
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 30 pages.

https://doi.org/10.62056/angy4fvtw
Check for updates

Finding Balance in Unbalanced PSI: A New
Construction from Single-Server PIR

Chengyu Lin1, Zeyu Liu2, Peihan Miao3 and Max Tromanhauser4

1 Espresso Systems, United States
2 Yale University, United States

3 Brown University, United States
4 Cornell University, United States

Abstract. Private set intersection (PSI) enables two parties to jointly compute the
intersection of their private sets without revealing any extra information to each
other. In this work, we focus on the unbalanced setting where one party (a powerful
server) holds a significantly larger set than the other party (a resource-limited client).
We present a new protocol for this setting that achieves a better balance between low
client-side storage and efficient online processing.
We first formalize a general framework to transform Private Information Retrieval
(PIR) into PSI with techniques used in prior works. Building upon recent advance-
ments in Private Information Retrieval (PIR), specifically the SimplePIR construction
(Henzinger et al., USENIX Security’23), combined with our tailored techniques, our
construction shows a great improvement in online efficiency. Concretely, when the
client holds a single element, our protocol achieves more than 100× faster computation
and over 4× lower communication compared to the state-of-the-art unbalanced PSI
based on leveled fully homomorphic encryption (Chen et al., CCS’21). The client-side
storage is only in the order of tens of megabytes, even for a gigabyte-sized set on the
server. Moreover, since the framework is generic, any future improvement in PIR can
further improve our construction.

1 Introduction
Consider two parties, each holding a private set of elements, who want to learn the
intersection of the two sets without revealing any other information to each other. For
example, two companies may want to identify their common customers, or an ad platform
and an advertiser may want to determine which consumers who viewed an ad ended up
making a purchase.

The above problem can be formulated as private set intersection (PSI), which refers to a
specialized secure two-party computation protocol that takes two private sets X,Y as input
and outputs their intersection X ∩ Y to one or both of the participating parties. Over the
years, PSI has found numerous applications in practice, including DNA testing and pattern
matching [TKC07], remote diagnostics [BPSW07], online advertising [IKN+20, MPR+20],
password breach monitoring [TPY+19, Ali18, LKLM21, APP21], mobile private contact
discovery [DRRT18, KRS+19, Mar14, HWS+21], privacy-preserving contact tracing for
infectious diseases [TSS+20, CCF+20], and many more. Tremendous progress has been
made towards realizing PSI efficiently [KKRT16, RR17, CLR17, PSWW18, PRTY19,
PSTY19, CM20, PRTY20, GPR+21, CMdG+21, RS21].
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Most work in PSI focuses on the balanced setting where the input sets are similarly
sized, which is not the best fit for some real-world use cases such as password breach
monitoring and private contact discovery on mobile devices. In these applications, the
input set of the service provider is significantly larger than the input set of the user,
sometimes by a factor of millions if not billions. If we apply the PSI protocols designed for
the balanced setting, both the computation and communication complexity would grow
linearly with the size of the larger set. This can be highly prohibitive, especially for a user
with limited resources (e.g., a mobile phone or a wearable device).

To accommodate these applications, techniques have been developed for the unbal-
anced setting with one-sided output. In particular, a server holding a large set X
interacts with a resource-limited client holding a small set Y in a PSI protocol, where only
the client learns the intersection X ∩ Y and the server learns nothing.

The existing work on unbalanced PSI with one-sided output can be categorized into two
approaches: those based on oblivious pseudorandom function (OPRF) [FIPR05, PSSW09,
KLS+17, RA18, KRS+19] and those based on leveled fully homomorphic encryption (FHE)
[CLR17, CHLR18, CMdG+21]. They both follow a common paradigm, where the server
first performs a one-time, offline pre-processing step on its set X and possibly sends
some pre-processed data to the client, which is stored on the client side. Once the client
determines its set Y , it can initiate the online phase by sending a PSI query to the server.
For practicality, the online computation and communication costs are typically much lower
compared to the pre-processing phase.

When evaluating the practical efficiency of PSI protocols in this paradigm, two important
metrics to consider are 1) the client’s storage requirement after the pre-processing phase,
and 2) the online processing speed. Looking at prior work, the OPRF-based constructions
achieve fast computation and low communication in the online phase. However, they
usually require the client to have a large storage of size O(|X|) from pre-processing. In
contrast, most constructions based on FHE do not require client offline storage, but the
online processing speed is much slower due to the heavy online computation and high
communication overhead, especially on the server side.

Can we achieve a balanced approach that has both sublinear client storage and
fast online processing?

1.1 Our Results
In this work, we make positive progress towards addressing the above question by presenting
a new PSI protocol that achieves a better balance between these two extremes. Our
protocol for unbalanced PSI with one-sided output strikes a favorable trade-off, requiring
low (although non-zero) local storage on the client side, while achieving significantly lower
online costs compared to the FHE-based constructions. Although our techniques and
their connections have appeared in prior work, we provide a systematic treatment and
demonstrate their concrete efficiency for PSI.
Approaching unbalanced PSI through the lens of PIR. Private information retrieval
(PIR) [CGKS95] is another important cryptographic primitive that shares similarities
with unbalanced PSI in terms of the unbalanced input size. Informally, PIR allows
a client to retrieve a particular entry from a database stored on the server without
revealing any information about its query to the server. Notably, a recent line of work
[CK20, SACM21, CHK22, LMW23, LP23] adopts the offline/online paradigm, where the
server pre-processes the database in the offline phase to enable efficient online query
processing.

In this work, we leverage these recent advancements in PIR to achieve similar trade-offs
in unbalanced PSI. We summarize the technical ideas behind our results below and give a
more detailed construction overview in section 3.
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Generic construction using PIR and OPRF. There are two key challenges in
constructing PSI from PIR.

The first is the difference in their functionalities. In PSI, the client wants to learn if
a particular element y is in the server’s set X, while in PIR, the client wants to retrieve
a particular entry from the server’s database. This gap can be bridged by a variant of
PIR known as PIR by Keyword or Keyword PIR [CGN98], where the server holds a set
of elements X and the client holds a single element y. The client wants to learn whether
y ∈ X without revealing any information about y to the server, which is precisely what we
need for PSI.1

The second challenge comes from the difference in the security guarantees: while PSI
requires privacy for both parties, PIR only protects client privacy. This can be solved
by leveraging an oblivious pseudorandom function (OPRF) as in [FIPR05]. The server
first samples a key k for a PRF Fk(·) and evaluates the PRF on all its elements to obtain
X ′ := {Fk(x) | x ∈ X}. Next, the client engages in an OPRF protocol with the server
to learn all the PRF evaluations on the client’s elements, namely Y ′ = {Fk(y) | y ∈ Y },
without leaking any information about Y to the server. Now the original PSI problem
is reduced to a new PSI problem for X ′ ∩ Y ′, but we no longer need to protect sender
privacy due to the security guarantees of OPRF.

Concrete instantiations and practical efficiency. To leverage recent advancements in
PIR, we build our construction using the state-of-the-art single-server offline/online PIR
construction SimplePIR [HHCG+23] and the Diffie-Hellman-based OPRF [HFH99, JL10].
Asymptotically, our construction requires an offline storage of O(

√
|X|) on the client side

and an online communication of O(
√
|X|), which follows from the SimplePIR construction.

To further enhance the practicality of our construction, we construct keyword PIR on
OPRF values in a way that introduces essentially no overhead to the underlying SimplePIR
protocol. Notably, we are able to construct our keyword PIR from SimplePIR using only a
simple hash to avoid pre-processing overhead. The idea of constructing keyword PIR from
SimplePIR also appeared in a prior work [CD24], for which they propose a novel technique
called binary fuse filters. However, our benchmarks (section 5) suggest that their approach
does not offer a clear computational advantage over our hash-based method when applied
to PSI. Thus, it can be an interesting future direction to explore whether plugging binary
fuse filters into the PSI framework would be beneficial, as different optimizations may be
needed.

Moreover, we provide various techniques tailored for SimplePIR to optimize our concrete
efficiency, including re-arranging the database (which is also introduced in [DPC23]),
modulus switching, and tight parameter analysis.

Our protocol is particularly efficient when the server’s set is significantly larger than
the client’s set (e.g., when the ratio |X|/|Y | ≥ 220). Concretely, when |Y | = 1 and |X| is in
the range of 220 − 228, our construction is more than 100× faster than the state-of-the-art
FHE-based PSI [CMdG+21] in terms of online computation and also achieves more than
4× improvement in online communication. Our offline computation remains comparable to
prior works, but requires an extra offline communication and client storage. However, this
requirement is small: only tens of megabytes for a database that is thousands of megabytes
large. For |Y | > 1, our protocol does not have an as obvious advantage as the |Y | = 1 case,
but the online computation is still about one order of magnitude faster than the prior work.
We additionally give an estimation of how our construction can be applied to applications
such as password breach checkup. Concretely, it costs more than two orders of magnitude
less than prior constructions. Our concrete instantiation is based on Learning with Error

1Note that in the recent work by Patel et al. [PSY23], Keyword PIR refers to the setting where the
client wants to retrieve a data entry associated with y without revealing y to the server, differing from the
original definition in [CGN98]. For simplicity, we use the original definition.
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(for SimplePIR), Decisional Deffie-Hellman (for OPRF)2, and random oracle model.
Extensions. We highlight a few extensions to our construction. First, we explore
techniques to remove offline storage as well as reduce the round complexity in the online
phase. Second, we can extend our construction to achieve labeled PSI [CHLR18], where
the server holds associated values vi for each element xi ∈ X, and the client learns the
values associated with the elements in the intersection, namely {vi|xi ∈ X ∩ Y }.

Finally, we emphasize that further usage of the generic PSI construction may be of
independent interest since it can be instantiated with any OPRF and PIR constructions.
Therefore, future advancements in these primitives can directly improve the efficiency of
our PSI construction. To show this, we make an estimation for PSI from other keyword
PIR protocols [PSY23] using the framework we formalize. It also shows an advantage over
the prior constructions, while having different trade-offs compared to our construction.
Our contributions. To summarize, we

• formalize the framework for constructing unbalanced PSI with one-sided output from
OPRF and PIR3;

• instantiate our PSI construction with SimplePIR and develop novel techniques to
further improve the concrete efficiency (Section 3) and provide formal security proofs
for our protocols (Section 4);

• implement our protocol and demonstrate performance improvement compared with
prior work, showing that for applications like password breach checkup, our construc-
tion offers an appealing solution (only seconds to check against a database with 232

passwords, compared to hundreds of seconds using prior constructions)4;
• present various extensions to our protocol achieving expanded functionalities and

better flexibility.

1.2 Related Work
Unbalanced PSI from OPRF. The first PSI protocol based on the Oblivious Pseu-
dorandom Function (OPRF) was proposed by Freedman et al. [FIPR05]. In their work,
they instantiated the OPRF using the renowned Noar-Reingold (NR) pseudorandom
function [NR97]. Subsequently, Pinkas et al. [PSSW09] utilized an AES-based OPRF
and garbled circuits (GC) [Yao86] to construct another PSI protocol. Building on these
developments, Kiss et al. [KLS+17] and Davi Resende and Aranha [RA18] made further
contributions, and the state-of-the-art OPRF-based protocol was presented by Kales et
al. [KRS+19].

To provide an overview of this line of research, we explain the high-level idea here.
Initially, the server generates a secret OPRF key. During the offline/pre-processing stage,
the server transmits the OPRF values of all the elements in its larger set to the client
through a hash table, usually a Cuckoo filter [FAKM14]. In the subsequent online phase,
the client determines the intersection by first evaluating the OPRF values of all the elements
in its smaller set and then verifying them against the hash table (or a Cuckoo filter) received
earlier. It is important to note that such protocols typically involve linear communication
in the server’s set during the pre-processing phase and linear communication in the client’s
set during the online phase.
Unbalanced PSI from FHE. Another line of work on unbalanced PSI is based on
leveled FHE [CLR17, CHLR18, CMdG+21]. These works achieve linear communication

2Another variant called One-More Gap Deffie-Hellman is needed for malicious security. See section 4.1
for details.

3This is implicitly used in [DRRT18] in a non-black-box way. See a more detailed discussion in
Section 1.2.

4Our implementation is available at doi:10.5281/zenodo.15131756

https://doi.org/10.5281/zenodo.15131756
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in the client’s set and logarithmic in the server’s set. Thus, the local storage requirement
of the client is minimized. All of these works are based on the BFV/BGV homomorphic
encryption schemes [Bra12, FV12, BGV14] and thus result in a relatively large overhead
in terms of online computation and communication.

Building unbalanced PSI from PIR. To the best of our knowledge, [DRRT18, HSW23]
are the only works that directly constructs unbalanced PSI from PIR. However, they
both rely on two-server PIR, which requires two non-colluding servers holding the same
database and thus have a stronger environmental assumption. Furthermore, [DRRT18]
construction uses the underlying PIR in a non-black-box way (modifying the underlying
scheme accordingly) and thus less generic (as switching their underlying PIR construction
requires a non-black-box change). In [DRRT18], their online communication is relatively
large: for a database of size hundreds of megabytes, their online communication for a
single PSI query is tens of megabytes. In [HSW23], they also require the clients to refresh
hints after a certain amount of queries and thus require the client to be stateful.

PIR schemes. Achieving concretely efficient PIR constructions for practical applications
has been an active area of research [DC14, KLL+15, GLM16, ABFK16, ACLS18, GH19,
PT20, ALP+21a, MCR21, MW22, LLM22]. Classic protocols have no offline phase, and
thus have relatively limited online efficiency.

A recent line of work on offline/online PIR [CK20, SACM21, KC21, CHK22, LP22,
LMW23, HHCG+23, ZLTS23, LP23, ZPSZ23, FLLP24] take advantage of offline pre-
processing together with client storage. The server pre-processes the database and sends
some processed data called hint to the client. Later, the client uses the hint to query for
the data entry and achieves high online efficiency. SimplePIR [HHCG+23] along this line
of work achieves the best concrete online efficiency for single-server PIR.

Doubly efficient PIR [BIM00, CHR17, BIPW17, LMW23] is another related line of
work, where the server also performs an offline pre-processing step but does not require
client-side storage. Instead, it takes advantage of extra storage on the server side to
achieve better online efficiency. Recent work by Lin et al. [LMW23] has shown that with a
pre-processing step of Õ(N) time, where N is the size of the database, a client can retrieve
the entry with computation and communication cost both being polylog(N). However,
since this work does not provide concrete efficiency but only serves as an asymptotic
result (see [OPPW23] for its concrete performance), we do not employ it to realize our
PSI protocol.

Keyword PIR. A generic transformation from PIR to keyword PIR was introduced along
with its definition [CGN98] but required overhead proportional to the underlying search
data structure. Recent progress has introduced a transformation without any overhead
[PSY23] but that requires either O(N2) extra pre-processing time for the server (where
N is the database size) or O(N) extra pre-processing time along with enlarged client or
server storage. We provide an estimation of how their keyword PIR construction performs
compared to ours and prior works, when used for PSI, in section 5.

OPRFs for server privacy. Using OPRFs to achieve server-side privacy was introduced
in [FIPR05] to construct a fully-private keyword search protocol from keyword PIR. In
keyword search, a client wants to learn the value associated with a keyword in a server’s
database (or ⊥ if it is not in the database), which can be reframed as labeled PSI.

2 Preliminaries
Notation. Let [N ] denote {1, . . . , N}. We use κ, λ to denote the computational and
statistical security parameters, respectively. The logarithm always has base 2 unless
otherwise specified. negl(·) denotes a negligible function, i.e., a function f such that
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f(n) < 1/p(n) holds for any polynomial p(n) and sufficiently large n. poly(·) denotes a
polynomial function. PPT stands for “probabilistic polynomial time.” log(·) denotes a
logarithmic function. polylog(·) denotes a poly-logarithmic function. We omit a polylog(N)
factor in Õ(·), namely Õ(N) = O(Npolylog(N)). |x| denotes the size of x, where x can
be a set or a vector. Let x be a vector, x[i] denotes the i-th element of the vector. Let
x

$← Zq denote x being sampled uniformly at random from Zq.

Private Set Intersection (PSI). PSI is a specialized secure two-party computation
[Yao86]. We follow the standard ideal/real-world paradigm for defining secure two-party
computation against semi-honest or malicious adversaries (see e.g., [Lin16] for the formal
definitions). The ideal functionality of PSI is formalized in fig. 1.

Public Parameters. The honest server and client have respective set sizes N and M . If
the server is maliciously corrupted, then its set size is N ′.

Inputs. The server S inputs a set X where |X| = N if S is honest and |X| = N ′

otherwise. The client C inputs a set Y where |Y | = M .

Output. The client C receives the set intersection I = X ∩ Y and the server S receives ⊥
Figure 1: Ideal functionality for private set intersection.

Private Information Retrieval (PIR). We formalize an offline/online PIR protocol as
follows. A server holds a database T of N data entries, and a client wants to access T [i]
for some i ∈ [N ]. The server can pre-process the database during the offline phase, and
send the pre-processed data hint to the client. During the online phase, the client sends
some query qry to the server. The server replies with rsp.

The correctness of PIR guarantees that with hint and rsp, the client can correctly
recover T [i]. The receiver privacy of PIR guarantees that for any i ̸= i′ ∈ [N ], qry for i is
indistinguishable from qry for i′ to the server.

Decisional Diffie-Hellman (DDH) Assumption. Let g be a generator of a group G of
order q. The DDH problem is hard in G if for any PPT adversary A, |Pr[A(ga, gb, gab) =
1]− Pr[A(ga, gb, gc) = 1]| ≤ negl(κ), for the probability over the random a, b, c

$← Zq.

One-More Gap Diffie-Hellman (OMGDH) Assumption. Let g be a generator of
a group G of order q. We say (N,Q)-OMGDH is hard in G if for any PPT adversary A,
Pr[{(gi, g

k
i )}i∈[Q+1] ← A(·)k,DLk(·,·)(g1, . . . , gN )] ≤ negl(κ), where the probability is over

random (g1, . . . , gN ) $← GN and k $← Zq; (·)k is an oracle that takes any h ∈ G and returns
hk, and A can call this oracle at most Q times in parallel; DLk(·, ·) is an oracle that on
input tuple (g, h) returns 1 if h = gk and 0 otherwise.

Learning with Error (LWE). Let n, q, σ and distribution D be LWE parameters, and
let χσ denote a discrete Gaussian distribution with mean 0 and standard deviation of σ.
LWE is hard if for any PPT adversary A, |Pr[A(⃗a, u) = 1]−Pr[A(⃗a, ⟨⃗a, s⃗⟩+ e)]| ≤ negl(κ),
where probability is over a⃗ $← Zq, u

$← Zq, s⃗← D, and e← χσ.

Regev Encryption. The LWE Regev encryption scheme has an additional parameter
p as plaintext modulus. The encryption of a Zp element m under secret key s⃗ ← D is
(⃗a, b← ⟨⃗a, s⃗⟩+ e+m ·∆) where ∆ = ⌊q/p⌋ , e← χσ and a⃗

$← Zq. With all but negligible
probability, it can be correctly decrypted to m =

⌈
b−⟨a⃗,s⃗⟩

∆

⌋
as long as Pr[|e| > ⌊∆/2⌋] ≤

negl(κ), which means erf( ∆/2√
2σ

) ≤ negl(κ), where erf(·) is the Gauss error function.
The LWE Regev encryption is linearly homomorphic. Let (⃗a, b) be the encryption of m

and (⃗a′, b′) be the encryption of m′. The encryption of c ·m for any plaintext c ∈ Zp can be
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obtained by a scalar multiplication c · (⃗a, b) = (c · a⃗, c · b). The encryption of m+m′ can be
obtained by the entry-wise addition of the ciphertext vectors (⃗a, b)+(⃗a′, b′) = (⃗a+ a⃗′, b+b′).
Note that both operations require the resulting error to remain sufficiently small.

3 Our PSI Protocol
In this section, we present our unbalanced PSI protocol with one-sided output. We give
a construction overview in section 3.1 and discuss various optimization techniques when
instantiating our protocol with SimplePIR in section 3.2. The protocols for clients holding
a single element and multiple elements are presented in fig. 2 and fig. 3, respectively.

3.1 Construction Overview
Starting point. We start with the extremely unbalanced PSI problem where the client’s
set contains a single element. Specifically, the server S holds a large set X of size N and
the client C holds a single element y. The client wants to learn whether y ∈ X.

We first follow the OPRF-based PSI paradigm [FIPR05]. Specifically, the server S
generates a secret key k for a pseudorandom function (PRF) Fk(·) and sends all the PRF
evaluations of its elements, X ′ := {Fk(x)|x ∈ X}, to the client C. Afterwards, S and C
engage in an OPRF protocol, which is a specialized secure two-party computation protocol,
where C learns y′ = Fk(y) and S learns nothing. Finally, C simply checks whether y′ ∈ X ′.
By the security guarantees of OPRF, S learns nothing about y while C learns nothing
about k beyond Fk(y), hence X ′ \ {y′} is computationally indistinguishable from a random
set. Therefore, C learns nothing other than whether y ∈ X.

However, this protocol requires O(N) communication from the server to the client,
which can be impractical for a large set X. Moreover, if the OPRF evaluations X ′ are
sent in the pre-processing phase, it would require significant storage on the client side.

Embedding keyword PIR. To address the issue above, we can utilize a variant of PIR
named PIR by Keyword or Keyword PIR [CGN98] instead of requiring the server to send
the entire set X ′. In keyword PIR, the server holds N elements S = {s1, . . . , sN} and
the client holds a single element w. The client wants to learn whether w = sj for some
j ∈ [N ] without revealing any information about w to the server. This primitive directly
serves our purpose. In more detail, after S computes X ′ and C obtains y′ from OPRF, C
can make a keyword PIR query to learn whether y′ ∈ X ′ without revealing y′ to S. The
remaining challenge lies in constructing an efficient keyword PIR protocol.

Constructing keyword PIR from PIR. We can now plug any generic keyword PIR
protocol into our framework. In section 5.2, we provide a performance estimation for
unbalanced PSI from other keyword PIR constructions [PSY23], following our framework.

Nevertheless, we present an alternative approach to constructing keyword PIR from PIR,
which is particularly tailored for optimal performance when instantiated with SimplePIR
(see section 3.2). This approach can also achieve malicious security almost for free. In
summary, we do hashing to bins as used in [ACLS18, ALP+21b, LPR+20]. Specifically, we
construct keyword PIR from PIR in a black-box way using a hash function H : {0, 1}∗ → [τ ]
that maps elements into a hash table of size τ5.

The server S first creates a hash table T of size τ , putting every element x′ ∈ X ′ into
the hash bin T [H(x′)], namely T [ℓ] := {x′|x′ ∈ X ′ ∧H(x′) = ℓ} for all ℓ ∈ [τ ]. We can
bound the maximum number of elements in any hash bin (with overwhelming probability),
denoted by γ. Then the server pads each hash bin with dummy elements to reach a size of
γ. We can now view T as a database consisting of τ entries, where each entry contains
γ elements. The client C then simply computes ℓC := H(y′) and makes a PIR query for

5H does not need to be a cryptographic hash function.
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T [ℓC]. Finally, C can conclude y′ ∈ X ′ if and only if y′ ∈ T [ℓC]. By the receiver security of
PIR, S does not learn anything about y′.

Regarding the parameters, we first set τ = N = |X|, which results in γ = O(logN log logN).6
These parameters can be further tuned for improved performance, as discussed in sec-
tion 3.2. Given any PIR with sublinear communication complexity in N , we can achieve
sublinear communication in our protocol as well.

Optimization: padding to the largest bin. In the above keyword PIR construction,
we observe that the size of each hash bin in T does not reveal any information to the
client. This is because the elements in the hash table are PRF values and hash locations
are computed based on these PRF values, which can be sent directly to the client as in
the OPRF-based PSI protocol. Therefore, there is no need for any padding in terms of
security guarantees. For the PIR protocol to go through, it suffices to pad each bin to the
size of the actual largest bin in T instead of the theoretical upper bound on the maximum
size of any bin, which drastically reduces the size of the database for PIR. Moreover, the
server can pad with 0-strings to further reduce the computational cost in PIR.7

The OPRF construction. The missing component in our construction is the realization
of OPRF. Prior works on PSI have proposed various types of OPRF constructions, including
Noar-Reingold-based [FIPR05], Diffie-Hellman-based [HFH99, JL10], garbled circuit-based
[PSSW09, KLS+17, RA18, KRS+19], and OT-based [KKRT16, PRTY19, CM20]. Our
construction is generic and can work with any OPRF, but to best serve our PSI purpose,
we look for OPRF constructions that satisfy the following properties: 1) the server’s
OPRF key k can be reused across multiple clients, 2) the protocol can easily be made
maliciously secure, and 3) the protocol is practically efficient, especially in the online phase.
Considering these factors, we choose the OPRF construction presented in [JL10].

In this construction, S and C agree on two hash functions H1 : {0, 1}∗ → G and
H2 : G × G → {0, 1}δ. The PRF is computed as Fk(x) := H2(H1(x), H1(x)k) for a
randomly sampled key k. To jointly compute Fk(y), C randomly samples kC and sends
z := H1(y)kC to S. S then replies with z′ := zk. After getting z′ back, C computes
z′′ ← H2(z, (z′)kC

−1), which gives Fk(y).

Achieving malicious security. The above protocol is semi-honest secure in the random
oracle model assuming DDH is hard in G. To enhance its security against malicious
adversaries, S only needs to attach a proof of knowledge (PoK) for the key k along with
its response z′, assuming OMGDH is hard in G (as in [JL10], but also pointed out by
[CNCG+23, dCL24]). See a more detailed discussion in Section 4.2.

Handling multiple elements in the client’s set. Now we discuss the scenario where
the client C has multiple elements in its set, namely C holds a set Y of size M ≥ 1.
One straightforward approach is to apply the single-element PSI on every element in Y .
However, this approach can be computationally expensive on the server side if the server’s
online computational complexity in PIR grows linearly with the database size, which is
the case in most PIR protocols.

To reduce the server’s computation cost, we adopt the technique of Cuckoo hashing
[PR04]. Specifically, S and C agree on three hash functions h1, h2, h3 : {0, 1}∗ → [m] to
map elements into a hash table of size m. The client C first creates a hash table of size
m and puts each element yi ∈ Y into one of three bins located at {h1(yi), h2(yi), h3(yi)},
ensuring that each hash bin contains at most one element. The Cuckoo hashing parameter
m is chosen such that this step fails with negligible probability. On the server side, S also
creates a hash table of size m and puts each element xi ∈ X into all three bins located

6As long as γ = ω(log N), the probability that any bin exceeds the size of γ is negligible.
7Note that this is possible since the padding is not required for security. Padding is simply to satisfy

the requirements of SimplePIR, where the database is viewed as a square, and thus we need to ensure that
each bin has the same size (i.e., each row has the same length).
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Inputs: The server S holds a large set X = {x1, . . . , xN} where xi ∈ {0, 1}∗ for each i ∈ [N ]
(assume X is randomly shuffled). The client C holds a single element y ∈ {0, 1}∗.

Setup: S and C agree on the security parameters κ, λ, protocol parameters N, δ, τ , a cyclic group
G of prime order q with generator g, three hash functions H1 : {0, 1}∗ → G,
H2 : G×G→ {0, 1}δ, and H3 : {0, 1}δ → [τ ].

Pre-processing Phase: S does the following:
1. Randomly sample kS

$← Zq.
2. Initialize an empty table T of size τ , namely T [i] := ∅ for all i ∈ [τ ].
3. For each i ∈ [N ]:

(a) Compute ui := H2(H1(xi), H1(xi)kS ) and ℓi := H3(ui).
(b) Let T [ℓi] := T [ℓi] ∪ {ui}.

4. Let γ denote the size of the largest entry in T , namely γ := maxi∈[τ ] |T [i]|. For each i ∈ [τ ],
if |T [i]| < γ, then pad it with dummy strings of length δ (e.g., 0δ) to reach a size of γ.

5. View T as a database with τ entries, each entry containing a set of γ strings of length δ.
Perform the pre-processing step of PIR, and send the pre-processed data hint to C,
together with γ.

Online Phase:
1. C randomly samples kC

$← Zq, computes z := H1(y)kC , and sends z to S.
2. Upon receiving z, S computes z′ := zkS and sends it back to C.
3. Upon receiving z′ back, C does the following:

(a) Compute z′′ := H2

(
H1(y), (z′)kC

−1
)

and ℓC := H3(z′′).

(b) Prepare a PIR query for the ℓC-th entry of the database T and send it to S.
4. Upon receiving the PIR query, S computes the PIR response and sends it back to C.
5. Upon receiving the PIR response, C does the following:

(a) Recover the entire ℓC-th entry of T as a set of strings R = {r1, . . . , rγ}.
(b) Output {y} if z′′ ∈ R and ∅ otherwise.

Figure 2: Our PSI protocol where the client has a single element.

at {h1(xi), h2(xi), h3(xi)}. We can then bound the maximum number of elements in any
hash bin and have the server pad each hash bin with dummy elements to reach that size.
Finally, S and C run a single-element PSI protocol for each hash bin. As a result, the
server’s total online computation remains linear in the database size.

Optimization: no need for padding. Consider the padding step in the above multi-
element protocol. Now it is necessary, for security reasons, to pad each hash bin to the
theoretical upper bound since the size of each bin could reveal information about the
server’s set X. However, if we apply the Cuckoo hashing on the PRF values instead of the
original elements, the same idea applies, and padding is no longer required.

3.2 Tailoring SimplePIR
We instantiate the above PSI construction based on SimplePIR [HHCG+23], which is the
fastest single-server PIR scheme known to date with sublinear communication.8 We now
open this black box for better performance.

SimplePIR. SimplePIR essentially realizes the square root PIR introduced in [KO97]
with an LWE Regev encryption scheme using preprocessing to boost online performance.

8While Piano [ZPSZ23] is faster in terms of online time, the communication cost in pre-processing
is linear in N . Although the local storage of the client is not linear in N , this linear pre-processing
communication does not directly fit the PSI applications we have in mind.
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Inputs: The server S holds a large set X = {x1, . . . , xN} where xi ∈ {0, 1}∗ for each i ∈ [N ]
(assume X is randomly shuffled). The client C holds a small set Y = {y1, . . . , yM} where
yi ∈ {0, 1}∗ for each i ∈ [M ].

Setup: S and C agree on the security parameters κ, λ, protocol parameters N, M, m, δ, a cyclic
group G of prime order q with generator g, five hash functions H1 : {0, 1}∗ → G,
H2 : G×G→ {0, 1}δ, and h1, h2, h3 : {0, 1}δ → [m].

Pre-processing Phase: S does the following:
1. Randomly sample kS

$← Zq

2. Initialize m empty hash bins X1, . . . , Xm := ∅.
3. For each i ∈ [N ]:

(a) Compute ui := H2(H1(xi), H1(xi)kS ).
(b) Let Xj := Xj ∪ {ui} for each j ∈ {h1(ui), h2(ui), h3(ui)}.

4. For each j ∈ [m], let Nj = |Xj | and denote Xj = {uj,1, . . . , uj,Nj}. Proceed as in the
single-element pre-processing phase:

(a) Choose a parameter τj and a hash function H3,j : {0, 1}δ → [τj ].
(b) Initialize an empty table Tj of size τj , namely Tj [i] := ∅ for all i ∈ [τj ].
(c) For each i ∈ [Nj ], compute ℓj,i = H3,j(uj,i) and let Tj [ℓj,i] := T [ℓj,i] ∪ {uj,i}.
(d) Let γj denote the size of the largest entry in Tj , namely γj := maxi∈[τj ] |Tj [i]|. For

each i ∈ [τj ], if |Tj [i]| < γ, then pad it with dummy strings of length δ to reach a size
of γj .

(e) View Tj as a database with τj entries, each entry containing a set of γj strings of
length δ. Perform the pre-processing step of PIR to obtain hintj .

5. Send {(Nj , τj , H3,j , γj , hintj)}j∈[m] to C.

Online Phase:
1. C randomly samples kC

$← Zq, computes zi := H1(yi)kC for all i ∈ [M ], and sends {zi}i∈[M ]
to S.

2. Upon receiving {zi}i∈[M ], S computes z′
i := z

kS
i for all i ∈ [M ] and sends {z′

i}i∈[M ] back to
C.

3. Upon receiving {z′
i}i∈[M ] back, C does the following:

(a) For each i ∈ [M ], compute z′′
i := H2

(
H1(yi), (z′

i)kC
−1

)
.

(b) Initialize m empty hash bins Y1, . . . , Ym := ∅.
(c) Perform Cuckoo hashing using h1, h2, h3 on {z′′

i }i∈[M ] and put (yi, z′′
i ) into one of the

hash bins Yh1(z′′
i

), Yh2(z′′
i

), Yh3(z′′
i

) such that each bin contains exactly one tuple. Pad
each empty bin with a dummy random tuple.

(d) For each j ∈ [m], let the tuple in Yj be (yj , z′′
j ):

i. Compute ℓC
j := H3,j(z′′

j ).
ii. Prepare a PIR query qryj for the ℓC

j -th entry of the database Tj .
(e) Send all the PIR queries {qryj}j∈[m] to S.

4. Upon receiving the PIR queries, S computes the response rspj for qryj using Tj for each
j ∈ [m], and sends {rspj}j∈[m] back to C.

5. Upon receiving the PIR responses, C does the following:
(a) For each j ∈ [m], recover the entire ℓC

j -th entry of Tj as a set of strings
Rj = {rj,1, . . . , rj,γj}.

(b) Output the intersection I :=
{

yj |z′′
j ∈ Rj , j ∈ [m]

}
.

Figure 3: Our PSI protocol where the client has multiple elements.

Specifically, for a database of size N with each data entry in Zp, SimplePIR models it as
a matrix D ∈ Z

√
N

p × Z
√

N
p . Retrieval of a single element is done by retrieving the entire
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column of D where the target element lies.
The client sends an encrypted indicator vector qry = (ct1, . . . , ct√

N ) where cti encrypts
1 if the queried entry is in the i-th column and cti encrypts 0 otherwise. Since the LWE
Regev encryption scheme is linearly homomorphic, the server replies with the result from a
homomorphic matrix-vector multiplication rsp← D × qry, which encrypts the i-th column
of the matrix D. The underlying homomorphic operations are either homomorphic addition
or scalar multiplication, since the database D is given in plaintext form.
Dive into more details. We can view qry as a

√
N -by-(n+ 1) matrix where each row

corresponds to an LWE Regev ciphertext of the form (⃗a, b) ∈ Zn+1
q where n is the LWE

dimension, q is the ciphertext modulus and a⃗ ∈ Zn
q is sampled uniformly.

The homomorphic matrix-vector multiplication D × qry can be viewed as a matrix
multiplication of a

√
N -by-

√
N matrix D and a

√
N -by-(n+ 1) matrix qry, whose each row

corresponds to a ciphertext cti = (⃗ai, bi). Now let qrya = [a⊤
1 , a

⊤
2 , . . . , a

⊤√
N

]⊤ be the first n
columns of query matrix qry and qryb = [b1, b2, . . . , b√

N ]⊤ be the last column of qry. The
result ciphertext vector, or viewed as the result matrix, is D × qry = D × [qrya, qryb] =
[D × qrya, D × qryb].

A significant insight of SimplePIR is that the first part, D × qrya, only involves
multiplying the database D with a uniformly random matrix qrya, which is independent
of the client’s input. Exploiting this property, the server S can generate a random matrix
qrya by uniformly sampling it from a short seed s. During the pre-processing phase, the
server sends both the seed s and hint = D × qrya to the client. In the subsequent online
phase, the client reconstructs qrya using the seed s and generates the final column qryb

of the query ciphertext matrix 9. The server’s computation is significantly reduced to
performing a smaller matrix-vector multiplication, rsp← D×qryb, during the online phase.
The server then sends rsp back to the client. Finally, the client decrypts the combined
result, considering both the received hint = D × qrya and rsp.

The hint is thus of size
√
N · n · log q (which is the pre-processing communication cost),

and the online upload and download communication are both
√
N · log q (which together

is the online communication cost). The server needs to evaluate N · n Zq-multiplications
and additions during the pre-processing phase, and N Zq-multiplications and additions
during the online phase.

With this background, we can proceed to find more balances when instantiating the
underlying PIR protocol with SimplePIR.
Re-arrange the database. SimplePIR arranges its database into a square

√
N -by-

√
N

matrix D. To find a better balance between the hint size and the rsp size, we can re-arrange
D to be rectangular ∈ Zα×β

p , without changing the pre-processing and online computation
cost. The hint size (i.e. the size of D × qrya) is then α · n · log q. The upload cost (i.e. the
size of qryb) is β · log q. The download cost (i.e. the size of D × qryb) is α · n · log q. The
parameters α and β can be chosen according to the application. We discuss our choices
below. Note that re-arranging the database is also used in [DPC23].
Retrieving multiple elements for free. A key observation of SimplePIR is that we
are retrieving back an entire column of database matrix D, which contains α Zp elements.
Thus, while an entry in hash table T has γ · δ bits, where γ is the number of elements per
data entry, by setting α = C · γ · δ/ ⌊log p⌋, for some C ∈ Z+, we can retrieve the entire
hash table entry with a single PIR query.
Tuning the hash table size τ . Recall that our table T has τ · (γ · δ) bits, where γ is the
size of T ’s largest entry. Every entry with fewer than γ elements needs to be padded to
γ elements (with zeros). Thus, as we decrease the table size τ , the variance in the entry
sizes in T becomes smaller, hence the database size τ · (γ · δ) also decreases.

9Note that reusing the same matrix for polynomial amount of queries is still secure as shown in
[PVW08].
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As mentioned above, we need α = C · γ · δ/ ⌊log p⌋ to retrieve the entire entry with one
query and thus β = τ/C, for some C ∈ Z+. However, as discussed, efficiency grows when
τ decreases. Thus, if we set β = τ/C for some C > 1, we can instead simply set a new
τ ′ ← τ/C, β ← τ ′, and use τ ′ as the size of T for better efficiency. Thus, we set β = τ and
α = γ · δ/ ⌊log p⌋ (i.e., C = 1), and then directly adjust τ for better efficiency.

This results in |hint| = γ · δ/ ⌊log p⌋ · n · ⌈log q⌉ bits, |qry| = τ · ⌈log q⌉ bits, and
|rsp| = |hint|/n bits. Thus, we can adjust τ according to the desired hint, qry, rsp sizes. For
our purpose, we set τ such that |hint| ≈

√
|X| · δ, where |X| · δ is the cost of sending the

entire X ′ (recall that X ′ := {Fk(x)|x ∈ X}).

Modulus switching. We introduce an additional technique to further reduce the
communication of SimplePIR, called modulus switching [BV11, DM15]. Recall that
hint ∈ Zα×n

q , rsp ∈ Zα×1
q and (hint, rsp) together forms α LWE ciphertexts.

Recall that an LWE ciphertext (⃗a, b) ∈ Zn+1
q with respect to secret key s⃗ ∈ Zn

satisfies the following: b − ⟨⃗a, s⃗⟩ = e+m ·∆ where e ∈ Zq is a small error, m ∈ Zp is a
message, and ∆ = ⌊q/p⌋. There is usually a big gap between the ciphertext modulus q
and the plaintext modulus p (i.e., p ≪ q). Thus, we can work on a smaller ciphertext
modulus q′ < q to reduce the communication, while preserving the LWE ciphertext
structure. A modulus switching procedure for LWE ciphertexts from q to q′ ≤ q is
defined as (⃗a′, b′) ← round( q′

q (⃗a, b)) ∈ Zn+1
q′ . The resulting ciphertext (⃗a′, b′) satisfies

b′ − ⟨⃗a′, s⃗⟩ = e′ + m · ∆′, where e ∈ Zq is a new error term (to-be bounded), and
∆′ = ⌊q′/p⌋.

This means that when sending hint ∈ Zα×n
q and rsp ∈ Zα

q , we can modulus switch them
down to some q′ ≪ q before sending them back. The communication cost can thus be
reduced by a factor of log q/ log(q′). The correctness holds as long as Pr[|e′| ≤ ∆/2] ≥
1− negl(λ).

Ternary LWE keys and randomized rounding. To make sure e′ is small, we employ
two additional techniques. The first is using ternary keys for LWE secret keys, namely
sample the secret key as s $← {0, 1,−1}n. The second is randomized rounding. Specifically,
to round a decimal value c.d, we round it to c+ 1 with probability d, and round it to c with
probability 1− d. By using these two techniques, e′ = O( q′

q e+
√
n) [DM15]. Concretely,

if e has a standard deviation of σ (for Gaussian distribution χσ), then e′ has a standard
deviation of σ′ = q′

q σ+σMS where σMS =
√

n2+1
3 (for Gaussian distribution χσ′) [LMP22,

Sec 6.5].

Error analysis. Recall that qry is essentially LWE ciphertexts with some initial error,
D × qry thus results in new LWE ciphertexts with larger errors. As shown in [HHCG+23,
Sec C.2], to guarantee the correctness of SimplePIR, we need to choose LWE parameters
σ (i.e., the error distribution standard deviation for the initial error generation) to satisfy:
2 exp(−π · ( ∆

2·σ·
√

2π·
√

β·p/2
)) ≤ 2−λ, where ∆ = ⌊q/p⌋.

Combining with modulus switching, we choose ∆1 + ∆2 = ∆, σ, such that they satisfy
2 exp(−π · ( ∆1

2·σ·
√

2π·
√

β·p/2
)) ≤ 2−λ/2, and erf( (q′/q)∆2/2√

2σMS
) ≤ 2−λ/2 10. By union bound, we

have PIR correctness with probability ≥ 1− 2−λ/2− 2−λ/2 = 1− 2−λ.
This is done via the following: given an initial q, p, calculate an initial ∆ as specified

above, and let the initial ∆1 = ∆2 = ∆/2. If such a ∆1 does not satisfy the first equation,
then reduce p by a factor of 2, recalculate ∆,∆1,∆2 until it is satisfied. Afterwards,
find the minimum q′ such that the second equation is satisfied (and if q′ = q, we simply
eliminate the modulus switching process). This process can be repeated by assigning ∆1
and ∆2 differently (e.g., ∆1 = 0.9∆, ∆2 = 0.1∆) to maximize p and q′.

10Recall that e← χσ , Pr[e ≥ ∆/2] ≤ erf( ∆/2√
2σ

).
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3.3 Parameters
In this section, we summarize the parameters required in our single-element PSI protocol
(fig. 2) and multi-element PSI protocol (fig. 3).

• Computational security parameter κ and statistical security parameter λ.
• Server set size N and client set size M (in fig. 3).
• H2’s output length δ such that (N ·M)/2δ ≤ 2−λ.
• m (in fig. 3) such that Cuckoo hashing M elements into m bins fails with probability

negl(λ).
• Hash table size τ = N (in fig. 2) and τj = Nj for each j ∈ [m] (in fig. 3) (these

parameters can be further tuned for optimized performance, as discussed in sec-
tion 3.2).

• PIR parameters such that the underlying PIR protocol satisfies both correctness and
receiver privacy.

4 Security Guarantees
4.1 Corrupted Client
In the existence of a corrupted client, our PSI protocols (fig. 2 for M = 1 and fig. 3 for
an arbitrary M) achieve semi-honest security in the standard PSI definition shown in
fig. 1 and malicious security in the adaptive variant of the PSI functionality [JL10], which
allows adaptive queries from C. In more detail, the ideal functionality takes a set X from
S as input, and for each query on input yi made by C, for i ∈ [M ], the ideal functionality
returns yes or no for whether yi ∈ X. Although it is secure for the weaker adaptive PSI
functionality, we can in fact show that a malicious client cannot change its input set after
sending {zi}i∈[M ] in the online phase Step 1.
Remark 1. Note that the notion of “adaptive functionality” is different from “adaptive
adversary” in standard MPC definitions. Specifically, “adaptive PSI functionality” indicates
that a malicious client is allowed to adaptively query if an element yi is in X in the ideal
functionality. This is different from the standard PSI definition, where a malicious client
is required to send its entire set Y to the ideal functionality all at once. It is weaker
than the standard definition because the adversary is given more power in the ideal
world. Adaptivity is needed in the security proof because the client’s queries may only be
extractable eventually (from random oracle queries), rather than during protocol execution.
Although security is proven with the adaptive functionality, we can show that a malicious
client cannot change its input set after sending {zi} in the online phase Step 1, hence it is
unclear what advantage a malicious client could obtain from the adaptive feature of the
functionality.

We state the theorems below and give the security proofs in section A.1 and section A.2,
respectively. Note that theorem 2 achieves stronger malicious security by relying on a
stronger computational assumption, namely OMGDH. The proofs for the single-element
protocol in fig. 2 follow similarly.

Theorem 1. If H1, H2 are modeled as random oracles and DDH is hard in G, then our
protocol in fig. 3 securely computes the PSI functionality in fig. 1 against a semi-honest
client when the protocol parameters are chosen as described in section 3.3.

Theorem 2. If H1, H2 are modeled as random oracles, the OMGDH problem is hard in
G, then our protocol in fig. 3 securely computes the adaptive PSI functionality against a
malicious client when the protocol parameters are chosen as described in section 3.3.
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4.2 Corrupted Server
In the existence of a corrupted server, our PSI protocols (fig. 2 for M = 1 and fig. 3 for
an arbitrary M) achieve simulation-based security against a semi-honest server and client
privacy against a malicious server in the standard PSI definition. We discuss extensions to
serving multiple clients with multiple elements in their sets in section 4.2.2, as well as the
challenges in proving full simulation-based security.

4.2.1 Original Protocol

Semi-honest server. We state the semi-honest security for an arbitrary M below and
give the security proof in section A.3. The proof for M = 1 follows similarly.

Theorem 3. If H1, H2 are modeled as random oracles, the DDH problem is hard in G,
and the underlying PIR protocol satisfies correctness and receiver privacy, then our protocol
in fig. 3 securely computes the PSI functionality in fig. 1 against a semi-honest server
when the protocol parameters are chosen as described in section 3.3.

Client privacy against malicious server. We can achieve client privacy against a
malicious server without making any changes to our protocol. At a high level, it means that
the server cannot learn anything about the client’s input from the interaction transcript.
This security guarantee is the same as the one achieved in [CHLR18, CMdG+21]. We
state the theorem below and skip the proof as it follows the exact same structure as the
proof of theorem 3 in arguing for client privacy.

Theorem 4. If H1 is modeled as a random oracle, the DDH problem is hard in G, and
the underlying PIR protocol satisfies receiver privacy, then our protocol in fig. 3 achieves
client privacy [HL08, Def 2.2] against a malicious server when the protocol parameters are
chosen as described in section 3.3.

4.2.2 Full Security Against Malicious Server

In addition to client privacy, prior works [CHLR18, CMdG+21] on FHE-based unbalanced
PSI proposed techniques to achieve simulation-based security with leakage against a
malicious server. At a high level, the server in their protocols needs to homomorphically
compute and return an encrypted H(z) for a public hash function H and an OPRF value
z encrypted by the client. Their assumption is that the server cannot homomorphically
compute an encryption of H(z) given an encryption of z and some pre-determined list of
encryptions of powers of z, when H is a sufficiently complex hash function such as SHA256.
The heuristic argument of this assumption comes from the difficulty of evaluating such a
high-depth circuit using leveled HE, where the parameters are chosen to support a smaller
multiplicative depth. However, the server is still able to make the intersection indirectly
depend on the set Y \X, which is modeled as a leakage circuit leakage(·) in their ideal
functionality for security with leakage.

Nevertheless, this issue does not apply to our scheme, and we discuss how to handle
malicious servers. In particular, we discuss how to allow multiple users by allowing reuse
of the pre-processing phase across clients; and then discuss the difficulty of handling an
arbitrary size of Y .

Reusing pre-processing phase. We start by discussing how to reuse the pre-processing
phase with multiple clients for the |Y | = 1 case. To resolve the aforementioned inconsistency
issues, we can make the following modifications to the protocol in fig. 2. In the pre-
processing phase, the server commits to the database T and gives a proof of knowledge
(PoK) that hint is correctly computed on T . Additionally, the server provides gkS along
with a PoK for kS. In the online phase, the server provides a PoK for kS when generating
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the OPRF response, as well as a PoK for the committed T when generating the PIR
response. Again, these changes do not affect the security against corrupted clients. Note
that, however, this would greatly affect the performance. For example, proving that
the PIR response is correctly computed can be several times slower than generating the
response itself.

We sketch a security proof for this modified protocol against a malicious server. First,
the simulator is able to extract both kS and the database T in the pre-processing phase
from the PoKs provided by the server. Since the simulator also keeps track of all the
queries to H1 and H2, it can extract the set X using a similar approach as in [JL10].
The simulator then sends the extracted set X to the ideal functionality. In the online
phase, the two PoKs provided by the server ensure that the PIR and OPRF responses are
consistent with the X committed (extracted) in the pre-processing phase. This consistency
guarantees that the responses align with the set X sent to the ideal functionality, thus
concluding the proof.

Handling arbitrary |Y |. The main challenge in handling multiple elements in a client’s
set comes from Cuckoo hashing. Specifically, the server is supposed to put each element
xi ∈ X into three hash bins. However, if the malicious server decides to put it into only
one of the three bins, then it becomes unclear whether the simulator should include xi in
the set sent to the ideal functionality. This is because whether the same element xi will be
put into that same bin on the client’s side depends on the other elements in the client’s
set. Thus, achieving a simulation-based proof seems challenging unless we incorporate a
more sophisticated proof of correctness for Cuckoo hashing.

5 Experimental Results

We implement our single-element PSI protocol in fig. 2 and multi-element PSI protocol
in fig. 3 in a C++ library available at doi:10.5281/zenodo.15131756. We use the
SimplePIR [HHCG+23] implementation in a Go library directly and optimize upon it
using the techniques we have mentioned in section 3.2. All benchmarks are running on an
Amazon AWS c5.metal instance with Intel Xeon Platinum 8275L CPU with 96 virtual
cores and 192 GB of RAM.

5.1 Parameter Setting

For single-element PSI, we ran benchmarks for |X| = 220, 222, 224, 226, and 228 using
computational security parameter κ = 128 , statistical security parameter λ = 40, and
H3 : G×G→ {0, 1}δ output size δ = 80 (to guarantee λ = 40 given the |X|).

Following prior work [CLR17, ACLS18], we used experimental analyses to choose the
number of hashes and bins for our Cuckoo hashing based multi-element protocol in fig. 3.
Our experiments found, for |Y | = 16 and only three hashes, ∼46 bins were required to
run 220 trials without error (m ≈ 2.875|Y |) and ∼105 bins were required for |Y | = 64
(m ≈ 1.64|Y |). Using four hashes and m = 1.5|Y |, both 16 and 64 are able to run 220

trials without error, so these were chosen as the increase in the server set size was more
desirable than increasing the number of PIR instances. Using these, we ran benchmarks
for |X| = 226 with |Y | = 16 and 64.

In all benchmarks, τ was chosen to strike a balance between the offline and online
phases (note the size estimation discussed in section 3.2). We choose the error bound
according to our error analysis in section 3.2, and choose other LWE parameters according
to [APS15] to guarantee 128-bit computational security.

https://doi.org/10.5281/zenodo.15131756
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5.2 Benchmark Comparison
Single-element PSI. In table 1, we compare the main efficiency metrics with APSI
[CMdG+21], the state-of-the-art unbalanced PSI protocol with sublinear client storage
(zero for APSI). We use green to highlight the efficiency metrics at which our protocol is
better and red to indicate the ones at which our protocol is worse.

Table 1: Efficiency comparison with APSI [CMdG+21] for our single-element PSI in fig. 2. D
is the number of threads. X is the server S set. C is the client. For |X| = 228, 224, 220, we use
the APSI default parameters. For |X| = 226, 222, since APSI does not provide an interface to
choose the optimal parameters, we tested different parameters they provide and chose the optimal
one. The server online time measures the computational time taken by the server to run the PSI
protocol when the client has a single element

Server Offline (s) Server Online (s) Communication (MB)
D = 1 D = 32 D = 1 D = 32 Offline C→ S S→ C|X|

Ours APSI Ours APSI Our APSI APSI Ours APSI Ours APSI Ours APSI
228 - - 983 1380 0.56 57 4.0 30.9 0 1.05 2.58 0.028 1.8
226 - - 224 335 0.15 18 3.3 15.7 0 0.524 2.58 0.015 0.51
224 915 435 53.5 59 0.034 6.0 0.71 8.80 0 0.262 1.58 0.080 0.91
222 229 107 12.6 15 0.009 2.1 0.70 4.62 0 0.131 1.58 0.004 0.25
220 57.1 23.0 3.27 3.7 0.003 0.18 0.12 2.55 0 0.066 0.745 0.002 0.78

As shown in the table, our online runtime with D = 1 is about two orders of magnitude
faster than APSI with D = 1, and about one magnitude faster than APSI with D = 32.
Thus, we believe that multi-threading is not needed for our online time for most applications.
However, note that our construction can be easily multi-threaded: a SimplePIR query is
simply n LWE ciphertexts for some n = O(

√
|X|). Thus, we can simply divide the n LWE

ciphertexts into T threads and process them separately. We believe setting D = 32 gives
us a similar speed up as APSI, if not more. Moreover, our online communication cost is
also at least 4x smaller.

On the other hand, our overall offline server computation time is slightly worse than
APSI’s but is still comparable (mainly due to the performance for D = 1). Recall that this
is a one-time process and can be reused for all clients, and so this extra cost has relatively
small impact. Also note that our multi-threaded offline time outperforms APSI, and this
is because our offline phase can be easily multi-threaded without much overhead. However,
their offline phase contains computation that is not easily multi-threadable (e.g., large
polynomial evaluation).

The only major drawback of our protocol when compared to APSI is offline commu-
nication. We require the client to store a hint for the underlying SimplePIR protocol.
However, as shown in the table, the hint is relatively small (only < 10x larger than the
online communication of APSI), and can be amortized over multiple queries. Moreover, it
grows with O(

√
|X|) instead of being linear to |X|, and thus grows relatively slowly.

Multi-element PSI. We compare our multi-element protocol with APSI in table 2. We
also add a naive use of our single-element protocol in table 1 for a more comprehensive
comparison. We use bold texts to highlight the best of the three for a given efficiency
metric. It is easy to see that for |Y | > 1, our construction has less advantage compared to
APSI. However, both of our constructions’ online time still greatly outperforms APSI, for
the |Y |’s we test. Note that when |Y | grows larger, our offline communication may grow too
large and becomes impractical.11 A similar argument applies to our online communication.

Comparing with other schemes. In addition to comparing our benchmarks to the
APSI protocol, we also evaluated the works of Davi Resende and Aranha in [RA18] and
Kales et al. [KRS+19] as shown in table 3. Asymptotically, the online server time of

11Our offline communication consists of multiple SimplePIR hints. The number of hints grows with |Y |,
while each hint size decreases as |Y | increases, and the former grows faster than the latter decreases.
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Table 2: Efficiency comparison with APSI [CMdG+21] for our multi-element PSI and variables
are defined in the same way as table 1. “Naive” means we simply repeat single-element described
in fig. 2 for |Y | times and “Cuckoo hashing” means that we use the Cuckoo hashing protocol
described in fig. 3. We choose |X| = 226, as APSI with |X| = 228 and |Y | > 1 does not run on
our instance (we conjecture the reason to be out of memory).

|X| = 226 |Y |
Server Offline

Time (s)
D = 32

Offline
Comm
(MB)

Server Online
Time (s)
D = 1

Server Online
Time (s)
D = 32

C→ S S→ C

16
(Naive) 524 15.7 2.35 0.168 8.38 0.240

Ours 16
(Cuckoo
hashing)

542 75.5 0.553 0.064 12.6 0.070

APSI 16 520 0 40.5 2.1 3.39 2.30
64

(Naive) 524 15.7 9.55 0.288 33.5 0.960

Ours 64
(Cuckoo
hashing)

542 188 0.928 0.059 25.2 0.167

APSI 64 520 0 41 2.2 3.39 2.30

our construction and APSI are O(|X|) while other works are O(|Y |). The offline client
communication cost and storage in other works are O(|X|), while ours is O(

√
|X|) and

APSI is O(1). Our protocol demonstrates a better balance, e.g. for |X| = 226 and |Y | = 1,
our server online time is as low as 0.15s, while the offline communication is only 15.7MB,
significantly less than the OPRF-based protocols. It should be noted, as mentioned
in [CMdG+21], that the protocol proposed in [RA18] utilized extremely aggressive Cuckoo
filter parameters, for its exceptionally high performance during the online phase, resulting
in an impractical high false-positive rate of 2−13. We demonstrated that, for small |Y |, our
protocol is computationally very efficient during the online phase, while also keeping the
offline communication low as compared to other OPRF-based protocols. However, when
the client’s size |Y | grows, we could suffer from high communication costs.

Cost estimation for password breach checkup. As mentioned in the introduction,
one essential application of unbalanced PSI is password breach checkup [Ali18, LKLM21].
Essentially, a central server holds a database containing a large amount of leaked passwords
due to data breaches. The users themselves have one or more passwords that they want
to check whether it is already insecure against this database. Of course, the users do not
want to leak their own passwords, and the server does not want to share other leaked
passwords with the users performing the checkup.

An unbalanced PSI (especially our extremely unbalanced setting) is perfectly suited
for such a setting. As suggested in [TPY+19, ALP+21b], a database may contain 232

passwords, and a user may have one or several passwords to check against such a database.
Since the online runtime for prior works remains prohibitively large (e.g., checking 232

passwords can take more than 400 seconds), [ALP+21b] suggests dividing the password
into buckets, each with size, say 220 passwords. This leaks extra information as the server
learns which bucket the client is checking against.

However, with our construction, such online cost is no longer unaffordable. For a
single-core server, it takes only about 4 seconds to check for all the 232 passwords against
a single password (extrapolating from table 1). This efficiency comes at the expense of the
user needing to store a hint of size ∼240MB. However, this hint can be reused for future
checkups, making it a favorable trade-off.

PSI from Other Keyword PIR Constructions. We also estimate the performance of
unbalanced PSI by plugging other state-of-the-art keyword PIR schemes into our framework.
The estimation with the keyword PIR in [PSY23] is based on their numbers in Fig. 12.
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Table 3: Comparisons to prior works. LowMC and ECNR are two protocols described in [KRS+19].
APSI is the one in [CMdG+21]. For |Y | > 1, we use the Cuckoo hashing protocol in fig. 3. All
protocols are running in a single thread.

Offline Online
|X| |Y | Protocol Server Time (s) Comm (MB) Server Time (s) Comm (MB)

220 1

[RA18] 13.5 3 0.013 < 0.001
LowMC 5 4.2 0.212 0.059
ECNR 151 4.2 0.257 0.04
APSI 23 0 0.18 1.525
Ours 57 2.55 0.002 0.07

224 1

[RA18] 217 48 0.013 < 0.001
LowMC 80.5 67 0.22 0.059
ECNR 2, 403 67 0.256 0.04
APSI 435 0 6 2.49
Ours 925 8.8 0.034 0.27

226

1

[RA18] 870 192 0.013 < 0.001
LowMC 323 268 0.220 0.059
ECNR 9, 617 268 0.202 0.04
APSI 4, 375 0 18 3.09
Ours 3, 730 15.7 0.15 0.54

16

[RA18] 870 192 0.013 < 0.001
LowMC 323 268 0.177 0.406
ECNR 9, 617 268 0.160 0.13
APSI 4, 680 0 40.5 5.69
Ours 5, 257 75.57 0.553 12.5

64

[RA18] 870 192 0.015 0.002
LowMC 323 268 0.179 1.51
ECNR 9, 616 268 0.173 0.41
APSI 4, 680 0 41 5.69
Ours 5, 623 188.1 0.928 25.3

For |X| = 226, |Y | = 1, as in table 1, their online server runtime is about ∼3 seconds,
with online upload cost being ∼0.014 MB and online download cost being ∼0.021 MB.
Compared to ours, the runtime is about 20x slower and the online download cost is slightly
larger. However, their online upload cost is a lot smaller and requires no offline storage
of the client. Alternatively, they could re-parametrize their keyword PIR to reduce the
runtime to ∼1.5 seconds, while increasing their download cost to ∼0.086 MB. Either way,
their construction provides different trade-offs compared to our construction. Similar
results hold for other sizes of |X|, hence we skip the details of the estimation.

6 Extensions
Remove the offline communication. In the pre-processing phase of the single-element
PSI protocol (fig. 2), S sends the pre-processed data (i.e., the hint) to C in Step 5. This
requires the client to keep some local storage. While this is usually fine as hint is much
smaller than the set X, there may be cases where this needs to be avoided.

Thankfully this is a simple adjustment: one can send the hint during the online phase
along with the OPRF results. Since hint now is included in the online communication, it
should be as small as possible. To ensure this, simply choose α, β such that α · (n+ 1) ·
log q + β · log q is minimized.

For multi-element PSI, a slightly different approach is required since the knowledge of
τi for each Ti is necessary to perform a PIR query. C and S can agree on τi in advance
(e.g., let τi being the expected size for each Ti). Then, everything else remains the same as
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for our single-element PSI protocol.

Reduce the round complexity. Our single-element PSI protocol (fig. 2) has two rounds
in the online phase: C first sends OPRF request in Step 1, and then uses the OPRF result
to prepare the PIR query in Step 4. Recall that this is because our PIR (by keyword)
database is constructed from X ′ instead of X itself.12 If S uses X to construct the database
instead of X ′, the client can prepare the OPRF request and PIR query at the same time.
However, simply replacing X ′ with X leaks information. Recall our starting point in
section 3, S can send the entire X ′ to the client, but it is insecure to send X directly to C.

Thus, S needs to construct T using X in the following way. We start with the case
where |Y | = 1. S and C share a hash function H : {0, 1}δ → [τ ], where τ = N (τ can
be optimized, discussed below). First, S initializes an empty table T of size τ . Then, S
computes T [H(x)]← T [H(x)] ∪ Fk(x), for all x ∈ X. We can bound that each entry in
the table has at most γ = ω(log(N)) elements with overwhelming probability. S thus pads
random elements to each entry that has < γ elements and randomly permutes each entry.
Lastly, S uses T as the PIR database. To query for element y, C queries entry H(y) without
needing Fk(y). Thus, the PIR query can be prepared together with the OPRF query.
After receiving T [H(y)], Fk(y) in response, C simply checks whether Fk(y) ∈ T [H(y)].

However, one major issue is that now T is of size τ · γ ≥ N for some fixed τ , and the
padded elements are random instead of zeros. Thus, the computation, instead of being
O(N), becomes O(τ · γ). As τ = N , the cost is τ · γ = ω(N log(N)). Moreover, recall that
the PIR scheme needs to download one entry at a time, which means that the download
cost is O(γ) = ω(log(N)). In contrast, in the original construction, γ is chosen dynamically
after hashing which is much smaller with high probability.

Therefore, the trade-off is worse computation and communication complexity for a
better round complexity. For |Y | ≥ 1, again, C and S need to agree on τi for each Ti in
advance. Everything else follows the exact same way.

Tuning τ and γ. As mentioned, τ can be further tuned in the alternative above. Recall
that the smaller τ is, the smaller τ · γ gets. Thus, instead of setting τ = N , we can set
τ < N . Let Z be the random variable representing the size of a randomly populated
entry in T with τ entries. Then use Chernoff bound we have υ ← γ/µ− 1 ≥ 0, we have
Pr[Z > (1 + υ)µ] ≤ ( eυ

(1+υ)1+υ )µ, where µ = N/τ . Then, we set γ to be the smallest
integer such that Pr[Z > (1 + υ)µ] ≤ 2−λ. One can then reduce the computation and
communication costs by fine-tuning τ and γ.

Extension to labeled PSI. Labeled PSI introduced in [CHLR18] does not directly return
X ∩ Y , but returns the payloads attached with X ∩ Y . In other words, for each xi ∈ X,
there is a payload pi associated with it. For each xi that is also in Y , output pi to the client
C. Our construction can be extended to labeled PSI in a straightforward way. Instead
of returning Fk(xi) during the PIR query, the server returns (Fk(xi), pi ⊕ Fk′(xi)) where
Fk′(·) is another PRF. The OPRF query, therefore, outputs both Fk(yi) and Fk′(yi). C
first check whether Fk(yi) is in the decoded PIR answer, and then use Fk′(yi) to decode
for the payloads. With similar analysis in section A, we achieve the functionality of labeled
PSI.

Using doubly efficient PIR. Since PIR to PSI construction is generic, one can replace
SimplePIR with arbitrary PIR constructions. A recent work [LMW23] shows that with
O(|X|1+o(1)) server offline computation and storage, the client can retrieve an entry
with polylog(|X|) time and communication. However, as mentioned, this work is not yet
practical, and thus we use SimplePIR in our concrete instantiation.

12Recall that X′ := {Fk(x)|x ∈ X}, and the database T has entry T [ℓ] := {x′|x′ ∈ X′ ∧H(x′) = ℓ}.
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A Security Proofs

A.1 Proof of theorem 1
We construct a simulator Sim that simulates C’s view as follows. Sim is given C’s input
set Y and the output I = X ∩ Y (but no information about X \ Y ). Sim runs the honest
C’s protocol to generate its view, playing the role of an honest server S with the following
exceptions:

1. For each element t ∈ Y , sample a random vt
$← G as H1(t)kS .

2. In the pre-processing phase, Sim follows the protocol execution of an honest S except
that it skips Step 1 in sampling kS. When computing ui’s in Step 3a, Sim computes
|I| of them by {H2(H1(t), vt)}t∈I , samples the remaining (N −|I|) of them randomly
from {0, 1}δ, and then randomly shuffles all these ui’s.13

3. In the online phase, upon receiving {zi = H1(yi)kC}i∈[M ] in Step 1, Sim computes
{z′

i := (vyi
)kC}i∈[M ] and sends it back to C.

4. Sim follows the rest of the protocol execution honestly and outputs C’s view.

Since the ideal-world server gets ⊥ from the ideal functionality and the real-world
server also outputs ⊥, we only need to argue that C’s view in the real-world protocol
execution with the honest server S is indistinguishable from its view when interacting with
Sim in the ideal world. We sketch a hybrid argument below.

H0 C’s view in the real world.
13If we assume each entry of the table is an unordered or randomly ordered set, then it would be

unnecessary to shuffle the elements.
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H1 Same as H0 except that for each element t ∈ X ∪ Y , sample a random vt
$← G

as H1(t)kS . In particular, in the pre-processing phase Step 3a, ui is computed as
ui := H2(H1(xi), vxi

); in the online phase Step 2, z′
i is computed as z′

i := (vyi
)kC .

This hybrid is computationally indistinguishable from H0 because H1 is modeled
as a random oracle and that DDH holds in G. In more detail, we can construct a
sequence of hybrids from H0 to H1 to change from H1(t)kS to vt one by one. To
argue indistinguishability between every pair of intermediate consecutive hybrids, we
can construct a reduction Red to break the DDH assumption of G. On receiving a
DDH challenge tuple (g1, g2, g3), Red sets H1(t) := g1, g

kS := g2, and H1(t)kS := g3.
Red builds a table T1 = {(x, ϕ)} to answer all the hash queries to H1, where (t, g1)
is first added to T1. To answer an H1 query on x that has never been queried before,
Red picks a random αx

$← Zq, adds an entry (x, ϕ = gαx) to T1, and returns ϕ as
H1(x). Whenever Red needs to compute H1(x)kS for some x ̸= t, it computes it as
(g2)αx . Distinguishing between H1(t)kS and vt directly corresponds to distinguishing
a DDH tuple from a random tuple for (g1, g2, g3).

H2 Same asH1 except that in the pre-processing phase Step 3a, for each xi /∈ I, we replace
its ui by a random string from {0, 1}δ. We can again construct a sequence of hybrids
from H1 to H2 to change the elements one by one from ui := H2(H1(xi), vxi

) to
ui

$← {0, 1}δ. The only way to distinguish between the two intermediate consecutive
hybrids is if C makes an H2 query on (H1(xi), vxi). Let q2 be the number of queries
that C makes to H2. Since vxi is randomly sampled from G, the probability that C
makes such a query is at most q2/q, which is negligible. This hybrid is exactly the
output view of Sim.

A.2 Proof of theorem 2
We construct a simulator Sim that interacts with the malicious client C∗ as follows and
outputs whatever C∗ outputs in the end.

1. Sim builds two tables T1 = {(x, ϕ)} and T2 = {((h, t), ψ)} to answer the hash queries
to H1 and H2 respectively. To answer an H1 query on x that has never been queried
before, Sim picks a random ϕ

$← G, adds an entry (x, ϕ) to T1, and returns ϕ as
H1(x). To answer an H2 query on the pair (h, t) which has never been queried before,
Sim samples a random ψ

$← {0, 1}δ, adds an entry ((h, t), ψ) to T2, and returns ψ as
H2(h, t). For the queries that have been queried before, maintain consistency and
return whatever was returned already.

2. In the pre-processing phase, Sim follows the protocol execution of an honest server
with the following exceptions: skip Step 1 in sampling kS, and randomly sample each
ui

$← {0, 1}δ in Step 3a. Let U := {ui}i∈[N ]. Sim also answers requests to H1, H2 as
in item 1 above.

3. In the online phase, upon receiving {zi}i∈[M ] in Step 1, Sim first samples kS
$← Zq

and then sends {z′
i}i∈[M ] back to C∗ where z′

i := zkS
i for all i ∈ [M ].

4. Sim checks if ∃((h, t), ·) ∈ T2 such that t = hkS . If so, abort1.

5. After sending {z′
i}i∈[M ], Sim initializes empty sets Z, V := ∅ and answers H1, H2

queries as follows:

• For the queries that have been queried before, maintain consistency and return
whatever was returned already.
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• For each query x to H1 that has not been queried before, randomly sample
ϕ

$← G and then check if ∃((h, t), ·) ∈ T2 such that h = ϕ and t = hkS . If so,
abort2; otherwise, add (x, ϕ) to T1 and return ϕ as H1(x).

• For each query (h, t) to H2 that is not yet queried, check if ∃(x, ϕ) ∈ T1 such
that h = ϕ and t = hkS . If not, answer the query as in item 1 above. Otherwise,
add x to Z. If |Z| > M , abort3. Otherwise, send x to the ideal functionality.
If the functionality returns yes, then Sim picks a random u

$← U \ V , adds u
to V , adds ((h, t), u) to T2, and returns u as H2(h, t). Otherwise, as the ideal
functionality returns no, Sim samples a random ψ

$← {0, 1}δ, adds ((h, t), ψ) to
T2, and returns ψ as H2(h, t).

6. Sim answers the PIR queries following the protocol execution of an honest server.
Sim also answers queries to H1, H2 as in item 5 above.

Since the ideal-world server gets ⊥ from the ideal functionality and the real-world
server also outputs ⊥, we only need to argue that C∗’s view in the real-world protocol
execution with the honest server S is indistinguishable from its view when interacting
with Sim in the ideal world. The only difference between C∗’s views in the real world and
ideal world is how H1 and H2 queries are answered. Since H1, H2 are modeled as random
oracles, it is easy to see that the two views only differ when Sim aborts. Next, we argue
the three aborts happen with negligible probability. Let q1, q2 be the number of queries
that C∗ makes to H1, H2 respectively.

• abort1 happens if C∗ queries H2 with (h, hkS) before receiving any information about
kS. Since kS is sampled randomly from Zq, this happens with probability at most
q2/q, which is negligible.

• abort2 happens if C∗ queries H1(x) which returns ϕ, while the entry ((ϕ, ϕkS), ·)
already exists in T2. In other words, C∗ makes a query (ϕ, ϕkS) for H2 before knowing
that H1(x) = ϕ. This happens with probability at most q1 · q2/q, which is negligible.

• if abort3 happens, we can construct a reduction Red to break the (q1,M)-OMGDH
assumption with challenges (g1, . . . , gq1) as the challenge instance. Red works in the
same way as Sim with the following exceptions: (1) Red uses (g1, . . . , gq1) to reply to
the H1 queries from C∗; (2) upon receiving {zi}i∈[M ] in Step 2 of the online phase,
Red queries the (·)k oracle and gets back {z′

i}i∈[M ], which it sends back to C∗; (3)
whenever Sim needs to check if t = hkS for some (h, t), Red calls the DDH oracle to
decide whether t = hk. Finally, Red outputs Z if |Z| > M . Note that Red decides to
add an x to Z only if C∗ makes an H2 query on (h, t) for which ∃(x, ϕ) ∈ T1 such
that h = ϕ and t = hk. Hence, the probability that abort3 happens is bounded by
the probability to break the (q1,M)-OMGDH assumption.

The committing property. We showed that our protocol is secure against a malicious
client for the adaptive PSI functionality. Nevertheless, we can also show that a malicious
client C∗ cannot change its input set after sending {zi}i∈[M ] in the online phase Step 1.
In other words, even though the protocol achieves only an adaptive version of the PSI
functionality, the adversary C∗ is committed to all its inputs in Step 1, and hence it is
not clear what advantage C∗ could obtain by not making all these queries in later steps,
in which case the adaptive functionality is equivalent to the standard functionality. The
proof is more involved and we refer the reader to [JL10, Thm 2] for details.

A.3 Proof of theorem 3
We first prove the correctness of the protocol. In the online phase, for each yi ∈ Y , its corre-
sponding z′′

i is computed as z′′
i = H2(H1(yi), ((H1(y1)kC)kS)kC

−1) = H2(H1(yi), (H1(y1))kS).
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Given the fact that H2 is modeled as a random oracle and the parameter choice of δ,
collisions of z′′

i happen with negligible probability. Furthermore, the parameter choice
of m guarantees that Cuckoo hashing fails with negligible probability in Step 3c of the
online phase. yi is then put into the hash bin Yj for some j ∈ {h1(z′′

i ), h2(z′′
i ), h3(z′′

i )}. If
yi ∈ X, then z′′

i is put into all three bins of Xk for each k ∈ {h1(z′′
i ), h2(z′′

i ), h3(z′′
i )} in

the pre-processing phase Step 3b, hence z′′
i ∈ Xj , and z′′

i is put into the H3,j(z′′
i )-th entry

of the table Tj in pre-processing Step 4c. If yi /∈ X, then with overwhelming probability
z′′

i ̸= H2(H1(x), H1(x)kS) for any x ∈ X given the fact that H2 is modeled as a random
oracle and the parameter choice of δ, thus z′′

i does not appear in Xj (and hence not in
Tj either). In other words, z′′

i ∈ Tj [H3,j(z′′
i )] iff yi ∈ X with all but negligible probability.

Finally, z′′
i ∈ Rj in Step 5a iff z′′

i ∈ Tj [H3,j(z′′
i )], which follows from the correctness of the

underlying PIR protocol. This concludes the correctness proof.
To prove privacy, we construct a simulator Sim that simulates S’s view as follows. Sim

runs the honest S’s protocol to generate its view, playing the role of an honest client C
with the following exceptions. In the online phase Step 1, send randomly sampled group
elements to S. In Stp 3e, send PIR queries for the first entry of each database. S’s view in
the real-world protocol execution is indistinguishable from its view when interacting with
Sim in the ideal world. We sketch a hybrid argument below.

H0 S’s view in the real world.
H1 Same as H0 except that in the online phase Stp 3e, send PIR queries for the first

entry of each database. This is indistinguishable from H0 because of the security of
the underlying PIR protocol.

H2 Same as H1 except that for each element t ∈ Y , sample a random vt
$← G as

H1(t)kC . This hybrid is exactly the output view of Sim. H2 is computationally
indistinguishable from H1 because H1 is modeled as a random oracle and that DDH
holds in G. In more detail, we can construct a sequence of hybrids from H1 to H2 to
change from H1(t)kC to vt one by one. To argue indistinguishability between every
pair of intermediate consecutive hybrids, we can construct a reduction Red to break
the DDH assumption of G. On receiving a DDH challenge tuple (g1, g2, g3), Red
sets H1(t) := g1, g

kC := g2, and H1(t)kC := g3. Red builds a table T1 = {(x, ϕ)} to
answer all the hash queries to H1, where (t, g1) is first added to T1. To answer an
H1 query on x that has never been queried before, Red picks a random αx

$← Zq,
adds an entry (x, ϕ = gαx) to T1, and returns ϕ as H1(x). Whenever Red needs to
compute H1(y)kC for some y ̸= t, it computes it as (g2)αy . Distinguishing between
H1(t)kC and vt directly corresponds to distinguishing a DDH tuple from a random
tuple for (g1, g2, g3).
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