = (ϑp,iϑq,i)i and sets H(gid) = (ϑ′pϑ′q)

∏
i∈V ϑp,iϑq,i = ϑ′

∏
i∈V ϑi

and Hq(gid) = ϑ′q
∏
i∈V ϑq,i corresponding to any group identity gid. We write

ϑ
′β
q = gaϱq = Aϱ, ϑβq,i = gaϱi

q = Aϱi where ϱ, ϱi ← Zq.

Using the challenge instance of DHSD assumption 5, the challenger B sets the master
public key as

mpk =


BG, g = gpgq, h = hphq, f = fpfq, ϑ

′, ϑ
′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


Secret key simulation. The challenger B answers the adversary’s queried secret keys
corresponding to the tuple (i, id, gid,u).

For gid = gid∗, the adversary cannot make any secret key queries for the index position
i∗. Therefore, the secret keys corresponding to the index i(̸= i∗) are generated as follows:

K1 = g⟨αx,u⟩ ·

∏
ℓ∈[k]

Hy,ℓ,idℓ

r̂⟨rx,u⟩

, K2 = f ⟨ψx,u⟩H(gid)r, K3 = gr

where r = r̃ · r̂ and r̃ is randomly sampled from ZN . If gid ≠ gid∗, the adversary can make
secret key query for the index position i∗. In that case, B answers the secret key sku as
follows

K1 = g⟨αx,u⟩ ·

∏
ℓ∈[k]

Hy,ℓ,idℓ

r̂⟨rx,u⟩

if x = x∗, y = y∗

The other secret keys are similarly generated as the previous hybrid. For gid ̸= gid∗,
challenger construct the identity encoding functions F, J and K similarly as the indistin-
guishability proof of hybrid 2 and hybrid 3. Now, B answers the remaining secret keys
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components K2,K3 that looks as follows:

K2 = g−⟨ψx,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)− ⟨ψx,u⟩
F(gid)

(
fF(gid)gJ(gid)

)r
= f ⟨ψx,u⟩

(
fF(gid)gJ(gid)

)r− ⟨ψx,u⟩
F(gid)

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)r′

= f ⟨ψx,u⟩H(gid)r
′

K3 = gr · g−
⟨ψx,u⟩

F(gid) = gr−
⟨ψx,u⟩

F(gid) = gr
′

As the similar argument, we can implicitly set r′ = r − ⟨ψx,u⟩
F(gid) .

Challenge ciphertext simulation. The challenger B samples the random exponents τ̃ ∈
ZN , t← ZN and for the challenge identity gid∗, we have H(gid∗) = (ϑ′pϑ′q)

∏
i∈V∗ ϑp,iϑq,i =

g
d∗

1
p g

d∗
2
q = gd

∗ and Hq(gid∗) = ϑ′q
∏
i∈V∗ ϑq,i = g

d∗
2
q for some random exponents d∗, d∗1, d∗2 ∈

ZN . So, Hq(gid∗)β = Ad
∗
2 . Now, B simulates the challenge ciphertext components as

follows.

• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m] and ex, fx, dx, s̃x
← ZN for all x ∈ [n̂] and categorize the components according x > x∗ + 1, x =
x∗ + 1, x < x∗ + 1 as follows:
For x > x∗ + 1:

1. Linking components: Rx,j = E s̃x
q,x,j , R̃x,j = F s̃xτ̃

q,x,j .

2. gid-specific component: Bx = Ad
∗
2 s̃xt.

3. Message-embedding components: Ix,j = e(gq, gq)vj ·Gs̃xt
q,x,j · e(fq, A)s̃xtψx,j , Ax =

E s̃xt
q .

For x = x∗ + 1:

1. Linking components: Rx,j = T s̃xrx,j , R̃x,j = T s̃xrx,j τ̃ .

2. gid-specific component: Bx = T d
∗s̃xt.

3. Message-embedding components: Ix,j = e(gq, gq)vj · e(T, g)s̃xαx,jt · e(f, T )ψx,jsxt,
Ax = T s̃xt.

For x < x∗ + 1:

1. Linking components: Rx,j = gs̃xσj , R̃x,j = hs̃xτνj .

2. gid-specific component: Bx = H(gid∗)dx .
3. Message-embedding components: Ix,j = e(g, g)fxϕj · e(f, f)fxϕj , Ax = gex .

• Column-specific components: Sample wy,ℓ,b, vy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generates the components as follows:
For all (y, ℓ, b) ∈ [ñ]× [k]× {0, 1}: Cy,ℓ,b = Ht

y,ℓ,b · gwy,ℓ,bτ̃ , C̃y,ℓ,b = gwy,ℓ,b .

After seeing the challenge ciphertext, B receives a guess bit b′ from A and it simply
forwards that as its guess bit to the challenger of DHSD assumption 5.
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Analysis of simulation. Finally, if T = gdq , then B simulates the view of the hy-
brid 6, otherwise, if T is randomly chosen element from the group G then B simulates
the view same as hybrid 7. Therefore, if A wins with the advantages ϵ(·) then B breaks
the DHSD assumption 5 with the same advantage. Hence proof of the Claim 7.2 is
complete.

This concludes the proof of index-hiding security.

Lemma 4. If the modified-1 D3DH assumption 2 holds over the bilinear group BG, then
our EIPL-IBIPFE satisfies selective lower identity-hiding security as per the Definition 6.

Proof. We recall that in the lower identity-hiding security, it is required that no PPT
adversary can distinguish between the special encryption to the index-position-bit tuple
(i∗ = (x∗, y∗), ℓ∗, b∗) and (i∗ = (x∗, y∗),⊥, 0) with non-negligible advantages. In the
secret key query phase, the adversary is not allowed to secret key query for the tuple
(i∗ = (x∗, y∗), id, gid∗,u) such that idℓ∗ = b∗. This proof technique is nearly identical to
that of Claim 7.2. Here, we just exclude the intermediate hybrids as mentioned in the
previous proof. Let (i∗ = (x∗, y∗), ℓ∗, b∗) be the challenge tuple provided by the adversary
A. Then the hybrid Hℓ∗,b∗ corresponds to the exactly same as the lower identity-hiding
game in which the challenge ciphertext is a special encryption to the index-position-bit
tuple (i∗ = (x∗, y∗), ℓ∗, b∗) and similarly the hybrid H0,1 is same as the lower identity-hiding
game for the index-position-bit tuple (i∗ = (x∗, y∗),⊥, 0). So the indistinguishability proof
to the tuple (i∗ = (x∗, y∗),⊥, 0) and (i∗ = (x∗, y∗), ℓ∗, b∗) are similar to the Claim 7.2.

In the following, we discuss the secret key simulation where the reduction algorithm B
answers all permissible secret keys corresponding to the tuple (i, id, gid,u) as per the lower
identity-hiding security game. From the security restriction of this game, the adversary
cannot query for the secret key corresponding to the tuple (i∗ = (x∗, y∗), idℓ∗ = b∗, gid∗,u).
So all the key queries are of the form either i ̸= i∗ or idℓ∗ ̸= b∗ or gid ̸= gid∗.

Secret key simulation. To answer the secret key corresponding to the tuple (i, id, gid,u),
B samples a random value r̃ ← ZN and sets r = r̃ · r̂ and computes H(gid∗) = g

d∗
1
p g

d∗
2
q

for some exponents d∗1, d∗2 ∈ ZN . Note that, the adversary is not allowed to query for the
secret key corresponding to the tuple (i∗, id, gid∗,u) such that idℓ∗ = b∗.

If gid = gid∗, A cannot query for the secret key corresponding to the index i∗ such that
id∗ = b∗. In Table 6, we show how B generates all possible keys corresponding to the tuple
(i, id, gid,u). For gid ̸= gid∗,B generates the K2, K3 secret key components as follows:

We assume that the adversary makes the maximum number of Q secret key queries
corresponding to the challenge group identity gid∗ and challenge index i∗. Now, the
simulator chooses an integer k′1 ← [k′] and sets an integer s = 10Q, a random k′-length
vector z = (zi)← Zk′

s , a value z′ ← Zs. Additionally, the simulator also chooses a random
value w′ ← ZN and a uniformly random k′-length vector w = (wi) ← Zk′

N . All these
values are kept secret to the simulator. Let us consider V∗ ⊆ {1, 2, . . . , k′} be the set
of all i for which the challenge identity gid∗i = 1. Let V∗ = {i1, i2, . . . , iκ}. Now, we
choose the zi values from z which correspond to the collection of indices V∗. Then set∑
i∈V∗ zi = k′1s− z′ for uniformly chosen k′1 ∈ [k′]. Now, we define the function K(gid) as

K(gid) =
{

0, if z′ +
∑
i∈V zi ≡ 0 mod s

1, otherwise.

From the above definition of the function K, we can say that K(gid∗) = 0 and for all



Subhranil Dutta, Tapas Pal, Amit Kumar Singh, Sourav Mukhopadhyay 45

Table 6: Simulated secret keys used in the lower identity-hiding game

conditions sub-conditions
on (x, y)

secret keys

K1 K2 K3

(i ̸= i∗)∧
(idℓ∗ = b∗)∧

(gid = gid∗)

(x ̸= x∗ ∧ y ̸= y∗)
g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(x ̸= x∗ ∧ y = y∗)

g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ ̸=ℓ∗ c̃y,ℓ,idℓ ·

(Eg
r̂q
q )

⟨r̃x,u⟩̃cy,ℓ∗,b∗

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(x = x∗ ∧ y ̸= y∗)

g⟨αx,u⟩·

(F g
r̂q
q )

⟨r̃x,u⟩
∑

ℓ ̸=ℓ∗ c̃y,ℓ,idℓ ·

(F g
r̂q
q )

⟨r̃x,u⟩̃cy,ℓ∗,b∗

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(i = i∗)∧
(idℓ∗ ̸= b∗)∧

(gid = gid∗)
(x = x∗) ∧ (y = y∗)

g⟨αx,u⟩·

(F g
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(i = i∗)∧
(idℓ∗ = b∗)∧

(gid ̸= gid∗)
(x = x∗) ∧ (y = y∗)

g
⟨αx,u⟩+r̂q⟨r̃x,u⟩
q · g

⟨αx,u⟩
p ·

F
⟨r̃x,u⟩

∑
ℓ ̸=ℓ∗ c̃y,ℓ,idℓ ·

H
⟨r̃x,u⟩̃cy,ℓ∗,b∗

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(i ̸= i∗)∧
(idℓ∗ ̸= b∗)∧

(gid = gid∗)

(x ̸= x∗ ∧ y ̸= y∗)∧
g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(x = x∗ ∧ y ̸= y∗)
g⟨αx,u⟩·

(F g
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(x ̸= x∗ ∧ y = y∗)

g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ ̸=ℓ∗ c̃y,ℓ,idℓ ·

(Dg
r̂q
q )

⟨r̃x,u⟩̃cy,ℓ∗,idℓ∗

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r

(Dg
r̂q
q )̃r

(i = i∗)∧
(idℓ∗ ̸= b∗)∧

(gid ̸= gid∗)
(x = x∗) ∧ (y = y∗)

g
⟨αx,u⟩+r̂q⟨r̃x,u⟩
q ·

g
⟨αx,u⟩
p · F

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(i ̸= i∗)∧
(idℓ∗ = b∗)∧

(gid ̸= gid∗)

(x ̸= x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(x = x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(F g
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(x ̸= x∗) ∧ (y = y∗)

g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ ̸=ℓ∗ c̃y,ℓ,idℓ ·

(Eg
r̂q
q )

⟨r̃x,u⟩̃cy,ℓ∗,b∗

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(i ̸= i∗)∧
(idℓ∗ ̸= b∗)∧

(gid ̸= gid∗)

(x ̸= x∗) ∧ (y = y∗)

g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ ̸=ℓ∗ c̃y,ℓ,idℓ ·

(Dg
r̂q
q )

⟨r̃x,u⟩̃cy,ℓ∗,idℓ∗

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(x ̸= x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)

(x = x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(F g
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

g
−⟨ψx,u⟩ J(gid)

F(gid)

·D
d∗

1 r̃
g

d∗
2 r̂q r̃

q

(Dr̃g
r̂qr̃
q )

·g
− ⟨ψx,u⟩

F(gid)
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gid ≠ gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) = N − sk′1 +
z′ +

∑
i∈V zi and J(gid) = w′ +

∑
i∈V wi. The simulator assigns the public parameters

ϑ′ = fN−k
′
1s+z′ · gw′ = g

d′
p
p g

d′
q
q and ϑi = fzigwi = g

dp,i
p g

dq,i
q . Now B answers remaining

secret key components as

K2 = g−⟨ψx,u⟩ J(gid)
F(gid) ·Dd∗

1 r̃g
d∗

2 r̂q r̃
q

= g−⟨ψx,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)r− ⟨ψx,u⟩
F(gid) = f ⟨ψx,u⟩

(
fF(gid)gJ(gid)

)r′

= f ⟨ψx,u⟩H(gid)r
′

K3 = (Dr̃gr̂q r̃
q ) · g−

⟨ψx,u⟩
F(gid) = gr−

⟨ψx,u⟩
F(gid) = gr

′

We implicitly set r′ = r− ⟨ψx,u⟩
F(gid) . So from the construction of K function, we get K(gid) ̸= 0

for any key query corresponding to the group identity gid ̸= gid∗. This implies that the
function F(gid) ̸= 0 mod N for any such group identity (since we assume N > sk′1 for any
reasonable value of N, s and k′1, see Lemma 9).

Thus the above shows that the reduction algorithm can perfectly simulate the lower
identity-hiding game. This implies that the scheme satisfy lower identity-hiding security,
assuming that the modified-1 D3DH assumption 2 holds.
Lemma 5. If the assumptions 2,5,6 and 7 hold over the bilinear group BG, then our
EIPL-IBIPFE satisfies selective upper identity-hiding security as per the Definition 7.

Proof. The upper identity-hiding security requires that no PPT adversary can distinguish
between the special encryption to the index-position-bit tuple (i∗, ℓ∗, b∗) and (i∗ + 1,⊥, 0)
with a non-negligible advantage. In the security experiment, the adversary makes only
one secret key query for some index position and it is not allowed to make only key query
for the tuple (i∗, id, gid∗,u) such that idℓ∗ = 1− b∗. To prove the Lemma 5, we consider a
sequence of hybrid games as discuss below.
Hyb1 : This hybrid corresponding to the upper identity-hiding game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗), ℓ∗, b∗).
Hyb2 : This hybrid is similar to the Hyb1 except that the column components as in the
table below.

Table 7: Computing column components for (y, ℓ, b) ∈ [ñ]× [k]× {0, 1}
Cy,ℓ,b C̃y,ℓ,b

(y > y∗) ∨ (y = y∗ ∧ ℓ ̸= ℓ∗) Ht
y,ℓ,b · hwy,ℓ,bτ gwy,ℓ,b

(y < y∗) ∨ ((y, ℓ) = (y∗, ℓ∗)) Ht
y,ℓ,b · hwy,ℓ,bτ · V τvy,ℓ,b

ℓ,b gwy,ℓ,b · Ṽ vy,ℓ,b

ℓ,b

In words, we can say that the ciphertext component Cy∗,ℓ∗,1−b∗ also includes random
elements from the subgroup Gp whereas in Hyb1 only Cy∗,ℓ∗,b∗ for the index position i∗

include a random element from the subgroup Gp.

Hyb3,ℓ̃,̃b where (ℓ̃, b̃) ∈ [k] × {0, 1}: This hybrid is the same as Hyb2 except that the
column components in the challenge ciphertext are computed as in Table 8. In words,
we can say that the challenge ciphertext ciphertext components Cy∗,ℓ,b for ℓ < ℓ̃, or ℓ =
ℓ̃ and b ≤ b̃ include a random element from Gp.
Hyb4 : This hybrid is similar to the previous sub-hybrid Hyb3,k,1 except that the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗ + 1),⊥, 0).
Here y∗ = ñ could be equal to ñ. In that case, the special-encryption algorithm can be
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Table 8: Computing column components for the sub-hybrid Hyb3,ℓ̃,̃b

Cy,ℓ,b C̃y,ℓ,b

(y > y∗)∨
(y = y∗ ∧ ℓ /∈ [ℓ̃] ∪ {ℓ∗})∨
(y = y∗ ∧ ℓ = ℓ̃ ∧ b > b̃)

Ht
y,ℓ,bh

wy,ℓ,bτ gwy,ℓ,b

(y < y∗)∨
(y = y∗ ∧ ℓ ∈ [ℓ̃− 1] ∪ {ℓ∗})∨

(y = y∗ ∧ ℓ = ℓ̃ ∧ b ≤ b̃)
Ht
y,ℓ,bh

wy,ℓ,bτV
τvy,ℓ,b

ℓ,b gwy,ℓ,b

directly extended to the encryption of such position.
Hyb5. This hybrid corresponds to the upper identity-hiding game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ + 1,⊥, 0). Note that
if y∗ ̸= ñ, then the hybrids 4 and 5 are already identical.

Next, we discuss about the indistinguishability of the above hybrids.
Hyb1 ≈ Hyb2: The indistinguishability proof of the hybrids Hyb1 and Hyb2 is identical
to Claim 7.2 and Lemma 4.
Hyb3,ℓ̃,̃b ≈ Hyb3,ℓ̃+̃b−1,(̃b+1) mod 2: If the modified-1 D3DH assumption 2 holds then there
does not exist any PPT adversary that can distinguish between the sub-hybrid Hyb3,ℓ̃,̃b
and the sub-hybrid Hyb3,ℓ̃+̃b−1,(̃b+1) mod 2 with non-negligible advantage.

If ℓ̃ = ℓ∗, sub-hybrid Hyb3,ℓ̃,̃b is identically equals to sub-hybrid Hyb3,ℓ̃+̃b−1,(̃b+1) mod 2,
otherwise there have two cases depending on the secret key query phase,.
Case 1. Adversary makes a key query for index tuple (j, id, gid,u) such that j = i∗ ∧ id

ℓ̃
=

b̃ ∧ gid = gid∗.
Suppose on contrary, there exists a PPT adversary A which can distinguish between

the sub-hybrids Hyb3,ℓ̃,̃b and Hyb3,ℓ̃+̃b−1,̃b+1 mod 2 with non-negligible advantage ϵ(·). We
construct a PPT reduction algorithm B which breaks the modified-1 D3DH assumption 2
with the same non-negligible advantage as

(BG, gp, gq, A = gap , B = gbp, C = gcp, D = gb
2

p , E = gb
2c
p , F = gb

3

p , G = gb
4

p , H = gb
3c
p , T )

where T is either gabcp or an uniformly random element from the sub-group Gp. Next, B
receives a challenge tuple (1λ, 1n, 1k, 1k′

, 1m, (i∗, ℓ∗, b∗), gid∗) from A. Then, B generates
the master public key and sends it to A. After seeing mpk, the adversary makes polynomial
numbers of secret keys for the distinct index positions i under some admissible conditions.
Then B simulates the public keys, secret keys and the challenge ciphertext and sends it to
A. Finally, the adversary outputs a bit b′ as guess which B uses to breaks the assumption
2. As the reduction plays the game with its challenger in the subgroup Gp so everything it
can choose from the subgroup Gq by itself. Let us implicitly set the exponents as below

tp = ab; rp,x∗,j = b · r̃p,x∗,j ; cp,y∗,ℓ∗,b∗ = c+ c̃p,y∗,ℓ∗,b∗ ; r̂p = b2,

sp,x∗ = s̃p,x∗/b; c
p,y∗,ℓ̃,̃b

= −c+ c̃
p,y∗,ℓ̃,̃b

where r̃p,x∗,j , s̃p,x∗ , c̃
p,y∗,ℓ̃,̃b

and c̃p,y∗,ℓ∗,b∗ are the random exponents. Also, we implicitly
set hp = B = gbp and fp = Bd1 for d1 uniformly chosen from ZN . Setting the exponents
allows to simulate the public key, secret key exactly as well as the challenge group elements
T , that can be programmed in the challenge ciphertext components, C

y∗,ℓ̃,̃b
.
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Public key simulation. The challenger B chooses random generators hq, fq ← Gq such
that h = hphq = Bhq, f = fpfq = Bd1fq. Sets hq = gdq , fq = gd

′

q for some exponents
d, d′ ∈ ZN . Now, the challenger B generates the following components:

• General component: Sample β ← ZN and compute Eq = gβq .

• Row-specific components: For all x ∈ [n̂], j ∈ [m] sample r̃x,j , αx,j , ψx,j ← ZN ,
r̂q ← ZN and computes Eq,x,j = g

βr̂q r̃x,j
q , Fq,x,j = h

βr̂q r̃x,j
q , Gq,x,j = e(gq, gq)βαx,j ,

Wq,x,j = e(fq, gq)βψx,j ,

Ex,j =

(Dgr̂q
q )r̃x,j if x ̸= x∗,

(Fgr̂q
q )r̃x,j otherwise.

, Fx,j =

(Fhr̂q
q )r̃x,j if x ̸= x∗

(Ghr̂q
q )r̃x,j otherwise.

,

Wx,j = e(B, gp)d1ψx,je(fq, gq)ψx,j ∀ x
Gx,j = e(g, g)αx,j ∀ x

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample
c̃y,ℓ,b, δℓ,b ← ZN , γℓ,b ← Zp and computes Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b = hδℓ,b ,

Hy,ℓ,b =


Cgc̃y,ℓ,b if (y, ℓ, b) = (y∗, ℓ∗, b∗)
C−1gc̃y,ℓ,b if(y, ℓ, b) = (y∗, ℓ̃, b̃)
gc̃y,ℓ,b otherwise.

• gid-specific components: The challenger B samples random group elements
ϑ′p ← Gp, ϑ′q ← Gq and for all i ∈ [k′] samples ϑp,i ← Gp, ϑq,i ← Gq such that
ϑ′ = ϑ′pϑ

′
q,ϑ = (ϑp,iϑq,i)i∈[k′]. The challenger B sets H(gid) = (ϑ′pϑ′q)

∏
i∈V ϑp,iϑq,i =

ϑ′
∏
i∈V ϑi and Hq(gid) = ϑ′q

∏
i∈V ϑq,i corresponding to any group identity gid.

Using the modified-1 D3DH instance, the challenger B sets the master public key as

mpk =


BG, g = gpgq, h = Bhq, f = Bd1fq, ϑ

′, ϑ
′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


Secret key simulation. To answer the secret key sku corresponding to the tuple
(i, id, gid,u), B samples a random value r̃ ← ZN and sets r = r̃ · r̂. For the challenge group
identity gid∗, it computes H(gid∗) = g

d∗
1
p g

d∗
2
q where d∗1, d∗2 ← ZN . In the secret key query

phase, A is not allowed to secret key query corresponding to the tuple (i∗, id, gid∗,u) such
that idℓ∗ ̸= b∗. Now, B simulates the secret key corresponding to the tuple (i, id, gid,u) as
the Table 9.

To simulate the secret key components K2 and K3 for the case gid ≠ gid∗, we assume
that the adversary makes the maximum number of Q secret key queries corresponding to
the the challenge group identity gid∗ and challenge index i∗. Now, the simulator chooses
an integer k′1 ← [k′], sets an integer s = 10Q, a random k′-length vector z = (zi)← Zk′

s

and a value z′ ← Zs. Additionally, the simulator also chooses a random value w′ ← ZN
and a uniformly random k′-length vector w = (wi)← Zk′

N . All these values are kept secret
to the simulator.
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Table 9: Simulated secret keys used in upper identity-hiding game

conditions
sub-conditions
on (x, y) & id

b̃

secret keys

K1 K2 K3

(i ̸= i∗)∧
(idℓ∗ = b∗)∧

(gid = gid∗)

(x ̸= x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r (Dg

r̂q
q )̃r

(x = x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(F g
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r (Dg

r̂q
q )̃r

(x ̸= x∗) ∧ (y = y∗)∧

(id
ℓ̃

̸= b̃)
g⟨αx,u⟩ · g

r̂q⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

q

·(ED

∑
ℓ∈[k]

c̃y,ℓ,idℓ )⟨r̃x,u⟩

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r (Dg

r̂q
q )̃r

(x ̸= x∗) ∧ (y = y∗)∧

(id
ℓ̃

= b̃)

g⟨αx,u⟩·

(Dg
r̂q
q )

⟨r̃x,u⟩
∑

ℓ∈[k]
c̃y,ℓ,idℓ

(Bd1 fq)⟨ψx,u⟩

·(D
d∗

1 g
d∗

2 r̂q
q )̃r (Dg

r̂q
q )̃r

(i ̸= i∗)∧
(idℓ∗ ̸= b∗)∧

(gid = gid∗)

(x ̸= x∗) ∧ (y ̸= y∗)
g⟨αx,u⟩·

(Dg
r̂q
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Let us consider V∗ ⊆ {1, 2, . . . , k′} be the set of all i for which the challenge identity
gid∗i = 1. Let V∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond
to the collection of indices V∗. Then set

∑
i∈V∗ zi = k′1s− z′ for uniformly chosen k′1 ∈ [k′].

Now, we define the function K(gid) as

K(gid) =
{

0, if z′ +
∑
i∈V zi ≡ 0 mod s

1, otherwise

So, from the above definition of the function K, we can say that K(gid∗) = 0 and for
all gid ̸= gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) =
N − sk′1 + z′ +

∑
i∈V zi and J(gid) = w′ +

∑
i∈V wi. The simulator assigns the public

parameters ϑ′ = fN−k
′
1s+z′ · gw′ = g

d′
p
p g

d′
q
q and ϑi = fzigwi = g

dp,i
p g

dq,i
q . Now B answers

remaining secret key components as

K2 = g−⟨ψx,u⟩ J(gid)
F(gid) ·Dd∗

1 r̃g
d∗

2 r̂q r̃
q

= g−⟨ψx,u⟩ J(gid)
F(gid) H(gid)r

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)− ⟨ψx,u⟩
F(gid)

(
fF(gid)gJ(gid)

)r
= f ⟨ψx,u⟩

(
fF(gid)gJ(gid)

)r− ⟨ψx,u⟩
F(gid)

= f ⟨ψx,u⟩
(
fF(gid)gJ(gid)

)r′

= f ⟨ψx,u⟩H(gid)r
′

K3 = (Dr̃gr̂q r̃
q ) · g−

⟨ψx,u⟩
F(gid) = gr−

⟨ψx,u⟩
F(gid) = gr

′

We implicitly set r′ = r− ⟨ψx,u⟩
F(gid) . So from the construction of K function, we get K(gid) ̸= 0

for any key query corresponding to the group identity gid ̸= gid∗. This implies that the
function F(gid) ̸= 0 mod N for any such group identity (since we assume N > sk′1 for
reasonable values of N, s and k′1. We prove this in Lemma 9).
There have some restrictions over the key queries to the key generation oracle i.e.,

– Adversary A can not query for the tuple (i, id, gid,u) such that i = i∗ ∧ idℓ∗ ≠
b∗ ∧ gid = gid∗.

– In Case 1, the adversary can make a query for the tuple (i, id, gid,u) where i =
i∗ ∧ id

ℓ̃
= b̃ ∧ gid = gid∗. If the adversary makes a key query for the challenge index

position i∗ with id
ℓ̃
̸= b̃ and gid = gid∗, then the challenger B aborts.

Ciphertext simulation. The challenger B samples the random exponents τ ∈ ZN , tq ←
ZN and for the challenge group identity gid∗, B computes H(gid∗) = ϑ′

∏
i∈V∗ ϑi = g

d∗
p
p g

d∗
q
q

and Hq(gid∗)β = ϑ
′β
q

∏
i∈V∗ ϑ

β
q,i = g

d∗
q
q for some random exponents d∗q , d∗p ∈ ZN . Now, B

simulates the challenge ciphertext components as follows.

• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m] and ex, fx, dx, s̃x
← ZN for all x ∈ [n̂] and categorize the components according x > x∗, x = x∗, x < x∗

as follows:
For x > x∗:

1. Linking components: Rx,j = E s̃x
q,x,j , R̃x,j = F s̃xτ

q,x,j .

2. gid-specific component: Bx = Hq(gid∗)βs̃xtq .

3. Message-embedding components: Ix,j = e(gq, gq)vj · Gs̃xtq
q,x,j ·Wq,x,j

s̃xtq , Ax =

E
s̃xtq
q .
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For x = x∗:

1. Linking components: Rx,j = (Dgr̂q
q )s̃xr̃x,j , R̃x,j = (Fhr̂q

q )s̃xr̃x,jτ .

2. gid-specific component: Bx = Ad
∗
ps̃xg

d∗
q s̃xtq
q .

3. Message-embedding components: Ix,j = e(gq, gq)vje(g,Agtqq )s̃xαx,j ·e(B,A)d2
1ψx,j s̃x

e(fq, gq)ψx,j s̃xtq , Ax = (Agtqq )s̃x .

For x < x∗:

1. Linking components: Rx,j = gs̃xσj , R̃x,j = hs̃xτνj .

2. gid-specific component: Bx = H(gid∗)dx .
3. Message-embedding components: Ix,j = e(g, g)fxϕj · e(f, f)fxϕj , Ax = gex .

• Column-specific components: Sample w̃y,ℓ,b, vy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generates the components as follows:
For (y > y∗) ∨ (y = y∗ ∧ ℓ > ℓ̃) ∨ (y = y∗ ∧ ℓ /∈ [ℓ̃] ∪ {ℓ∗}) ∨ (y = y∗ ∧ ℓ = ℓ̃ ∧ b > b̃):

Cy,ℓ,b = g
c̃y,ℓ,btq
q · hw̃y,ℓ,bτ , C̃y,ℓ,b = A−c̃y,ℓ,b/τgw̃y,ℓ,b .

For y = y∗ ∧ ℓ = ℓ̃ ∧ b = b̃: Cy,ℓ,b = g
c̃y,ℓ,btq
q · hτw̃y,ℓ,b · T−1, C̃y,ℓ,b = A−c̃y,ℓ,b/τgw̃y,ℓ,b .

For (y < y∗) ∨ (y = y∗ ∧ ℓ < ℓ̃) ∨ (y = y∗ ∧ ℓ ∈ ([ℓ̃− 1] ∪ {ℓ∗}) ∧ b < b̃): Cy,ℓ,b =

g
c̃y,ℓ,btq
q hτw̃y,ℓ,bg

vy,ℓ,b
p , C̃y,ℓ,b = gw̃y,ℓ,b .

After seeing the challenge ciphertext, the adversary guesses a bit b′ and it forwards to the
modified-1 D3DH challenger of assumption 2.
Analysis of simulation. If T = gabcp then B simulates the view of Hyb3,ℓ̃+̃b−1,̃b+1 mod 2
otherwise if T is a random group element from the subgroup Gp then B simulates the view
of sub-hybrid Hyb3,ℓ̃,̃b. Therefore, if the adversary A wins the game with an advantage ϵ(·)
then B breaks the assumption 2 with same ϵ(·) advantage.

Case 2. (otherwise) The proof technique is similar to the proof of Claim 7.2 and
Lemma 4.
In this case, we use the same proof strategy as used in Claim 7.2 and Lemma 4, where the
reduction algorithm does not need to know the value of the group element gr̂⟨rx∗ ,u⟩c

y∗ ,̃ℓ,̃b

for answering the key queries.
Hyb3 ≈ Hyb4 : The proof of the above indistinguishability of hybrids Hyb3 and Hyb4
are identical. No adversary can not distinguish between these hybrids with non-negligible
advantage.
Hyb4 ≈ Hyb5 : The indistinguishable of the hybrids Hyb4 and Hyb5 can be classified
into two cases.
Case 1. If y∗ ̸= ñ, then both the hybrids Hyb4 and Hyb5 are identical.
Case 2. For y∗ = ñ then the indistinguishability follows from the sequence of hybrid
games which is similar to the claim 7.2. In particular, Hyb4 as described above is similar
to the hybrid 2 and Hyb5 is identical with the hybrid 7 as described in the claim 7.2. Thus
this indistinguishable follows from the claim 7.2.

This concludes the upper identity-hiding security game.

Lemma 6. If the D3DH assumption 1 holds over the bilinear group BG, then our EIPL-
IBIPFE satisfies selective message-hiding security as per Definition 8.
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Proof. Suppose the adversary A is a PPT adversary against the message-hiding security
of the our EIPL-IBIPFE scheme. We construct an algorithm B for breaking the D3DH
assumption 1 that uses A as a subroutine. To prove the message-hiding security, we
consider two hybrid games. The first hybrid is the same as the original message-hiding
security experiment as in definition 8. In the next hybrid, we change the distribution of
the master public key, secret key and the challenge ciphertext, where we first sample a
random vector ψ̃x and set ψx = F⊤ψ̃x for some x ∈ [n̂]. The matrix F is a full rank
matrix chosen such that F(v(0) − v(1)) = e1 where v(0),v(1) are the challenge message
vectors submitted by the A and e1 denotes a m length vector as (1, 0, . . . , 0)⊤. Assuming
the D3DH assumption holds over the bilinear group BG, we show that the adversary can
distinguish between the challenge ciphertexts with negligible probability.
Hybrid 0: This hybrid is the same as the message-hiding security experiment as per
Definition 8.
Hybrid 1: The hybrid is identical to the previous hybrid except for each identity gid, the
challenger samples the master secret key msk as follows:

(a) Samples uniformly random vector ψ̃x = (ψ̃x,1, ψ̃x,2, · · · , ψ̃x,m) for all ψ̃x,j ∈ ZN and
x ∈ [n̂].

(b) Samples a uniformly chosen full rank matrix F ∈ Zm×mN satisfying the relation
F(v(0) − v(1)) = e1 where v(0),v(1) are the challenge messages vectors of length m.

(c) Sets ψx = F⊤ψ̃x instead of sampling uniformly random as in Hybrid 0.

In the adversary’s view, the master public key mpk, the secret key associated with the
tuple (i, id, gid,u) where i ≥ i∗ and the challenge ciphertext ctv(b) is simulated as below.
Public key: All the components of mpk are generated similarly as Hybrid 0 except
Wq,x,j = (e(fq, gq)βFψx)j and Wx,j = (e(f, g)Fψx)j where (g)j represents the j-th group
element from the vector g = (g1, g2, . . . , gm).
Secret key: We consider V ⊆ {1, 2, . . . , k′} be the set of all i for which the i-th component
of queried group identity is non-zero i.e., gidi = 1. The secret key sku components
corresponding to the tuple (i, id, gid,u) are set as

K1 = g⟨α̃x,u⟩(
∏
ℓ∈[k]

Hy,ℓ,idℓ
)r̂⟨rx,u⟩, K2 = f ⟨ψ̃x,Fu⟩H(gid)r, K3 = gr

where r = r̃ · r̂ with r̃ ← ZN .

Challenge ciphertext: For the challenge group identity gid∗, consider V∗ ⊆ {1, . . . , k′} be
the set of all i such that gid∗i = 1. All the components of the ciphertext except Ax, Bx, Ix,j
for x > x∗ and x = x∗ are similarly generated as Hybrid 0.

Table 10: Computing row components of the ciphertext for x ∈ [n̂]
Rx,j R̃x,j Ax Bx Ix,j

x > x∗ Esx
q,x,j

F sxτ
q,x,j

gβtsx
q Hq(gid∗)tsxβ

(
e(gq, gq)F⊤(Fv(0)−b(v(0)−v(1))) · e(gq, gq)βsxtαx

·e(gq, fq)βtsxF⊤ψ̃x
)

j

x = x∗ Esx
x,j

F sxτ
x,j

gtsx H(gid∗)tsx

(
e(gq, gq)F⊤(Fv(0)−b(v(0)−v(1))) · e(g, g)sxtαx

·e(g, f)tsxF⊤ψ̃x
)

j

x < x∗ gsxσj hsxτνj gex H(gid∗)dx e(g, g)fxϕj · e(f, f)fxϕj

Since, F ∈ Zm×mN is an orthogonal matrix, then the following two distributions are
equivalent.

{ψx : ψx ← ZmN , x ∈ [n̂]} ≡ {F⊤ψ̃x : ψ̃x ← ZmN , x ∈ [n̂]}
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Suppose on the contrary, there exist a PPT adversary A that can distinguish between
the Hybrid 0 and Hybrid 1 with non-negligible advantage ϵ(·). Then we construct a PPT
adversary B that breaks the D3DH assumption 1 with the same non-negligible advantage as
follow. The reduction algorithm B first receives the bilinear challenge from the challenger
as

(BG, Aq = gaq , Dq = gdq , Cq = gcq, T )

of the D3DH assumption 1, where BG = (p, q,N,G,GT , g, e(·, ·)) is a group description.
The elements a, d, c← Zq are random integers and the element T = gτq is either gadcq or
random group element from the subgroup Gq. The algorithm B works as follows:

The adversary B implicitly sets the following vector of length m as

ax = (a, ax,2, . . . , ax,m); d = (d, . . . , d); c = (c, . . . , c)

where it random samples ax,2, . . . , ax,m ← ZN . We define the notion u⊙ v by component
wise multiplication of the vectors u and v. In this case, a⊙d = (ad, ax,2d, . . . , ax,md) = da.
To generate the public key, we implicitly set ψ̃q,x = ax, fq = Dq and tq = c.

Public key simulation: Without loss of generality, we assume that the adversary
makes the maximum number of Q queries and the challenge group identity gid∗ and
challenge index i∗. Now, the simulator chooses an integer k′1 ← [k′], sets an integer
s = 10Q, a random k′-length vector z = (zi)← Zk′

s and a value z′ ← Zs. Additionally, the
simulator also chooses a random value w′ ← ZN and a uniformly random k′-length vector
w = (wi)← Zk′

N . All these values are kept secret to the simulator.
Let us consider V∗ ⊆ {1, 2, . . . , k′} be the set of all i for which the challenge identity

gid∗i = 1. Let V∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond
to the index set V∗ and then set

∑
i∈V∗ zi = k′1s− z′ for uniformly chosen k′1 ∈ [k′]. Now,

we define the function K(gid) as

K(gid) =
{

0, if z′ +
∑
i∈V zi ≡ 0 mod s

1, elsewhere

So, from the above definition of the function K, we can say that K(gid∗) = 0 and for
all gid ̸= gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) =
N − sk′1 + z′ +

∑
i∈V zi and J(gid) = w′ +

∑
i∈V wi. The simulator assigns the public

parameters ϑ′ = fN−k
′
1s+z′ · gw′ = g

d′
p
p g

d′
q
q and ϑi = fzigwi = g

dp,i
p g

dq,i
q . From the

adversarial perspective, the distribution of the public parameters are identical to the real
construction.

The challenger B chooses random generators hq ← Gq and hp, fp ← Gp such that
h = hphq, f = fpfq. As mentioned previously, we implicitly set fq = Dq. Now, the
challenger B generates the following components:

• General components: Sample β ← ZN and compute Eq = gβq .

• Row-specific components: For all x ∈ [n̂], j ∈ [m] sample r̃x,j , αx,j , ψ̃x,j ← ZN ,
r̂ ← ZN and computes Eq,x,j = g

βr̂rx,j
q , Fq,x,j = h

βr̂rx,j
q , Gq,x,j = e(gq, gq)βαx,j ,Wq,x,j

= (e(Dq, g
βF⊤ax
q ))j , Ex,j = gr̂rx,j , Fx,j = hr̂rx,j , Gx,j = e(g, g)αx,j ,Wx,j =

(e(fpDq, g
F⊤ax
q g

F⊤ψ̃p,x
p ))j .

• Column-specific components: For all y ∈ [ñ], ℓ ∈ [k], b ∈ {0, 1}, sample
cy,ℓ,b, δℓ,b ← ZN , γℓ,b ← Zp and computes Hy,ℓ,b = gcy,ℓ,b , Ṽℓ,b = gδℓ,bg

γℓ,b
p , Vℓ,b =

hδℓ,b .
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• gid-specific components: The challenger B samples random group elements
ϑ′p ← Gp, ϑ′q ← Gq and for all i ∈ [k′] samples ϑp,i ← Gp, ϑq,i ← Gq such that
ϑ′ = ϑ′pϑ

′
q,ϑ = (ϑp,iϑq,i)i∈[k′]. The challenger B sets H(gid) = (ϑ′pϑ′q)

∏
i∈V ϑp,iϑq,i =

ϑ′
∏
i∈V ϑi and Hq(gid) = ϑ′q

∏
i∈V ϑq,i corresponding to any group identity gid.

Using the D3DH instance, the challenger B sets the master public key as

mpk =


BG, g = gpgq, h = hphq, f = fpDq, ϑ

′, ϑ
′β
q ,ϑ, {ϑ

β
q,i}i∈[k′],H,Hq, Eq,Eq,x,j , Fq,x,j , Gq,x,j ,Wq,x,j

Ex,j , Fx,j , Gx,j ,Wx,j


(x,j)∈[n̂]×[m]

,

{Hy,ℓ,b}(y,ℓ,b)∈[ñ]×[k]×{0,1},
{
Ṽℓ,b, Vℓ,b

}
(ℓ,b)∈[k]×{0,1}


Here, the exponent gax

q is computed as

gax
q = (gaq , gax,2

q , . . . , gax,m
q ) = gψ̃q,x

q

Secret key simulation: B answers the secret key sku associated to the tuple (i, id, gid,u)
as describe below. We consider two cases. Before going further, we consider V ⊆ {1, . . . , k′}
be the set of all j such that gidj = 1. Let i = (x, y) be the row wise representation with
i ≥ i∗.

Case 1. If the group identity gid ̸= gid∗, B simulates the secret key as follows:

K1 = g⟨αx,u⟩

∏
ℓ∈[k]

Hy,ℓ,idℓ

r̂⟨rx,u⟩

K2 = f ⟨ψ̃x,p,Fu⟩
p

(
fF(gid)
p gJ(gid)

p

)r′
p

g
−⟨ax,Fu⟩ J(gid)

F(gid)
q Hq(gid)r

= f ⟨ψ̃x,p,Fu⟩
p

(
fF(gid)
p gJ(gid)

p

)r′
p

f ⟨ax,Fu⟩
q

(
fF(gid)
q gJ(gid)

q

)r (
fF(gid)
q gJ(gid)

q

)− ⟨ax,Fu⟩
F(gid)

= f ⟨ψ̃x,p,Fu⟩
p

(
fF(gid)
p gJ(gid)

p

)r′
p

f ⟨ax,Fu⟩
q

(
fF(gid)
q gJ(gid)

q

)r− ⟨ax,Fu⟩
F(gid)

= f ⟨ψ̃x,p,Fu⟩
p

(
fF(gid)
p gJ(gid)

p

)r′
p

f ⟨ax,Fu⟩
q

(
fF(gid)
q gJ(gid)

q

)r′
q

= f ⟨ψ̃x,p,Fu⟩
p f ⟨ax,p,Fu⟩

q

(
fF(gid)
p gJ(gid)

p

)r′
p
(
fF(gid)
q gJ(gid)

q

)r′
q

= f ⟨ψ̃x,p,Fu⟩
p f ⟨ax,Fu⟩

q H(gid)r
′

= f ⟨ψ̃x,Fu⟩H(gid)r
′

K3 = g
r′

p
p g

r−⟨(a,ax,2,...,ax,m),Fu⟩· 1
F(gid)

q

= g
r′

p
p g

r′
q
q = gr

′

We implicitly set r′q = r − ⟨ψ̃x,q,Fu⟩
F(gid) and r′p is randomly chosen. So from the construction

of K function, it can conclude that K(gid) ̸= 0 for any key query corresponding to the
group identity gid ̸= gid∗. This implies that the function F(gid) ̸= 0 mod N for any such
group identities (as we assume N > sk′1 for reasonable values of N, s and k′1, see Lemma 9.
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Case 2. If gid = gid∗, B responds the secret keys as follows:

K1 = g⟨αx,u⟩

∏
ℓ∈[k]

Hy,ℓ,idℓ

r̂⟨rx,u⟩

K2 = gdµq f ⟨ψ̃p,x,Fu⟩
p

(
(fF(gid∗)gJ(gid∗))r

)
= g⟨ax⊙d,Fu⟩

q f ⟨ψ̃p,x,Fu⟩
p

(
(fF(gid∗)gJ(gid∗))r

)
= f ⟨(a,ax,2,...,ax,m),Fu⟩

q f ⟨ψ̃p,x,Fu⟩
p

(
(fF(gid∗)gJ(gid∗))r

)
= f ⟨ax,Fu⟩

q f ⟨ψ̃p,x,Fu⟩
p

(
(fF(gid∗)gJ(gid∗))r

)
= f ⟨ψ̃x,Fu⟩H(gid∗)r

K3 = gr

where the second equality follows from the fact that ⟨ax ⊙ d,Fu⟩ = dµ with µ ∈ ZN is
known to the challenger B. So from the formation of the matrix F, we have F(v(0)−v(1)) =
e1 and for gid = gid∗, the queried secret key associated with the vector u satisfies
the condition ⟨v(0) − v(1),u⟩ = 0. Therefore, we have ⟨e1,Fu⟩ = 0 which implies that
⟨ax ⊙ d,Fu⟩ = ⟨(ad, ax,2d, ax,3d, . . . , ax,md),Fu⟩ = dµ for some µ ∈ ZN .

Challenge ciphertext simulation: The challenger B samples the random exponents
τ ∈ ZN , tp ← ZN and simulates the challenge ciphertext components as follows.

• Row-specific components: Sample σj , νj , ϕj ← ZN for all j ∈ [m] and ex, fx, dx, sx
← ZN for all x ∈ [n̂] and categorize the components according x > x∗, x = x∗, x < x∗

as follows:
For x > x∗:

1. Linking components: Rx,j = Esx
q,x,j , R̃x,j = F sxτ

q,x,j .

2. gid-specific component: Bx = C
βsxJq(gid∗)
q . Since, N − k′1s + z′ +

∑
i∈V∗ zi =

N = pq, this implies fNq = 1. Therefore Bx = Hq(gid∗)βsxt = C
βsxJq(gid∗)
q .

3. Message-embedding components: Ax = Cβsx
q ,

Ix,j = I1
x,j =

(
e(gq, gq)F⊤(Fv(0)−be1)e(gq, gq)βsxcαxe(gq, gcdF⊤(a,ax,2,...,ax,m)

q )βsx

)
j

=
(
e(gq, gq)F⊤(Fv(0)−be1)e(gq, gq)βsxcαxe(gq, gq)βsxcdF⊤(a,ax,2,...,ax,m)

)
j

=
(
e(gq, gq)F⊤(Fv(0)−be1)e(gq, gq)βsxcαxe(gq, fq)βsxcF⊤(a,ax,2,...,ax,m)

)
j

=
(
e(gq, gq)F⊤(Fv(0)−be1)e(gq, gq)βsxtαxe(gq, fq)βsxtF⊤ψ̃x

)
j

For x = x∗:

1. Linking components: Rx,j = Esx
x,j , R̃x,j = F sxτ

x,j .

2. gid-specific component: Bx = (Cqgtpp )sxJ(gid∗).
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3. Message-embedding components: Ax = (Cqgtpp )sx ,

Ix,j = I
2
x,j =

(
e(gq, gq)F⊤(Fv(0)−be1)

e(gq, gq)sxcαxe(gp, gp)sxtpαx

e(gq, g
cdF⊤(a,ax,2,...,ax,m)
q )sxe(gp, fp)sxtpF⊤ψ̃p,x

)
j

=
(
e(gq, gq)F⊤(Fv(0)−be1)

e(gq, gq)sxcαx

e(gp, gp)sxtpαxe(gq, gq)sxcdF⊤(a,ax,2,...,ax,m)
e(gp, fp)sxtpF⊤ψ̃p,x

)
j

=
(
e(gq, gq)F⊤(Fv(0)−be1)

e(gq, gq)sxcαx

e(gp, gp)sxtpαxe(gq, fq)sxcF⊤(a,ax,2,...,ax,m)
e(gp, fp)sxtpF⊤ψ̃p,x

)
j

=
(
e(gq, gq)F⊤(Fv(0)−be1)

e(gq, gq)sxtqαxe(gp, gp)sxtpαx

e(gq, fq)sxtqF⊤ψ̃x,q e(gp, fp)sxtpF⊤ψ̃p,x
)

j

For x < x∗:

1. Linking components: Rx,j = gsxσj , R̃x,j = hsxτνj .

2. gid-specific component: Bx = H(gid∗)dx .
3. Message-embedding components: Ix,j = e(g, g)fxϕj · e(f, f)fxϕj , Ax = gex .

• Column-specific components: Sample wy,ℓ,b, vy,ℓ,b ← ZN for all y ∈ [ñ], ℓ ∈
[k], b ∈ {0, 1} and generates the components as follows:
For (y > y∗) ∨ (y = y∗ ∧ (ℓ, b) ̸= (ℓ∗, b∗)): Cy,ℓ,b = (Cqgtpp )cy,ℓ,b · hwy,ℓ,bτ , C̃y,ℓ,b =
gwy,ℓ,b .
For (y < y∗) ∨ ((y, ℓ, b) = (y∗, ℓ∗, b∗)): Cy,ℓ,b = (Cqgtpp )cy,ℓ,b ·hwy,ℓ,bτ ·V vy,ℓ,bτ

ℓ,b , C̃y,ℓ,b =
gwy,ℓ,b · Ṽ vy,ℓ,b

ℓ,b .

Guess. If A guesses the challenge bit b← {0, 1} correctly, then B returns 1 otherwise it
outputs 0. We consider wx = dc(a, ax,2, . . . , ax,m) = (τ, dcax,2, . . . , dcax,m) where gτq are
the challenge elements. If τ = adc, then all the secret key and the challenge ciphertext is
properly distributed. In particular, the challenge ciphertext is an encryption of message
vector v(b). Therefore, in this case, A outputs b = b′ with advantages 1

2 + negl(λ) where
negl(λ) is the advantage of A in the message-hiding security game of the EIPL-IBIPFE.
Otherwise, if τ is randomly generated from Zq then the challenge ciphertext components
Ix,j uniform element from the target group GT . So the A can not get any information
about the challenge bit b from this component. So, A wins the game with the probability
1
2 . Hence, from the hardness of assumption 1, it can conclude that A has a non-negligible
advantage against the proposed EIPL-IBIPFE scheme achieves the selective security. This
completes the message-hiding security.
Therefore, it concludes the security of our EIPL-IBIPFE.

EI-TIBIPFE from Pairing. Combining Theorem 4 and 3, we obtain the following
corollary.

Corollary 1. If the assumptions 1, 2, 3, 5, 6 and 7 hold over a bilinear group BG, there
exists a selectively secure EI-TIBIPFE with the following properties:

• The size of the master public key is m.
√
n · k · poly(λ)

• The size of the secret key is logn+ k + k′ + poly(λ)
• The size of the ciphertext is m.

√
n · k · poly(λ)

where n denotes the number of users in the system, m is the length of input vector and
k, k′ are the parameters of user identity and group identity spaces respectively.
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A Additional Preliminaries
A.1 Bilinear Groups
A bilinear group BG = (p, q,N = p · q,G,GT , g, e(·, ·)) consists of the two primes p, q, two
multiplicative (source and target) groups G,GT (respectively) with the order |G| = |GT | =
N , g as the generator of the group G and a bilinear map e : G×G→ GT . It satisfies the
following:

– bilinearity: e(ga, gb) = e(g, g)ab for all g ∈ G, a, b ∈ ZN and

– non-degeneracy: e(g, g) is a generator of GT .

A bilinear group generator GBG.Gen(1λ) takes input the security parameter λ and outputs a
bilinear group BG = (p, q,N,G,GT , g, e(·, ·)) with a λ-bit composite integer N = p · q. We
consider Gp and Gq as the subgroups of G and their orders p and q respectively.

A.2 Identity-Based Inner Product Functional Encryption
An IBIPFE scheme for a identity space1 GID = {{0, 1}k′ : k′ ∈ N} and a message/key
space Zm consists of four PPT algorithms IBIPFE = (Setup, KeyGen,Enc, Dec). The details
about these algorithms are given below.

• Setup(1λ, 1k′
, 1m) → (msk,mpk): On input the security parameter λ, a length k′ of

identities and a vector length m (as unary), the trusted authority generates a master secret
key msk and a master public key mpk.
• KeyGen(msk, gid,u)→ sku: The trusted authority takes as input the master secret key
msk, an identity gid ∈ {0, 1}k′ , a vector u ∈ Zm, and outputs a secret key sku.
• Enc(mpk, gid′,v)→ ctv: The encryption algorithm takes as input the master public key
mpk, an identity gid′ ∈ {0, 1}k′ and a message vector v ∈ Zm. It outputs a ciphertext ctv.
• Dec(sku, ctv) → ζ/⊥: The decryption algorithm uses a secret key sku to decrypt the
ciphertext ctv. It either outputs a decrypted value ζ on successful decryption or a symbol
⊥ indicating decryption failure.
• Correctness. An IBIPFE = (Setup,KeyGen,Enc,Dec) scheme is said to be correct if for
all λ, k,m ∈ N, u,v ∈ Zm, identity gid ∈ {0, 1}k′ , there exists a negligible function negl
such that the following holds

Pr


(msk,mpk)← Setup(1λ, 1k′

, 1m)
Dec(sku, ctv) = ⟨u,v⟩ : sku ← KeyGen(msk, gid,u)

ctv ← Enc(mpk, gid,v)

 ≥ 1− negl(λ),

where the probability is taken over the random coins of Setup,KeyGen and Enc of IBIPFE.

• Security. We consider selective security notions of IBIPFE. We build a selectively secure
IBIPFE scheme based on a target-group-based assumption (Appendix C).

Definition 9 (Selective security of IBIPFE). An IBIPFE is said to satisfy selective
indistinguishable-based (Sel-IND-CPA) security if for any security parameter λ ∈ N, any
PPT adversary A, there exists a negligible function negl such that the following holds:

Pr[ExptIBIPFE
A,Sel-IND-CPA(λ) = 1] ≤ 1

2 + negl(λ)

1Note that, in existing work [ACGU20], the identity is usually denoted by id. However, for the shake
of consistency, we use gid instead of id in this paper.
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where the experiment ExptIBIPFE
A,Sel-IND-CPA(λ) is defined as follows:

1. (gid∗,v(0),v(1))← A(1λ)
2. (msk,mpk)← Setup(1λ, 1k′

, 1m)
3. b← {0, 1}
4. ctv(b) ← Enc(mpk, gid∗,v(b))
5. b′ ← AKeyGen(msk,·,·)(ctv(b))
6. Output 1 if b = b′ else 0.

Figure 10: ExptIBIPFE
A,Sel-IND-CPA(λ)

In the experiment, all the key queries of A to the KeyGen oracle should be of form
(gid,u) satisfying ⟨u,v(0)⟩ = ⟨u,v(1)⟩ if gid = gid∗.

Remark 4 (IPFE). If we omit the identity from the above syntax of IBIPFE, then it yields
the primitive of inner product functional encryption (IPFE).

B Security Analysis of EI-TIBIPFE from EIPL-IBIPFE
In the following theorem, we show that the above transformation yields an EI-TIBIPFE
scheme with the same security level as in the underlying EIPL-IBIPFE scheme.

Theorem 4. If our EIPL-IBIPFE scheme is 1-query secure as per Definitions 4 to 8 (in the
adaptive/selective model), then the above EI-TIBIPFE scheme is secure as per Definitions 2
and 3 (in the adaptive/selective model).

Proof. We prove the Theorem 4 by combining the following Theorem 5 and Theorem 6 in
the adaptive model and the proof in selective setting will follows similarly.

Theorem 5 (Security of indistinguishability). If our EIPL-IBIPFE be an adaptively 0-query
secure as per Definitions 4 to 8, then our EI-TIBIPFE scheme is adaptively secure as per
Definition 2.

Proof. We would like to point out that the scheme EI-TIBIPFE is IND-CPA secure even
if the EIPL-IBIPFE scheme satisfies only 0-query security. Let us assume that τ is the
least integer index queried by the adversary of EI-TIBIPFE to the KeyGen oracle and
(gid∗,v(0),v(1)) be the adversary’s challenge tuple. As per Definition 2, all secret key
queries of A to the KeyGen oracle is of the form (j, id, gid,u) where j ≥ τ and satisfying
the relation ⟨u,v(0)⟩ = ⟨u,v(1)⟩ whenever gid = gid∗. Further all the secret keys are
associated with distinct indices.

We construct a sequence of 2τ + 3 hybrid experiments to prove the theorem. The
sequence of hybrids starts with the hybrid H0 and ends with hybrid H0, which are exactly
the same as IND-CPA game of EI-TIBIPFE where the challenger encrypts v(0) and v(1)

respectively. For any PPT adversary A, let pA,x(·) be a function of λ that denotes the
probability of A outputting the challenge bit in Hybrid Hx. It is sufficient to show that
|pA,0 − pA,2| is negligible in λ.

Hybrid H0: It is the real IND-CPA game where the challenger computes the ciphertext
ctv(0) ← EIPL-IBIPFE.Enc (mpk, gid∗,v(0)) and sends it to A.

Hybrid Hi,0(for i ∈ [τ ]): This hybrid is identical to the previous hybrid, except that
the challenge ciphertext is a special encryption of v(0) to the tuple (i,⊥, 0), i.e., ctv(0) ←
EIPL-IBIPFE.SplEnc(key, gid∗,v(0), (i,⊥, 0)).
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Since the indices associate to the queried secret keys are all distinct, the normal-hiding se-
curity of EIPL-IBIPFE guarantees that EIPL-IBIPFE.Enc(mpk, gid∗,v(0)) and
EIPL-IBIPFE.SplEnc(key, gid∗,v(0), (1,⊥, 0)) are computationally indistinguishable except
with a negligible advantage. Therefore, for any PPT adversary A, it holds that |pA,0 −
pA,1,0| ≤ negl(λ).

For i ∈ [τ−1], by index-hiding security, the distributions EIPL-IBIPFE.SplEnc (key, gid∗,
v(0), (i,⊥, 0)) and EIPL-IBIPFE.SplEnc(key, gid∗,v(0), (i+ 1,⊥, 0)) are computationally in-
distinguishable since the A is not allowed to query a secret key with j = i. Therefore, we
have |pA,i,0−pA,i+1,0| ≤ negl(λ) for i ∈ [τ −1] and by the property of triangular inequality,
it holds that |pA,0 − pA,τ,0| ≤ negl(λ).

Hybrid H1: This hybrid is identical to the hybrid Hτ,0 except that the challenge ciphertext
is generated as ctv(1) ← EIPL-IBIPFE.SplEnc(key, gid∗, v(1), (τ,⊥, 0)).

Observe that, for the index τ , the adversary may obtain some secret keys generated
for gid∗ to decrypt the ciphertext of hybrids Hτ,0 and H1. However, by the restriction on
such secret key queries, we have ⟨u,v(0)⟩ = ⟨u,v(1)⟩. Hence, the message-hiding security
of EIPL-IBIPFE ensures that |pA,1 − pA,τ,0| ≤ negl(λ).

Hybrid Hτ−i+1,1(for i ∈ [τ ]): This experiment is identical to the previous hybrid H1 except
that the adversary gets the challenge ciphertext ctv(1) ← EIPL-IBIPFE.SplEnc(key, gid∗,v(1),
(τ − i+ 1,⊥, 0)) corresponding to the index-position-bit tuple (τ − i+ 1,⊥, 0). For i = 1,
the hybrid Hτ,1 is exactly identical with the hybrid H1.
Also as before, the index-hiding security of EIPL-IBIPFE ensures that |pA,τ−i+1,1 −
pA,τ−i,1| ≤ negl(λ) for each i ∈ [τ − 1].
Hybrid H2: This hybrid is similar to hybrid H1,1 expect the challenge ciphertext is of
the form ctv(1) ← EIPL-IBIPFE.Enc(mpk, gid∗,v(1)). Again, by the normal-hiding security
of EIPL-IBIPFE, we have |pA,1,1 − pA,2| ≤ negl(λ).

Finally, combining the above claims and using the triangular inequality, we conclude
the proof.

Theorem 6 (Security of Tracing). If our EIPL-IBIPFE scheme is an adaptively 1-query
secure as per the Definitions 4 to 8, then our EI-TIBIPFE is adaptively secure as per the
Definition 3.

Proof. Correctness of Tracing. Next, we show that the false trace probability is bounded
by a negligible function and the correct trace probability is close to the probability of A
outputting an ϵ-successful decoding box for some non-negligible ϵ(·). This proof technique
is inspired from the Goyal et al. [GKW19] tracing mechanism.

Let us consider the following notations for the further proof of this Theorem. Given
any pirate decoder box Du with a key vector u and message vectors pair v(0),v(1) for all
i ∈ [n+ 1], ℓ ∈ [k], suppose

pDui,⊥ = Pr

 Du(ctv(b)) = b :
ctv(b) ← EIPL-IBIPFE.SplEnc(key, gid,v(b), (i,⊥, 0)),

b← {0, 1}


pDui,ℓ = Pr

Du(ctv(b)) = b :
ctv(b) ← EIPL-IBIPFE.SplEnc(key, gid,v(b), (i, ℓ, 0)),

b← {0, 1}


pDunrml = Pr

Du(ctv(b)) = b :
ctv(b) ← EIPL-IBIPFE.Enc(mpk, gid,v(b)),

b← {0, 1}


The above probabilities are computed over the random coins of the decoder Du as well as
the randomness used in the encryption algorithm.
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False Trace Probability. Now we prove that probability of the false tracing by the Trace
algorithm is negligible. Now, we prove the following Lemma.

Lemma 7. If the scheme EIPL-IBIPFE is an adaptively 1-query secure as per Definitions
4 to 8, then for every PPT adversary A, polynomial q(·) and non-negligible function ϵ(·),
there exists a negligible function negl(·) such that for all λ ∈ N satisfying ϵ(λ) > 1/q(λ),

Pr -Fal-TrA,ϵ(λ) ≤ negl(λ)

where Pr-Fal-TrA,ϵ(·) is defined in Definition 3.

Proof. Let S ⊆ [n]× {0, 1}k be the set of index-identity query tuples by the adversary A
for secret keys and Sindex be the set of indices queried by the adversary A for secret keys
and let Du be the decoder box output by A. For i ∈ [n], ℓ ∈ [k] and gid = gid∗, we define
events

ADui : pDui,⊥ − p
Du
i+1,⊥ > ϵ/8n

BDui,ℓ,lwr : pDui,⊥ − p
Du
i,ℓ > ϵ/16n

CDui,ℓ,upr : pDui,ℓ − p
Du
i+1,⊥ > ϵ/16n

Diff-AdvDu :
∨

i∈[n]\Sindex

ADui
∨

(i,id)∈S,ℓ∈[k] s.t. idℓ=1
BDui,ℓ,lwr

∨
(i,id)∈S,ℓ∈[k] s.t. idℓ=0

CDui,ℓ,upr

For simplicity of notations, we will drop dependence on decoder Du whenever clear from
context. Next, note that the probability of the event false trace can be rewritten (using
union bound) as follows by conditioning on the events defined above

Pr[Fal-Tr] ≤ Pr[Fal-Tr|Diff-Adv] +
∑
i∈[n]

Pr[i /∈ Sindex ∧Ai]

+
∑

(i,ℓ)∈[n]×[k]

Pr
[
∃id ∈ {0, 1}k s.t. (i, id) ∈ S ∧

(
(Bi,ℓ,lwr ∧ idℓ = 1) ∨ (Ci,ℓ,upr ∧ idℓ = 0)

)]
The following claims show that a negligible function bounds each term.

Claim. For every PPT adversary A, there exists a negligible function negl1(·) such that
for all λ ∈ N, Pr[Fal-Tr|Diff-Adv] ≤ negl1(λ).

Proof. Here we give a high level sketch of proof. The proof follows from Chernoff bounds
and similar to Lemma 4.4 of [GKW18], and Lemma 5.3 of [GKRW18]. Note that the
tracing algorithm outputs a user identity which was not allowed to key query by the
adversary iff the event Fal-Tr occurs. As discussed before, the tracing mechanism first trace
the indices of the corrupted keys then trace their corresponding identities. There are two
sources of error in incorrect tracing. First, during step one of tracing the algorithm (i.e.,
in Index-Trace) might incorrectly include some index i /∈ Sindex in the traitor’s index-set
T index. In the second phase of the tracing procedure (i.e., in ID-Trace), it may happen that
this outputs a non-corrupt identity id for some index i ∈ Sindex, that is for some i ∈ Sindex
the ID-Trace algorithm traces the id incorrectly at least one bit position. By using the
union bound, we can represent it as follows: (recall that T and T index are introduced in
the description of Trace algorithm)

Pr[Fal-Tr|Diff-Adv] ≤
∑
i∈[n]

Pr[Fal-Tr ∧ i /∈ Sindex ∧ (∃p, q : (i, p, q) ∈ T index)|Diff-Adv]

+
∑

(i,ℓ)∈[n]×[k]

Pr[Fal-Tr ∧ ∃id, ĩd : (i, id) ∈ S ∧ ĩd ∈ T ∧ idℓ ̸= ĩdℓ|Diff-Adv].
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In the above inequality, the first term on the right side bounds the type 1 error (i.e.,
faulty step one tracing) and the second term bounds the type 2 error (i.e., faulty step two
tracing). Now we explictly discuss about the first term. Note that, if event

Diff-Adv occurs =⇒ ∀i /∈ Sindex, Ai occurred

Therefore, for every i ∈ [n]

Pr[i /∈ Sindex ∧ (∃p, q : (i, p, q) ∈ T index)|Diff-Adv] ≤ 2−O(λ).

Using Chernoff bound, we can argue that Ai provides pi,⊥ − pi+1,⊥ ≤ ϵ/8n and
event (∃p, q : (i, p, q) ∈ T index) implies that p̂i,⊥ − p̂i+1,⊥ > ϵ/4n where p̂ denotes the
corresponding estimate computed by the tracing algorithm.

We now concentrate the second term. For a fixed index-position pair (i, ℓ) corresponding
a particular event where the ID-Trace algorithm outputs a traitor identity ĩd such that
ĩdℓ( ̸= idℓ) for the secret key queries corresponding to the index-identity pair (i, id). Note
that, in each index position A is allowed to ask at most one secret key query. Therefore,
by conditioning on the event Diff-Adv we get that for every (i, id) ∈ S, ℓ ∈ [k], event Bi,ℓ,lwr
occurs if idℓ = 1 else event Ci,ℓ,upr occurs.

Therefore, for all (i, id) ∈ S, ℓ ∈ [k] the following probability always satisfy:

Pr[∃id, ĩd : (i, id) ∈ S ∧ ĩd ∈ T ∧ idℓ ̸= ĩdℓ|Diff-Adv] ≤ 2−O(λ).

If we assume that (i, id, ℓ) and let idℓ = 1. From the Chernoff bound the above inequality
holds as since we know that the event Bi occurs thus we have p̂i,⊥ − p̂i,ℓ ≤ ϵ/16n and the
event ĩd ∈ T ∧ ĩdℓ = 0 suggests that p̂i,⊥ − p̂i,ℓ > ϵ/8n. Therefore, combining all the above
inclusion we get that

Pr[Fal-Tr|Diff-Adv] ≤ n · 2−O(λ) + n · k · 2−O(λ) = negl1(λ)

Claim. If our EIPL-IBIPFE is an adaptively 1-query index-hiding secure as per Definition
5, then for every PPT adversary A, polynomial q(·) and non-negligible function ϵ(·), there
exists a negligible function negl2(·) such that for all λ ∈ N satisfying ϵ(λ) > 1/q(λ) and
i ∈ [n],

Pr[i /∈ Sindex ∧Ai] ≤ negl2(λ),

where n is the index bound chosen, and Sindex is the set of indices queried by A.

Proof. The proof of this claim follows from the Lemma 4.5 of [GKW18] and Lemma 5.4 of
[GKRW18].

Claim. If our EIPL-IBIPFE scheme is an adaptively 1-query lower and upper identity-hiding
secure as per Definitions 6 and 7, then for every PPT adversary A, polynomial q(·) and
non-negligible function ϵ(·), there exists a negligible function negl3(·) such that for all
λ ∈ N satisfying ϵ(λ) > 1/q(λ) and i ∈ [n], ℓ ∈ [k],

Pr
[
∃id ∈ {0, 1}k s.t. (i, id) ∈ S ∧

(
(Bi,ℓ,lwr ∧ idℓ = 1) ∨ (Ci,ℓ,upr ∧ idℓ = 0)

)]
≤ negl3(λ).

where n is the index bound chosen, and S is the set of all (i, id) pairs queried by the
adversary A.
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Proof. Suppose there exists a PPT adversaryA, polynomial q(·) and non-negligible function
ϵ(·), δ(·) such that for all λ ∈ N satisfying ϵ(λ) > 1/q(λ) and there exists i′ ∈ [n], ℓ′ ∈ [k],

Pr
[
∃id ∈ {0, 1}k s.t. (i′, id) ∈ S ∧

(
(Bi′,ℓ′,lwr ∧ idℓ′ = 1) ∨ (Ci′,ℓ′,upr ∧ idℓ′ = 0)

)]
≥ δ(λ).

Then we can use A to build a PPT reduction algorithm B that breaks the upper/lower
identity hiding security property of EIPL-IBIPFE. The reduction algorithm B first receives
1n, 1k, 1k′

, 1m from the adversary. It chooses a index i ← [n], position ℓ ∈ [k], and bit
b ∈ {0, 1}, and sends the challenge index-position-bit tuple (i, ℓ, 0) and (1n, 1k, 1k′

, 1m)
to the EIPL-IBIPFE challenger. Note that if the reduction algorithm randomly guesses
(i′, ℓ′) if b = 0 then it interacts with the EIPL-IBIPFE lower-identity-hiding challenger,
else for b = 1, it interacts with EIPL-IBIPFE upper identity-hiding challenger. It then
receives the EIPL-IBIPFE public key mpk from the challenger, which it sends to A. Then
A makes secret key queries for the tuple (j, id, gid,u), if j = i, idℓ = b then B aborts and
sends a random bit as guess bit to the EIPL-IBIPFE challenger. Else, on key query for
(j, id, gid,u) from A, the reduction algorithm B forwards (j, id, gid,u) to the EIPL-IBIPFE
challenger, EIPL-IBIPFE’s challenger generates his response and sends it to B then it
forwards the challengers response to the adversary. The adversary outputs the challenge
tuple (gid∗,v(0),v(1)) with a decoding box Du to B and then B chooses two random bits
α, β ← {0, 1}. Then, B sends message vector v(α) as its challenge message, and receives
challenge ciphertext ct∗ from EIPL-IBIPFE challenger. It also queries the EIPL-IBIPFE
challenger for a special-encryption of v(α) to the index-position-bit tuple (i, ℓ, 0) if β = 0,
else for (i+ b,⊥, 0). Let ct be the challenger’s response. Finally, B runs decoder box Du
on ct and ct∗ independently, and if Du(ct) = Du(ct∗), it outputs b′ = β, else it outputs
b′ = 1 − β as it guess. In the upper identity/lower identity-hiding security, consider B
is an admissible adversary. In other words if b = 0 then B is admissible adversary of
lower identity-hiding else it upper identity-hiding security respectively. As B does not
query for the secret key corresponding to the tuple (j, id, gid,u) such that j = i, idℓ = b
and gid = gid∗. Also, B can make only one query to the special encryption oracle to the
index-position-bit tuple (i, ℓ, 0) and (i+ b,⊥, 0). Therefore, from the Lemma 4.1 and 4.5
of [GKW18] and Lemma 5.4 of [GKRW18], we compute the advantage of the reduction
algorithm is at least δ

2kn · (
ϵ

16n )2. Thus the claim follows.
Therefore, it follows that the probability of the false trace is at most negl1(λ)+n ·negl2(λ)+
nk · negl3(λ).

Correct trace probability. In the following, we show that if the adversary outputs
a good decoder, then the tracing algorithm outputs a non-empty set T with negligible
probability. Combining this with Lemma 7 leads to the conclusion that the tracing is
correct. We provide a formal reduction for the correct trace in the following.

Lemma 8. If our EIPL-IBIPFE is an adaptively 1-query secure as per Definitions 4 to
8, then for every PPT adversary A, polynomial q(·), there exist a negligible function negl
such that λ ∈ N, ϵ(λ) > 1/q(λ) such that

Pr -Cor-TrA,ϵ(λ) ≥ Pr -G-DA,ϵ(λ)− negl(λ)

where Pr -Cor-TrA,ϵ(·) and Pr -G-DA,ϵ(λ) are defined in Definition 3.

Proof. First we analysis that the tracing algorithm outputs a non-empty index set T.
As it is known that when the event Good-Decoder occurs, then pDunrml(λ) ≥ 1/2 + ϵ for
some non-negligible function ϵ(·). Let Sindex ⊆ [n] be the set of indices i ∈ [n] such that
pDui,⊥ − p

Du
i+1,⊥ > ϵ/2n. Similar to Claim B, for all i ∈ Sindex we have

Pr[p̂Dui,⊥ − p̂
Du
i+1,⊥ <

ϵ

4n ] ≤ 1
2O(λ) = negl1(λ) [using Chernoff bound] (19)
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where p̂ represents the corresponding estimate evaluated by tracing algorithm. The goal is
to show that Sindex is non-empty when the Good-Decoder event occurs. To show this, we
apply normal-hiding and message-hiding security.

From the 1-query normal-hiding security, we have

pDunrml − p
Du
1,⊥ ≤ negl2(λ)

for some negligible function negl2(·). Now, we apply the message-hiding security for i∗ = n+
1 (see Definition 8). The security experiment produces ctv(b) ← SplEnc(·, ·,v(b), (i∗,⊥, 0))
and it says that an adversary is admissible if all secret key queries (i ∈ [n], id, gid∗,u) of the
adversary must satisfy the condition ⟨u,v(0)⟩ = ⟨u,v(1)⟩ only for i ≥ i∗. This implies that
for i∗ = n+ 1 there is no index i ∈ [n] such that i ≥ i∗. Thus, we do not essentially need
the condition ⟨u,v(0)⟩ = ⟨u,v(1)⟩ for such an adversary who selects i∗ = n+ 1. Therefore,
for some negligible function negl3(·), we can write

pDun+1,⊥ ≤ 1/2 + negl3(λ).

For some negligible functions negl2, negl3. Therefore, we can write

pDu1,⊥ − p
Du
n+1,⊥ ≥ ϵ− negl2(λ)− negl3(λ) > ϵ/2.

Given this we can conclude that the set Sindex ≠ ϕ whenever the event Good-Decoder
occurs. So from the above Equation 19, it can be concluded that whenever Good-Decoder
occurs then with all-but-negligible probability

T index ̸= ϕ ∧ [∀(i, p, q) ∈ T index : p− q > ϵ/4n]

From Fig. 9, we observe that for every (i, p, q) tuple, from ID-Trace algorithm, it outputs
some identity id. Since for all ℓ ∈ [k], either pDui,ℓ > (p+ q)/2 then the algorithm put idℓ = 1
otherwise, it sets idℓ = 0. Therefore, T index ̸= ϕ =⇒ T ̸= ϕ. Hence, it follows that

Pr[T ̸= ϕ] ≥ (1− n · negl1(λ)) · Pr -G-DA,ϵ(λ) ≥ Pr -G-DA,ϵ(λ)− negl(λ).

From Lemma 7, we conclude that

Pr -Cor-TrA,ϵ(λ) ≥ Pr -G-DA,ϵ(λ)− negl(λ)

This conclude the proof.
The concludes the proof of EI-TIBIPFE security Theorem 4.

C IBIPFE from DBDH
In this section, we present our construction of IBIPFE from the DBDH assumption. Techni-
cally, we extend the framework of Water’s IBE [Wat05] and add inner product functionality
into it for building our IBIPFE. Similar to all previous group-based IPFE constructions,
we assume that the inner product value ⟨x,y⟩ belongs to a polynomial range so that the
decryptor can efficiently recover ⟨x,y⟩ via a discrete log computation. In the following, we
describe our IBIPFE = (Setup,KeyGen,Enc,Dec) scheme based on pairings.
• Setup(1λ, 1k′

, 1m): The setup algorithm performs as follows:
– Consider a bilinear group BG← GBG.Gen(1λ) where BG = (p, g,G,GT , e(·, ·)) and G is a

prime-order group with order p.
– Choose a random generator g ∈ G and a random group element g2 from the group G.
– Set g1,i = gψi and g2,i = gψi

2 for all i ∈ [m], where ψi’s are the random exponents chosen
from Zp.
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– Additionally, the authority chooses a random group element u′ ∈ G and a random
k′-length vector u = (ui) ∈ Gk′ whose elements are chosen at random from G.

– Output the master public key mpk = ({g1,i}mi=1, g2, u
′,u, g) and the master secret key

msk = ({g2,i}mi=1).
• KeyGen(msk, gid,y): The key generation algorithm executes the following steps:
– Let gid be an k′-bit string representing an identity, where gidi denotes the i-th bit of

gid and V ⊆ {1, 2, . . . , k′} be set of all i for which gidi = 1. We consider an identity
encoding function H : GID → G be defined as H(gid) = u′

∏
j∈V ui for gid ∈ GID

where GID be the set of identities.
– Sample r ← Zp.
– Output the secret key sky = (d1, d2) where d1 = g

⟨ψ,y⟩
2 H(gid)r, d2 = gr.

• Enc(mpk, gid′,x): The encryption algorithm works as follows:
– Sample a random value t from Zp.
– Output the ciphertext ctx as

ctx =
(
C1 = e(g, g2)ψt+x, C2 = gt, C3 = H(gid′)t

)
• Dec(sky, ctx): The decryptor uses the secret key sky to decrypt the ciphertext ctx. It
outputs either ζ = loge(g,g2) η where

η = ⟨C1,y⟩ ·
e(d2, C3)
e(d1, C2)

or outputs ⊥.

C.1 Correctness
If gid = gid′, then we have

η = ⟨C1,y⟩ ·
e(d2, C3)
e(d1, C2)

= e(g, g2)⟨ψt+x,y⟩ · e(gr,H(gid)t)
e(g⟨ψ,y⟩2 H(gid)r, gt)

= e(g, g2)t⟨ψ,y⟩ · e(g, g2)⟨x,y⟩ · e(g,H(gid))rt
e(g2, g)t⟨ψ,y⟩e(H(gid), g)rt

= e(g, g2)⟨x,y⟩

Therefore, the correctness follows.

C.2 Security Analysis
We prove the security of our IBIPFE scheme below.

Theorem 7. If the plain DBDH assumption 4 holds over the bilinear group BG, then our
IBIPFE scheme is selectively secure as per the Definition 9.

Proof. Suppose A be a PPT adversary against the selective security of our IBIPFE scheme.
We construct an algorithm B for breaking the DBDH assumption that uses A as a subrou-
tine. To prove Theorem 7, we consider two hybrid games. The first hybrid is the same
as the original selective security experiment of IBIPFE as per Definition 9. In the next
hybrid, we change the distribution of the master public key, secret keys, and the challenge
ciphertext where we first sample a random vector ψ̃ and set ψ = F⊤ψ̃. The matrix F is
a full rank matrix chosen such that F(x(0) − x(1)) = (1, 0, · · · , 0)⊤ where x(0),x(1) are
the challenge message vectors submitted by the A. Assuming DBDH holds in the bilinear
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group BG, we show that the adversary has a negligible advantage in distinguishing between
the challenge ciphertexts.

Hybrid 0: This hybrid is exactly same as selective security experiment of IBIPFE.

Hybrid 1: This hybrid is same as Hybrid 0 except for each identity, the challenger
samples the master secret key msk as follows:

(a) Sample uniformly random vector ψ̃ = (ψ̃1, ψ̃2, · · · , ψ̃m) for each ψ̃i ∈ Z.
(b) Sample a full rank matrix F ∈ Zm×mp satisfying the relation F(x(0) − x(1)) =

(1, 0, · · · , 0)⊤ where x(0),x(1) are the challenge message vectors of length m.

(c) Set ψ = F⊤ψ̃ instead of sampling uniformly random as in Hybrid 0.
In adversary’s view, the master public key mpk, the secret key sky is associated with a key
vector y with an identity gid and the challenge ciphertext ctx(b) ← Enc(mpk, gid∗,x(b))
are simulated as follows:

Public key: mpk = gF⊤ψ̃.
Secret key: For the secret key query corresponding to the identity gid and key vector y,
we consider V ⊆ {1, · · · , k′} be the set of all i for which gidi = 1. Then, the secret key

sky =
(
g
⟨ψ̃,Fy⟩
2 H(gid)r, gr

)
Challenge ciphertext: For challenge identity gid∗, let V∗ ⊆ {1, · · · , k′} be the set of all
i for which gid∗i = 1.

C1 = e(g, g2)ψt+b(x(1)−x(0))+x(0)
C2 = gt

= e(g, g2)F⊤(ψ̃t−be1+Fx(0)) C3 = H(gid∗)t

Since, F ∈ Zm×mp is an orthogonal matrix, then the following two distributions are identical.

{ψ : ψ ← Zmp } ≡ {F
⊤ψ̃ : ψ̃ ← Zmp }

Therefore, the advantage of any PPT adversary A in distinguishing between Hybrid 0 and
Hybrid 1 is negligible in the security parameter λ.

Without loss of generality, we assume that the adversary makes maximum Q number
of secret keys queries and the challenge identity gid∗. In this case, the simulator chooses a
random integer k̂ ← [k′] and sets an integer s = 10Q. Then, it chooses a random k′-length
vector z = (zi)← Zk′

s and a value z′ ← Zs. Additionally, simulator also chooses a random
value w′ ← Zp and a random k′-length vector w = (wi)← Zk′

p . All these values are kept
secret to the simulator.

Let us consider V∗ ⊆ {1, 2, . . . , k′} be the set of all i for which the challenge identity
gid∗i = 1. Let V∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z corresponding to
the collection of indices V∗. Sets

∑
i∈V∗ zi = k̂s− z′ for uniformly chosen k̂ ∈ [k′]. Now,

we define the function K(gid) as

K(gid) =
{

0, if z′ +
∑
i∈V zi ≡ 0 mod s

1, elsewhere
So, from the above definition of the function K, we can say that K(gid∗) = 0 and
for all gid( ̸= gid∗) it becomes non-zero. Additionally, we set another two functions as
F(gid) = p − sk̂ + z′ +

∑
i∈V zi and J(gid) = w′ +

∑
i∈V wi. The simulator assigns the

public parameters u′ = gp−k̂s+z′

2 · gw′ and ui = gzi
2 · gwi . From the adversarial perspective,

the distribution of the public parameter is identical to real construction.
We construct a PPT reduction B which breaks the DBDH assumption 4 with non-

negligible advantage. The reduction algorithm B first receives DBDH challenge instance
from the challenger as (BG, ga, gb, gc, e(g, g)τ ) where BG = (p, g,G, GT , e(·, ·)) is a group
description with a, b, c← Zp and the element e(g, g)τ ∈ GT is either e(g, g)abc or a random
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group element from the target group GT . In the following, we discuss about the simulation
of the master public key, queried secret keys and the challenge ciphertext. The algorithm
B works as follows:

Public key simulation: The adversary B implicitly sets the following vectors of length
m as

a = (a, a2, . . . , am), b = (b, b, . . . , b), c = (c, c, . . . , c)
where it randomly samples a2, . . . , am ← Zp. Let us consider the notation u ⊙ v by
component wise multiplication of the vectors u and v. In this case, the notation a⊙ b =
(ab, a2b, . . . , amb) = ba. To generate the public key, B implicitly set ψ̃ = a and returns
the master public key as

mpk =
(
gF⊤a, g2 = gb, u′, g

)
where the exponent ga is computed as follows:

ga = (ga, ga2 , . . . , gam) = gψ

Note that, a2, . . . , am are distributed uniformly over Zp and hence the public key compo-
nents are properly simulated by using the DBDH instance.

Challenge ciphertext simulation. To generate the challenge ciphertext, B chooses
the random exponent t ← Zp and implicitly sets c = t. We now show that how does B
simulate the challenge ciphertext by using the DBDH instance.

C1 = e(g, g)F⊤bc(a,a2,...,am) · e(g, g)F⊤(−bbe1+bFx(0)) C2 = gt = gc

= e(g, g2)F⊤(c(a,a2,...,am)−be1+Fx(0)) C3 = gcJ(gid∗) = H(gid∗)c

= e(g, g2)F⊤(c(a,a2,...,am)−be1+Fx(0))

= e(g, g2)F⊤(ψ̃t−be1+Fx(0))

Secret key simulation. B answers the secret key sky associated with an identity gid and
a predicate vector y as described below.

We consider two different cases based on queried identity gid. For an identity gid,
consider V ⊆ {1, . . . , k′} be the set of all i for which gidi = 1.

Case 1: If gid ̸= gid∗, B simulates the secret key as follows:
By using the technique of Boneh and Boyen [BB04] and Waters IBE [Wat05] scheme,

B randomly chooses r ← Zp then it simulates the secret key sky = (d1, d2) corresponding
to an identity gid and a vector u as

d1 = g−
J(gid)
F(gid) ·⟨a,Fy⟩(u′

∏
i∈V

ui)r

= g
⟨a,Fy⟩
2 (gF(gid)

2 gJ(gid))
−⟨a,Fy⟩

F(gid) (gF(gid)
2 gJ(gid))r

= g
⟨ψ̃,Fy⟩
2 (gF(gid)

2 gJ(gid))r−
⟨a,Fy⟩
F(gid)

= g
⟨ψ̃,Fy⟩
2 H(gid)r−

⟨a,Fy⟩
F(gid)

d2 = grg−⟨(a,a2,...,am),Fy⟩ 1
F(gid)

= gr−⟨a,Fy⟩
1

F(gid)

= gr−⟨ψ̃,Fy⟩
1

F(gid)

We implicitly set r′ = r − ⟨ψ̃,Fy⟩ 1
F(gid) . So, from the construction of K function, we can

conclude that K(gid) ≠ 0 for any key query corresponding to the identity gid. This implies
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that the function F(gid) ̸= 0 mod N for a particular identity (as p > sn for any rea-
sonable values of p, n and s). To prove the above conclusion, we need the following Lemma 9.

Case 2: If gid = gid∗, B responds the secret key sky as follows:

d1 = gbµ(gF(gid∗)
2 gJ(gid)∗

)r

= g⟨a⊙b,Fy⟩(gF(gid∗)
2 gJ(gid∗))r

= g⟨b(a,a2,...,am),Fy⟩(gF(gid∗)
2 gJ(gid∗))r

= g
⟨(a,a2,...,am),Fy⟩
2 (gF(gid∗)

2 gJ(gid∗))r

= g
⟨(a,a2,...,am),Fy⟩
2 (gF(gid∗)

2 gJ(gid∗))r

= g
⟨a,Fy⟩
2 (gF(gid∗)

2 gJ(gid∗))r

= g
⟨ψ̃,Fy⟩
2 H(gid∗)r

d2 = gr

where the second equality follows from the fact that ⟨a⊙ b,Fy⟩ = bµ and µ ∈ Zp is
known to the challenger B. From the formation of F, we have the relation F(x(0)−x(1)) =
(1, 0, . . . , 0)⊤ = e1. Since in this case, gid = gid∗ so, the queried secret key vector y should
satisfy the relation ⟨x(0) − x(1),y⟩ = 0. Therefore, we have ⟨e1,Fy⟩ = 0 which implies
that ⟨(a⊙ b),Fy⟩ = ⟨(ab, a2b, . . . , amb),Fy⟩ = bµ for any µ ∈ Zp.

Guess. If A guesses the challenge bit b ← {0, 1} correctly then B returns 1, other-
wise, it outputs 0. We consider w = bc(a, a2, . . . , am) = (τ, bca2, . . . , bcam) where e(g, g)τ
is the challenge element. If τ = abc, then all the secret keys and challenge ciphertext
are properly distributed. In particular, the challenge ciphertext is an encryption of the
message vector x(b). Therefore, in this case, A outputs b′ = b with advantages 1

2 + negl(λ)
where 1

2 + negl(λ) is the advantage of A in the selective security experiment of the IBIPFE.
Otherwise, if τ is randomly generated from Zp then the challenge ciphertext component
C1 uniform element from the target group GT . So, A can not get any information about
the challenge bit b from this component. So, A wins the experiment with the probability 1

2 .
Hence, from the hardness of DBDH assumption, it can conclude that A has a non-negligible
advantages against the proposed IBIPFE scheme which achieves the selective security. This
completes the proof.

Lemma 9. For any Q-secret key query corresponding to the identities gid(1), gid(2),
. . . , gid(Q) to the key generation oracle, the probabilities of K(gid(ℓ)) = 1 with z′ +∑
i∈V∗ zi = k̂s is non-negligible for all ℓ.

Proof. For any set of Q-queries corresponding to the identities gid(1), gid(2), . . . , gid(Q) and
the challenge identity gid∗, we compute the following probability.

Pr
[
Q∧
ℓ=1

(K(gid(ℓ)) = 1)|(z′ +
∑
i∈V∗

zi) = k̂s

]

= Pr
[
Q∧
ℓ=1

(K(gid(ℓ)) = 1|K(gid∗) = 0)
]

=
(

1− Pr
[
Q∨
ℓ=1

(K(gid(ℓ)) = 0)|K(gid∗) = 0)
])

≥

(
1−

Q∑
ℓ=1

Pr
[
(K(gid(ℓ)) = 0)|K(gid∗) = 0)

])
=
(

1− Q

s

)
= 0.9
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We can optimize the last equation by setting s = 10Q (as we did in the simulation),
where Q is the maximum number of queries. This above result shows that for all queried
identities in the key generation oracle except the challenge identity gid, the K values should
be equals to 1 with overwhelming probability.
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