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Abstract. Our work explores the key recovery attack using the Grover’s search
on the three variants of AES (-128, -192, -256). In total, we develop a pool of
26 implementations per AES variant (totaling 78), by taking the state-of-the-art
advancements in the relevant fields into account.

We present the least Toffoli depth and full depth implementations of AES, thereby
improving from Zou et al’s Asiacrypt’20 paper by more than 97 percent for each
variant of AES. We show that the qubit count - Toffoli depth product is reduced
from theirs by more than 87 percent. Furthermore, we analyze the Jaques et al’s
Eurocrypt’20 implementations in detail, fix the bugs (arising from some problem of
the quantum computing tool used), and report corrected benchmarks (which seem to
improve from the authors’ own bug-fixing, thanks to our architecture consideration).
To the best of our finding, our work improves from all the previous works (including the
Asiacrypt’22 paper by Huang and Sun, the Asiacrypt’23 paper by Liu et al. and the
Asiacrypt’24 paper by Shi and Feng) in terms of various quantum circuit complexity
metrics. To be more precise, we estimate the currently best-known quantum attack
complexities for AES-128 (2'%6-2639) AES-192 (222!:5801) and AES-256 (228¢:0731),
Additionally, we achieve the least Toffoli depth - qubit count product for AES-128
(121920, improving from 130720 by Shi and Feng in Asiacrypt’24), AES-192 (161664,
improving from 188880 by Liu et al. in Asiacrypt’23) and AES-256 (206528, improving
from 248024 by Liu et al. in Asiacrypt’23) so far.

We further investigate the prospect of the Grover’s search. We propose four new
implementations of the S-box, one new implementation of the MixColumn; as well
as five new architecture (one is motivated by the architecture by Jaques et al. in
Eurocrypt’20, and the rest four are entirely our innovation). Under the MAXDEPTH
constraint (specified by NIST), the circuit depth metrics (Toffoli depth, T-depth and
full depth) become crucial factors and parallelization for often becomes necessary. We
provide the least depth implementation in this respect that offers the best performance
in terms of metrics like depth-squared - qubit count product, depth - gate count
product.
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2 Quantum Analysis of AES

1 Introduction

In the current situation in the world of cryptography, quantum computers are considered
an upcoming major threat. This is due to the innate nature of how the quantum computers
can efficiently model and solve certain problems. There is an overlap between the problems
efficiently solvable by a functional quantum computer and those act as the backbones to
certain cryptographic systems. Those problems are hard to solve by a classical computer,
hence considered secure as of now, but the security of those systems may be threatened if
quantum computers become viable in the future. It is well-known that there will be severe
consequence in the field of public key cryptography [GH19], still the secret key counterpart
will likely not be completely unscathed either. Depending on the structure, a secret key
cipher, too, can have severe security flaw against a quantum computer!

One serious way for this to manifest arises from the observation that, a lot of the
post-quantum ciphers use some secret key ciphers internally as a component in one way
or the other (apart from the standalone usage of the secret key ciphers). This is evident
from the current portfolio of the Post-Quantum Cryptography (PQC) standardization?
being organized by the US government’s National Institute of Standards and Technology
(NIST). While the core components of ciphers are based on a problem presumed to be
quantum-safe, due to the usage of secret key ciphers, it may be possible for the attacker to
bypass the overall security claim (i.e., by exploiting only the secret key component). In
other words, it may just so happen that the secret key component becomes the security
bottleneck of the a post-quantum cipher (despite the core components being secure) against
a potent quantum computer. Therefore, it is probably a commendable plan to consider
the quantum security of the secret key ciphers, to be on the safe side.

Ultimately, the NIST call for post-quantum ciphers specified five levels of security.
Each of the levels is defined on secret key ciphers (variants of AES for PKE & KEM,
and variants of SHA-3 for DS). As noted in [JNRV20, Section 1], this essentially calls
for concrete and precise resource estimates that would be required by an attacker with a
quantum computer at her disposal.

Therefore, finding the generic quantum security level for a secret key cipher is one of
the main research directions. One of the main ways an attacker with a functional quantum
computer can try to mitigate the security of the secret key ciphers is by running the
Grover’s search algorithm [Gro96]. As a rule of thumb, it reduces the time complexity of
exhaustive key search to nearly the square-root bound (with a high probability).

Our work makes a detailed and systematic attempt to estimate the search complexity
on the AES family (AES-128, AES-192 and AES-256) of block ciphers [DR02], thereafter
finding the complexity for the Grover’s search [Gro96]. In the process, we revisit recent
research works to incorporate state-of-the art advancements in various related areas
(including those which are reported recently like [XZL720, L.XZZ21, LSLT19, LWFT22,
ZH22, LXX %23, LPZW23, YWST24]). Our objective lies in reducing the cost in various
metrics; such as qubit count, gate count, circuit depth (Toffoli depth, full depth) and/or
cost-depth trade-off (Toffoli depth x qubit count, full depth x qubit count, among other
options). In the process, we carefully weigh and choose from a number of possible options.

Contribution and Organization

We discuss in detail about the considerations/choices that are made during design separately
for AES in Section 3 and architecture for combined components in Section 4.

1However, it is to be mentioned that the quantum computers are the nowhere near to be considered a
serious generic threat against the secret key ciphers (due to impractical resource requirement) as of yet,
despite the paradigm growing in leaps and bound in the past few years.

?https://csrc.nist.gov/projects/post-quantum-cryptography.
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We observe that the implementation by by Jaques et al.®> [JNRV20] contains some Q#
programming issue, which probably results in underestimating the resources for non-linear
components; although the linear components are not affected. We patch the issues (such as
impossible parallelism and inconsistencies from reported quantum resources) and estimate
the correct quantum gates and depth from the number of qubits in Section 5. It is to be
noted that the same Q# issue was reported in the Asiacrypt’20 [ZWS'20], Asiacrypt’22
[HS22], Asiacrypt’23 [LPZW23] and Indocrypt’22 [JBK*22a] papers.

Main results are consolidated in Section 6 (cost of the implemented quantum circuits)
and Section 7 (cost for running the Grover’s search). Comparison of our implementations
with respect to the previous works are shown in Table 5 for the three variants of AES.
Table 1 shows the overall performance gain of our work with respect to previous AES
implementations. It can be seen that we make significant improvement over the Asiacrypt’20
paper [ZWS™20] (such as our Toffoli depth T'D is reduced by over 98% for AES-128) and
also the bug-fixed version of the Eurocrypt’20 paper [JNRV20]. We also include the two
implementations done in [HS22] for a quick comparison. In [HS22], the qubit count and
Toffoli depth of the AES quantum circuit are determined by the number of parallel S-box
implementations which is denoted by p — as p increases, the Toffoli depth decreases, but
the number of qubits increases.

We develop multiple quantum implementations of the ciphers in the AES family
(AES-128, AES-192 and AES-256), and report the least Toffoli depth T'D and full depth
FD (with moderate number of qubits M and quantum gates G) and cost-depth trade-
off (TD-M; FD-M; and FD-G) implementations so-far. By increasing the number of
qubits by a less quantity, we reduce the full depth greatly, so that the overall produce
is significantly reduced. Moreover, this low depth is highly advantageous for reducing
the cost when parallelization is required due to the depth limit in Grover’s search (see
Appendix 2.4). Our quantum implementations offer the best trade-offs in terms of TD?-M
and FD?-M (see Table 5 for various results), which are major metrics when considering
parallel search. Optimization is done at three levels, namely individual component level
(S-box, MixColumn etc.), architecture level (16 S-boxes to make 1 SubBytes, 4 MixColumn
to make 1 MixColumns, and so on), and finally by sharing of resources among the modules.

We present three architecture for the implementation (two of which are designed by
us from scratch), each targeting for a specific optimization (see Section 3.1 for related
discussion):

1. The regular version (originally conceived in [JNRV20], but improved by us) uses the
least qubit count in our work, and reduces Toffoli circuit depth compared to the
previous works for all the 3 variants. The MixColumn implementation is taken from
[YWST24], which allows zero ancilla/garbage qubit and incurs 91 CNOT gates. This
architecture was proposed by [JNRV20], though it has some programming/estimation
issues related to non-linear operations, such as S-box, key schedule, and out-of-place
MixColumn.

2. The shallow version (our innovation) runs all parallel-executable parts of AES
simultaneously, including reverse operations. The depth of one round only counts
SubBytes + MixColumns, which is optimal. The shallow version takes the least Toffoli
depth and qubit count product (T'D-M cost) and least full depth and qubit count
product (FD-M) with an improved pipeline architecture. According to [ZWS*20],
this is an important notion of circuit complexity. The MixColumn implementation is
taken from [SF24]. Note that this version was used in [LPZW23, SF24].

3. The shallow/low depth version (our innovation) looks for reducing the circuit depth

3Henceforth we use “JNRV” or “Eurocrypt’20” to indicate this paper (used mostly interchangeably,
except in Table/Figure captions where we stick to “JNRV?”). The same style is followed for other papers as
well.
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by introducing a new low quantum depth implementation of MixColumn (based
on the classical implementation from [LSLT19], but optimized for quantum). This
version can be considered when the parallelization of Grover’s search is unavoidable
under the constraints of depth.

In addition to these three architecture, we also take a look at the implementation by
Jaques et al. in Eurocrypt’20* [JNRV20] for AES-128/-192/-256. As noted in Section 5
and Appendix C, that implementation contained bugs® (this was confirmed by the authors,
most notably in [JNRV19] where they presented their own take on fixing the bug). In
order to fix the bug, we further introduce two new architecture (both of which are our
innovation), which we call fixed depth and fixed qubit versions. On top of that, we
use both the in-place MixColumn from [JNRV20] is used or the Maximov’s MixColumn
implementation from [Max19] is used (both were used in [JNRV20]). In order to keep
the modification at minimum, we reuse the same design choices made in [JNRV20]. For
this reason, we reuse the S-box implementation as in [JNRV20], which was adopted from
[BP12].

Orthogonal to these architecture, we also introduce three new S-box implementations
(see Table 3). We improve four S-box implementations (from [HS22, LPZW23]) that incur
the Toffoli depth of 4 and 3. More information about the process of finding the S-box
implementations is detailed in Appendix D.1 (full depth reduction) and Appendix D.2
(ancilla qubit reduction). Among the four S-box implementations, three are used in our
regular, shallow and shallow/low depth architecture; as those incur the least full depth
(namely, 61, 67, 58 and 56) compared to the other implementations that we found during our
literature survey. We also propose a new out-of-place implementation of AES MixColumn
that takes only 8 quantum depth with reduced quantum gates and fewer ancilla qubits
(see Table 4 for the benchmark and Appendices D.1 and D.2 for the idea), this is used in
our shallow/low depth implementation.

Thus, our work presents five architecture (four of which are new and the rest one is
revised by us). The shallow version (which is indeed our innovation) is used by Liu et al.
in Asiacrypt’23 [LPZW23] and Shi et al. in Asiacrypt’24 [SF24], see Section 2.3.2 for more
discussion about this.

In this work, we present 26 distinct implementations for each variant of AES (each of
the following is considered with Toffoli and AND gates):

1. Regular version:

(a) Our own 4 Toffoli depth S-box (low qubit count), MixColumn from [YWS™24].
(b) Our own 4 Toffoli depth S-box (low full depth), MixColumn from [YWS™24].
(¢) Our own 3 Toffoli depth S-box, MixColumn from [YWS*24].

2. Shallow version:

(a) Our own 4 Toffoli depth S-box (low qubit count), MixColumn from [SF24].
(b) Our own 4 Toffoli depth S-box (low full depth), MixColumn from [SF24].
(¢) Our own 3 Toffoli depth S-box, MixColumn from [SF24].

3. Shallow/low depth version:

(a) Our own 4 Toffoli depth S-box (low qubit count), our own MixColumn.
(b) Our own 4 Toffoli depth S-box (low full depth), our own MixColumn.

40ur work (the publicly available version) [JBKT22b] was mentioned by the first author of this paper
during an invited talk at CHES’24: https://www.youtube.com/watch?v=eB4po9Br1YY&t=2060s.

5To be more precise, the bug was caused due to an inherent issue in Q# and not related to their coding.
We privately contacted the authors, and the first author acknowledged our fix in a private correspondence.
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Table 1: Performance comparison of AES quantum implementations.
Toffoli depth | Qubit count TD x M Full depth
(TD) (M) (FD)
GLRS [GLRS16] |12672 (99.68)] 984 (—67.72)]12469248 (99.02)110799 (99.3) | 109026216 (97.83)

LPS [LPS20] | 1880 (97.87)| 864 (—71.65)| 1624320 (92.49)| 28927 (97.32) | 24992928 (90.54)
ZWSLW [ZWS+20]| 2016 (98.02)| 512 (—83.2) | 1032192 (88.19) N/A N/A
+18 | 820 (95.12)| 492 (—83.86)| 403440 (69.78) N/A N/A

(97.43) (79.08)
(91.60) (45.96)
(17.35)

AES FDx M

HS [HS22
[H522] 374 (—87.73)| 582692 (79.08 N/A N/A

8| Lxx77 [LXX*23] | 476 474 (—84.45)| 225624 (45.96 N/A N/A
LPZW [LPZW23] | 40  (0) [3688 (17.35) | 147520 (17.35)| 840  (7.62) | 3097920 (23.64)
SF [SF24] 40 (0) |3268 (6.73) | 130720 (6.73) N/A N/A

*4 | 2394 (98.33) 1656 (—45.67)| 3964464 (96.92)| 33320 (97.67)| 55177920 (95.71)
s+ | 114 (64.91) 5088 (40.09) | 580032 (78.98)| 1612 (51.86)| 8201856 (71.16)
& 4090© 30489 121920 776 © 23652489

Ee

GLRS [GLRS16] |11088 (99.57)[1112 (—66.98)]12329856 (98.69)| 96956 (99.04) |107815072 (97.09)

LPS [LPS20] | 1640 (97.07)| 896 (—73.40)| 1469440 (89.00)| 25556 (96.35) | 22898176 (86.29)
ZWSLW [ZWS+20]| 2022 (97.63)| 640 (—81.00)| 1294080 (87.51) N/A N/A
| LXXZZ [LXX*23] | 572 (91.61)| 538 (—84.03)| 307736 (47.47) N/A N/A

=| LPZW [LPZW23] | 48  (0) [3944 (17.10) | 189312 (14.60)| 1010 (7.72) | 3983440 (21.20)

o sd | 2682 (98.21) 1976 (—41.33)| 5299632 (96.95)| 37328 (97.50) | 73760128 (95.74)

s+ | 138 (65.22) 5664 (40.54) | 781632 (79.32)| 1936 (51.86)| 10965504 (71.37)

& 480¢© 33689 161664© 9320 3138976©

GLRS [GLRS16] |14976 (99.63)[1336 (—63.77)]20007936 (98.97)[130929 (99.17) 174921144 (97.71)

LPS [LPS20] | 2160 (97.41)|1232 (—66.59)| 2661120 (92.24)| 33525 (96.76) | 41302800 (90.30)
ZWSLW [ZWS+20]| 2292 (97.56)| 768 (—79.18)| 1760256 (88.27) N/A N/A
| LXXZZ [LXX*23] | 646 (91.33)] 602 (—83.68)| 388892 (46.89) N/A N/A

S| LPZW [LPZW23] | 56 (0) [4456 (17.24) | 249536 (17.24)| 1176  (7.65) | 5240256 (23.57)

o *4 | 3306 (08.31) 2296 (—37.74)| 7590576 (97.28)| 46012 (97.64) | 105643552 (96.21)

st | 162 (65.43) 6240 (40.90) | 1010880 (79.57)| 2264 (52.03)| 14127360 (71.65)

& 569¢ 36389 2065239 1086© 40051639
Parenthesized numbers show % (positive) improvement reported in this work.
1: Choice of p.
7y Regular version (using Toffoli gate).
@: Shallow version (using Toffoli gate). #: S-box with Toffoli depth 4 (low qubit count).

%: Shallow/low depth version (using Toffoli gate).
#: Bug-fixed JNRV [JNRV20] (using Toffoli gate).

*: Bug-fixed depth. ‘ #+: In-place MixColumn [JNRV20].

s: Bug-fixed qubit count. ‘ +: Maximov’s MixColumn [Max19].

(¢) Our own 3 Toffoli depth S-box, our own MixColumn.
4. Bug-fixing of JNRV (Eurocrypt’20) [JNRV20]:

(a) Fixed depth: S-box from [BP12], in-place MixColumn [JNRV20].

(b) Fixed depth: S-box from [BP12], Maximov’s MixColumn [Max19].

(c) Fixed qubit count: S-box from [BP12], in-place MixColumn [JNRV20].
(d) Fixed qubit count: S-box from [BP12], Maximov’s MixColumn [Max19].

As a consequence of our analysis, the state-of-the-art bounds of the quantum secu-
rity level [NIS16] is updated in Section 7. The cost for the Grover’s search for each
implementation can be observed from Table 10 (Table 10(a) with Toffoli and 10(b) with
AND gates), and Table 11 shows a synopsis of bounds for quantum security levels. We
conclude in Section 8, where we present the other AES related quantum analysis with
respect to the updated security level (refer to Figure 9 for a quick view). Some additional
information/discussion can be found in Appendices A (a brief description on the AES
variants), B (novelty/new construction are summarized, which works as an annex to this
part), C (detailed discussion on the Eurocrypt’20 [JNRV20] bug), D (more details about
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our depth and qubit reduced S-box/MixColumn implementations), and E (per-round
break-up of quantum resource requirement). Additionally, Section 2 covers the back-
ground /prerequisite information; in particular, Section 2.2 is about the Grover’s search
algorithm, and Section 2.4 is about discussion on the requirement /specification by the US
government’s NIST.

Our source codes are written in ProjectQ®, which is a Python-based open-source
framework for quantum computing. All our relevant source codes can be accessed online
as an open-source project’.

It may be noted that, the recent works by [LPZW23] and [SF24] took inspiration from
(an earlier version of) our paper (which is available as [JBKT22b]). For instance, the
authors in [LPZW23] used our shallow architecture for AES (Section 4.2 and Figure 7(b)).
However, the results in (the current version of) our paper are superior to those works,
owing to the choices made in the revision. For instance, we present improved S-box and
MixColumn (out-of-place) implementations and achieve a greater reduction in qubit count
compared to [LPZW23] by incorporating the sharing method® and key schedule techniques
from [LPZW23, SF24]. Additionally, we introduce a last-round optimization technique (in
Section 4.3), which reduces the number of output qubits required in the final round of the
shallow architecture.

2 Background

2.1 Quantum Computing Basics
Gates (Top Level and Decomposition Level)

The Hadamard gate (H) creates superposition, mapping [0) — %(|0> +11)) and |1) —
%(|O> —|1)). Applying the Hadamard gate twice results in the identity operation, i.e.,

H? = I. Some of the classical gates have quantum counterparts, as shown in Figure 1.
The X gate (Pauli-X) flips qubit states, where X |0) = |1) and X |1) = |0) (classical NOT
operation). The CNOT gate applies a conditional NOT operation, flipping the target qubit
if the control qubit is |1) (classical XOR operation). When applied to superposition states,
it can generate entanglement. The Toffoli gate (CCNOT) extends this concept, flipping
the target qubit only when both control qubits are |1) (classical AND-controlled XOR
operation). It is a key component in quantum computing and is universal for classical
reversible computation. The Clifford + T gate set; composed of H, S (phase)?, CNOT
and T gates; forms a universal gate set, allowing any unitary transformation. Though
the Clifford gates alone are not universal, adding the T' gate enables universal quantum
computation. Also the Clifford gates are relatively easy to implement; T gates (and
their T-depth) introduce higher resource costs, making their minimization essential in
fault-tolerant quantum computing. For a more comprehensive understanding of quantum
computing, interested readers are redirected to refer to other resources, such as [BJ24].
It can be stated that the Toffoli gate is decomposed in terms of the Clifford and T’
gates, the cost and depth of such a decomposition varies based on the method [Sell3,
AMM™13, HLZ"17]. Further, a Clifford gate can refer to CNOT and 1qCliff gates. Also,
the T-depth, an important factor in error correction, is determined by T gates when Toffoli
gate is decomposed. After designing the quantum circuit, we need to decompose the Toffoli
gates to estimate detailed quantum resources. In this paper, when estimating detailed

6Homepage: https://projectq.ch/.

"https://github.com/starj1023/AES_QC.

8We apply the sharing method described in [LPZW23] to our implementations (with our modification),
and manage to achieve a greater reduction in qubit count than reported in their paper.

9This gate is used for phase adjustment. This is different from the X, CNOT and Toffoli gates (which
respectively correspond to the classical NOT, XOR and AND operations).


https://projectq.ch/
https://github.com/starj1023/AES_QC

K. Jang et al. 7

quantum resources, the Toffoli gate is decomposed into (8 Clifford gates + 7 T gates),
T-depth 4, and full depth 8 following one of the methods in [AMM™13] (see Figure 2).
Along with this decomposition, various approaches exist for decomposing Toffoli gates (see,
for example, [CBC23] for further details).

Additionally, we adopt the quantum AND gates from [JNRV20] (see Figure 10 in
Appendix C). This AND gate is decomposed into (11 Clifford gates + 4 T gates), T-depth
1, and full depth 8, and requires 1 ancilla qubit. The reverse of the AND gate which does
the un-compute operation (i.e., ANDT gate) is designed according to the measured value
of the target qubit of the ANDT gate. This ANDT gate is counted as (5 Clifford gates + 1
measurement gate) in resource estimation. Although not adopted in our work, there is
another version of the AND gate [Gid18] that does not require an ancilla qubit, but has a
T-depth of 2.

Notations

Throughout this paper, we use the following shorthand notations: #NOT (reversible
NOT gate count), #CNOT (CNOT count), #Toffoli (Toffoli count), T'D (Toffoli depth),
#T (T count), T'd (T-depth), #1qCliff as Clifford gate count, #Measure (Measurement
count), G (total gates), F'D (full depth) and M (qubit count). The full depth is related to
the execution time of circuits [BC17]. The importance of depth is also noted in NIST’s
post-quantum security requirements. In estimating the complexity of quantum attacks,
NIST used only the number of gates and depth as metrics, not the number of qubits
[NIS16].

Objective

We optimize AES for quantum computers; keeping an eye on the qubit count, Toffoli depth
and full depth. Further, we also consider the Toffoli depth x qubit count, the T'D-M cost,
and full depth x qubit count, the F'D-M cost as metrics for trade-off. Our AES quantum
circuits attain the least Toffoli and full depths, TD-M and FD-M costs, significantly
contributing to the advancement of the state-of-the-art.

la) ~a) o) —@—— la®b)la) ——9—— la)
(a) X (NOT) gate. by ——e— |b) ) ———— [b)
(b) CNOT gate. ‘C> 4697 |C o CLb>

(c) Toffoli gate

Figure 1: Basic quantum gates.

ja) —e— T H— la)
b) —o— = {1 )
) —— —JHF+—o{T-o—s{rHHaF lcoaw)

Figure 2: Toffoli decomposition in AMMRR.

Methodology

We first use Toffoli gates to verify the simulation results of the implemented quantum
circuit. Since ProjectQ allows classical simulation of Toffoli gates, we can verify test
vectors for large-scale quantum circuits. A Toffoli gate can be simulated classically and
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decomposed only when estimating resources. On the other hand, classical simulation of
AND gates is not supported. Therefore, we adopt a method of verifying the implemented
quantum circuit using Toffoli gates, and then replacing the top part with AND gates to
estimate resources.

2.2 Quantum Key Search using Grover’s Algorithm

For a secret-key cipher using an k-bit key, 2¢ queries are required for the exhaustive key
search. The Grover’s search [Gro96] is a well-known quantum algorithm that recovers
the key with a high probability in about L%\/ij queries. The procedure can be briefly
described as follows:

1. A k-qubit key (K) is prepared in superposition |¢) by applying the Hadamard gates.
All states of qubits have the same amplitude:

2k 1

0+ _ 1
o) = 1+ = (12 )=2k/2;x>

2. The cipher (Enc) is implemented as a quantum circuit and placed in Grover’s oracle
(Uf(z)). In the oracle, the known plaintext (p) is encrypted with the key in a
superposition state using a comparator function (f(z)). As a result, the ciphertext
in superposition over all key values is generated. The function f(z) compares
the ciphertext with the known ciphertext (¢), where f(z) = 1 if Enck(p) = c,
and f(z) = 0 otherwise. When the ciphertext matches the known ciphertext (i.e.,
f(z) = 1), the oracle returns the solution key by flipping its phase using a Z gate.

o) = {1 if Enck(p) =c¢ 1)

) 0if Encg(p) # ¢

2k _1

Ur(l) =) = 2,% Y D) a) |- (2)
=0

3. Lastly, the diffusion operator'® amplifies the amplitude of the solution marked by
the oracle. The diffusion operator is implemented as follows: (H gate layer — X
gate layer — k-qubit controlled Z gate — X gate layer — H gate layer). In [Per19],
a simple technique was introduced by which a constant number of X gates are used
for the diffusion operator. If a constant number of X gates are applied before the
Hadamard gates in Step 1, the diffusion operator is implemented as (H gate layer —
k-qubit controlled Z gate — H gate layer).

The Grover’s search executes Equations (1), (2) and diffusion operator in a series to
sufficiently increase the amplitude of the solution and observes it at the end. For an k-bit
key, the optimal number of iterations of the Grover’s search algorithm is roughly | 7§ \/ZTJ
[BBHT9S8], which is about V/2k. In the process, an exhaustive key search that requires 2%
queries in a classic computer is reduced to roughly V2k queries in a quantum computer
(this works with a high probability).

In the exhaustive key search, r = [k/n] (plaintext, ciphertext) pairs are needed to
recover a unique key that is not a spurious key (see Section 7 for details). Figure 3 shows
the Grover’s oracle of exhaustive key search. Encryption! is defined as the reverse operation
of encryption, which reverts to the state before encryption.

10Since the diffusion operator is generally generic, it does not require any special implementation
techniques.
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Figure 3: Schematic view for key search using Grover’s algorithm.

2.3 Related Works

Quantum analysis of symmetric key ciphers with respect to the Grover’s search algorithm
is one of the major research direction now-a-days. Some of the prominent examples
include, but not limited to, AES [JNRV20, ZWS*20, LPS20, BNPS19, LPZW23, HS22]!,
SPECK [JCK'20], PRESENT and GIFT [JSK*21a], SHA-2 and SHA-3 [ADMG"17], SM3
[STKT21, ZLW'22], RECTANGLE and KNOT [BJST21], DEFAULT [JBB'23], ARIA
[CS20], few Korean ciphers [JSKT22, JSK*21b], SPECK and LowMC [JBK*22a], CHAM
[YJBS23], ASCON [RBC23, 0JBS23, OJS25].

2.3.1 Reflection on HS (Huang and Sun in Asiacrypt’22)

The content of this paper only revolves with AES-128, and can be summarized as:

w They improved from the Asiacrypt’20 paper’s [ZWST20] qubit count and perfor-
mance.

m They chose an improved S-box implementation atop the Eurocrypt’20 implementation
[JNRV20] with proposal for a quick fix for the qubit count.

We think there is some scope for improvement on the patch done by [HS22] on the
Eurocrypt’20 implementation (based on the Q# code!?). Also, the number of qubits
was estimated manually in [HS22, Table 7] in the bug-fix of [JNRV20]. Not counting the
bug-fix, they only proposed two versions, for AES-128 in total (Toffoli depth 3 and 4 S-box
implementations, both using the MixColumn implementation from [XZLT20]), whereas we
implemented eight versions.

In our paper the main contributions are, low depth implementations of AES and a
thorough bug-fixing of the Eurocrypt’20 implementations. In summary, in comparison
with the work by Huang and Sun in Asiacrypt’22 [HS22], we note the following points.
Our approaches are mostly disjoint from that of [HS22]. Reducing the Toffoli depth is a
major focus in their work, which we pursue through our shallow version. As it can be seen
from Table 1, our results are indeed better than those are reported in [HS22]. Further, we
cover optimized quantum implementations of AES-192 and AES-256 as well.

1 The authors of [BNPS19] considered various quantum attacks on AES; however, as far as we can tell
their work only made some estimates but did not present any concrete implementation.

12Previously hosted at https://github.com/AES-quantum-circuit/AES-quantum-circuit, but it seems
no longer accessible.
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2.3.2 Reflection on LPZW (Liu, Preneel, Zhao and Wang in Asiacrypt’23)
and SF (Shi and Feng in Asiacrypt’24)

The recent Asiacrypt’23 paper by Liu et al. [LPZW23] and Asiacrypt’24 paper by Shi and
Feng [SF24] directly adopted the shallow version introduced in this paper.
The other contribution in [LPZW23] is as summarized as:

m They proposed a new S-box implementation (see Table 3 for its quantum benchmark).

m They reduced the number of qubits by sharing idle ancilla qubits [LPZW23, Sec-
tion 4.3] in the shallow version, similar to what we reduced ancilla qubits for
MixColumns in the shallow/low depth version.

The other contribution in [SF24] can be summarized as:

m They proposed a new in-place MixColumn implementation with a quantum depth of
10 [SF24, Appendix A] (see Table 4). This implementation takes the least quantum
depth for an in-place implementation.

m They removed the 32 ancilla qubits originally used in the key schedule of AES-128
[SF24, Section 6.2].

In this regard, the latest results in this paper improve upon their results by incorporating
the 10-depth MixColumn and key schedule implementations from [SF24], while further
reducing the full depth and qubit/gate count of the S-box implementations reported in
[LPZW23].

Ancilla Qubit Reduction by LPZW. In [LPZW23], the authors employed our shallow
architecture and made an improvement by reducing the required number of qubits for two
ancilla sets. The concept is the same as what we did for implementing MixColumns in the
shallow /low-depth version. Ancilla qubits for implementing MixColumns in the shallow
version could be saved by utilizing the idle state ancilla qubits in SubBytes (see Section
3.7). In [LPZW23], this efficient sharing technique was also applied between SubBytes
and SubBytes' on the shallow version. Consequently, they reduced the number of ancilla
qubits by sharing the idle state ancilla qubits of SubBytes and SubBytes!. [LPZW23]'3.

We present new S-box implementations based on [LPZW23] by reducing the full depth,
quantum gates, and ancilla qubits (see Table 4 for the benchmark and Appendices D.1
and D.2 for details). Furthermore, the last-round optimization technique for the shallow
and shallow/low versions is newly presented in this work (Section 4.3 and Figure 7(c)),
resulting in a further reduction in the qubit count.

2.4 NIST Security Levels

The following security levels were defined by NIST [NIS16] to assess the post-quantum
security:

® Level 1: Cipher is at least as hard to break as AES-128.
@ Level 2: Cipher is at least as hard to break as SHA-256.
® Level 3: Cipher is at least as hard to break as AES-192.
@ Level 4: Cipher is at least as hard to break as SHA-384.

® Level 5: Cipher is at least as hard to break as AES-256.

13Note that when we applied the sharing technique in our implementations, we achieved a greater
reduction in qubit count compared to [LPZW23].
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It may be noted that, the security levels do not consider the key-dependent tag.
Therefore, additional security levels may be considered in the future scope [OJBS23,
Section 2.3].

NIST recommended that a given cipher should achieve some minimum security level to
provide sufficient security in the post-quantum era. Based on the research available back
then (probably the only such work was due to [GLRS16]), NIST estimated used in [NIS16]
the following complexities: Level 1: 2170 Level 3: 2233 Level 5: 22 (on a closer look,
however, it seems that complexity estimated in [GLRS16] for Level 1 was close to 2169).
The complexity bounds were calculated as the product of total number of decomposed
gates and full depth required for the Grover’s key search circuit.

With time, as more research work on the AES family has been reported, the complexity
of the security levels (1, 3 and 5) has been gradually reduced. In response to this, recently,
NIST has made adjustments to decrease the costs of Grover’s key search on the AES
family [NIS22]. Currently, NIST has defined new quantum attack costs for AES-128,
192 and 256, based on the reported costs from [JNRV20], which are 21°7, 2221 and 2285;
respectively. However, these costs are underestimated since there are some programming-
related issues in their quantum circuit implementation. In this paper, we analyze these
issues from [JNRV20] and demonstrate that the reported costs are closely achievable with
our optimized AES quantum circuits.

A comprehensive synopsis of the notable works can be seen in Table 11, where we show
the impact of our work on reshaping the security levels. In particular, the following new
bounds are achieved (see also Table 10(b)):

i Level 1: 21992930, with total Clifford, T and measurement gates = 2522726 fy]]
depth = 273:9899.

1w Level 3: 22219801 with total Clifford, T and measurement gates = 2115:3346. fy]]
depth — 2106.2461_

1w Level 5: 22860731, with total Clifford, T and measurement gates = 2147-5993; fy]]
depth — 21384740,

Along with this, NIST proposed a parameter called MAXDEPTH to impose a limit
on the depth of the circuit. The bounds for MAXDEPTH are not clearly stated; rather
it is speculated that the following figures can be taken as good indicators: 24, 264 and
296; judging by the expected computation power of a quantum computer — in a year, or
a decade, or a millennium. Keeping that in mind, one would expect the depth of the
quantum circuit for the Grover’s search is not higher than 2% (i.e., the highest bound
estimated for MAXDEPTH'). However, if it turns out that the depth restriction is not

within the stipulated bound, then the following approaches can be undertaken [KHJ18]:

1. Outer parallelization: Restrict depth at the < 299 at the expense of lower success
probability of key recovery.

2. Inner parallelization: Split the search space into multiple subspaces with shallow
depth, where each circuit measures the secret key with a lower success probability.

3. Cost is calculated as-is without considering MAXDEPTH (see, e.g., [KHJ18, Table
2]). Tt is worth noting that the previous implementations like [ZWS*20, LPS20,
ASAMI18, HS22] also did not appear to consider the MAXDEPTH limit.

14As the Grover’s search makes the circuit depth greater than 2k/2 for k-bit key (the quantum depth
for the cipher implementation x L% 2k/ 2] required for Grover’s iteration), the quantum depth is trivially
greater two smaller MAXDEPTH values for AES variants; hence only 296 is considered within the context
of this paper.
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The outer and inner parallelization methods lower the probability of measuring a
solution by reducing the number of iterations for the Grover oracle. Outer parallelization
halts the Grover iterations at the depth limit, leading to the measurement of suboptimal
solutions with lower probabilities. Inner parallelization reduces the number of Grover
iterations by reducing the search space, which also lower the probablility of discovering a
solution. However, parallelizing the Grover’s search is highly inefficient due to the poor
performance resulting from the analysis in [Zal99], which indicates that only a V'S depth
reduction can be achieved with S instances (operating in parallel) of the Grover oracle.
Thus, the optimal method is to perform as many iterations of the Grover oracle as possible
within a limited depth. According to the analysis in [JNRV20, Section 3.4], to minimize the
T D-M (Toffoli depth and qubit count product,) and FD-M (full depth and qubit count
product,) costs under the parallelization of Grover’s search, it is necessary to minimize the
TD?-M and FD?-M costs. This is because reducing the depth (T'D/F D) by /S requires
S instances of the Grover oracle, leading to a more significant increase in the total number
of qubits (M) required for parallelization.

Suppose the total depth required for the Grover’s search exceeds MAXDEPTH (i.e.,
FD > MAXDEPTH). To address this depth limit, parallelization is required to reduce
FD to match MAXDEPTH. It can be commented that, FD should be reduced by a
factor of yrixogpry (Which is V/S). To achieve this reduction, m (which is
S) Grover instances need to operate in parallel. Consequently, F'D is reduced by a factor
of VS, leading to a reduction to MAXDEPTH. On the other hand, M is increased by

2
a factor of S, resulting in ;2 sre - M. ljinally, for the parallelization of Grover’s
search, the F'D-M cost transforms into yraxpaprh (-6 F—g x (M x S)). That is, the
focus shifts to the challenge of minimizing the FD?-M metric. In the same context, when
considering TD-M cost, our goal should be to minimize the TD?-M metric. Therefore,
when parallelization due to depth limitation is inevitable, the primary objective should be
to minimize the depth.

In terms of the gate count G, S Grover instances are executed in paralllel, and the
gate count of each instance is decreased by a factor of VS. Thus, by the formula S - %,

the total gate count should be g; A)C(;gE[%’TH' This formula mirrors NIST’s method for

estimating the quantum attack cost for AES [NIS16, N1S22]. This is why we adopt G - FD
as a primary metric for estimating attack cost and our paper offers the best performance
in terms of this metric (Level 1: 2156-2630 [evel 2: 2221-5801 and Level 5: 2286:0731),

As of now, we remark that the depths of our AES quantum circuits are the least when
compared to other quantum circuits available in the literature [ZWS*20, LPS20, ASAM18,
HS22]. Table 2 displays a quick view where the related works (namely, GLRS [GLRS16]
and LPS [LPS20]) are compared with respect to our implementations in terms of full depth.
Note that, only AES-128 satisfies the MAXDEPTH criterion (i.e., < 29).

One may further note that the depth of quantum attack on AES-128 (i.e., Level 1) is
within the permitted MAXDEPTH limit (2729297 using the AND gate; the same using
the Toffoli gate is 273-9899). However, the same cannot be stated for AES-192 and -256,
since the full depth figures are respectively 2106-1763 and 21384982 (y5ing the AND gate;
the same using the Toffoli gate are 2106-2461 anq 21384761 " regpectively). In this work, we
adopt the 3'4 approach for the sake of brevity and report the cost with considering the
MAXDEPTH limit.

In future, we can identify the optimal parallelization strategy that strikes a balance
between adjusted cost — success probability trade-offs (Section 7). As described, the circuit
depth metrics are the primary factor determining performance in general.
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Table 2: Summary of AES quantum bounds with respect to MAXDEPTH.
This work MAXDEPTH
@ ® @& 3 (Toffoli) # (AND) (< 29)
& 274,0471 g 274.1362 g 274.0704

AES|GLRS [GLRS16][{LPS [LPS20]

Ko 279.6576 Sk 275.5008 Ko 279,0636 S 275.4543

128 281.2141 279.4751 R 274.3426 o 274.0300 o 273.9899
o . 279.7011 sl 275.3060 K 279.1035 Skt 27147847

§. Q744573 | g, 973.9627 | 4. 973.9207 | K

5. 2106.8906 2106.3907 & 2106.3254
. . Seofu: 2111.8395 sikee: 2107.7756 S 2111.2271 Sicoe: 2107.7258
2106.2857 < 2106.24'31 S . ) .

&
192 211‘3.4]]4 2111.2987 - 2106,5811
o 2111.8673 Skt 2107.5703 P 2111.2702 sl 2107.0464

s QUIOMTT g, 91386201 e, QIISB039 | o 01441412 | s, 9140.0098 | . 9143.5283 | e, 9139.9553

E
<:
. 106.6987| 5. 9106.2203|5,. 9106.1763| K4
&
o 9138.5150| g, 9138.4740 |

256 21/15.6508 21/13,6871 o 2138.8049

% 2138.9252 . 2138.4510 e 2138.4082 e 2144.1679 St 2139.7964 K- 2143.5701 sl 2139.2680

Regular version (using AND gate). %#: S-box with Toffoli depth 4 (low qubit count).
@: Shallow version (using AND gate). €2: S-box with Toffoli depth 4 (low full depth).
<%: Shallow/low depth version (using AND gate). #®: S-box with Toffoli depth 3.
: Bug-fixed JNRV [JNRV20] (using S-box from [BP12].)
*#: Bug-fixed depth. ‘ s Bug-fixed qubit count.

#: In-place MixColumn [JNRV20].|+: Maximov’s MixColumn [Max19].

3 Components for Quantum Circuits for AES

3.1 Regular, Shallow and Shallow/Low Depth Versions

Our quantum circuit implementations are divided into regular and shallow versions. The
regular version offers high parallelism while taking into account the trade-off of depth-qubit.
The regular version has the best performance for qubit count. The shallow version also
considers the trade-off of qubit-depth, but further reduces the depth (especially Toffoli
depth) by burdening the use of ancilla qubits. The shallow version has the best performance
in terms of Toffoli depth, T'D-M cost (which is the Toffoli depth - qubit count product),
FD-M cost (which is the full depth - qubit count product), TD?-M cost (which is the
Toffoli depth? - qubit count product), and FD?-M cost (which is the full depth? - qubit
count product). The shallow/low depth version seems to achieve the lowest depth for
quantum circuit implementation. The shallow/low version is considered when estimating
the quantum attack cost for Grover’s key search, and parallelization of the Grover’s search
is essential due to the depth limit. The shallow/low version has the best performance
for full depth (F'D), FD-G cost (which is the metric used by NIST to estimate quantum
attack cost).

The regular version focuses on the parallelism within the round. To optimize the depth
of the components through parallelization, we utilize additional ancilla sets (except in-place
MixColumns). It reduces the depth while conserving the number of qubits by allowing for
many ancilla qubits and reusing them in the next round through reverse operation (Figure
4(b)). In this version, while the current round awaits, the previous round goes through the
reverse operation. In other words, the next round cannot start until the reverse operation
on the current round is complete. Parallelization of modules within a round, such as
SubBytes, key schedule, and MixColumns, is achieved, but parallelization between rounds
is not attained.

On the other hand, the shallow version manages to parallelize the processing for all
the rounds. For this, we present a new idea for pipelining of operation (Figure 7(b)),
which reduces the Toffoli depth and full depth from the previous works (as in Figure
7(a)). In this version, the reverse operation of the previous round is run simultaneously
with the current round, alternating between the even and the odd rounds (for instance,
while the even rounds are at compute operation, the odd rounds are at the un-compute
operation). This version uses more qubits, but offers lower depths, because all the rounds
of the parallelizable parts of the cipher run simultaneously. As a consequence, it achieves
lower circuit depth, as in this case the bottleneck of the depth is that of the SubBytes
plus MixColumns in every round (except for the last round where MixColumns depth is
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not counted).

That said, one may notice that the depth can be reduced if a different implementation of
MixColumn is opted for, though the Toffoli depth is unchanged. In our shallow version, we
choose the MixColumn implementation from [SF24], as it offers in-place implementation.
As pointed out in Table 4, it is possible to lower the depth at the expense of more
qubits, if our MixColumn implementation is chosen instead. Thus, everything else being
inherited from the shallow version, the shallow/low depth version achieves lower full depth.
One note-worthy point is that the number of ancilla qubits required for the MixColumn
implementation in the shallow/low version is irrelevant. This is due to the utilization of
idle ancilla qubits after their use in SubBytes (related explanation is given in Section 3.7).

Although minimizing the depth for the Grover’s search is more effective, most papers
implementing quantum circuits for AES focus on reducing the usage of qubits [GLRS16,
LPS20, ZWS™20, ASAM18, WWL22, HS22]. The serial circuit structure (which aims at
reducing the number of qubits) significantly increases the circuit depth. As stated already,
our quantum circuits for AES attempt to find the lowest depth while maintaining the best
possible balance between the number of qubits required with its relation to increment
of the circuit depth. Thanks to the careful choices, our AES quantum circuits provide
arguably the best trade-offs in terms of T'D-M cost by varying T'D and M, where recall
that T'D is the Toffoli depth and M is the number of qubits. This product is taken as the
trade-off indicator for the quantum circuit in [ZWS*20]. Further, as stated in the NIST
document [NIS22], Grover’s algorithm requires a long-running serial computation, which is
difficult to implement in practice. That is, in real-world attack scenarios, it is unavoidable
to execute multiple smaller instances of the algorithm in parallel. Indeed, in this scenario
(parallel search), the cost of TD-M and is redefined as TD?-M (see Appendix 2.4 for the
rationale). This product is taken as the trade-off indicator for the quantum circuit in
[JNRV20]. From Table 5, it can be observed that our TD?-M is the lowest.

We also use the depth - qubits count product in estimating the F'D-M cost. This
metric is also realistic and is used primarily for evaluation. Our AES quantum circuit
achieves the best trade-offs in terms of FD-M cost. In the same context as the T'D-M
cost, we achieve the best trade-offs in terms of the FD?-M cost.

3.2 Implementation of S-box (SubByte)

The resource estimation in quantum is performed in ProjectQ and according to the method
of [AMM™13], one Toffoli gate is decomposed into (8 Clifford gates + 7 T' gates) and
T-depth of 4, and full depth of 8. For the cost comparison and implementation details in
Section 3, we use only the Toffoli gate. If we adopt the AND gate instead of the Toffoli
gate, an ancilla qubit is required, but it can be saved depending on the overall structure.
Thus, the cost of the AND gate version is estimated in Section 6 by replacing the Toffoli
gates at the top of the AES quantum circuits implemented with AND gates. Table 3 shows
the resources required for the implementations found so far.

The S-box, used in the round function as well as the key schedule (in SubWord, that
part is described in Section 3.4), typically occupies the most resources in the quantum
circuit. Previous authors like [LPS20, ZWS*20] used the results from [BP10, BP12]. If
the Boyar-Peralta’s S-box implementations [BP10, BP12], which were originally designed
for efficient hardware implementation, are ported to quantum in the naive way, then
the version of [BP12] requires more ancilla qubits (120 ancilla qubits) than the quantum
version of [BP10] (107 ancilla qubits), but attains lower depth. JNRV [JNRV20] adopted
the implementation of the S-box of [BP12] to the corresponding quantum circuit as-is. The
S-box implementation of [BP10] was adopted and improved for quantum implementation
in [ZLDT19]. In [LPS20, ZWS™*20], Langenberg et al. took the first S-box implementation
by Boyar-Peralta from [BP10] and presented the S-box quantum circuit, after converting
it to use less qubits. In [JBKK24], the authors found new AES S-box circuits using a
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heuristic search framework based on the circuits in [BP10, BP12]. We port [JBKK24,
Listing 17] to quantum and estimate the required quantum resources (see Table 3). This is
among the best S-box circuit in terms of depth in their work. Huang and Sun reported an
improved quantum implementation for the S-box of [JNRV20] in their Asiacrypt’22 paper
[HS22]. They presented two quantum implementations of reduced Toffoli depth with new
observations of the classical implementation of the AES S-box as given in [BP12]. The first
version reduced the Toffoli depth without increasing the number of qubits, while the second
version used more qubits to further reduce the Toffoli depth. Finally, the Asiacrypt’23
paper [LPZW23] applied a new method to the S-box from the Asiacrypt’22 paper [HS22].

The S-box implementation in [GLRS16] is based on finite field inversion (using the
Ttoh—Tsujii’s algorithm). In [HB24], a finite field inversion-based S-box implementation
was proposed, in which all operations are decomposed into bit-level operations. We port
[HB24, Algorithm 6] to quantum and report the required quantum resources in Table 3.

Dansarie [Danl7, Dan21] proposed another method in the context of classical imple-
mentation, although it did not seem to receive much attention from the community. It
was rather generic, as it can find implementation of an arbitrary 8-bit S-box (i.e., unlike
[BP10, BP12], this is not specific to the AES S-box), with respect to a user-provided set of
logic gates. With the publicly available source code!®, we generate 5 implementations, in
which the number of lines in the C source files is in the ballpark of 400 (it contain AND,
OR and NOT gates; and sometime one line contains more than 1 gate). These are not
used in this work due to high quantum cost (see Table 3 for the benchmarks).

By prudently using LIGHTER-R [DBSC19]*¢, the authors of [LGQW23] proposed a
new S-box implementation with low qubit count. Subsequently, the authors of [LXX 23]
presented another low qubit S-box implementation. Since detailed quantum benchmarks
with Clifford + T gates are not provided in [LGQW23, LXX*23]'7, only Toffoli depth and
qubit count are reported in Table 3.

Two new S-box implementations were presented in [LPZW23]. This, together with
their 16 quantum depth MixColumn, allowed the authors of [LPZW23] to reduce the
overall cost (compared to an earlier version of this paper), despite using the same shallow
architecture as ours.

To push the envelope, we propose new S-box implementations by starting with the
implementations reported in [LPZW23]. We manage to reduce the full depth (82 ~» 67 and
69 ~ 58), the CNOT gate count (400 ~ 394 and 372 ~ 366) and the qubit count (90 ~
84) from [LPZW23] (see Table 3 for the comparison). The theory behind our improvement
can be found in Appendix D.

We also found two reversible implementations of AES S-box from [LYLL22, Appendices
C and D]. However, those were given in raster graphics format and quite difficult to read!®.

One may note that the AES implementations in [ZWST20] and [SF24] used the S-box ™!
(from [BP12] and [LPZW23], respectively) in designing a architecture that reduced the
number of qubits. However, in our case, we do not use the inverse S-box for the regular,
shallow and shallow/low depth versions; this is explained in Section 4.2.

3.3 Implementation of SubBytes

Considering the trade-off between the circuit depth and the number of qubits required for
an S-box implementation, we treat two cases. The first case is when the ancilla qubits
have to be allocated per SubBytes, which is indeed sensitive to the number of qubits. The

Shttps://github.com/dansarie/sboxgates.

16Tt may be possible to use DORCIS [CBC23, BCCt24] (instead of LIGHTER-R) to reduce the cost
further.

17Given the way it was written, so far we are unable to format it for decomposed benchmark. We shall
update the results here should we receive any communication from the authors regarding this.

18We contacted the authors for an easily readable format — currently we are awaiting their response.
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Table 3: Comparison of quantum implementations of AES S-box.

Method #CNOT | #1qCliff | #T | TD | M | Full depth
S-box [GLRS16] 1818 124 | 1792 | 88 | 40 951
S-box [BP10] 358 68 224 | 8 | 123 104
S-box [BP12] s 392 72 238 | 6 | 136 85
S-box [LPS20] 628 98 367 | 40 | 32 514
S-box [ZWS*20] 437 72 245 | 55 | 22 339
391 lines | 1470 670 | 1218 | 66 | 399 640
406 lines | 1507 548 | 1245 | 74 | 414 709
S-box [Danl7, Dan21] {413 lines | 1484 561 | 1169 | 62 | 421 591
409 lines | 1483 574 | 1190 | 74 | 416 693
400 lines | 2244 1006 | 2254 | 111 | 408 998
S-box [JBKK24] 472 72 238 | 4 | 209 69
S-box [HB24] 446 88 204 | 8 | 147 99
418 72 238 | 4 | 136 72
S-box [HS22] { 824 160 | 546 | 3 | 198 69
S-box [LGQW23] N/A N/A | N/A | 32 | 20 N/A
N/A N/A | NJA | 24 | 21 N/A
S-box [LXX"23] { N/A N/A | NJA | 22 | 22 N/A
} 400 72 238 | 4 | 76 82
S-box [LPZW23] { 372 72 238 | 4 | 90 69
418 72 238 | 4 | 136 61
S-box (ours) & 394 72 238 | 4 | 76 67
o 366 72 238 | 4 | 84 58
& 781 160 | 546 | 3 | 152 56

#: Reused in this work to fix [JNRV20].
&: Used in this work (Toffoli depth 4 and low qubit count).
€2: Used in this work (Toffoli depth 4 and low full depth).
#: Used in this work (Toffoli depth 3).

second case is when the initially allocated ancilla qubits can be reused. Here, there is no
need to allocate additional ancilla qubits for the next SubBytes. Therefore, the number
of ancilla qubits is maintained, but the depth and number of gates increase due to the
reverse operations needed to reuse the ancilla qubits. We choose the second case for our
SubBytes implementation, since we expect that the benefit of reducing the number of
qubits outweighs the cost saved by not performing additional reverse operations. In this
case, only the initial allocation is burdened because the ancilla qubits are reused. In this
way, due to the relatively high qubit count but low depth, we increase the initial burden
and use fast (low depth) S-boxes for free (without ancilla qubits) until the end.

After we decide upon the implementation of the S-box (SubByte, Section 3.2), this can
be used to implement 16 S-boxes (SubBytes). Regarding the implementation of SubBytes
in AES, Figure 4(a) shows the method that uses the fewest qubits. In this case, all S-boxes
are executed sequentially, which causes a significant increase in depth, as shown in Figure
4(a). On the other hand, we reduce the depth by allocating more ancilla sets initially. The
notation S-box' is described in Appendix A .4.

In one round, 16 S-boxes in SubBytes and 4 S-boxes in key schedule, a total of 20
S-boxes are operated, simultaneously. Therefore, we allocate 20 x 60 ancilla qubits for
S-boxes with Toffoli depth 4 and low qubit count, 20 x 68 ancilla qubits for S-boxes with
Toffoli depth 4 and low full depth, and 20 x 136 ancilla qubits for S-boxes with Toffoli
depth 3 to run all S-boxes simultaneously. Figure 4(b) shows 16 S-boxes operation in
parallel using multiple ancilla sets. After S-box operations, ancilla qubits are not in a clean
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[uo~7)

|An<:illas)~{ S-box }—‘"{ S-box' H S-box }""{ S-box' }“{ S-box }—0—{ S-box! }» |so~7)

[so~7) . [ug~15)

i

[ug~1s) |ss~15)

|Ancillas)

[u120~127) [u120~127)

|s8~15)

[s120~127) [s120~127)

(a) Using one ancilla set. (b) Using multiple ancilla sets.

Figure 4: SubBytes implementation in quantum.

state (i.e., not all ancilla is [0)). Initialization with 16 S-boxes’ operation (i.e., returning to
|0)) is performed in parallel for the next round. Thanks to this, we can reuse the initialized
ancilla qubits in the next round of SubBytes. Of course, these reverse operations save
qubits, but increase depth. However, if we allocate ancilla qubits each time by skipping
reverse operations, it is an abuse of qubits. We consider these trade-offs carefully and the
shallow version offsets this depth overhead from reverse operations (this will be described
in Section 4.2).

3.4 Implementation of Key Schedule (Excluding SubByte)

In the key schedule of AES, SubWord operates on rearranged 32-qubit. Out of the
20 x (60,68 or 136) ancilla qubits previously decided to use (refer to Section 3.3), 4 x
(60,68 or 136) ancilla qubits are used to simultaneously operate S-boxes for 32-qubit in
the key schedule (16 x 60, 16 x 68 or 16 x 136 ancilla qubits are used in SubBytes of
round). For rearranging the 32 qubits, quantum resources are not used by the logical swap
operation as it merely changes the index of the qubits.

In SubBytes, the outputs of S-boxes are stored in new qubits. On the other hand, in
the key schedule, no additional qubits are allocated because the outputs of the S-boxes
are XORed (using CNOT gates) inside the key. Since SubWord for 32-qubit operates
in parallel with SubBytes of round, there is no depth overhead in our AES quantum
circuit implementation. This approach was already used in [JNRV20]. XORing the 8-bit
round constant (RC) is implemented by performing X gates to |k120~127) according to the
positions where the bit value of the round constant is 1. Lastly, the CNOT gates inside the
key are performed. Figure 5'° shows the quantum circuit for the AES-128 key schedule
(see Appendix A.4 for the description of Rotation’ and SubWordT).

Similar to the round function, the S-boxes in the key schedule also operate in par-
allel. This means that, the depth is the same as operating the 8-bit S-box once. The
implementation details about the S-box is discussed Section 3.2, so it is omitted here for
brevity.

Similar to other authors, we adopt the on-the-fly approach where we generate all round
keys immediately before use. This contrasts the typical implementation in a classical circuit
where the round keys are pre-computed. Our AES quantum implementation executes

191n [SF24, Section 6.2], the authors presented the key schedule without ancilla qubits by using the
reverse operation, and we adopt it in our implementations.
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the key schedule simultaneously with SubBytes in the round function. For the reverse
computation (denoted using the { notation), one may refer to Appendix A.4.

|ko~31>+ Rotation H SubWord %"{ SubWord' H Rotation’ }7* [Ko~31)

|k32~63) |k3263)
|k6a~os) |k6a~os)
|kg6~127) X(RC) |kg6~127)

Figure 5: AES-128 key schedule in quantum.

In most implementations of AES quantum circuits, the full depth and Toffoli depth of
AES-128 are higher [GLRS16, LPS20, JNRV20] or similar [ZWS*20] to those of AES-192.
Although AES-128 has fewer rounds, this is due to differences in key schedule. AES-128
requires 16 S-boxes for SubBytes and 4 S-boxes for key schedule in every round. On
the other hand, some rounds of AES-192 require only 16 S-boxes for SubBytes, since
SubWord in the key schedule are not required. As a result, AES-128 has a higher depth
than AES-192.

Another interpretation of this is that there is a depth overhead for key schedule in
implementing AES quantum circuits. However, in our AES quantum circuits there is no
depth overhead for key schedule (there is overhead for gates and ancilla qubits). Our AES
quantum circuit runs the key schedule in complete parallel, so we achieve the same depth
as if the key schedule was omitted. As a result, unlike other implementations, the quantum
resources required for our AES-128, -192 and -256 quantum circuits are strictly dependent
on the number of rounds.

3.5 Implementation of AddRoundKey and ShiftRows

The AddRoundKey operation, which XORs a 128-qubit round key, can be implemented
simply by using 128 CNOT gates. In the case of ShiftRows, it can be implemented using
swap gates, but quantum resources are not used through logical swap that changes the
index of qubits. Since no special implementation technique is applied for AddRoundKey
and ShiftRows, this approach is used in quantum circuit implementation.

3.6 Implementation of MixColumn

In the literature, both the in-place (i.e., of the form a +— a @ b or b + a @ b, and thus
require 32 qubits) and out-of-place (i.e., of the form ¢ < a @ b, and requires more than 32
qubits) implementations were used.

As noted in [RBC23], the Gauss-Jordan elimination and the PLU factorization are
two legacy algorithms that return in-place implementations. These papers used the PLU
factorization in some form: [GLRS16, ZWS*20, ASAM18, JNRV20]. From what we
can tell, the Gauss-Jordan elimination was never used as such (although it was used in
[XZL*20] as the fallback algorithm for the A* search).

Implementations like that of [Max19, LXZZ21, LWF*22], do not work in-place due to
the require usage of temporary variables (i.e., ancilla/garbage qubits) and/or depth (due
to cleaning up garbage qubits).
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Table 4: Comparison of quantum implementations of AES MixColumn.

Method #CNOT | #qubit (M) | Depth
. . GF(2®) (Encoding [BP10 25
MixColumn (Naive) aGF (g) ()E(nco ding [X[ZL +2(}%) 184 64 59
MixColumn [GLRS16, ZWS*20]* 277 32 39
MixColumn [KLSW17] 194 129 15
MixColumn [ASAM18]* 275 32 200
MixColumn [Max19]* 188 126 13
MixColumn [JNRV20]** 277 32 111
MixColumn [TP19] 188 126 17
MixColumn [XZL*20]" 92 39 30
MixColumn [ZH22]* 28
MixColumn [LPZW23]* 98 32 16
MixColumn [LXZZ21]* 182 123 16
MixColumn [LWFT22] 206 135 13
MixColumn [LZW23] 204 134 13
MixColumn [BCC*24]* 97 32 17
MixColumn [PD24] 159 76 18
ASIC1, EGT2 95 40
MixColumn [LWS*22]* ig%g;: ESEZ) 32 32 ig
ASIC2, EGT3 96 32
95 by 190 127 14
MixColumn [BDK*21] gg Zi: g jgg:}ﬁ 122 g} 12
240.95 (ASIC4) bs 290 108 19
. 103 XOR, 3 depth 206 135 11
MixColumn [BFI21] 95 XOR, 6 depth 190 127 15
. . + 91 CNOT (Classical)™ * 91 32 35
MixColumn [YWS™24] 08 CNOT( (Quantu)m) 98 32 13
MixColumn [SFX23] 198 131 14
MixColumn [LSLT19] 210 137 11
MixColumn [SF24]© * 131 32 10
MixColumn (Ours)® 169 96 8

++: Reused in this work to fix [JNRV20] #.
7yt Used in regular version.
@: Used in shallow version.
& Used in shallow/low depth version.
*: Least XOR count in classical circuit.

#: In-place implementation.

In [XZL120], Xiang et al. presented an implementation using 92 in-place CNOT gates
(with classical depth 6). A different implementation costing 92 out-of-place XOR, gates
(with classical depth 6) was reported earlier by [Max19]. These two were the least cost
implementations in classical circuits, until another implementation with 91 out-of-place
XOR gates (with classical depth 7) was found by [LXZZ21]. Recently, another paper
[YWST24] tied with 91 in-place CNOT gates. Thus, the research by [YWS™*24] improved
greatly over all previous in-place implementations.

Another implementation of AES MixColumn was found thanks to [LWF*22], which
managed to reduce the classical depth to 3 with 103 out-of-place XOR gates (cf. 103
out-of-place XOR gates incurring 3 classical depth from [BFI21]). This tied with another
implementation from [LSL*19], albeit the latter required 105 out-of-place XOR gates. On
a different direction, the implementation by [LSL*19] appears to have lower depth than
that of [LWF*22] when converted to quantum circuits (despite both having same classical
depth).

The authors of [BFI21] presented two implementations, namely (103 XOR, 3 classical
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depth) and (95 XOR, 6 classical depth). If taken as-is, the (103 XOR, 3 classical depth)
implementation yields 206 CNOT gates, 135 qubits, with 11 quantum depth when ported.
Thus, it is in theory possible to slightly improve our shallow/low depth version by switching
to this implementation. Further, if the (95 XOR, 6 classical depth) implementation is
ported as-is; it incurs 190 CNOT gates with 127 qubits with depth 15; however we could
not verify the results (probably due to an encoding issue).

We port the classical implementation of MixColumn in [YWS*24] (91 CNOT) to
quantum and use it in our regular version. On the other hand, for the shallow version,
we opt for an in-place MixColumn with a quantum depth of 10, presented in [SF24]. The
reasoning behind this choice is explained in Sections 4.1 and 4.2.

Apart from the specialized MixColumn implementations just narrated, it is perhaps
worth noting that the naive quantum implementation (i.e., directly porting the binary
matrix to quantum circuit, see [RBC23]) was seemingly never studied. With our imple-
mentations, one as a 4 x 4 matrix over GF(2%), and the other as a 32 x 32 binary matrix;
we notice from Table 4, the CNOT count being the same, that the depth varies — this is
likely due to the compiler’s inability to optimize for depth’.

We tested with the SMT/MILP model from [BKD21], whence we inferred that the
minimum CNOT count for an in-place implementation of the AES MixColumn matrix
is at minimum 17. We also ran the publicly available source-code from [BDK™21], and
found a new implementation which took 240.95 GE in ASIC4 (STM 130nm) with the
bs (i.e., out-of-place {XOR, XOR3, XOR4} gates) logic library and improved from the
result of 243.00 GE of [LWS™22, Table 3]. The work by [PD24] follows-up from [BDK™21]
and proposes a new implementation. Also note that the implementations from [LWS*22]
are proposed from the point-of-view of multi-input XOR, gates, but those actually work
in-place.

Consideration for Quantum Depth

One may note from Table 4 that the depth for quantum circuit corresponding to the
implementation by [XZL"20] is 30, whereas the same for the classical circuit is 6. Although
this implementation operates in-place, it still reuses one variable multiple times. In other
words, the same variable appears multiple times in the right hand side. For example, one
may check that x3; appears more than once: x16 < z16 ® w31 (Line 15), x4 < x4 D 31
(Line 29), g < z¢ @ x31 (Line 56), and so on. This does not account for extra depth in a
classical circuit (as multiple fan-outs are allowed). However, in a quantum circuit where
there is exactly one fan-out, this situation causes increase of quantum depth.

The work by [ZH22] looked into this reduction of quantum depth problem, and this is
the first work to directly address the issue of quantum depth optimization to the best of
our finding. In particular, the authors in [ZH22] took the (92 CNOT, 30 quantum depth)
implementation from [XZL*20], and managed to reduce the quantum depth to 28 (by
keeping the same CNOT count) through shuffling the order of the CNOT gates. Later,
a 16 quantum depth in-place implementation was found by [LPZW23] that required 98
CNOT gates; which was improved by the (97 CNOT, 17 quantum depth) implementation

20In essence, we do not provide the binary matrix form, rather give instruction to directly implement
the GF(2%) matrix. Interpreting a 4 X 4 matrix over GF(28) results in an implementation with units of 8
qubits, where the inputs (zo~31) are mapped to outputs (yo~7, Ys~15, Y16~23, Y24~31) respectively. On
the other hand, interpreting a 32 x 32 matrix over GF(2) results in an implementation with units of 1
qubit, where the inputs (zo~31) are mapped to outputs (yo~31) respectively. Though the explicit form
of the binary matrix is not specified; the resulting binary matrix follows in the GF(2) version the same
encoding as [XZL120], while the GF(28) version follows the same encoding as [BP10]. Consequently, the
tool used to benchmark the implementations receive different instructions, or same instructions but in
different order. This can be compared to the situations where the result from [GLRS16] (respectively,
[BFI21]) could not be verified by [JNRV20] (respectively, us), or the reduction of quantum depth in [ZH22]
from [XZL720]). Note that the same thing was addressed, along with the so-called compiler-friendly
optimization for quantum depth, in [JSBT25, Appendix C].
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by [BCC*24]. The least quantum depth of 10 for an in-place implementation was found
by [SF24] that required 131 CNOT gates. However, the current record for the least CNOT
count X quantum depth for an in-place implementation is held by the (98 CNOT, 13
quantum depth) implementation by [YWS'24], as far as we know.

In this work, we present our out-of-place implementation of MixColumn, by taking
inspiration from [LSL"19]. This achieves the least quantum depth (8) in the literature, to
the best of our knowledge. This is used in our shallow/low depth architecture. Discussion
about the quantum depth reduction and ancilla qubit reduction can be found in Appendix D.

3.7 Implementation of MixColumns

For the 128-bit MixColumns operation (i.e., 4 MixColumn operations), the MixColumn
implementation can be scaled up directly. As the MixColumn used in the regular and the
shallow versions work in-place, we do not have to consider the impact of ancilla qubits.
This, however, is more complicated in case of the shallow/low depth version, as described
next.

In the shallow/low-depth version, our out-of-place MixColumn implementation requires
ancilla qubits. This observation although hints that we need extra qubits (to work as
ancilla), here we show how this is not the case. Recall from the implementation of SubBytes
(Section 3.2 and Section 3.3) the S-box implementation is also not in-place, requiring
ancilla qubits (20 x 60 , 20 x 68 or 20 x 136). However, when the combined SubBytes and
MixColumns is considered, because of efficient resource sharing, the total qubit count does
not increase. Those ancilla qubits are initialized as 0 after one SubBytes operation (to
use in the next round), meaning that during the MixColumns operations, those qubits are
idle. By reusing those idle qubits as ancilla qubits for the MixColumns, only 64 qubits
are required to implement our out-of-place MixColumn based on [LSLT19] (32 as input
qubits and 32 as output qubits). Thus, even though the MixColumn implementation is
not in-place, at the end, we do not need any extra qubit. So, the qubit count does not
increase when SubBytes is counted within the scope.

In other words, the total number of qubit requirement is 64 for any implementation in
Table 4 (save for the in-place implementations [ASAM18, XZL"20, ZH22| where it is 32)
when the non-standalone implementation of MixColumns (in which MixColumn does not
operate in-place) is considered.

In [LPZW23], this sharing method was applied to reduce the ancilla qubits for the
SubBytes and SubBytest. That is, in the earlier version of this paper, we combined
SubBytes and MixColumns, but in [LPZW23], the authors also combined SubBytes and
SubBytes’. Applying the sharing method to SubBytes and SubBytes (presented in
[LPZW23]) is efficient, so we have adopted it. The details of the sharing method used in
[LPZW23] is described in Section 4.2.

4 Architecture of AES Quantum Circuits

There are several architecture for designing quantum circuits of AES which differ in how
each stores the 128-qubit output generated from SubBytes in each round. In [GLRS16,
ASAM18, LPS20], the basic zig-zag architecture (Figure 6(a)) was adopted that uses
4 lines to save qubits by doing reverses on rounds. In [ZWST20], an improved zig-zag
architecture that requires only 2 lines of qubits (Figure 6(b)) was presented. Specifically,
R; and RZT indicate one AES round and its uncomputation, respectively, with the output
of each round (R; or Rj) computed on the other line (i.e., 128 qubits) as indicated by the
controlled arrow.
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Table 5: Comparison of quantum resources required for variants of AES.
TD-M cost| Full | TD?-M cost

AES #CNOT | #NOT |#Toffoli| T'D |#qubits (TD x M) | depth | (TD? x M)
GLRS [GLRS16] 166548 | 1456 | 151552 (12672 984 12469248 |110799|158010310656
ASAM [ASAMI8] | 192832 | 1370 | 150528 | N/A | 976 N/A | N/A N/A

LPS [LPS20] 107960 | 1570 | 16940 | 1880 | 864 1624320 | 28927 | 3053721600

ZWSLW [ZWS+20] | 128517 | 4528 | 19788 | 2016 | 512 | 1032192 | N/A | 2080899072
HS (Hspz TS| 126016 | 2528 | 17888 | 820 | 492 | 403440 | N/A | 330820800
t9| 126016 | 2528 | 17888 | 1558 | 374 | 582692 | N/A | 907834136
LXXZZ [LXX*23] | 77984 | 2224 | 19608 | 476 | 474 | 225624 | N/A | 107397024
. © | 65736 | 800 | 12020 | 40 | 3688 | 147520 | 840 | 5900800
oo| LFZW [LPZW23] 75024 | 800 | 12020 | 40 | 4844 | 193760 | 770 | 7750400

= SF [SF24] 64750 800 12920 | 40 3268 130720 N/A 5228800
& 73604 816 12920 | 76 2736 207936 1288 15803136
® % | 75784 816 12824 | 40 3048 121920 776 4876800
79492 816 12824 | 40 4200 168000 748 6720000
% 62784 816 12560 | 76 2896 220096 1090 16727296
® < | 65092 816 12416 | 40 3268 130720 686 5228800
68800 816 12416 | 40 4420 176800 667 7072000
g 120480 | 816 | 29640 | 57 4256 242592 1069 13827744
® % | 120812 | 816 | 29496 | 30 6128 183840 665 5515200
124520 | 816 | 29496 | 30 7280 282816 647 10181376

GLRS [GLRS16] 189432 | 1608 | 172032 |11088| 1112 | 12329856 | 96956 |136713443328
LPS [LPS20] 125580 | 1692 | 19580 | 1640 | 896 1469440 | 25556 | 2409881600
ZWSLW [ZWST20] | 152378 | 5128 | 22380 | 2022 | 640 1294080 | N/A | 2616629760
LXXZZ [LXX 23] 90832 | 2568 | 22800 | 572 538 307736 N/A | 176024992
. ® | 74456 896 14552 | 48 3944 189312 1010 9086976
LPZW [LPZW23] 85808 896 14552 | 48 5356 257088 924 12340224

-~ @ 83460 904 14552 | 92 3056 281152 1534 25865984

=2 ® 86388 904 14592 | 48 3368 161664 932 7759872
90920 904 14592 | 48 4776 229248 900 11003904
& 71272 904 14144 | 92 3216 295872 1294 295872
® e | 73620 904 14000 | 48 3588 172224 819 8266752
78152 904 14000 | 48 4996 239808 797 11510784
% 136264 | 904 | 33384 | 69 4576 315744 1270 21786336
® % | 136812 | 904 | 33240 | 36 6448 232128 795 8356608
141344 | 904 | 33240 | 36 7856 282816 773 10181376

GLRS [GLRSI16] 233836 | 1943 | 215040 |14976| 1336 | 20007936 [130929|299638849536
LPS [LPS20] 151011 | 1992 | 23760 | 2160 | 1232 2661120 | 33525 | 5748019200
ZWSLW [ZWS+20] | 177645 | 6103 | 26774 | 2292 | 768 1760256 | N/A | 4034506752
LXXZ7Z [LXX*23] 110688 | 3069 | 27816 | 646 602 388892 N/A | 251224232
. ® | 93288 | 1119 | 18360 | 56 4456 249536 1176 13974016
LPZW [LPZW23] 106704 | 1119 | 18360 | 56 6124 342944 1074 19204864

- ¥ 102932 | 1111 18088 108 3376 364608 1798 39377664
FS ® & | 104464 | 1111 17992 56 3688 206528 1086 11565568
@ 109820 | 1111 17992 56 5352 299712 1047 16783872
fe2 87780 1111 17576 108 3536 381888 1516 41243904
® o 89544 1111 17432 56 3908 218848 960 12255488
94900 1111 17432 56 5572 312032 934 17473792
% 168580 | 1111 41496 81 4896 396576 1488 32122656
® % | 168548 | 1111 41316 42 6768 284256 933 11938752
173904 | 1111 41316 42 8432 354144 907 14874048
t: Choice of p.
7y Regular version (using Toffoli gate). H“ S-box with Toffoli depth 4 (low qubit count).
@: Shallow version (using Toffoli gate). \ €¢: S-box with Toffoli depth 4 (low full depth).
&1 Shallow/low depth version (using Toffoli gate). | #: S-box with Toffoli depth 3.

In [ZWS™20], by using a quantum circuit of S-box~!, the authors were able to achieve
an improved architecture using fewer qubits. The basic pipeline architecture allocates
128-qubits every round and does not need reverses of rounds. In other words, we can
state that the zig-zag architecture requires reverse operations on rounds to save qubits,
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significantly increasing depth and gates. The pipeline architecture allocates new qubits per
round, but does not require reverse operations, reducing in circuit depth and gate count.
It is a trade-off matter, but in a sense, a generic pipeline is probably the most efficient
architecture for implementing the AES quantum circuits. We argue that, it is significantly
more efficient to allocate new 128-qubits per round than doubling the number of gates and
depth by performing reverse operations on the rounds to save qubits.

In our approach, where we have allocated many ancilla qubits already, the overhead
of increasing the number of qubits according to the architecture (128 qubits per round)
is relatively low. Therefore, for our implementation, rather than reducing the number
of qubits with the zig-zag method, a pipeline architecture that can reduce the depth by
omitting the reverses is more suitable. Note that the reverse operation for ancilla qubits
of SubBytes is still performed, and it is entirely distinct from the reverse operation for the
output qubits of the round. Figure 7(a) shows the pipeline architecture of our AES-128
quantum circuit in more detail for the regular version, and Figure 7(b) shows the same for
the shallow and shallow/low depth versions. To be more precise, each Ry.19 in Figure
6 represents the full round, but each R.1¢9 in Figure 7 does not contain SubBytes. The
notation SB (with @) represents SubBytes followed by CNOT gates.

4.1 Regular Version

The regular version focuses on parallelization in SubBytes, key schedule, and MixColumns.
Additional ancilla qubits (for parallelization) are allocated and subsequently reused in the
next round through the reverse operation.

In our parallel design, the key schedule operates simultaneously with SubBytes and
MixColumn operates simultaneously with SubBytes'. The circuit depth is determined by
the number of serial operations of SubBytes and SubBytes! (the depth of SubBytes' is
larger than that of MixColumn). Thus, we adopt the MixColumn with 91 CNOT gates
from [YWST24] (ported to quantum by us), which achieves a lowest CNOT gate count
(see Table 4). In this version, the SubBytes of the current round wait until the SubBytes'
of the previous round is completed.

As shown in Figure 7(a), SubBytes generates 128-qubit output and SubBytes' cleans
the ancilla qubits. In total, SubBytes runs 10 times and SubBytes' runs 9 times (as it is
redundant to clean the last round SubBytes) serially, 19 times in total. Similarly, AES-192
operates 23 times (12 SubBytes plus 11 SubBytes') and AES-256 operates 27 times (14
SubBytes plus 13 SubBytes').

In SubBytes, S-boxes operate simultaneously. When S-box with Toffoli depth 4 and
low full depth is used, the full depth of SubBytes is 58, which is equal to the depth of a
single S-box operation. Finally, our AES quantum circuits provide a depth of 1090 (about
58 x 19) for AES-128, 1294 (about 58 x 23) for AES-256, and 1516 (about 58 x 27) for
AES-256 (see Table 5).

It is to be noted that the regular version was originally conceived in [JNRV20], but it
contained bugs. In short, ancilla qubits for this architecture were not allocated sufficiently,
which is related to a Q# issue (details are described in Section 5). Then we revised their
idea and proposed the corrected version in this work. We allocated the correct ancilla
qubits, specifically in SubBytes, key schedule, MixColumns etc. to operate this architecture
properly (see Section 5). Thus, the role/impact of the original authors [JNRV20] cannot
be understated in shaping the regular version, it can still be (partly) counted as our
innovation.

4.2 Shallow Version and Shallow/Low Depth Version

We propose a shallow version in which all possible parts of AES quantum circuits operate,
simultaneously. When S-box with Toffoli depth 4 and low full depth is used, this can be
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achieved by using 2 sets of ancilla qubits for SubBytes. The same approach is applied in
the key schedule; however, in this section, it is explained only for SubBytes for the sake of
brevity. In the shallow version, the first SubBytes in Figure 7(b) uses the first set of ancilla
qubits. The second SubBytes uses the second set of ancilla qubits, and at the same time
SubBytes' cleans the first set of ancilla qubits. That is, SubBytes! operates simultaneously
with the SubBytes of the next round. Conceptually, this can be thought as all SubBytes’
in Figure 7(a) are pushed one space to the right. This is possible because SubBytes and
SubBytes! do not share any operations by allocating their own ancilla set. Thanks to this
parallel structure (using 2 alternative ancilla sets), the shallow version counts the depth for
one round as SubBytes (58) + MixColumns (10), which is the ideal depth. As we evaluate
performance in terms of depth rather than gate count x depth, the reduction of depth by
3 = (13 — 10) for MixColumn is more effective than reducing 33 = (131 — 98) CNOT gates,
which is why we opt for the MixColumn implementation from [SF24] instead of that from
[YWST24] (98 CNOT, 13 quantum depth) for our shallow version. The circuit depth of
AES-128 is 686 (about 9 rounds x 68 + 58), that of AES-192 is 819 (about 11 rounds X
68 + 58), and the same for AES-256 is 960 (about 13 rounds x 68 + 58). In the shallow
version, up to SubBytes' operates concurrently within one round, providing maximum
parallelism.

Finally, the shallow version offer the least Toffoli depth of the S-box’s Toffoli depth x
rounds, Toffoli depth x qubit count, full depth x qubit count ), Toffoli depth? x qubit
count and full depth? x qubit count.

Similar to [LPZW23], our shallow and shallow/low depth versions attempt to reduce
the ancilla qubits of second set by borrowing the idle ancilla qubits of second set (by reverse
operations). Just as the authors in [LPZW23] reduced the number of ancilla qubits in the
shallow and shallow/low-depth versions, the second set of ancilla qubits could be reduced
by borrowing the first set of ancilla qubits in idle state. The authors of [LPZW23] use
the cleaned ancilla qubits immediately after the first SubBytes' in the second SubBytes.
Consequently, the second SubBytes can use the idle ancilla qubits from the first SubBytesT,
resulting in a reduction in the number of qubits for the second ancilla set (see Figure 7(c)).
As a result, for SubBytes and SubBytes', instead of requiring 2 sets of ancilla qubits, only
~ 1 set (more than 1 but lower than 2) is needed. We have adopted this method, and the
required number of qubits has been reduced more than in [LPZW23].

The shallow/low depth version replaces only the MixColumn implementation from
the shallow version to our out-of-place MixColumn implementation (which is based on
[LSLT19]). In the shallow/low-depth version (utilizing out-of-place MixColumn), imple-
menting the lowest depth MixColumn is optimal while also considering the number of
ancilla qubits, as they can be replaced by idle ancilla qubits in SubBytes. The low depth
version counts the depth for one round as SubBytes (67, 58 or 56) + MixColumns (8)
and 32 x 4 output qubits for MixColumns are allocated (see Section 3.7). The low depth
version of AES offers the least Toffoli depth, full depth, and full depth x total gates (a
metric to estimate quantum attack cost).

4.3 Last Round Optimization

We further reduce the number of qubits by replacing the output qubits in the final round
of AES quantum circuits (i.e., 10, 12, and 14 rounds for AES-128, AES-192, and AES-
256, respectively) with ancilla qubits used in SubBytes. This optimization is applied
to both the shallow and shallow/low-depth versions. Figure 7(c)?! illustrates the last
round optimization by presenting the final 3 rounds of AES-128 using an S-box with a
Toffoli depth of 4. The flow of SubBytes and SubBytes' is presented based on the Toffoli

21Figure 7(c) includes the sharing method used in [LPZW23], where ancilla qubits are shared between
SubBytes and SubBytes'.
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depth (i.e., 4 steps), and the ancilla qubits for SubBytes and SubBytes' are separated (i.e.,
anco~4) according to their use in each Toffoli depth.

Recall that, in the last round, the initialization of ancilla qubits from the prior SubBytes
is performed in SubBytes'. The initialized ancilla qubits (ancs, ancs, anc;) are used in
the last round, but the fourth one (ancg) is not needed, as it would only be used in the
next round (which does not exist since this is the last round). Thus, we avoid allocating
output qubits by replacing them with the ancilla qubits in ancy. With this optimization,
we reduce the number of qubits required for the last round output in both the shallow and
shallow/low versions. This means that the 128-qubit output for the last round in Figure
7(b) are not actually included in the count.

£l

®]

Input

‘0>®128

‘O>®128

‘O>®128

‘O>®128

Output

(b) Modified (ZWSLW).
R;: SubBytes — MixColumns — ShiftRows — AddRoundKey for i =1,...,9.
Rio: SubBytes — ShiftRows — AddRoundKey.

Figure 6: Zig-zag architecture for AES-128 quantum circuit.

5 Bug-fixing JNRV (Eurocrypt’20) AES Implementa-
tion

In this part, we take a deeper look at the AES implementation and resource estimation
by Jaques, Naehrig, Roetteler and Virdia in Eurocrypt’20 [JNRV20]. It is already well-
known the resource estimation in their paper was incorrect due to some problem in Q#
(unrelated to the coding of [JNRV20]), as already indicated by at least two previous works
[ZWST20, HS22]?? as well as acknowledged by the Eurocrypt’20 authors?® themselves?*.
Also, one may refer to Appendix C for supplementary discussion on this topic. We fix the
Q# bugs and report the corrected benchmarks for the resource requirement of [JNRV20]
by porting their codes to ProjectQ.

5.1 Issues with Q#
5.1.1 Inconsistency and Underestimation of Full Depth

In their AES quantum circuits using Maximov’s MixColumn, the AES-192 quantum
circuit offers the lowest full depth (see Table 7(b)), although the number of rounds of

22The same bug appeared in context of another cipher, as mentioned in [JBKt22a].

23See https://github.com/microsoft/qsharp-runtime/issues/1037 and https://github.com/sam-j
aques/grover-blocks/tree/sjaques-version-update#issue-with-estimating-resources.

24As noted in Section 1, the authors recently updated their own bug-fixing in [JNRV19).
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(¢) Shallow and shallow/low depth versions: Last round optimization (ours).
SB: SubBytes followed by CNOT gates (D).

SBT: Clean ancilla qubits used in preceding SubBytes.
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Figure 7: Pipeline architecture of AES-128.

AES-192 (12 rounds) is higher than that of AES-128 (10 rounds). This case is observed
in the zig-zag architecture [GLRS16, LPS20] since the number of key schedules is less in
AES-192. However, as a result of analyzing their quantum circuit design (e.g., pipeline and
parallel structure) and quantum resources, the full depth should depend on the number
of rounds because the key schedule operates in parallel with SubBytes. In other words,
in their AES quantum circuits, the full depth should be independent of the number of
key schedules. However, their AES-192 quantum circuit has a lower full depth than their
AES-128 quantum circuit. Moreover, their AES-256 (14 rounds) quantum circuit has a
lower full depth than their AES-128 quantum circuit.
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Also, the full depth of their AES-192 and 256 quantum circuits cannot be derived.
By analyzing full depth with the quantum resources required for their SubBytes and
MixColumn, we believe their report is underestimated. Let us assume the following two
things to estimate the full depth for their AES quantum circuit. All S-Boxes of SubBytes
operate in parallel (in this case the full depth of SubBytes is 101, see Table 7(a)) and the
full depth of round is counted only for SubBytes. Then, about 1212 (12 rounds x 101)
should be the full depth of the AES-192 quantum circuit, and the full depth of the oracle
where the AES quantum circuit is operated twice should be about 2424 (12 rounds x 101
x 2). Even with these optimistic assumptions, the full depth of the oracle they estimate
for AES-192 (1879 in Table 7(b)) cannot be derived. This underestimation also applies to
the full depth of the oracle for AES-256, where they estimated 1951 in Table 7(b) # about
2828 (14 rounds x 101 x 2).

This inconsistency is also observed in AES quantum circuits using in-place MixColumn
(full depth is 111, as shown in Table 7(a)). To take one case, the full depth of oracle for
AES-256 is 3353 (Table 7(b)). In the AES-256 quantum circuit, MixColumns operates
for 13 rounds excluding the last round. Then, even counting only MixColumns, the full
depth of oracle for AES-256 is 2886 (13 rounds x 111 x 2) even though SubBytes are not
counted. If we consider the full depth with SubBytes included (cannot be operated in
parallel with MixColumns), the full depth 3353 is lower than expected (i.e., underestimated
in [JNRV20]).

5.2 Architecture Consideration

If we correct the Eurocrypt’20 implementation [JNRV20] while maintaining depth opti-
mization, the architecture of the bug-fix version is much similar to our regular version. In
the regular version, there is a depth overhead associated with the reverse operation for
SubBytes and the key schedule (where S-box is used). However, due to the nature of the
AND gate, there is less overhead for the reverse operation. Therefore, when applying the
AND gate to the bug-fixed version, the depth is significantly lower compared to using the
Toffoli gate to fix the bug. Also, the architecture of the bug-fix version uses out-of-place
MixColumn implementation by Maximov [Max19], which reduces depth but increases
the qubit count. As a result, the bug-fix version using the AND gate and Maximov’s
MixColumn offers a low full depth, similar to our regular version (but with a higher number
of qubits). One thing to note is that the cost of their bug-fixed benchmark in [JNRV19] is
higher than that of our bug-fix version.

Conceptually, we can think of the depth optimized bug-fix version as a regular/low
version. In contrast, our design philosophy for the regular version is to reduce depth while
maintaining a balanced use of qubits. Thus, in the regular version, we adopt an in-place
MixColumn implementation [ZH22] rather than an out-of-place MixColumn implementation
[LSL*19]. Even so, our regular version, using the improved S-box implementation, provides
lower full depth compared to the bug-fix version (regular/low). Furthermore, since our
regular version has lower Toffoli depth and qubit count (except for the bug-fix version
using in-place MixColumn), we provide improved T'D-M and FD-M costs compared to
the bug-fix version.

5.3 Corrected Report

To our understanding, some problems arise if the qubits are allocated by the using
command in Q# (and it affects the non-linear components). However more experiments
are to be carried out in order to be completely certain about it.

To patch the bug, we contribute in three major directions:

1. We reflect on the increasing depth in their number of qubits using only one ancilla
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set (fixed depth). As shown in Figure 4(a), since the ancilla set is shared, not only
SubBytes but also S-boxes of SubWord of the key schedule are operated sequentially.
Also, we offer another version (fixed qubit count) that increases the number of qubits
while approximating the depth reported in [JNRV20]. As shwon in Figure 4(b), 20
ancilla sets are allocated to operate S-boxes for the SubBytes and the SubWord of
the key schedule in parallel. According to the Eurocrypt’22 paper [JNRV20], the
authors’ design philosophy focuses on optimizing depth.

2. We correct the implementation of MixColumns where the same issue occurs. In
Eurocrypt’20 paper [JNRV20], two MixColumn implementations were presented. The
in-place method of MixColumn implementation (which uses PLU decomposition, and
derived by the authors themselves [JNRV20]) does not cause this issue. On the other
hand, similar to S-box, the same issue applies to the MixColumn implementation by
Maximov [Max19], which requires ancilla qubits, so this is also solved in the same
way as the S-box.

3. We have modified the quantum circuits (SubBytes, key schedule and MixColumns)
done by [JNRV20] and re-implemented their algorithm on ProjectQ to bypass the
Q# bug. Note that when AND gates are used in large-scale quantum circuits,
although resource estimation is possible, checking the test vector becomes infeasible
(simulation is impossible). Thus, to verify our bug-fixed implementations, we initially
implement, quantum circuits using Toffoli gates (using the method from [AMM™13])
instead of directly applying AND gates (which could lead to some coding-related
issues) and verify the test vector (Toffoli version). After verification, we cautiously
replace Toffoli gates with AND gates in quantum circuits (AND version).

One way to correct the error is to estimate the correct depth by fixing the erroneous
parallelism based on the number of qubits reported, which is the fixed depth version.
Another way is to increase the number of qubits to satisfy the excessively estimated
parallelism, which is the fixed qubit count version. We adopt both approaches and report
the modified number of qubits and depth.

In the fixed depth version, when designing quantum circuits using the qubit count
reported in [JNRV20], it demonstrates how the depth is increased. Based on these reported
qubit counts, it becomes apparent that not all S-boxes and MixColumns (except for in-
place) operations can be executed simultaneously. Consequently, the unattainable parallel
execution of quantum circuits, as presented in [JNRV20], is rectified by restructuring the
operations to be carried out sequentially within the confines of the reported qubit count.
As a result of this sequential execution, there is a notable increase in the overall depth of
the quantum circuits.

Table 6(a) shows quantum resources for S-box and MixColumns reported in the
Eurocrypt’20 paper. Quantum resources in Table 6(a) include cleaning up of used ancilla
qubits. Table 6(b) shows quantum resources for AES oracles reported in the Eurocrypt’20
paper. Quantum resources are reported for an oracle rather than a single AES quantum
circuit. In the oracle, since the AES quantum circuit operates twice, the estimation of
quantum resources for a single AES quantum circuit can be counted in half except for the
number of qubits in Table 6(b).

Our results with the bug-fixed Eurocrypt’20 implementation can be found in Tables
7 and 8. Table 7 shows the estimated resources (corrected) for SubBytes, key schedule,
MixColumns, and one round where the issue occurs. Tables 7(a) (using Toffoli gate)
and 7(c) (using AND gate) correspond to the versions with a fixed depth, while Tables
7(b) (using Toffoli gate) and 7(d) (using AND gate) represent the versions with a fixed
qubit count. The change in the corrected depth or qubit count is relatively small for
the MixColumns, but significant for the SubBytes. The resources estimated in Table 7
include a reverse operation to clean ancilla qubits. At the end, Table 8 shows the corrected
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Table 6: Reported benchmarks for JNRV (Eurocrypt’20) implementation of AES.
(a) AES-128 gate costs.

Method S-box MixColumn implementation
(SubByte) | In-place [JNRV20] | Maximov [Max19]

#CNOT 654 1108 1248
#1qCliff 184 0 0
#T 136 0 0
#Measure 34 0 0
T-depth 6 0 0
#qubits (M) 137 128 318
Full depth 101 111 22

(b) Oracles.

Method In-place MixColumn [JNRV20] | Maximov’s MixColumn [Max19]
AES-128 | AES-192 | AES-256 | AES-128 | AES-192 | AES-256
#CNOT 292313 329697 404139 294863 332665 407667
#1qCliff 84428 94316 116286 84488 94092 116062
#T 54908 61436 75580 54908 61436 75580
#Measure 13727 15359 18895 13727 15359 18895
T-depth 121 120 126 121 120 126
#qubits (M) 1665 1985 2305 2817 3393 3969
Full depth 2816 2978 3353 2086 1879 1951

quantum resources for AES quantum circuits, and it is confirmed that the depth or qubit
count increases significantly when maintaining the qubit count or depth. Just like Table 7,
Tables 8(a) (using Toffoli gate) and 8(c) (using AND gate) correspond to the versions with
a fixed depth, while Tables 8(b) (using Toffoli gate) and 8(d) (using AND gate) represent
the versions with a fixed qubit count.

6 Performance of Quantum Circuits

In this part, we present the performance of our implementations of AES quantum circuits.
We use the open-source quantum programming tool ProjectQ to implement and simulate
the quantum circuits. An internal library, ClassicalSimulator, simulates quantum
circuits and verifies test vectors. Quantum resources required to implement quantum
circuits are estimated using another library, ResourceCounter.

As for the results, Table 5 shows the quantum resources required to implement our AES
quantum circuits and previous AES quantum circuits. Although various decompositions
exist for the Toffoli gate, Table 5 enables consistent comparison with NCT (NOT, CNOT,
Toffoli) level analysis. Table 5 only covers the version using the Toffoli gate, not the version
using the AND gate. In [GLRS16, ASAM18], the Itoh—Tsujii based inversion is implemented
on a quantum circuit, so many resources are used for SubBytes. In [L.PS20, ZWST20],
more efficient quantum circuits are implemented by extending the S-box of [BP10], but
the circuit depth is increased due to the serial execution of S-boxes by concentrating
on saving qubits. On the other hand, our implementation focuses on minimizing circuit
depth while considering the trade-offs for using qubits. In [ZWS*20], the TD-M cost
metric (where T'D is the Toffoli depth, and M is the number of qubits) was used to
measure the trade-off of quantum circuits. The T'D-M cost evaluates the performance of
the quantum circuit alone, but in practice, due to depth limitations under the Grover’s
search, parallelization is necessary. The T D?-M complexity metric in Table 5 demonstrates
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Table 7: Corrected benchmarks for JNRV (Eurocrypt’20) implementation of AES-128 modules.
(a) Fixed depth (using Toffoli gate).

Method #CNOT | #1qCliff | #T | T-depth | #qubit | Full depth
SubBytes 12000 1220 7328 768 376 2672
Key schedule 3096 355 1832 192 248 669
MixColumns - 1248 0 0 0 318 88
One round? 16472 1507 9160 960 632 3417

(b) Fixed qubit count (using Toffoli gate).

Method #CNOT | #1qCliff | #T | T-depth | #qubit | Full depth
SubBytes 12000 7328 2240 48 2176 167
Key schedule 3096 559 1832 48 608 168
MixColumns =+ 1248 0 0 0 504 22
One round” 16472 2799 9160 48 2912 178

(c) Fixed depth (using AND gate).

Method #CNOT | #1qCliff | #T | #Measure | T-depth | #qubit | Full depth
SubBytes 11136 4416 2176 544 96 376 1744
Key schedule 2880 1103 544 136 24 248 437
MixColumns + 1248 0 0 0 0 318 88
One round? 15392 5519 2720 680 120 632 2260

(d) Fixed qubit count (using AND gate).

Method #CNOT | #1qCliff | #T | #Measure | T-depth | #qubit | Full depth
SubBytes 11136 4416 2176 544 6 2176 109
Key schedule 2880 1103 544 136 6 608 110
MixColumns =+ 1248 0 0 0 0 504 22
One round? 15392 5519 2720 680 6 2912 123

+: Maximov’s MixColumn [Max19].
¥: One typical round (that includes MixColumn).

that in the trade-off of parallelization under Grover’s search, the depth metric becomes
significantly more important (this is discussed in more detail in Appendix 2.4). In this
work, all AES quantum circuits with reduced depth and quantum gates using a reasonable
number of qubits offer the best trade-off.

In [JNRV20], the quantum resources required to implement the circuits for AES were
also estimated. However, it seems there were some issues with Q#’s ResourcesEstimator?®
used in their work, specially in implementing quantum circuits for SubBytes. Therefore,
the results from [JNRV20] are not used here. In the NCT-level analysis (as shown in
Table 5), quantum resources are estimated without decomposing Toffoli gates. For a more
detailed analysis, we further estimate the resources by decomposing Toffoli and AND
gates. Similar to [ZWS™20, Table 10], Table 9 shows the detailed quantum resources by
decomposing Toffoli gates (Table 9(a)) and AND gates taken from [JNRV19] (Table 9(b))
for the AES quantum circuits implemented in this work. The Toffoli gate is decomposed
into (8 Clifford gates + 7 T gates), and T-depth 4, and full depth 8 following to one of the
methods (described in Section 3.2) in [AMM™13]. The AND gate requires 1 ancilla qubit
and is decomposed into (11 Clifford gates + 4 T gates), and T depth 1, and full depth 8;
and the ANDT gate (Figure 10(c)) is decomposed into (5 Clifford gates + 1 Measurement
gate), and incurs full depth of 4.

25https://github. com/microsoft/qsharp-runtime/issues/192.
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Table 8: Corrected benchmarks for JNRV (Eurocrypt’20) implementation of AES variants.
(a) Fixed depth (using Toffoli gate).

AES #CNOT | #1qCliff #T T-depth | #qubit | Full depth
128 161982 14400 91380 9576 1656 33320
192 182774 16128 102372 | 10728 1976 37328
256 224214 19871 126188 | 13224 2296 46012
128 163242 14994 91380 9576 2808 33914
192 + 184314 16854 102372 | 10728 3384 38054
256 226034 20729 126188 | 13224 3960 46870

(b) Fixed qubit count (using Toffoli gate).
AES #CNOT | #1qCliff #T T-depth | #qubit | Full depth

128 155180 14400 87200 456 3936 1845
192 175972 16128 98192 552 4256 2232
256 217412 19871 122008 648 4576 2625
128 156440 16776 87200 456 5088 1612
192 -+ 177512 19032 98192 552 5664 1936
256 219232 23303 122008 648 6240 2264

To replace the AES quantum circuits that use the Toffoli gate with the AND gate,
a number of ancilla qubits equal to the maximum number of AND gates operating in
parallel is required. The number of ancilla qubits needed for AND gates can be minimized
by utilizing idle ancilla qubits that are already allocated for SubBytes or MixColumns.
However, since our implementations do not have enough ancilla qubits in an idle state
(already fully utilized), we allocate ancilla qubits for AND gates equal to the maximum
number operating in parallel. As a result, for the AND gate version using the S-box with
Toffoli depth 4, 360 ancilla qubits are needed for replacement; while for the version using
the S-box with Toffoli depth 3, ancilla qubits are allocated for replacement.

7 Performance of Quantum Key Search

In this part, the corresponding costs for applying Grover’s search algorithm to exhaustive
key search are estimated based on the proposed quantum circuits for the three variants of
AES. We estimate the cost of oracle, which accounts for the largest portion of Grover’s
search algorithm. The overhead for diffusion operator is negligible compared to oracle
and is not difficult to implement. For this reason, it is common to estimate the cost
for oracle excluding the diffusion operator [GLRS16, LPS20]. In the oracle, the target
cipher’s quantum circuit encrypts a known plaintext with the key in the superposition
state. The generated ciphertext in the superposition state is compared with the known
ciphertext and a reverse operation is performed for Grover’s iterations. For comparison,
an n-multi controlled NOT gate is used to check that the generated ciphertext (n-qubit)
is a known ciphertext. In Grassl et al. [GLRS16] and Langenberg et al’s AES paper
[LPS20], the authors added (32n — 84) T gates to their estimate for the n-multi controlled
NOT gate [WR14]. If we estimate the cost of a 128-multi control NOT gate, only 4012
(=128 x 32 — 84) T gates increase. However, the total number of gates to operate our
AES-128 circuit (regular version using S-box with Toffoli depth 4) in the oracle is already
532960 (the number of T gates is 180880). That is, there is no significant change in
the number of gates. In contrast, the T-depth overhead is relatively high. However, the
increase in depth was also ignored in [GLRS16, LPS20]. Also in [JNRV20], the estimation
of the n-multi controlled NOT gate was totally ignored. So, for the n-multi controlled NOT
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(¢) Fixed depth (using AND gate).
AES #CNOT | #1qClift | #T | #Measure | T-depth | #qubit | Full depth

128 151540 55200 27200 6800 1200 1656 21801
192 + 171036 61824 30464 7616 1440 1976 24417
256 209668 76175 37536 9384 1680 2296 30085
128 152800 55200 27200 6800 1200 2808 22413
192 4 172576 61824 30464 7616 1440 3384 25165
256 211488 76175 37536 9384 1680 3960 30969

(d) Fixed qubit count (using AND gate).
AES #CNOT | #1qCIliff | #T | #Measure | T-depth | #qubit | Full depth

128 151540 55200 27200 6800 60 3936 1786
192 <+ 171036 61824 30464 7616 72 4256 2156
256 209668 76175 37536 9384 84 4576 2528
128 152800 55200 27200 6800 60 5088 1123
192 + 172576 61824 30464 7616 72 5664 1346
256 211488 76175 37536 9384 84 6240 1570

#: In-place MixColumn [JNRV20]. ‘ 4: Maximov’s MixColumn [Max19].

gate, we estimate the number of T' gates to be (32n — 84) according to the decomposition
method in [WR14] and T-depth is maintained.

To recover the secret key (which is not a spurious key) uniquely in the quantum
exhaustive key search, Grassl et al. in [GLRS16] estimated the attack cost for r known
(plaintext, ciphertext) pairs (r = 3, r = 4 and r = 5, respectively). Later in [LPS20],
Langenberg et al. explained that » = [k/n] (key size/block size) is sufficient to successfully
recover a unique key. The authors in [JNRV20] also estimated the cost for the same r
(plaintext, ciphertext) pairs in [LPS20] through detailed computations. Following this
approach, we also estimate the cost of recovering a unique key for r = [k/n] (plaintext,
ciphertext) pairs. When r = 1, the quantum circuit of the target block cipher is serially
executed twice in oracle. Thus, the cost of the oracle is twice that required to implement
a quantum circuit, excluding qubits. When r > 2, r target block quantum circuits are
executed twice in parallel, and the following should be considered in cost estimation.
Although r > 2 plaintexts are used, only one input key is used, so the cost for key schedule
should be estimated only once. Finally, the complexity of quantum exhaustive key search
for the target block cipher is roughly the cost of oracle x L%\/27J (where k is the key
size). The complexity figures are estimated at the (Clifford + T) level and computed as
the number of total decomposed gates x full depth.

We show the cost of quantum key search by the Grover’s algorithm for AES-128,
AES-192, AES-256; with the two S-boxes (i.e., with Toffoli depth of 4 and 3) in Table
10(a) (using Toffoli gate) and Table 10(b) (using AND gate). Based on Table 10, we can
determine the optimal strategy for implementing the Grover’s search algorithm for each
AES variant while adhering to the depth constraint. For AES-128 (full depth < 2%),
parallelization is not essential since it does not fall under the MAXDEPTH limit. Thus,
without considering parallelization, the shallow/low depth version using S-box with Toffoli
depth 4 (low full depth) has the lowest attack complexity (FD-G). However, when
considering the more realistic metric of F.D-M cost, the shallow version using S-box with
Toffoli depth 4 (low full depth) shows the highest efficiency. If the T-depth metric for error
correction takes priority (i.e., T'd-M cost), then the shallow version using S-box with Toffoli
depth 4 (low qubit count and using Toffoli gate) and the regular version using S-box with
Toffoli depth 4 (low qubit count and using AND gate) are the optimal choices (although
it is not shown in Tables 10(a) and 10(b), it can be found in Tables 9(a) and 9(b)). In
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Table 9: Quantum circuit resources required for variants of AES (this work).
(a) Using Toffoli gate.

T-depth | #qubit | Full depth |Td-M cost | FD-M cost
(Td) (M) (FD) (Tdx M) | (FD x M)
148244 | 14416 | 87560 304 2736 1288 831744 3523968

AES |#CNOT |#1qCliff| #T

>

® | 150064 | 19264 | 87104 160 3048 776 487680 2365248
153772 | 19264 | 87104 160 4200 748 672000 3141600
ol ™ 138144 | 15496 | 87920 304 2896 1090 880384 3156640
Nle | 139588 | 19168 | 86912 160 3268 686 522880 2241848
143296 | 19168 | 86912 160 4420 667 707200 2948140
& 298320 | 40496 (207480 228 4256 1069 970368 4549664
% | 297788 | 39168 [206472| 120 6128 665 735360 4075120
301496 | 39168 |206472| 120 7280 647 873600 4710160
& 167508 | 16136 | 98600 368 3056 1534 1124608 4687904

& | 170804 | 21568 | 99008 192 3368 932 646656 3138976
175336 | 21568 | 99008 192 4776 900 916992 4298400
ol 156136 | 173496 | 99008 368 3216 1294 1183488 4161504
Sle | 157620 | 21272 | 98000 192 3588 819 688896 2938572
162152 | 21272 | 98000 192 4996 797 959232 3981812

336568 | 43192 [233688| 276 4576 1270 1262976 5811520

% | 336252 | 43864 |232680| 144 6448 795 928512 5126160

340784 | 43864 [232680| 144 7856 773 1131264 6072688
207364 | 19879 |122520| 432 3376 1798 1458432 6070048
208320 | 26703 [121944| 224 3688 1086 826112 4005168
213676 | 240379 (121944 224 5352 1047 1198848 5603544
193236 | 21415 |123032| 432 3536 1516 1527552 5360576
<¢| 193936 | 26607 |122024| 224 3908 960 875392 3751680
199292 | 26607 |122024| 224 5572 934 1248128 5204248
417556 | 53383 |290472| 324 4896 1488 1586304 7285248
416444 | 53983 |289212| 168 6768 933 1137024 6314544
421800 | 53983 [289212| 168 8432 907 1416576 7647824

256

QOB IOOR|©OODTG®ORNO®O
&

@
L/u)

7v: Regular version. | &: S-box with Toffoli depth 4 (low qubit count).
@: Shallow version. ‘ €2: S-box with Toffoli depth 4 (low full depth).
4 Shallow/low depth version. ‘ #: S-box with Toffoli depth 3.

contrast to AES-128, AES-192 and AES-256 require parallelization of the Grover’ search
due to the MAXDEPTH limitation. As specified in Appendix 2.4, parallelizing Grover’s
search is highly inefficient, and in such cases, we should minimize FD?-M and Td*-M
costs (i.e., Cost under MAXDEPTH in Table 10). Therefore, under the MAXDEPTH
limit, the shallow version using S-box with Toffoli depth 4 (low full depth) is the most
efficient in terms of full depth metric (F'D?-M). If we consider the T-depth (T'd?-M), then
the shallow version using S-box with Toffoli depth 4 (low qubit count and using Toffoli
gate) and the regular version using S-box with Toffoli depth 4 (low qubit count and using
AND gate) are the optimal choices.

Additionally, a quick comparison of NIST’s security level (under the Grover’s search)
of our work together with the previous works is given in Table 11. As it can be seen,
when compared with the current state-of-the-art security bounds, we reduce the quantum
complexity for running the Grover’s search on the AES family, thereby setting up a new
benchmark for the NIST security levels. The complexity is calculated in terms of the
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(b) Using AND gate.

. T-depth | #qubit | Full depth |Td-M cost | F D-M cost

AES | #CNOT |#1qCliff| #T | #Measure (T; 8\1) (FDI)) (Tax M) | (FD x M)
2 134124 43896 |27200 6120 40 2968 1021 118720 3030328
® % | 136208 | 43608 (27200 6024 40 3408 716 136320 2440128
139916 | 43608 |27200 6024 40 4688 684 187520 3206592
o 7y 120944 | 40296 |27200 5760 40 3160 826 126400 2610160
N @ | 123156 | 39936 |27200 5580 40 3700 666 148000 2464200
126864 | 39936 |27200 5580 40 4852 647 194080 3139244
2y 259320 | 94056 |62400| 14040 30 4864 895 145920 4353280
® #| 258900 | 93456 |62400| 13860 30 6864 635 205920 4358640
262608 93456 62400 13860 30 8016 617 240480 4945872
7y 151324 | 49456 |30464 6936 48 3288 1209 157824 3975192
® % | 154292 49672 |30464 6976 48 3728 855 178944 3187440
158824 | 49672 |30464 6976 48 5264 817 252672 4300688
~ 2 136488 | 45376 |30464 6528 48 3480 975 167040 3393000
S |@ | 139100 | 45088 |[30464 6384 48 4020 795 192960 3195900
143632 | 45088 |30464 6384 48 5428 773 260544 4195844
£y 291952 | 105952 |69888| 15912 36 5184 895 186624 5484672
® ®| 292228 | 105472 [69888| 15768 36 7184 759 258624 5452656
296760 | 105472 |69888 15768 36 8592 737 309312 6332304
- 186708 | 61519 |37536 8704 56 3608 1415 202048 5105320
® % | 170320 61231 |37536 8608 56 4048 1002 226688 4056096
193404 61231 |37536 8608 56 5712 957 319872 5466384
- 7y 168284 56399 |37536 8192 56 3800 1139 212800 4328200
3® | 170320 56111 |37536 8048 56 4340 932 243040 4044880
175676 | 56111 |37536 8048 56 6004 906 336224 5439624
> 360772 | 131743 |86112 19968 42 5504 1238 231168 6813952
© % | 360400 | 131143 |86112| 19788 42 7504 891 315168 6686064
365756 | 131143 |86112 19788 42 9168 865 385056 7930320

7v: Regular version. ‘ #: S-box with Toffoli depth 4 (low qubit count).
@: Shallow version. ‘ £2: S-box with Toffoli depth 4 (low full depth).
%+ Shallow/low depth version. ‘ #: S-box with Toffoli depth 3.

product of decomposed (Clifford and T') gate count and full depth. Also, the MAXDEPTH
constraint (see Appendix 2.4) is not considered in the computation. For instance, the figure
of 2156:2630 ¢corresponding to the shallow/low version for AES-128 in Table 11 is computed
as the product of the total number of decomposed gates and the full depth for 264 (i.e.,
square-root bound of the exhaustive case) searches (required to run Grover’s search). If
the MAXDEPTH constraint is to be considered, one has scale down the complexity figures
by dividing by the MAXDEPTH constant.

8 Conclusion

In this work, we collate multiple research contributions, including the up-to-date optimiza-
tions on the building blocks of the ciphers in one place; whence significantly reducing the
quantum circuit complexity for the AES family of block ciphers. Apart from that, we take
a deeper look into the overall architecture design as well as efficient S-box and MixColumn
implementations.

Among other results, we show the least Toffoli depth and full depth implementations
of all variants of AES (more than 97% and 95% improvement from [ZWS*20] and [HS22]
respectively). At the same time, we improve the Toffoli depth - qubit count product by
more than 87% and 69% and more than 99% and 98% in the Toffoli depth squared x



K. Jang et al. 35

Table 10: Quantum resources required for Grover’s search on AES (this work) and key costs for
parallelization.
(a) Using Toffoli gate.

AES |r #qubit | Total gates | Full depth | F'D-G cost | FD-M cost | Cost under MAXDEPTH
(M) (@) (FD) (FDxG) | (FDx M) | FD*>-M Td?*-M
& 2737 | 1.511-282 | 1.976-27* | 1.493 - 217 | 1.320-256 | 1.303- 2161 | 1.159 . 2157
® # 3049 | 1.549-2%2 [1.190-274 | 1.843 2156 | 1.772.28 | 1.054 260 | 1.431 .25
4201 | 1.571-282 | 1.147-274| 1.802- 2196 | 1.176-286 | 1.350-2160 | 1.971 . 2155
2 2897 | 1.459-282 | 1.672-27 | 1.220- 2157 | 1.182.286 | 1.976-2160 | 1.227.2157
5@*1 3629 | 1.484-2%2 | 1.053-274 | 1.562- 256 | 1.680 - 2%° |1.768 - 2'%9| 1.534 . 2155
4421 | 1.506 - 282 | 1.023-27* |1.542 - 25| 1.104-286 | 1.130-2'60 | 1.037 - 2156
& 4257 | 1.643-2%3 | 1.640-274 | 1.347-2158 | 1.704-286 | 1.397.2161 | 1.016 - 2157
oK 6129 | 1.634-2%3 | 1.021-27* | 1.668 - 2157 | 1.527-286 | 1.558.2160 | 1,613 . 2155
7281 | 1.645-283 | 1.986-273 | 1.634 - 2157 | 1.765-286 | 1.753.2160 | 1.917.2155
& 5681 |1.578 215 (1.177.2107] 1.857-2222 | 1.632- 29 | 1.920 - 2226 | 1.767 - 2222
® ® 6217 [1.619-2151.429.2106| 1,156 - 2222 | 1.084 - 2119 | 1.549 - 2225 | 1.049 - 222!
9033 [1.646-2'1°1.380-2'06| 1.135.2222 | 1.521 - 2119 | 1.049 - 2226 | 1.524 . 2221
2 5969 |1.526 - 2115 [1.985.2106| 1,514 92222 | 1.446- 219 | 1.435 - 2226 | 1.857 . 2222
§ ® |2 6613 |1.546-2'15(1.256-2196| 1.941-2221 |1.013-2'19]|1.273-222°| 1.115.2%21
9429 |1.573-2115(1.222.2106171 922 . 2221| 1.406- 219 | 1.718 - 2225 | 1.591 - 222!
& 8417 | 1.36 - 2117 [1.948 . 21061 1,324 . 2224 | 1.000 - 2120 | 1.949 . 2226 | 1.469 . 2222
® #®| | 11761 |1.709 - 2116 [1.219.2106| 1,041 - 2223 | 1.750 - 2119 | 1.066 - 2226 | 1.118 . 222!
14577 | 1.722 - 2116 11,186 - 2106| 1.021 - 2223 | 1.055 - 2120 | 1.251 - 2226 | 1.386 - 222!
& 6257 |1.905- 247 [1.379 - 2139 1.313 . 2287 | 1.053 - 2152 | 1.452. 2291 | 1.339 . 2287
® ® 6881 |1.944 - 2147 [1.666 - 2138 | 1.619 - 2286 | 1.399 - 2151 | 1.165 - 2290 | 1.579 . 2285
10209 |1.976 - 2147 |1.606 - 2138 | 1.586 - 2286 | 1.000 - 2'52 | 1.607 - 2290 | 1.171 - 2286
o|® 6545 [1.838-2147/1.163-2'39] 1.068 - 2287 | 1.858 - 2151 | 1.08-2291 | 1.401 - 2287
Rle (2| 7189 |1.866-217(1.472-2138| 1.373.2286 |1.291 .25 11.901 - 2289| 1.649 - 2285
10517 | 1.546 - 2148 [1.432. 2138 |1 358 . 2286 | 1.838 - 2151 | 1.316 - 2290 | 1.206 - 2286
£ 8993 [1.035-2149 [1.141-2139] 1.180 2288 | 1.252- 2152 | 1.429. 2291 | 1.080 - 2287
® %®| | 12337 [1.033- 2149 |1.431 - 2138 | 1.478 - 2287 | 1.077 - 2152 | 1.541 - 2290 | 1.589 . 2285
15665 |1.041 - 2149 11.391 - 2138 | 1.448 - 2287 | 1.329 . 2152 | 1.849 . 2290 | 1,009 - 2286
7+ Regular version. & S-box with Toffoli depth 4 (low qubit count).
@: Shallow version. ‘ €2: S-box with Toffoli depth 4 (low full depth).
%: Shallow/low depth version. ‘ #: S-box with Toffoli depth 3.

qubit count compared to the respective papers. In total, we present 26 implementations
per variant of AES (including bug-fixing of [JNRV20]), each incorporating a special design
idea/optimization. We show improvement over the recent papers, including Asiacrypt’22
[HS22], Asiacrypt’23 [LPZW23] and Asiacrypt’24 [SF24]. From what we can tell, this
work shows the most advanced results in quantum analysis of AES.

Most recent papers about AES quantum implementations focus on reducing the number
of qubits [GLRS16, LPS20, ZWS*20, ASAM18, WWL22]. In our work, one of the major
ways we lower the depth metrics is by allowing a relatively higher number of qubits, so
that the product terms (i.e., when the number of qubits is multiplied with the circuit
depth metrics or decomposed gate counts) becomes smaller. Having a lower circuit depth
also makes it easier to maximize the number of iterations (required to run the Grover’s
search algorithm) and thus is a crucial factor in reducing the cost of evaluating the overall
quantum search complexity for exhaustive key search a cipher.



36 Quantum Analysis of AES

(b) Using AND gate.

AES |7 #qubit | Total gates| Full depth | FD-G cost | FD-M cost | Cost under MAXDEPTH
(M) (@) (FD) (FDxG) | (FDx M) | FD*>M Td>-M
& 2969 | 1.278-282 | 1.566 - 27 | 1.001- 27 | 1.135-286 | 1.778-2160 | 1,360 - 215!
® ® 3409 | 1.289-282 | 1.099 - 274 | 1.416 - 256 | 1.828 - 257 | 1.004 - 2160 | 1.562 . 2151
4689 | 1.311-282 | 1.050-27* | 1.376 - 2'%6 | 1.201-286 | 1.261-2160 | 1.074 . 2152
ol 3161 | 1.176 - 282 | 1.268 - 274 | 1.490 - 256 | 1.956-28% | 1.239 2160 | 1.448.2151
Nl f|1] 3701 | 1.186-252 | 1.021-274 | 1.211-2'56 | 1.845.2% |1.885.2'59| 1.695 - 2151
4853 | 1.208-282 | 1.986-273 |1.200 - 2°¢| 1.176-286 | 1.168 2160 | 1.111.2152
& 4865 | 1.294-23 | 1.373-.274 | 1.776 - 2157 | 1.630-280 | 1.119-216% | 1.281 . 2151
e ® 6865 | 1.290-2%3 | 1.949.273 | 1.257 - 2157 | 1.633-280 | 1.591.2160 | 1.807 . 215!
8017 | 1.301-283 | 1.893-27% | 1.231-257 | 1.852.286 | 1.752.2160 | 1,055 . 2152
2 6073 |1.332-2115|1.854-2106| 1.934.2222 | 1.374.2119 | 1.274.2226 | 10182217
® % 6865 |1.347-2115[1.311-2'06| 1.765- 2221 |1.008 - 2'19| 1.440- 22?5 | 1.150 - 2217
9937 |1.374-211%[1.253-2106| 1,721 .2221 | 1.519-2'1 | 1,904 - 22?% | 1.665 - 2217
% 6425 [1.224-2115|1.496- 2106 | 1.831 - 2221 | 1.173- 219 | 1.755 - 2225 | 1.077 - 2217
§ ® (2] 7397 |1.234-2'15|1.219-2106] 1,504 - 222 | 1,100 - 2M19 | 1.341 - 222%| 1.240 - 2217
10213 |1.261 - 2115 [1.186 - 2106 |1.495 . 2221 | 1.478 - 219 | 1.753 - 2225 | 1.712- 2217
£ 9489 |1.349 2116 |1.623.2106| 1.094 - 2223 | 1.879-2M9 | 1.525.2226 | 1.773 . 2216
® #| | 13089 |1.348-2'16|1.165-2106| 1.570- 2222 | 1.861 - 219 | 1.084 - 2226 | 1.223 . 2217
15905 |1.361-2116|1.130 - 2196 | 1.537 - 2222 | 1.096 - 2120 | 1.239 - 2226 | 1.486 - 2217
2 6649 |1.605 - 2147 [1.085 - 2139| 1.741 - 2286 | 1.761 - 2151 | 1.910- 2290 | 1.499 . 2281
@ ® 7441 |1.504 - 2147 |1.537 - 2138 | 1.155 - 2286 | 1.396 - 2151 | 1.072-2290 | 1.678 - 228!
10769 |1.643 - 2147 [1.468 - 2138 | 1.205 - 2286 | 1.929 - 2151 | 1.416- 2290 | 1.214 - 2282
£ 7001 | 1.474-2M7[1.747-2'38| 1.287.2286 | 1.493. 2151 | 1.304 - 2290 | 1.579 . 2281
ﬁ@ < |2| 7973 |1.483-2M7[1.429.2138| 1.059 2286 |1.390.2'°1|1.987 . 2289 1.798 . 2281
11301 |1.515 - 2147 {1.389 - 2138 | 1.052 - 2256 | 1.916 - 2151 | 1.330- 2290 | 1.274 . 2282
2 10065 |1.628 - 2148 11.899 - 2138 | 1.545 . 2287 | 1.166 - 252 | 1.107 - 2291 | 1.267 - 228!
® ®| | 13665 |1.625-248 |1.367 - 2138 | 1.110- 2287 | 1.140- 2152 | 1.558 - 2290 | 1.720 - 2281
16993 | 1.641 - 2148 [1.327 . 2138 | 1,088 - 2287 | 1.376 - 2152 | 1.826 - 2290 | 1.069 - 2282
7r: Regular version. ‘ #: S-box with Toffoli depth 4 (low qubit count).
@: Shallow version. ‘ €¢: S-box with Toffoli depth 4 (low full depth).
&% Shallow/low depth version. ‘ #: S-box with Toffoli depth 3.

The optimization of cipher building blocks can be considered among the top priorities
of future research works. As far as we can tell, there is a vacant niche for a tool that can
efficiently find such implementation for 8 x 8 S-boxes. Besides, the idea in [DP21] can be
used on top of our implementations to further reduce the cost for AES-192 and AES-256
(i.e., when r > 1); this is kept as a follow-up work. Similarly, other decomposition of the
Toffoli gate (e.g., as in [Sell3]) can also be considered in the future scope.

Other than that, one may also consider implementation of combined components (as
one 128 x 128 binary matrix), such as; 4 combined MixColumn’s (128 x 128 binary matrix),
4 combined MixColumn’s with ShiftRow and T-table. At the same time, we expect a
follow-up work with a focus on reorganizing the linear operations can be carried out in
order to reduce the full depth for a linear layer (binary non-singular matrix) as well as an
S-box.

All in all, our paper manages to adopt practically all relevant research works that have
been carried out so far in the literature, including the recent works like [HS22, LPZW23,
LGQW23, LXX123, ZH22]. This enables us to pick the suitable candidates for each
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Table 11: Comparison of NIST security levels based on AES variants.

Level N*'IG[.\IISlG] This work
LT [LPS20]{N+’22 [NIS22] -
(AES)|(G* [GLRS16]) 3 ® # K (Tof) | # 3% (Tof) |# * (AND) | 3 (AND)
1 2170 g 2157.0014] gp; 9156.5018 | g, 9156.4605 4. 9162.3577 | . 9158.1337 |y, 9161.6042 | . 9157.9949
162.6093 157 . 9156.5753| . 9156.2762 g, 156.2630| : : :
(128)| (2168-6683) 2 2 w2 w2 w2 162.5641 157.9591 161.6510 157.3327
S . Q157.8286( g, 9157.3300| . o157.2998 [T 27050 ey 2PULIE0T |y 9TREAS e 90T
3 9233 g 2222.3033 | gy, 9221.8197) gy, 9221.7832 o 227.5867 | . 9223.4821 |, 9226.9368 | g, 9223.4355
9227.6491 9221 . 2221.8726| 4. 9221.5880 | ¢y, 9221.5801 : ’
(192)| (2233:4645) ’ ’ C o 227.6260 223.3002 226.9885 222.7643
G 9223.1296| . 9222.6508| . 9222.6201 | T 27T 2920 A 29909989 |4 9222
. 9298 g 2286.7999 g5, 286.2079) g, 2862690\ 92921520 | . 9287.9871 |, 9291.5326u. 9287.9595
o 9292.3100 9285 o£p. 9286.3640 | . 9286.0827 | gy, 9286.0731| : : :
(256) | (2298:3467) ’ ’ T 1. 92021900 287.7966 |1 9201.5822|1. 9287.2801
o 9287.6276 |, 9287.1506| . 9287.1217 |77 249% 250 2970 2400
+y: Regular version (using AND gate). %#: S-box with Toffoli depth 4 (low qubit count).
@: Shallow version (using AND gate). €2: S-box with Toffoli depth 4 (low full depth).
<% Shallow/low depth version (using AND gate). ®: S-box with Toffoli depth 3.
: Bug-fixed JNRV [INRV20] (using S-box from [BP12]).
*: Bug-fixed depth. [ s: Bug-fixed qubit count.

+: In-place MixColumn [JNRVZO].H—: Maximov’s MixColumn [Max19].

building block. On top of that, we focus on finding the optimum architecture, whence
we propose/categorize 3 versions. Indeed, the shallow architecture proposed by us was
used in [LPZW23, SF24]. We present four new implementations for the AES S-box and
one new implementation for the AES MixColumn. From what we can tell, our paper
currently holds the best-known quantum attack on the 3 variants of AES. Apart from that,
we go into adequate details about the theory (probably for the first time); e.g., on NIST
security levels [NIS16, NIS22], the bug and bug-fix of JNRV (Eurocrypt’20) [JNRV20],
or the depth/quabit reduction (Appendix D); which we expect to be useful to future
researchers. Besides, the official NIST implementation?® of AES-128 takes AND-depth of
60, but our implementations improve upon that. As it can be seen from Table 1, that we
achieve the AND-depth (i.e., Toffoli depth) of 40,

Our paper bases its analysis on a quantum simulator, bypassing hardware constraints
such as the nearest-neighbor rule. However, real quantum devices may enforce or relax
this rule, affecting algorithm implementation and attack complexity. Beyond qubit connec-
tivity constraints, quantum hardware introduces noise and errors, requiring fault-tolerant
techniques like quantum error correction and mitigation. Building on our quantum imple-
mentations of AES, a deeper analysis of their physical impact in real-world systems would
provide key insights into feasibility and performance
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A Concise Description of AES Variants

The Advanced Encryption Standard (AES) [DR02] is an SPN block cipher family with a
block of 128 bits. The state of AES is arranged as a 4 x 4 matrix of bytes. AES contains
three specific variants denoted as AES-128, AES-192 and AES-256 according to the key
size. Schematic diagrams of AES-128 round function and key schedule can be seen in

Figure 8.
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A.1 Round Function

The round function of AES consists of AddRoundKey o MixColumns o ShiftRows o
SubBytes, except for the last round which misses the MixColumns operation.

SubBytes

This operation substitutes each element by a predefined 8 x 8 S-box.

ShiftRows

This operation cyclically rotates the 7" row of state to the left by i places; for i = 0,1, 2, 3.

MixColumns

The MixColumn operation pre-multiplies each of the state column with the right circulant
matrix (02,03,01,01), over GF(2%)[z] with modulus z® + z* 4+ 2% + x + 1. Since the
MixColumn operates on the state based on an entire column, it can also be represented as
a matrix over Fy with dimension 32 x 32 (one may refer to [Bak21, Chapter 2.4.1] for a
representation as a binary matrix).

AddRoundKey

The sub-key of each round is generated by the Key Expansion algorithm. Each call of
AddRoundKey XORs the 128-bit sub-key to the state.

The encryption procedure for different instances of AES family are somewhat similar,
except the number of round varies. For AES-128, AES-192 and AES-256, the round
numbers are 10, 12, 14 respectively and all round functions are identical except that there
is no MixColumns operation in the last round. Note that there is an extra key addition
before the first round (also known as whitening).

A.2 Key Schedule

Similar to the state, the master key of AES is allocated to a 4 x [ grid of byte in order,
where | = 4,6 or 8 for AES-128, AES-192 and AES-256, respectively. Generally, the
generation of the round sub-keys are based on word (the entire column in the grid) with
the operations RotWord (cyclically rotating the bytes in a word to the left by one byte),
SubWord (operating the SubBytes of round function on each bytes in a word) and the
XOR. of Reon[r] (the r** 32-bit round constant).

The master key is loaded to the grid Wy, W1y, -+, W;; where i is 3, 5 and 7 for AES-128,
AES-192 and AES-256 respectively. In order to guarantee the encryption, 40, 46 and 52
words need to be provided by key expansion for those three AES instances, respectively.

For AES-128, the word W; is generated by

W, = W;_4 @ SubWord(RotWord(W;_1)) @ Recon[i/4], ifi= 0mod 4,
L Wi_s®W;_1q, otherwise,

where ¢ = 4,5,---,43.
For AES-192, the word W; is generated by

W, — Wi_e & SubWord(RotWord(W;_1)) & Rcon[i/6], ifi= 0mod 6,
L Wi_¢® W,;_1q, otherwise,

where ¢ =6,7,---,51.
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For AES-256, the word W; is generated by

Wi_s @ SubWord(RotWord(W;_1)) @& Rcon[i/8], ifi= 0mod 8,
Wi =< W;_g & SubWord(W;_1), if i = 4mod 8,
Wi,_sd W;_q, otherwise,

where ¢ = 8,9,---,59.

K|K|K|K
K|K|K|K
K|K|K|K
K |K|K|K

AddRoundKey
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(a) Round function (except last round which skips MixColumns).
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k7 ; represents the 4" byte in the j* word of the r'* round key

(b) Key schedule.

Figure 8: Schematic of AES encryption.

A.3 Notations Related to Singular and Plural Forms

The AES state is represented as a 4 x 4 matrix and the operation on one column of the
matrix is denoted here as MixColumn. As described earlier, MixColumn corresponds to a
matrix multiplication over GF(2%), which can equivalently be expressed as multiplication
by a matrix of dimension 32 x 32 over F5. In the AES round function, the MixColumns
operates on the whole block by applying MixColumn to every four bytes in the state (i.e.,
one column in the 4 x 4 matrix). Thus, one MixColumns operation is equivalent to 4x
MixColumn operations on different columns in the matrix. Denoting the binary matrix
corresponding to MixColumn as M with size 32 x 32, MixColumns can be represented as
the diagonal matrix (M, M, M, M) of dimension 128 x 128 over Fs.
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The bytes in each row of the matrix will be cyclically shifted to the left in each round
and the shift operation on the bytes in one row is denoted here as ShiftRow, in the step of
ShiftRows, the ShiftRow will be operated on all the rows in the matrix and shift the bytes
in the i*® row to the left by i bytes, where i = 1,2, 3. Thus, one ShiftRows operation is
equivalent to 4x ShiftRow operations on different rows in the 4 x 4 matrix with the shift
parameter varies from 0 to 3.

The SubBytes in the round function updates every byte in the 4 x 4 matrix in the
same way. The process of applying the S-box to one byte in the AES state is denoted
here as SubByte. In each round, the SubBytes updates all the bytes in the 4 x 4 matrix
by replacing each byte by another one according to the predefined nonlinear map. Thus,
one SubBytes operation is equivalent to 16 SubByte operations on the bytes of the 4 x 4
matrix.

A.4 Notations Related to Reverse Computation

S-box and S-box! in Quantum

S-box in quantum denotes before storing values from ancilla qubits to output qubits. We
denote the reverse operation of S-box as S-box' and uses input qubits to clean up ancilla
qubits.

SubBytes and SubBytes' in Quantum

SubBytes of AES in quantum denotes parallel operation for 16 S-boxes. We denote the
reverse operation of SubBytes as SubBytes’ and cleans up all used ancilla qubits in 16
S-boxes.

Rotation and Rotation' in Quantum

Rotation of AES in quantum denotes the same RotWord. The reverse operation of Rotation
is denoted as Rotation.

SubWord and SubWord' in Quantum

SubWord of AES in quantum denotes parallel operation for 4 S-boxes. We denote the
reverse operation of SubWord as SubWord (and clean up all used ancilla qubits in 4
S-boxes).

B New Construction and Novelty

We basically collect practically all the relevant research works and collate in one place.
Our coverage of the literature includes papers as recent as [ZH22, LXX 23, LGQW23,
LPZW23, SF24]. On top of that, we would like to note the following points about the
novelty /new building blocks introduced in this paper:

1. We propose three four implementations of the S-box (see Table 3 for a summary, and
Appendix D for details) that reduce the full depth and/or ancilla qubits from that
of [HS22, LPZW23]. Indeed, we currently hold the record for the least full depth
implementation of the AES S-box (56, reduced from 69 as reported in [HS22]), to
the best of our knowledge. Of the four new S-box implementations, three are used
in this work.
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2. We propose our new out-of-place implementation of MixColumn that takes only 8
quantum depth (the idea is described in Appendix D), and use it in our shallow/low
depth implementation. From what we find, this is the least quantum depth for the
AES MixColumn implementation reported so far. Further, the required number of
ancilla qubits is only 32.

3. We optimize the depth of the components by using more ancilla sets (except in-place
MixColumns) through parallelization. We reduce the depth while conserving the
number of qubits by allowing for many ancilla qubits and reusing them in the next
round through reverse operations.

4. We present a new idea for pipelining of operation (Figure 7(b)), which reduces the
T-depth and full depth from the previous works (as in Figure 7(a)). This involves
combining the previous round’s reverse operation with the current round’s operation
by using two alternate ancilla sets.

5. We present the last-round optimization technique (Figure 7(c)), which replaces the
output qubits in the final round with ancilla qubits used in SubBytes. This further
reduces the 128 output qubits required for the final round in both the shallow and
shallow/low depth versions.

6. We propose five new architecture in this paper:

(a) The regular architecture was originally conceived by Jaques et al. in Euro-
crypt’20 [JNRV20]. However, their proposal contained bug (related to non-linear
operations). We analysis the bug in detail (in Section 5 and Appendix C) and
present the corrected regular version after patching the bug.

(b) The shallow and shallow/low depth architecture are our innovation and proposed
for the first time in literature in this work (note that the authors of Asiacrypt’23
[LPZW23] adopted our shallow architecture). The shallow/low depth version
has the advantage that the ancilla qubits for MixColumn can be taken for free
(in the regular version, used in [JNRV20], ancilla qubits are not free when the
Q# bug is patched). Similarly, for SubBytes' in the shallow and shallow /low-
depth architecture, many of the ancilla qubits can be saved by taking the idle
ancilla qubits in SubBytes (as presented in [LPZW23]).

(¢) The bug-fixing of [JNRV20] involves two more architecture (see Section 5.2 as
well as Appendix C for more details), which we call fixed depth and fixed qubit
versions. Our bug-fixed benchmark of [JNRV20] improves from the authors’
own bug-fixed benchmark presented recently in [JNRV19].

We present 78 implementations for the AES variants in this work:

(i) Ours: 3 architecture x 3 S-box implementations x 3 AES variants x 2 gates (Toffoli
and AND).

(ii) Bug-fixed JNRV (Eurocrypt’20): 3 AES variants x 2 MixColumn implementa-
tions x 2 architecture (fixed depth and fixed qubit count ) x 2 gates (Toffoli and
AND).

A bird’s-eye view can be seen from Figure 9, where we show how our work contributes in
lowering the quantum circuit complexity (in terms of qubit count and full depth) compared
to GLRS [GLRS16] and LPS [LPS20].

The concepts presented in our work (which has been publicly available as [JBK22b])
has been used in many other works such as [JBK'22a, MAR'24, OJBS23, JLOT25,
JSBT25, KIB'24, WIBT24]; not to mention two recent works in Asiacrypt’23 [LPZW23]
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Figure 9: Comparison of quantum circuit complexities for AES variants.

and Asiacrypt’24 [SF24] were (partially) inspired from earlier versions of our work
(this was acknowledged by the authors in the respective papers). Apart from being
a survey/systematization-of-knowledge, our paper covers in-depth discussion prerequisite
topics. We wrap-up with the comment by the first author of [LPZW23] made in a private
email communication:

“I would like to express our gratitude for your paper... In this paper, we gained
valuable insights into the new AES construction structure. ... Thank you once
again for your valuable contributions to the field.”

C Discussion about Q# Bug in JNRV (Eurocrypt’20)

Continuing from Section 5, we detail more about the Q# bug which affected the FEuro-
crypt’20 implementation [JNRV20]. We encountered two issues. First (non-parallelizable)
and second (issue with AND gate) problems analyzed in Section C.1 can be solved by
adjusting the number of qubits. If many ancilla qubits are used, over-parallelized depth
may be possible. However, the third problem (inconsistency and underestimation of full
depth) in that Section 5.1.1 cannot be solved that way. A well-observed case of this error
is the depth of AES-256 using in-place MC reported in JNRV [JNRV20]. Only 234 should
be derived as depth for SubBytes x 14 rounds. This depth margin, therefore, cannot be
derived even with excessive parallelization.
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The using command automatically disposes when the function ends. If ancilla qubits
to implement AES S-box are allocated with the using command, the consistency between
depth and qubits is lost. When 16 S-boxes are executed in SubBytes, the ancilla qubits
allocated by the using are counted only for the first S-box and not after. Also counts the
depth for executing 16 S-boxes simultaneously. In order to derive the correct result, the
number of qubits or depth must be increased. Q#’s ResourcesEstimator tries to find its
own lower bound for depth and qubit. That is, to achieve the qubits of the lower bound,
the depth may have to be increased, and to achieve the depth of the lower bound, the
qubits may have to be increased.

Another problem is inconsistencies between quantum resources. We observe under-
estimation when cross-checking the full depth of oracles, S-box and MixColumn they
report. We could not pinpoint the exact cause, but we suspect the problems were caused
by the using command and the AND gate. As noted, these problems effectively construct
quantum circuits that are impossible.

The Q# compiler finds non-trivial parallelism in the circuit, but according to our
examples, this parallelism is excessive in the Eurocrypt’20 paper [JNRV20]. In our case also,
the estimated depth of the circuit is slightly reduced, rather than being exactly equal to
the product of the round number and the depth (which would indicate trivial parallelism).
MixColumns requires the result from SubBytes (i.e., it operates sequentially like this:
SubBytes — MixColumns — SubBytes — MixColumns), so it cannot be estimated in
parallel. There is a small degree of overlap between the MixColumn operation in the current
round and the SubBytes operation in the following round. However, as demonstrated by
our example, this overlap is excessive. The reported depth still seems impossible because
the depth of each round has to be counted independently (only slight reduction possible
with trivial parallelization).

A well-observed case of this error is the depth of AES-256 using in-place MixColumn
reported in [JNRV20]. The full depth of their AES-256 (in-place MixColumn) oracle is
3353. Then about 1677 (half) would be the full depth of the AES-256 circuit. However,
the full depth of the in-place MixColumn is 111, so 13 rounds (excluding the last round)
x 111, the full depth is already 1443. Then only 234 (= 1677 — 1443) should be derived
as depth for SubBytes x 14 rounds. Therefore, the full depth derived from Sbox in each
round should be only about 17 (= 234 + 14), which cannot be derived even with excessive
parallelization or omitting cleaning of ancilla qubits.

Additionally, if the full depth is estimated assuming all parallelization with bugs, the
full depth for the AES variants should depend on the number of rounds. However, the full
depth of AES-192, -256 (Maximov’s MixColumn [Max19]) reported in JNRV [JNRV20]
is even lower than AES-128. The lower depth of AES-192 is due to fewer key schedules
(corresponding to the zig-zag structure). However, if complete parallelism is assumed,
depth should depend on the number of rounds, since key schedule works in parallel with
rounds (like ours).

C.1 Non-parallelizable SubBytes

In the Eurocrypt’20 implementation, the S-box of [BP10] is adopted and ported to the
corresponding quantum circuit. The quantum resources required for the S-box quantum
circuit reported in this paper [JNRV20, Table 1] are only correct for the stand-alone S-box
(except for T-depth, this is described in Section C.2). However, in the case of SubBytes
operating with 16 S-boxes, incorrect quantum resources are reported. This is a major
cause of their resource estimation issues.

According to the reported number of required qubits, only one ancilla set is used in
their SubBytes implementation. In other words, 16 S-boxes share one ancilla set. Thus,
the arrangement of qubits in their SubBytes quantum circuit is the serial structure of
Figure 4(b). Since 16 S-boxes generate each output using one ancilla set, all S-boxes in a
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limited space (one ancilla set) must be operated sequentially. However, in their report,
the depth of the SubBytes is the same as the depth for a standalone S-box (meaning all
S-boxes operate in parallel). That is, it is an impossible quantum circuit structure and the
lower-bound depth is reported. The same error is seen again in the SubWord sub-routine
of the key schedule.

C.2 Issue with AND Gate

) <> (7t ] <> ja)

b) & 1 - b)
(Ancilla) [0) { H | Kl lab) (Result)
(Ancilla) ~ |0) < olr o = 0)

|a) | S | |a)
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(b) ANDT gate (Eurocrypt’20).

I T I |(l>

b - H ‘ é*H%I@
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(c) ANDT gate (ePrint’23 update of Eurocrypt’20).

Figure 10: Quantum AND and AND' gates (JNRV).

This issue was also found in their usage of AND gates. Suppose that 5 Toffoli gates
are operated in parallel during the S-box process. Toffoli gates (the method used in
[AMM™13]) operate in parallel without any additional work, providing one Toffoli depth
and full depth for one Toffoli gate. On the other hand, in the AND gate of Figure 10(a),
an ancilla qubit (bottom line in Figure 10(a)) is used. Thus, if replaced with AND gates,
5 ancilla qubits for 5 AND gates must be allocated for parallel operation. Note that, the
ancilla qubit of the AND gate is initialized to 0 after operation and can be reused in the
next AND gate, but a sequential operation is forced.

In summary, in their S-box (out of 137 qubits, 136 qubits for the S-box and 1 qubit for
the AND gate application), only one ancilla qubit is used for one AND gate. However,
quantum resources for parallel operations are reported. Technically speaking, the ancilla
qubits required for the AND gates can be replaced with idle state qubits in the S-box
operation, but this was not considered in their implementation. In our bug-fixed versions,
this technique (utilizing idle state qubits) is applied.

In [JNRV19] (ePrint’23 update), the Eurocrypt’20 authors themselves fixed the [JNRV20)
(Eurocrypt’20) bug, and introduced a more efficient ANDT gate (Figure 10(b)). However,
in this update, the ANDT gate from [JNRV20] (Figure 10(c)) itself was used to fix the bug
of [JNRV20] (Eurocrypt’20).
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D Further Improvement of Quantum Circuits

D.1 Full Depth Reduction of S-box and MixColumn

Quantum programming tools, in general, attempt to synchronize quantum gates to produce
optimized results. In our view, most quantum tools excel in achieving synchronization with
Toffoli gates. However, we observe that the tools do not always find the optimal depth for
the linear quantum gates (CNOT and X gates). Therefore, we deduce that, in order to
achieve the least quantum depth, it may be necessary to directly manipulate the sequence
of the linear quantum gates for more efficient parallelization. The concept of reordering to
reduce depth itself is not new, e.g., a deterministic greedy method was employed in [ZH22]
to reduce the quantum depth of AES MixColumn (which is linear) to 28.

In this case, our target is an S-box (which contains non-linear operations), still we show
how it is possible to reduce the full depth by reordering the linear operations only. As a
result, we propose a reordering method that employs a randomized approach to optimize
the quantum circuit of S-box.

In short, we search all possible linear gate operations that can be reordered (so that the
output remains unchanged) and then reorder those gate operations (by picking a sequence
randomly) which achieves the lowest full depth. Thanks to this approach, we reduce the
depth step by step through multiple reordering of gates.

The overall process is explained through a toy example in Code 1 in ProjectQ com-
patible format (we also conduct the same experiment with IBM’s Qiskit with consistent
result). In this example, we want to implement the affine (vectorial) Boolean function
f(xo, w1, 22,23, T4, T5, Te, T7, T8, Tg, T10, L11) = L0, L1, T2, T3, Lo D T1 D Ta ® T4, 20 © 1 B
ToP x5, 0PX1PToPrsPDl,x0P T ProPrr,x0Pxs D1, 29,210 B 1,20 Bx3Px11PD1.
In input qubits are stored in array a = (xg,x1, 22, x3, T4, Ts, Tg, L7, T8, Tg, T10, L11) and
the output is stored in array a by in-place operations. This is similar to the way the
Asiacrypt’23 [LPZW23] implementation of the S-box is given in [LPZW23, Table 2] (where
they had three types of qubits; ug~7 as the input qubits, go~73 as the ancilla qubits, and
So~7 as the output qubits), except we do not have any ancilla qubit and output qubit in
this example.

As it can be seen, Code 1(a) ~ Code 1(b) ~ Code 1(c) ~ Code 1(d) show the
progression of depth reduction (9 ~ 8 ~ 7 ~ 6) with our approach. CNOT gates and
X gates on qubit arrays a and b are operated in Code 1(a). Since there are only CNOT
(a,b)and X (a) operations, which are of the form (a = a, b=b® a; a = a P 1), all gate
CNOT and X operations can be reordered among themselves (including X gates on qubit
array a). The initial full depth of Code 1(a) is 9, but after three rounds of reordering, the
final full depth is reduced to 6 (Code 1(d)).

For the first reordering, we move Lines 3 and 4 (Code 1(a)) to Lines 19 and 20 (Code
1(b)). This does not change the overall output, but the depth is reduced by 1. From this,
we guess if same operand (a[0] in this case) called continuously, it is operated in sequential
even though this gate operations can be operated parallel with subsequent (follow-up)
gate operations. However, with our reordering, “CNOT | (a[0], al[11])” is synchronized
with subsequent gate operations, thanks to being pushed back (resulting in a reduction of
depth by 1).

In the second reordering, the depth is reduced by 1 by moving the X gate operations
(Lines 22, 23, 24 and 25 in Code 1(b)) to the top (see Code 1(c); 3, 4, 5 and 6).

In the third reordering step, similar to the first reordering (Code 1(b)), Line 21 (“CNOT
| (al2], al81)”), successive calls to a[2]) is moved to Line 12 (Code 1(d)). As a result,
“CNOT | (al[2], al81)” is synchronized well with the preceding gate operations (i.e., Lines
8,9, 10 and 11 in Code 1(d)).

With three rounds of randomized reordering, the full depth, which was initially 9, is
finally reduced to 6. With this randomized greedy approach, we reduced the full depth of
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Code 1: Full depth reduction through reordering (toy example)

(a) Initial target (9 depth)

def Reorder_O (a): # Full depth : 9

CNOT | (alo0],
CNOT | (al3],
CNOT | (afl0],
CNOT | (afo0],
CNOT | (al0],
CNOT | (al0],
CNOT | (al1l,
CNOT | (al1l,
CNOT | (alill,
CNOT | (alil,
CNOT | (al2],
CNOT | (al2],
CNOT | (al2],
CNOT | (al2],
CNOT | (al2],
X | alé]

X | a[8]

X | a[10]

X | a[t1]

al11])
al11])

al4])
a[5])
al6])
al7])

al4l)
a[51)
al6])
al71)

al4l)
al5])
al6])
al71)
al8l)

(c) Second reordering (7 depth)

def Reorder_2 (a): # Full depth : 7

ta o ]

CNOT
CNOT
CNOT
CNOT

CNOT
CNOT
CNOT
CNOT

CNOT
CNOT
CNOT
CNOT
CNOT

CNOT
CNOT

a[6] # Reordered 2
a[8] # Reordered 2
a[10] # Reordered 2
a[11] # Reordered 2

(afo],
(alo0],
(alo],
(afo],

(al1],
(al1],
(al1],
(al1],

(al2],
(af2],
(al2],
(al2],
(al2],

(afo0],
(al3],

al4])
al5])
al6])
al71)

al4])
al5])
al6])
al71)

al4])
a[5])
al6])
a[8])
al7])

a[11]) # Reordered 1
a[11]) # Reordered 1

(b) First reordering (8 depth)

def Reorder_1 (a):

CNOT
CNOT
CNOT
CNOT

CNOT
CNOT
CNOT
CNOT

CNOT
CNOT
CNOT
CNOT
CNOT

CNOT
CNOT

PdoDd D4 Dd

(alo0],
(afo],
(al0],
(afo],

(al1],
(al1],
(al1],
(al1],

(al2],
(al2],
(al2],
(al2],
(al2],

(afo],
(al3],

a[6]
al[8]
a[10]
al11]

# Full depth : 8

al4])
al5])
al6])
al7])

al4])
al5])
al6])
al71)

al4])
a[5])
al6])
al7])
a[8])

a[11]) # Reordered 1
a[11]) # Reordered 1

(d) Third reordering (6 depth)

def Reorder_3 (a): # Full depth : 6

X | a[6]

X | al8]

X | a[10]

X | a[11]

CNOT | (alo0],
CNOT | (af0],
CNOT | (alo0],
CNOT | (al0],
CNOT | (al2],
CNOT | (alll,
CNOT | (alil,
CNOT | (al1l,
CNOT | (al1l,
CNOT | (al2],
CNOT | (al2],
CNOT | (al2],
CNOT | (al2]1,
CNOT | (alo0],
CNOT | (al31,

# Reordered 2
# Reordered 2
# Reordered 2
# Reordered 2

al4])
al51)
al6])
al7])
a[8]) # Reordered 3

al4])
al5])
al6])
al7])

al4])
al5])
al6])
al7])

a[11]) # Reordered 1
a[11]) # Reordered 1
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S-boxes as presented in [HS22] by reordering partial linear operations within S-box using
our approach.

Overall, our idea is generic, it can be applied to any linear layer as well as linear part
of an S-box implementation. We apply this method to the out-of-place MixColumn from
[LSL*19] and achieve the depth reduction (11 ~ 8).

D.2 Ancilla Qubit Reduction of S-box and MixColumn

We focus on identifying skippable operations when classical implementations are ported to
quantum. These operations may be necessary in the classical domain but incur unnecessary
overhead in the quantum domain. In particular, in classical implementations, many
intermediate values are stored in new variables before being passed to other variables.
However, some of the storing steps (storing values in new variables) can be skipped if they
do not change the result or do not increase the circuit depth.

With this insight, by altering the computation flow, we eliminate specific operations
using new variable in MixColumn and S-box implementations. In simple terms, we
eliminate all possible temporary variables that can be skipped. For a simple example, we
change XOR (a[0], temp) — XOR (temp, y[0]) directly to XOR (a[0], y[0]), resulting in
the removal of the temp value. That is, we no longer use a new variable (i.e., temp), and
two gate operations are reduced to one (in this example).

Thanks to this customization, we could reduce the number of ancilla qubits correspond-
ing to the removed variables. Additionally, the number of CNOT gates is reduced because
we save XOR costs by avoiding the need to store values in new variables.

E Further Results

Similar to [ZWS20, Table 6], we present the per-round benchmarks for our implementa-
tions of the AES family in Table 12, using the S-box implementation with Toffoli depth
4 (low qubit count), Toffoli depth 4 (low full depth) and Toffoli depth 3 in Tables 12(a),
12(b) and 12(c); respectively.
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Table 12: Quantum resources required per round for variants of AES (this work).
(a) Using S-box with Toffoli depth 4 (low qubit count).

AES #CNOT #NOT |  #Toffoli TD
Round | # ©) ® | 20O | ¥ ©® |v 0@

1! 7836 4720 5132 81 1360 680 | 8 4

2 7708 8276 8688 81 1360 1360 | 8 4

3 7708 8276 8688 81 1360 1360 | 8 4

4 7708 8276 8688 81 1360 1360 | 8 4

% 5 7708 8276 8688 81 1360 1360 | 8 4
— 6 7708 8276 8688 81 1360 1360 | 8 4
7 7708 8276 8688 81 1360 1360 | 8 4

8 7708 8276 8688 81 1360 1360 | 8 4

9 7708 8276 8688 84 1360 1360 | 8 4

10 | 4068 7192 7192 84 680 1264 | 4 4

1! 7900 8180 8592 81 1360 1360 | 8 4

2 7772 8212 8624 81 1360 1360 | 8 4

3 6188 6508 6920 64 1088 1088 | 8 4

4 7772 8180 8592 81 1360 1360 | 8 4

5 7772 8212 8624 81 1360 1360 | 8 4

N 6 6188 6508 6920 64 1088 1088 | 8 4
= 7 7772 8180 8592 81 1360 1360 | 8 4
8 7772 8212 8624 64 1360 1360 | 8 4

9 6188 6508 6920 64 1088 1088 | 8 4

10 | 7772 8180 8592 81 1360 1360 | 8 4

11 7152 7620 8032 81 1224 1264 | 8 4

12 | 3296 3296 3296 64 544 544 | 4 4

1! 6316 3820 4232 64 1088 544 | 8 4

2 7708 7344 7756 81 1360 1224 | 8 4

3 7708 8076 8488 80 1360 1360 | 8 4

4 7708 8084 8496 81 1360 1360 | 8 4

5 7708 8076 8488 80 1360 1360 | 8 4

6 7708 8084 8496 81 1360 1360 | 8 4

© 7 7708 8076 8488 80 1360 1360 | 8 4
N 8 7708 8084 8496 81 1360 1360 | 8 4
9 7708 8076 8488 80 1360 1360 | 8 4

10 | 7708 8084 8496 81 1360 1360 | 8 4

11 7708 8076 8488 80 1360 1360 | 8 4

12 | 7708 8084 8496 81 1360 1360 | 8 4

13 | 7708 8076 8488 80 1360 1360 | 8 4

14 | 4068 7000 7000 81 680 1264 | 4 4

! Including initial key XOR.
<v: Regular version.
@: Shallow version.

<% Shallow/low depth version.
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(b) Using S-box with Toffoli depth 4 (low full depth).

AES #CNOT #NOT |  #Toffoli TD
Round | ® ® | 2O | O | 0@

1! 6696 4160 4572 81 1320 680 |8 4

2 6568 6848 7260 81 1320 1320 |8 4

3 6568 6848 7260 81 1320 13208 4

4 6568 6848 7260 81 1320 1320 |8 4

® 5 6568 6848 7260 81 1320 1320 8 4
- 6 6568 6848 7260 81 1320 1320 8 4
7 6568 6848 7260 81 1320 1320 |8 4

8 6568 6848 7260 81 1320 13208 4

9 6568 6848 7260 84 1320 1320 8 4

10 | 3508 5892 5892 84 680 1176 | 4 4

1! 6760 6516 7452 81 1320 13208 4

2 6632 6452 7388 81 1320 1320 |8 4

3 5276 4944 5880 64 1056 1056 | 8 4

4 6632 6388 7324 81 1320 1320 8 4

5 6632 6452 7388 81 1320 1320 |8 4

N 6 5276 4944 5880 64 1056 1056 | 8 4
— 7 6631 6388 7324 81 1320 1320 8 4
8 6632 6452 7388 64 1320 1320 8 4

9 5276 4944 5880 64 1056 1056 | 8 4

10 | 6632 6388 7324 81 1320 1320 | 8 4

11 6128 4944 5880 81 1192 1048 | 8 4

12 | 2848 2752 2752 64 544 544 | 4 4

1! 5276 3244 3656 64 1056 544 | 8 4

2 6568 6192 3604 81 1320 1224 |8 4

3 6568 6784 7196 80 1320 1360 | 8 4

4 6568 6784 7196 81 1320 1360 | 8 4

5 6568 6784 7196 80 1320 1360 | 8 4

6 6568 6784 7196 81 1320 1360 | 8 4

© 7 6568 6784 7196 80 1320 1360 | 8 4
o 8 6568 6784 7196 81 1320 1360 | 8 4
9 6568 6784 7196 80 1320 1360 | 8 4

10 | 6568 6784 7196 81 1320 1360 | 8 4

11 6568 6784 7196 80 1320 1360 | 8 4

12 | 6568 6784 7196 81 1320 1360 | 8 4

13 | 6568 6784 7196 80 1320 1360 | 8 4

14 | 3508 5828 5828 81 680 1176 | 4 4

! Including initial key XOR.

7»: Regular version.
©: Shallow version.
%+ Shallow/low depth version.
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(c) Using S-box with Toffoli depth 3.

AES #CNOT #NOT | #Toffoli TD
Round & © @ v @® 5 ¢ | & ¢

1! 12776 7136 7548 81 3120 1560 | 6 3

2 12648 12936 13348 81 3120 31201 6 3

3 12648 12936 13348 81 3120 3120 6 3

4 12648 12936 13348 81 3120 3120 6 3

® 5 12648 12936 13348 81 3120 3120 6 3
- 6 12648 12936 13348 81 3120 3120 6 3
7 12648 12936 13348 81 3120 31201 6 3

8 12648 12936 13348 81 3120 3120 6 3

9 12648 12936 13348 84 3120 3120 6 3

10 6484 7408 7408 84 1560 1560 | 3 3

1 12968 13032 13444 81 3120 3120 6 3

2 12840 12936 13348 81 3120 3120 6 3

3 10012 10332 10744 64 2496 2496 | 6 3

4 12840 12904 13316 81 3120 3120 6 3

5 12840 12936 13348 81 3120 31201 6 3

Q 6 10012 10332 10744 64 2496 2496 | 6 3
- 7 12840 12904 13316 81 3120 3120 6 3
8 12840 12936 13348 64 3120 3120 6 3

9 10012 10332 10744 64 2496 2496 | 6 3

10 12840 12904 13316 81 3120 31201 6 3

11 12840 10128 10540 81 3120 1560 | 6 3

12 5008 5136 5548 64 1248 1248 | 3 3

1! 10268 5788 6200 64 2496 1248 |16 3

2 12648 11648 12060 81 3120 2808 | 6 3

3 12648 11648 12060 80 3120 3120 6 3

4 12648 11648 12060 81 3120 3120 6 3

) 12648 11648 12060 80 3120 3120 6 3

6 12648 11648 12060 81 3120 31201 6 3

8 7 12648 11648 12060 80 3120 3120 6 3
o 8 12648 11648 12060 81 3120 3120 6 3
9 12648 11648 12060 80 3120 3120 6 3

10 12648 11648 12060 81 3120 3120 6 3

11 12648 11648 12060 80 3120 31201 6 3

12 12648 11648 12060 81 3120 3120 6 3

13 12648 11648 12060 80 3120 3120 6 3

14 6484 10224 10224 81 1560 1560 | 3 3

! Including initial key XOR.

7»: Regular version.
©: Shallow version.
%+ Shallow/low depth version.
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