
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 18 pages.

https://doi.org/10.62056/a3txom2hd
Check for updates

Adversarially Robust Bloom Filters: Monotonicity
and Betting

Chen Lotan and Moni Naor

Weizmann Institute of Science, Department of Computer Science and Applied Mathematics,
Rehovot, Israel

Abstract.
A Bloom filter is a probabilistic data structure designed to provide a compact
representation of a set S of elements from a large universe U . The trade-off for this
succinctness is allowing some errors. The Bloom filter efficiently answers membership
queries: given any query x, if x ∈ S, it must answer ‘Yes’; if x /∈ S, it should answer
‘Yes’ only with a probability of at most ε.
Traditionally, the error probability of the Bloom filter is analyzed under the assumption
that the query is independent of its internal randomness. However, Naor and Yogev
(Crypto 2015) focused on the behavior of this data structure in adversarial settings
where the adversary may choose the queries adaptively. One particular challenge in
this direction is to define rigorously the robustness of Bloom filters in this model.
In this work, we continue investigating the definitions of success of the adaptive
adversary. Specifically, we focus on two notions proposed by Naor and Oved (TCC
2022) and examine the relationships between them. In particular, we highlight the
notion of Bet-or-Pass as being stronger than others, such as Monotone-Test Resilience.

Keywords: Bloom filters · adversarial settings · pseudorandomness

1 Introduction
Consider a long-lived system where at each step there is a certain probability of failure.
Suppose that if the inputs to the system are chosen ahead of time, this probability of
failure is non-negligible but can be bounded by some parameter ε. Now, suppose that
instead we have an adaptive adversary that chooses the inputs based on the reaction of
the system in previous rounds. How should we define the bound on the success of such
an adaptive adversary when even the static adversary has some non-negligible chance of
success?

We focus on the non-negligible case since in the negligible case, we expect no failures at
all, and the natural definition for the adaptive case is simply that no failure occurs. In
the non-negligible case, we aim to ensure that the adversary does not perform better than
chance at each step. This paper specifically examines this scenario within the context of
Bloom filters.

A Bloom filter is a probabilistic data structure designed to provide a compact represen-
tation of a set S of elements from a large universe U . The trade-off for this succinctness is
allowing some errors. The Bloom filter efficiently answers membership queries: given any

Research supported in part by grants from the Israel Science Foundation (no. 2686/20), by the Simons
Foundation Collaboration on the Theory of Algorithmic Fairness and by the Israeli Council for Higher
Education (CHE) via the Weizmann Data Science Research Center

E-mail: chen.lotan@weizmann.ac.il (Chen Lotan), moni.naor@weizmann.ac.il (Moni Naor)

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-13 Accepted: 2025-03-11

https://doi.org/10.62056/a3txom2hd
https://crossmark.crossref.org/dialog/?doi=10.62056/a3txom2hd&domain=pdf&date_stamp=2025-03-30
https://orcid.org/0009-0006-6251-5650
https://orcid.org/0000-0003-3381-0221
mailto:chen.lotan@weizmann.ac.il
mailto:moni.naor@weizmann.ac.il
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Adversarially Robust Bloom Filters: Monotonicity and Betting

query x, if x ∈ S it must answer ‘Yes’; if x /∈ S it should answer ‘Yes’ only with probability
at most ε. Those errors are called false positives (FPs).

The construction of a Bloom filter requires only a small memory size compared to
storing S precisely. Moreover, they have a very fast query time. Those properties
make Bloom filters extremely practical and useful in various areas (see for instance
[BM03, TRL12, NPB21]). Note that we use ‘Bloom filter’ in this work as a synonym for a
data structure that implements approximate set membership, not necessarily to the original
implementation of such data structures suggested by Bloom [Blo70].

Usually, the correctness of a Bloom filter is analyzed under the assumption that we
first fix a query x and then compute the error probability over the internal randomness of
the Bloom filter. However, this analysis might not suffice in many scenarios, among them
the case of a series of queries that are chosen adaptively, based on previous responses. This
raises the need to analyze the Bloom filter in a more robust model. Recent papers suggested
different robustness definitions; in this work we contribute to this ongoing exploration by
examining the relations between different notions of robustness.

Naor and Yogev [NY15] initiated the analysis of Bloom filters that are resilient against
adaptive choices, where the adversary may choose queries based on the answer to the
previous ones (but doesn’t have access to the internal representation). They came up with
a notion (later called Always-Bet) and constructions satisfying it, as well as impossibility
results showing the need for computational assumptions if the number of queries is
unbounded. Naor and Oved [NO22] refined the resiliency notion and came up with two
notions of robustness and explored the relationships between them. The robustness test
is defined as a game with an adversary, the adversary chooses the set S and adaptively
queries the Bloom filter. The adversary’s objective varies depending on the specific test
being conducted.

The key idea is that a “robust” Bloom filter will behave like a truly unpredictable
biased coin; that is, each query is false positive with probability at most ε regardless of the
result of previous queries. This idea is formalized in the definition of the Monotone test
introduced in their work. Informally, this test checks whether the output of a sequence of
adaptive queries can be distinguished from a biased random coin. We consider monotone
distinguishers only since we are interested in preventing the cases where the adversary is
able to increase the false positive rate, not decrease it. If a Bloom filter does not fail any
monotone test, we say that it is Monotone test resilient.

The Monotone test presents a “continuous” challenge: this kind of test examines the
false positive rate of the entire sequence of adaptive queries and looks for “anomalies”. We
also consider a one-time challenge test in which an adversary performs a series of adaptive
queries, and her goal is to find one never-queried-before false positive. An example of
such a test is the Always-Bet (AB) test first presented by Naor and Yogev [NY15]. They
defined that following the adaptive queries, the adversary must output a never-queried
before element x∗, which she thinks is a false positive. The adversary wins the game if x∗

is a false positive. They wanted the probability of an adversary to win to be at most ε.
The Bet-or-Pass (BP) test, presented by Naor and Oved [NO22], extends the AB test.

In this test we strengthen the adversary by allowing her to pass, meaning she does not have
to provide any output. We measure her success by defining the adversary’s profit: if she
outputs (bets on) an element x∗ which is indeed a false positive, she is rewarded; otherwise,
she “pays”. If she chooses to pass, her profit is zero. The payments are set so that a
random guess with probability ε has an expected profit of 0. We say that an adversary
makes the Bloom filter fail in the Bet-or-Pass test if her expected profit is noticeably larger
than 0.

Naor and Oved proved that BP Test Resilience implies Monotone test resilience,
indicating that the concept of Bet-or-Pass accurately captures the desired behavior of
this data structure in adversarial settings. Additionally, the Bet-or-Pass notion is not too

Chen Lotan, Moni Naor 3

strong; they were able to show that the construction from [NY15] satisfies this notion.
Those results lead them to conclude that the BP test is a natural notion for robustness.
Another result they achieved is that AB test resilience does not necessarily imply Monotone
test resilience, highlighting the ‘superiority’ of the BP-test definition.

For more discussion of relevant previous work, see the Conclusions and Open Problems
section.

Our Contributions: Naor and Oved’s work left open the question of whether Monotone
test resilience implies BP test resilience or not. In this work, we prove in Section 4 that the
two notions are actually separable: we show a construction of a Bloom filter B that fails the
BP-test but is resilient to any Monotone test. Furthermore, we show that Monotone test
resilience does imply AB test resilience. These results strengthen the [NO22] conclusion
regarding the Bet-or-Pass test, showing that this test gives us the strongest guarantee we
can (currently) imagine.

2 Notation and Preliminaries

2.1 Probabilistic Statements

For random variable S and distribution D we use the notation X ∼ D to denote that X is
distributed as D.
Negligible Function: We use the notation negl for any function negl : N → R+ satisfying
that for every positive polynomial p(·) there is an N such that for all n > N it holds that
negl(n) < 1

p(n) . Such functions are called negligible.
We will compare the outcome of the t queries with that of a vector of independent

Bernoulli trials:

Definition 1. [Bernoulli distribution on vectors] We denote by Berε,t the distribution
of vectors in {0, 1}t, where each entry is chosen independently of all the other and has
probability ε of being 1.

We will consider monotone tests, i.e. those determined by monotone functions, defined
as follows:

Definition 2 (Monotone function). Let t ∈ N. We say that a function f : {0, 1}t → {0, 1}
is monotone if for every pair of neighboring strings Y, Y ′ ∈ {0, 1}t that are equal in all
locations except one index 1 ≤ i ≤ t i.e. Yj = Y ′

j for all j ≠ i and Yi = 0 and Y ′
i = 1, we

have that f(Y) = 1 implies that f(Y ′) = 1.

A property of monotonicity we will use is that for any monotone f : {0, 1}t → {0, 1} it
holds that for all 0 ≤ α ≤ ε ≤ 1 we have that increasing the probability from α to ε in
Ber·,t implies a non decrease in the probability that f is 1 (See Kalai and Safra Section
2.3 [KS06]). I.e.

Pr
Y ∼Berα,t

[f(Y) = 1] ≤ Pr
Y ∼Berϵ,t

[f(Y) = 1].

Proof. Let f be a monotone boolean function and consider three independent vector
Bernoulli r.v.: Y ∼ Berε,t, X ∼ Berα,t and Z ∼ Ber ε−α

1−α ,t. The point is that the
distributions of Y and X ∨ Z (the bit wise OR) are identical: for every entry i = 1, . . . , t

4 Adversarially Robust Bloom Filters: Monotonicity and Betting

we have:

Pr[Xi ∨ Zi = 1] = Pr[Xi = 1] + Pr[Zi = 1] − Pr[Xi = 1 ∧ Zi = 1]

=α + ε − α

1 − α
− α · ε − α

1 − α

=ε

= Pr[Yi = 1]

and ∀i ≠ j Xi ∨ Zi and Xj ∨ Zj are independent (since Xi, Xj are independent and Zi, Zj

are independent). Hence, (X OR Z) ∼ Berε,t. Then,

Pr[f(Y) = 1] = Pr[f(X OR Z) = 1] ≥ Pr[f(X) = 1 OR f(Z) = 1] ≥ Pr[f(X) = 1]

We will be using the following concentration bound:

Theorem 1. Multiplicative Chernoff bound (See Mitzenmacher and Upfal [MU05]
Section 4.2.1): Suppose Y1, . . . , Yt are independent random variables taking values in {0, 1}.
Let Y =

∑t
i=1 Yi be their sum and let µ = E[Y] be the expected value of the sum. Then,

• Pr[Y ≥ (1 + a)µ] < e−a2µ/(2+a) for any 0 ≤ a

• Pr[Y ≤ (1 − a)µ] < e−a2µ/2 for any 0 < a < 1

2.2 Bloom Filters Preliminaries
We consider a universe U of elements (where |U | = u), and a given subset S ⊂ U of size n.
We will focus on the case where the set is fixed throughout the lifetime of the Bloom filter
as was done by Naor and Oved [NO22],. We think of a Bloom filter as a data structure
B = (B1, B2) composed of two algorithms, a setup algorithm, and a query-answering
algorithm.

Definition 3 (Bloom Filter). Let B = (B1, B2) be a pair of probabilistic polynomial time
algorithms such that B1 gets as input a set of elements S ⊂ U and outputs a representation
M , and B2 gets a representation M and a query element x ∈ U and outputs an answer to
the query. We say that B is an (n, ε)-Bloom filter if for any set S ⊂ U of size n it holds
that:

1. Completeness: For any x ∈ S: Pr[B2(B1(S), x) = 1] = 1

2. Soundness: For any x /∈ S: Pr[B2(B1(S), x) = 1] ≤ ε

Where the probabilities are over the internal randomness of the setup algorithm B1 and
query algorithm B2.

Since our main focus is the separation of definitions by a counter-example, we can
consider for simplicity a query algorithm that maintains the set representation unchanged.

When x /∈ S and B2(B1(S), x) = 1 we classify x as a false positive. The false positive
rate of a Bloom filter is its main evaluation metric.

We consider a series of Bloom filters with varying values of n; in our analysis, we focus
on Bloom filters with sufficiently large n.

Chen Lotan, Moni Naor 5

Memory Requirements: An important parameter of Bloom filters is their memory
requirement. We denote this by m, which represents the number of bits the Bloom filter
needs to store its data. Essentially, we want m to be as small as possible while still
effectively answering membership queries. Carter et al. [CFG+78] proved that for a Bloom
filter handling sets of size n and with an error rate of ε, if u > n2/ε, the minimum required
memory is approximately m ≥ n log 1

ε bits. This relationship can be expressed as ε ≥ 2− m
n ,

defining what we call the minimal error of the Bloom filter.
A straightforward way to construct a robust Bloom filter is by storing the set S

explicitly, thereby eliminating false positives for any adversary, but consuming significant
memory and contradicting the primary goal of Bloom filters: to minimize memory usage.
Our focus, however, is on developing a robust, non-trivial Bloom filter. In broad terms,
a non-trivial Bloom filter is characterized by an ε that is neither close to 0 nor 1, and a
large universe size in comparison to the available memory, making it impossible to store
the set explicitly.

Definition 4 (Non-trivial Bloom filter (Def 2.6 in [NO22])). Let B be an (n, ε)-Bloom
filter for a universe U that uses m bits of memory. Let ε0 = 2− m

n be the minimal error
and let the universe size u be s.t. u > n2/ε0. We say that B is non-trivial if there exists
polynomials p1(·), p2(·) such that 1

p1(n) < ε0 ≤ ε < 1 − 1
p2(n) .1

3 Robustness Definitions of Bloom filters
3.1 Modeling the Adversary
In Definition 3 above for Bloom filters, the probability of failure is for a single given
element x and is taken over the randomness of B. We want to explore the robustness of
Bloom filters against stronger adversaries who have the power to make multiple queries
x1, . . . , xt that are not fixed but chosen adaptively (i.e., the adversary can see the responses
of previous queries before choosing the next one). We introduce a security parameter λ
provided as input to both the setup algorithm B1 and the adversary. Now the running
time of the Bloom filter should be polynomial in λ.

To formalize this adversary model we use Naor and Oved’s definition for the game

AdaptiveGameA,t(λ)

where λ is the security parameter. In this game, we consider an adversary A = (A1, A2),
where A1 chooses the set S and A2 gets as input the set S and oracle access to the query
algorithm (initialized with M) and perform adaptive queries. The definition of Bloom
filter failure may differ depending on various definitions of robustness, resulting in distinct
objectives for A2 in each scenario. The adversary’s runtime and her probability of causing
the Bloom filter to fail are considered functions of the security parameter λ. It holds that
n = poly(λ) (otherwise if n = superpoly(λ) the adversary would not even be able to access
the entire set).

Definition 5 (The Adaptive Game AdaptiveGameA,t(λ) (Def 2.2 in [NO22])).

1. The adversary A1 is given input 1λ+n log u (where u = |U |) and outputs a set S ⊂ U
of size n.

2. B1 is given input (1λ+log u, S) and builds a representation M .
1If the false positive rate is exceedingly low, then any polynomial-time adversary has a negligible chance

of identifying a false positive. Consequently, we can convert any adaptive adversary into a non-adaptive
one since they already know the responses. A similar argument is presented in [BLV19] as Lemma 4.
When ε is close to 1, a similar reasoning applies.

6 Adversarially Robust Bloom Filters: Monotonicity and Betting

3. The adversary A2 is given input (1λ+log u, S) and oracle access to B2(M, ·) and
performs at most t adaptive queries x1, . . . , xt to B2(M, ·).

We assume wlog that xi /∈ S for all i ∈ [t], since Bloom filters admit false positives, but
not false negatives, and also, A2 is given as input the set S. Therefore, a queried element
can be either a false positive or a true negative.

From now on, we will refer to the adversary as A, without distinguishing between A1
and A2.

We consider two types of adversaries: efficient adversaries, which run in polynomial
time, and computationally unbounded adversaries, which are only constrained by the
number of queries they can make. The parameter t indicates the number of queries that
the adversary performs.

The exact definition of security depends on the rules of winning and losing such a game.
For a given type of game, we want a Bloom filter that is resilient under its rules; see below
the definitions of Always Bet (Section 3.2.1), Bet-or-Pass (Section 3.2.2) and Monotone
(Section 3.2.3).

3.2 Robustness Definitions
We aim to define the desirable behavior of Bloom filters with a non-negligible rate of false
positives (denoted by ε). We can compare the responses of a Bloom filter to a series of
independent biased coin tosses (with probability ε to 1). When considering the adaptive
case, our wishful thinking is that a Bloom filter still behaves like a truly unpredictable
biased coin. Naor and Oved [NO22] encapsulated this idea by proposing various robustness
definitions that capture different aspects of robustness. In this work, we examine the
relations between some of the definitions they presented.

In the following definitions, we start with an (n, ε)-Bloom filter (under the static
definition) and aim to strengthen it to achieve the desired behavior against an adaptive
adversary. The definitions we provide refer to the case of unbounded adversaries; extending
them to the case of polynomial-time adversaries is straightforward.

3.2.1 The Always-Bet (AB) Test

This test was presented by Naor and Yogev [NY15]: the adversary participates in a game
AdaptiveGameA,t(λ) and then outputs an element x∗ that was never queried before. The
adversary wins if the probability that x∗ is a false positive is high.

The AB Test ABTestA,t(λ):

1. A participates in the AdaptiveGameA,t(λ) (Def 5). Let S be the set that the adversary
chose and {x1, . . . , xt} be the queries that the adversary performed during the game.

2. A outputs x∗ /∈ S ∪ {x1, . . . , xt}.

3. The result of the test is 1 if B2(M, x∗) = 1, and 0 otherwise. If ABTestA,t(λ) = 1,
we say that A made the Bloom filter fail.

Definition 6 (Always Bet (AB) Test (Definition 3.1 in [NO22])). Let B = (B1, B2) be
an (n, ε)-Bloom filter. We say that B is (n, t, ε)-Always-Bet (AB) test resilient if for any
probabilistic adversary A = (A1, A2) there exists a negligible function negl such that:

Pr[ABTestA,t(λ) = 1] ≤ ε + negl(λ)

where the probabilities are taken over the internal randomness of B and A.

Chen Lotan, Moni Naor 7

An alternative and equivalent way to phrase the AB test is to consider the profit of A
as defined below as one would have for a biased coin with probability ε of being 1 and
require that the expected value of the profit be only negligibly larger than 0.

CA =


1
ε

, if x∗ is a false positive,

− 1
1 − ε

, if x∗ is not a false positive.

3.2.2 The Bet-or-Pass (BP) Test

This test, presented by Naor and Oved [NO22], extends the AB-test (Def 3.2.1): we give the
adversary the option to pass; the adversary does not have to output a challenge element x∗

(as opposed to the AB-test in which the adversary must output an element). The adversary
participates in an AdaptiveGameA,t(λ) and then outputs (x∗, b) where x∗ /∈ S ∪{x1, . . . , xt}
is the challenge and b indicates whether she wants to bet (b = 1) or pass (b = 0). If she
chooses to pass x∗ is ignored. To measure the success of the adversary we define her profit:
if the element she outputs is a false positive she gets rewarded, while she is penalized if
she outputs a true negative. If she chooses to pass, she does not gain or lose any value.
The expected profit defines the robustness, when we want the expected profit to be 0.

The BP Test BPTestA,t(λ, ε):

1. A participate in the AdaptiveGameA,t(λ) (Def 5). Let S be the set that the adversary
chose and {x1, . . . , xt} be the queries that the adversary performed during the game.

2. A outputs (b, x∗) where x∗ /∈ S ∪ {x1, .., xt}.

3. A’s profit CA is defined as:

CA =


1
ε

, if x∗ is a false positive and b = 1,

− 1
1 − ε

, if x∗ is not a false positive and b = 1,

0, if b = 0.

Definition 7 (Bet-or-Pass (BP) Test (Def 3.2 in [NO22])). Let B = (B1, B2) be an
(n, ε)-Bloom filter. We say that B is (n, t, ε)-Bet-or-Pass (BP) test resilient if for any
probabilistic adversary A = (A1, A2) there exists a negligible function negl such that:

E[CA] ≤ negl(λ)

when the expectation is taken over the internal randomness of B and A.

3.2.3 Monotone Tests

To formalize the simile that the Bloom filter behaves as a truly unpredictable biased coin,
we consider monotone tests. In these tests, we are not concerned with specific output
elements. Instead, we are interested in how the Bloom filter responds to a series of adaptive
queries from an adversary. In the Monotone test, the adversary first participates in the
AdaptiveGameA,t(λ), we then consider the Boolean vector Y = (Y1, Y2, . . . , Yt) consisting
of the sequence of responses to the queries that the adversary performed during the
game (whether they are false positive or not). We want that for any Monotone test (or
distinguisher) D, the probability that D returns ‘1’, when given such a Boolean vector, will
be at most the probability that D returns ‘1’ when given an independent biased sequence
of the same length and with probability ε of being 1.

8 Adversarially Robust Bloom Filters: Monotonicity and Betting

We restrict the distinguisher to be a monotone function of its input, since there may
be elements where the data structure is known not to err (and we consider it a good
property rather than being problematic). We consider monotone distinguishers, which are
distinguishers of the form Df , where f : {0, 1}t → {0, 1} is a monotone function, as defined
in Definition 2, and Df an algorithm computing f . If the requirements we described
above hold to any distinguisher of this form, we say that the Bloom filter is Monotone test
resilient.

Definition 8 (Monotone test resilient). Let B = (B1, B2) be an (n, ε)-Bloom filter. We
say that B is (n, t, ε)-Monotone test resilient if for every monotone algorithm (distinguisher)
D : {0, 1}t → {0, 1} and every probabilistic adversary A = (A1, A2) participating in the
AdaptiveGameA,t(λ) there exists a negligible function negl such that:

Pr
Y ∼GA

[D(Y) = 1] − Pr
Y ∼Berε,t

[D(Y) = 1] ≤ negl(λ)

where GA is the distribution of the Bloom filter outcomes on the t queries issued by A
and Berε,t is as defined in Definition 1.

It is natural to compare the notion of Monotone test resilience with that of cryptographic
pseudorandomness (see Goldreich, Chapter 3 [Gol01]). Pseudorandomness refers to the
property of sequences or objects that appear random to any efficient observer, even though
they are generated by a deterministic process using only a short seed. This idea of
computational indistinguishability, shares some similarities with the definition of Monotone
test resilience: Given a distribution over t-bit strings Z, we say that Z is pseudorandom if no
polynomial-time algorithm can distinguish between a string sampled from the distribution
Z and a uniform t-bit string. In contrast to monotone tests, the distinguisher in the
context of pseudorandomness is not required to be monotone, and we consider the absolute
value of the difference in probabilities. Additionally, in the Monotone test, we have an
asymmetry between 0’s and 1’s.

3.3 Resilience of Bloom Filters Against Different Adversaries
How does the computational power of the adaptive adversary affect the resiliency of the
scheme? Naor and Yogev [NY15] proved the impossibility of (n, t, ε)-AB test resilient
Bloom filters with memory m when t ≥ Ω(m/ε2

0) where εo is the minimal error (the
Bloom filter’s inherent false positive rate given the parameters, see Definition 4) and
ε < 1, if the adversary is computationally powerful. More specifically, if the Bloom filter is
computationally efficient (i.e. polynomial time), the power the adversary needs is inverting
one-way functions. In other words, one must either limit t as a function of m or limit the
computational power of the adversary.

On the other hand, they presented an efficient construction that uses pseudo-random
functions to obtain an AB-test resilient Bloom filter against any polynomial number
of queries when the adversary is computationally bounded. When the adversary is
computationally unbounded they gave a construction for an (n, t, ε)-AB test resilient
Bloom filter with m ∈ O(n log(1/ε) + t) memory (see the construction in Section 4.1.1).
Thus, when t is not known in advance or large compared to m, AB-resilient Bloom filters
are possible if and only if the adversary is computationally bounded and pseudo-random
functions exist (which are existentially equivalent to one-way functions).

Naor and Oved [NO22] (Section 5 there) showed that this equivalence result still holds
given a Bloom filter that is BP-test resilient.

As a result, we focus on two types of adversaries:

• Computationally unbounded adversaries limited to t queries, where t is fixed
and known in advance.

Chen Lotan, Moni Naor 9

• Efficient adversaries that run in polynomial time, where t is bounded only by the
adversary’s running time.

A Bloom filter that is resilient to t queries (without restrictions on the adversary’s
computational power), is called t-resilient. And a Bloom filter that is resilient for any
polynomial number of queries is called strongly resilient; in this case the adversary must
be efficient.

4 Relationships: Monotone Test Resilience and its
Implications

We now examine the relationships between the notions introduced in Section 3. Naor
and Oved, in their work [NO22], demonstrated some of the connections between different
definitions, which are highlighted in blue in Figure 1. In this work we complete the picture
by investigating the Monotone test resilience implications for AB and BP test resilience,
our results marked with black in Figure 1.

BP Test Resilience

Monotone Test Resilience

AB Test Resilience

/

/
/

Figure 1: The relationships between the notions; the new results are in black.

Theorem 2 below, showing the bottom arrow, i.e. that monotone resilience implies
AB-Test resilience is quite straightforward. We devote most of the space (Section 4.1) to
showing the top result, that monotone resilience does not imply BP-test resilience.

Theorem 2. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly Monotone test resilient
Bloom filter. Then B is (n, ε)-strongly AB test resilient.

Proof. Suppose, toward contradiction, that B is not (n, ε)-strongly AB test resilient Bloom
filter. So, there exists a probabilistic polynomial-time adversary A in the ABTestA,t(λ)
where t ≤ poly(n, λ) and a polynomial p(·) such that for infinitely many λ’s:

Pr[x∗ is False Positive] ≥ ε + 1
p(λ)

We now define a monotone polynomial-time test Dt+1 that distinguishes GA, the vector
s.t. the ith entry is the answer to the ith query of A (including the answer to x∗), from
Berε,t+1 the biased independent sequence of length t + 1 with probability ε of being 1, as
in Definition 1.

Dt+1 =
{

1, if the (t + 1)th entry in the sequence is 1
0, else

Clearly Dt+1 is monotone. We show that B fails the test Dt+1, meaning B is not
(n, ε)-strongly Monotone test resilient Bloom filter:

Pr
Y ∼GA

[Dt+1(Y) = 1] − Pr
Y ∼Berε,t+1

[Dt+1(Y) = 1] = Pr[x∗ is FP] − ε ≥ ε + 1
p(λ) − ε = 1

p(λ)

10 Adversarially Robust Bloom Filters: Monotonicity and Betting

This contradicts our assumption.

Remark 1. Our proof holds for unbounded adversaries as well, if t is fixed and known in
advance.

4.1 Resilience to Monotone tests does not imply one to BP tests
As promised, we show that resilience to the Monotone test does not imply resilience to
the BP test. We will prove this by constructing a Bloom filter that has two possible
modes or states: ‘bad’ and ‘good’, and show that the ‘good’ and ‘bad’ scenarios cannot
be distinguished in a monotone manner. In the ‘good’ state the false positive (FP) rate
is slightly below ε, and an adversary has no specific advantage in finding false positives.
However, with a small but non-negligible probability, the Bloom filter might be in the
‘bad’ state where the FP rate for most queries is even lower, but on a ‘special’ element x̂
the Bloom filter always returns ‘Yes’, allowing an adversary to exploit this knowledge for
betting. A (non-monotone) adversary can identify whether the current state is ‘good’ or
‘bad’ by evaluating the FP rate on a randomly chosen query set (that should not include
the special element); if the Bloom filter is in the ‘bad’ state, the adversary can confidently
bet on the special element. This shows that the Bloom filter is not resilient to the BP test.
On the other hand, we show that no monotone test can exploit this weakness.

To actually construct the Bloom filter in this example we need to start with one where
we have a good understanding of the false positive rate on random queries. That is, we
should know during construction the value of this parameter with good accuracy (it should
not be much smaller or larger than the given value).

We note that the BP adversary we suggest does not need to be adaptive in selecting
queries to determine the state; instead, she can choose queries randomly from U \ S ∪ {x̂}.
The adaptiveness required is only in deciding whether to place a bet or not, based on the
observed responses. In more detail:

Theorem 3. Let 0 < ε < 1/2 and n ∈ N, then for any 0 < δ < 1/2 and for large enough
u:

1. Assuming the existence of one-way functions, there exists a non-trivial Bloom filter
B that is (n, ε)-strongly Monotone test resilient and is not an (n, δ)-strongly BP test
resilient.

2. If t is fixed and satisfies t >
32·ln 2

ε

ε and u > t2, then there exists a non-trivial Bloom
filter B that is (n, t, ε)-Monotone test resilient and is not an (n, t, δ)-BP test resilient.

Proof. First, assume that t is fixed and known in advance. Let 0 < ε < 1/2. We will
show a construction of a Bloom filter B that is (n, t, ε)-Monotone test resilient and is not
(n, t, δ)-BP test resilient for any 0 < δ < 1/2.

For any n, t ∈ N and 0 < ε < 1/2 Naor and Yogev [NY15] constructed a non-trivial
Bloom filter (as defined in definition 4) that is (n, t, ε)-AB test resilient against an unbounded
adversary given number t of queries. Naor and Oved [NO22] pointed out that under the
same restriction (the adversary being limited to t queries), this construction is actually
(n, t, ε)-BP test resilient (Section 5.1 there).

As mentioned before, for the counterexample, we need a Bloom filter whose false
positive rate is well understood. The construction by Naor and Yogev is close to fulfilling
this requirement, as it allows us to derive good bounds on the false positive rate. We use
this construction with some modifications that allow us to compute the exact false positive
rate. Next We provide a brief description of this construction (more details can be found
in Section 6 of [NY15]) and the modifications needed.

Chen Lotan, Moni Naor 11

4.1.1 Overview of the (n, t, ε)-BP test resilient Bloom filter construction

Naor and Yogev’s construction is based on two main ingredients: Cuckoo Hashing dictionary
[PR04], this structure consists of two tables T1 and T2 that maintain the elements and two
hash functions h1 and h2. Each element is stored either at T1[h1(x)] or T2[h2(x)]. The
second ingredient is a family G of hash functions satisfying that on any set of k inputs, it
behaves like a truly random function with high probability [Pag08, DW03] (even when
the set of queries is chosen adaptively [BHKN19]). We use an exact k-wise independent
function for the family G and take k to be t + n + 1 (see below). Each g ∈ G maps a pair
(x, j) where x ∈ U and j ∈ {1, 2} to ℓ bit strings.

The idea is to store the set S in a Cuckoo Hashing dictionary, where each element x
is stored in either T1[h1(x)] or T2[h2(x)]. To save space, instead of storing x, we store
the evaluation of a function g at point x, where g is randomly chosen from the family G
described above. Specifically, if x is stored in T1, we store the value g(x, 1), otherwise we
store the value g(x, 2). In the empty cells of the tables, we put randomly chosen ℓ-bit
strings. We choose k = t + n + 1 and ℓ = log 2

ε .
Given a query x, we compare g(x, 1) with T1[h1(x)] and g(x, 2) with T2[h2(x)]; if either

of them is equal a ‘yes’ is returned.

Modifications and Simplifications. For our counterexample, we made several sim-
plifications and modifications to the original construction [NY15] to fit our purpose (or
proof) and obtain the property that there is some ε′ ≤ ε where for any query x ̸∈ S and
any history of at most t queries the probability of false positive is exactly ε′. Here is the
summary of the changes:

Exact Independence: We use an exact k-wise independent function instead of an almost
k-wise independent. Additionally, we drop the optimization of making G composed
from one-bit functions. In the lookup phase, we simplify the process by avoiding the
bit-by-bit comparison used in Naor and Yogev’s construction.

Modifying the parameters: The parameters k and ℓ are modified. In the original
construction, they were k = 2t/ log 1

ε and ℓ = 4 log 1
ε .

Random values in empty bins: We put a random value in the empty locations of the
tables, instead of the ⊥ value that was used in [NY15], in order to have an exact
evaluation of the probability of a false positive response.

Different values for T1 and T2: We want to avoid a potential bias in the usual imple-
mentation arising from knowing that two values in the table are the same, which
slightly reduces the probability of collision. Hence, we modify the original construc-
tion and store different applications of the function g in the first table and the second
table: g(x, 1) and g(x, 2). Therefore, knowledge of the contents of the tables does
not change the conditional probability of false positive.

In the modified construction, for every x ∈ S we store either g(x, 1) in T1[h1(x)] or
g(x, 2) in T2[h2(x)]. Hence, when querying x ∈ S we have,

Pr [g(x, 1) = T1[h1(x)] OR g(x, 2) = T2[h2(x)]] = 1

ensuring that there are no false negatives. Moreover, as we prove in Lemma 1, we can
compute the exact probability of a false positive.

Call a Bloom filter constructed as above (n, t, ε)-CHBF. What Naor and Oved showed
is that this construction is indeed (n, t, ε)-BP test resilient. Our point is that the probability
of a false positive is not much lower than ε:

12 Adversarially Robust Bloom Filters: Monotonicity and Betting

Lemma 1. Let BNY be an (n, t, ε)-CHBF and A an adversary that performs t adaptive
distinct queries x1, . . . , xt ∈ U \S. Let ε′ = ε− ε2

4 . Then for any query xi given the history
of the results of queries x1, . . . xi−1 the probability that xi is a false positive is exactly ε′

and
(Y1, . . . , Yt) ∼ Berε′,t

where Y1, . . . , Yt are the (Boolean) responses of BNY to the queries x1, . . . , xt.

Proof. For any query xi the probability that xi is a false positive equals the probability
that g(xi, 1) = T1[h1(xi)] or g(xi, 2) = T2[h2(xi)]. Since g is k-wise independent and
t + n ≤ k, even if all the values in the tables that have ever been used are known to the
adversary, the value of g(xi, j) remains uniformly distributed over its range. Thus,

Pr[xi is FP] = Pr [g(xi, 1) = T1[h1(xi)] OR g(xi, 2) = T2[h2(xi)]]
=2 · 2−ℓ − (2−ℓ)2

=2 · 2−(log 2
ε) − (2−(log 2

ε))2

=ε − ε2

4
where the first equality is derived from the inclusion-exclusion principle.

Since g is k-wise independent and t + n < k, then Y1, . . . , Yt are independent and for
every i it holds that Yi is distributed as Bernoulli with probability ε− ε2

4 of being 1. Hence,

(Y1, . . . , Yt) ∼ Berε′,t

4.1.2 The Counter-Example:

For convenience, we assume wlog that ε is a power of 2 (otherwise, we can take the closest
smaller power of 2). We use the CHBF construction above to get two Bloom Filters: (i)
B′ that is (n, t, ε

16)-CHBF and (ii) B′′ that is (n, t, ε
2)-CHBF.

For a fixed known element x̂ ∈ U \ S we modify B′ so that when queried on x̂ it will
answer 1 w.p. 1 (achieved by simply inserting x̂ into B′). Using B′ and B′′ we construct,

B(S, ·) ≡

{
B′(S, ·), w.p. ε

2
B′′(S, ·), w.p. 1 − ε

2

That is, in the setup phase B flips a coin with probability ε
2 of being 1, which determines

whether it will behave like B′ or B′′. During the query phase, B responds to each query
in the same way as the Bloom filter selected in the setup phase. We denote by B ≡ B′ the
case where B answers as B′ (resp. B ≡ B′′).

Lemma 2. B is not (n, t, δ)-BP test resilient for any 0 < δ < 1/2.

Proof. Let 0 < δ < 1/2. We describe an adversary A that makes B fail the (n, t, δ)-BP
test: A queries t random elements in U \ S ∪ {x̂} to determine whether B ≡ B′ or B ≡ B′′.
If B ≡ B′, then A bets on the special element x̂; Otherwise, she passes. In more detail:
Adversary A:

1. Choose a random set S ⊂ U \ {x̂} of size n

2. Query independent random elements {x1, . . . , xt} ⊆ U \ S ∪ {x̂} and get Yi 1 ≤ i ≤ t

3. If
∑t

i=1 Yi ≤ ε
8 · t, then output (b = 1), x̂

Chen Lotan, Moni Naor 13

4. Otherwise, output (b = 0), x̂

Each response Yi the adversary gets is a random variable indicating whether the ith
query is a false positive. Since the adversary A chooses independent random elements
to query and the universe U is large, u > t2, we can assume that w.h.p. she does not
query the same element twice (by the Birthday paradox, Chapter 5 in [MU05]). Hence,
by Lemma 1, when B ≡ B′′ it holds that Y1, . . . , Yt ∼ Ber(

ε
2 − ε2

16

)
,t

. Furthermore, since
x̂ /∈ {x1, . . . , xt}, the same analysis as in the proof of Lemma 1 implies that when B ≡ B′

it holds that Y1, . . . , Yt ∼ Ber(
ε

16 − ε2
1024

)
,t

. Note that this gap between the probabilities
allows the adversary to know whether we are in the case B ≡ B′ or B ≡ B′′ w.h.p. Using
the Chernoff bound specified in Theorem 1, we get that the probability to bet, i.e that
b = 1, is at least

(
1 − e(ε/32)·t) when B ≡ B′, and at most e(ε/32)·t when B ≡ B′′. Recall

that CA denotes A’s profit in the BP-test. Then,

E[CA] = E[CA|B ≡ B′] · Pr[B ≡ B′] + E[CA|B ≡ B′′] · Pr[B ≡ B′′]

= 1
δ

· Pr[B ≡ B′] · Pr[b=1 |B ≡ B′] · Pr[x∗ is FP|b=1 And B ≡ B′]

− 1
1 − δ

· Pr[B ≡ B′] · Pr[b=1 |B ≡ B′] · Pr[x∗ is not FP|b=1 And B ≡ B′]︸ ︷︷ ︸
=0

+ 1
δ

· Pr[B ≡ B′′] · Pr[b=1 |B ≡ B′′] · Pr[x∗ is FP|b=1 And B ≡ B′′]︸ ︷︷ ︸
≥0

− 1
1 − δ

· Pr[B ≡ B′′] · Pr[b=1 |B ≡ B′′] · Pr[x∗ is not FP|b=1 And B ≡ B′′]︸ ︷︷ ︸
≤1

≥ 1
δ

· ε

2 · Pr[b=1 |B ≡ B′] − 1
1 − δ

·
(

1 − ε

2

)
· Pr[b=1 |B ≡ B′′]

≥ 1
δ

· ε

2 ·
(

1 − e(ε/32)·t
)

− 1
1 − δ

·
(

1 − ε

2

)
· e(ε/32)·t

≥ 1
1 − δ

·
[ε

2 − e(ε/32)·t
]

So for sufficiently large t, E[CA] is non-negligible, and A wins the game.

Lemma 3. B is (n, t, ε)-Monotone test resilient.

Proof. We will show that for any monotone distinguisher D, every adversary A that makes
at most t queries it holds that:

Pr
Y ∼GA

[D(Y) = 1] − Pr
Y ∼Berε,t

[D(Y) = 1] ≤ negl(λ)

When GA is the vector s.t. the ith entry is the answer to the ith query of A and Berε,t the
biased independent sequence of length t with probability ε of being 1, as in Definition 1.

Let D be a monotone distinguisher and A an adversary that makes at most t queries.
We assume that A is deterministic since we can fix the best choice of randomness (the one
maximizing the probability of success). We can further assume wlog that A queries the
point x̂, since if A does not query it within the first t queries we can add an additional
query such that A queries x̂ in the (t + 1)th query.

Let k̂ be the index of the query in which A asked about x̂ and let

• p1 = Pr
Y ∼GA

[D(Y) = 1|B ≡ B′]

14 Adversarially Robust Bloom Filters: Monotonicity and Betting

• q1 = Pr
Y ∼Berε,t

[D(Y) = 1|Y
k̂

= 1]

• q0 = Pr
Y ∼Berε,t

[D(Y) = 1|Y
k̂

= 0].

Recall from Section 2 that for monotone D it holds that:

∀0 ≤ α ≤ ε Pr
Y ∼Berα,t

[D(Y) = 1] ≤ Pr
Y ∼Berϵ,t

[D(Y) = 1].

Due to the symmetry in the Bernoulli case Berε,t , we can assume wlog that k̂ = t

When the k̂th entry is fixed, a Monotone test D that looks only on the other t − 1 bits
remains monotone. We have:

Pr
Y ∼Berε/2,t

[D(Y) = 1|Y
k̂

= 1] ≤ q1

and
Pr

Y ∼Berε/2,t

[D(Y) = 1|Y
k̂

= 0] ≤ q0.

If B′′ is (n, t, ε
2)-BP test resilient, then it is also (n, t, ε

2)-Monotone test resilient
(Section 4.1.1 in [NO22]). It holds that:

Pr
Y ∼GA

[D(Y) = 1|B ≡ B′′] − Pr
Y ∼Berε/2,t

[D(Y) = 1] ≤ negl(λ)

Thus,
Pr

Y ∼GA
[D(Y) = 1|B ≡ B′′] ≤ q1 · ε

2 + q0 ·
(

1 − ε

2

)
+ negl(λ)

By the law of total probability, we have that:

Pr
Y ∼GA

[D(Y) = 1] − Pr
Y ∼Berε,t

[D(Y) = 1] ≤ p1 · ε

2 +
[
q1 · ε

2 + q0 ·
(

1 − ε

2

)
+ negl(λ)

]
·
(

1 − ε

2

)
− q1 · ε − q0 · (1 − ε)

= p1 · ε

2 +
(

−ε

2 − ε2

4

)
· q1 + ε2

4 · q0 + negl(λ)

(∗)

≤ p1 · ε

2 +
(

−ε

2 − ε2

4

)
· q1 + ε2

4 · q1 + negl(λ)

= p1 · ε

2 − q1 · ε

2 + negl(λ).

Where (∗) is derived from the fact that q0 ≤ q1 since D is monotone. When the k̂th
entry is fixed, we consider only the results of queries that differ from x̂. In this case,
we can bound the probability of false positive by the same analysis as in the proof of
Lemma 1. Hence, the probability of each query being a false positive is bounded by ε

16
and p1 − q1 ≤ negl(λ), as desired.

We proved that B is (n, t, ε)-Monotone test resilient but not (n, t, ε)-BP test resilient
as desired.

When t is unknown and unbounded, we must resort to computational assumptions,
as proved in [NY15]. We need to use Naor and Oved’s construction of a BP strongly
resilient Bloom filter (which in turn is the one in [NY15]), based on the existence of

Chen Lotan, Moni Naor 15

one-way functions; roughly speaking, the k-wise independent function is replaced with a
pseudorandom function (PRF). The construction of B is the same except that B′, B′′ are
BP strongly resilient. The same proof holds because, for any polynomial number of queries
t, the PRF is indistinguishable from a 2t-wise independent hash function. In particular,
the probability shown in Lemma 1 can also be proven when the function is a PRF instead
of a 2t-wise independent function for a polynomial number of queries. Additionally, the
same adversary as we describe in the proof of Lemma 2 can be used to demonstrate that
this construction is not strongly BP-test resilient, as the number of queries required to
distinguish between the cases B ≡ B′ and B ≡ B′′ is polynomial in n. Finally, the proof
for Monotone resilience holds for any t, and therefore applies in this case as well.

Conclusions and Open Directions
There has been a surge of research regarding the power of adversaries across various
areas, including data structures, streaming algorithms, and machine learning (see, for
example [CPS19, BJWY22, BY20, KMNS21, ABD+21]). This raises the question of how
relevant are the notions of robustness against adversaries and their relationships, as
discussed in this paper and in [NO22] for those different settings.

Bishop and Tirmazi [BT24] introduced an adversarial model for a variant of the
Bloom filter, known as the ‘Learned Bloom filter’ (see [KBC+18, Mit18]), and proposed
a construction that satisfies it. The Learned Bloom filter can be thought of as a Bloom
filter working in collaboration with a Learning Model, where the idea is to use a pre-filter
(derived from the model) before the Bloom filter. This approach improves the false positive
rate while maintaining zero false negatives. The adversarial model suggested by Bishop
and Tirmazi is based on the framework of Naor and Yogev (the AB-test); the question
is what is the robustness of the constructions based on Learned Bloom filters w.r.t. the
notions discussed in this paper, in particular BP.

Filic et al. [FPUV22] propose security definitions for probabilistic data structures,
focusing on both correctness and privacy in a simulation-based framework. They use
these definitions to analyze the behavior of Bloom filters and insertion-only Cuckoo filters.
In their model, the adversary can query the filter, insert new elements, and observe its
current state (but there seems to be an area in memory that is not accessible and where
cryptographic keys can be stored). While their definition appears to grant the adversary
more power compared to ours, it does not imply BP-test resilience. For instance, a Bloom
filter that satisfies their definition most of the time but with non-negligible probability
enters a state where it always answers ’Yes’ would still satisfy their definition but fails the
BP-test.
Repeated queries: Adversarial environments for Bloom filters were further investigated
by Bender et al. [BFCG+18]. Their adversarial model is similar to the one of Naor and
Yogev (the AB-test), but unlike all the definitions considered in this paper (in AB,BP and
Monotone settings), they allow the adversary to repeat any query. Their main concern was
that an adversary could achieve a false positive rate close to 1 by repeatedly querying false
positives. To handle this, they proposed an adaptive filter, a structure that adjusts to false
positives. This adaptive filter ensures that the probability of a false positive remains at
most ε, even when repeating a previously queried element. In their analysis, they assume
that the adversary cannot find a never-queried-before element that yields a false positive
with probability greater than ε, even when using results from previous queries. This
assumption is achievable through the construction of Naor and Yogev. The question is
whether their results are compatible with the findings in this paper and in Naor and Oved,
and whether it is possible to construct a robust BP-resilient Bloom filter that withstands
repeated queries.

16 Adversarially Robust Bloom Filters: Monotonicity and Betting

Acknowledgments
We thank the referees for their helpful comments improving the presentation of the paper.

References
[ABD+21] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and

Eylon Yogev. Adversarial laws of large numbers and optimal regret in online
classification. In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 447–455.
ACM, 2021. doi:10.1145/3406325.3451041.

[BFCG+18] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson,
Samuel McCauley, and Shikha Singh. Bloom filters, adaptivity, and the
dictionary problem. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 182–193, 2018. doi:10.1109/FOCS.201
8.00026.

[BHKN19] Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness-
preserving reductions via cuckoo hashing. J. Cryptol., 32(2):361–392, 2019.
URL: https://doi.org/10.1007/s00145-018-9293-0, doi:10.1007/S001
45-018-9293-0.

[BJWY22] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A
framework for adversarially robust streaming algorithms. J. ACM, 69(2):17:1–
17:33, 2022. doi:10.1145/3498334.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970. doi:10.1145/362686.362692.

[BLV19] Elette Boyle, Rio LaVigne, and Vinod Vaikuntanathan. Adversarially ro-
bust property-preserving hash functions. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, volume 124 of LIPIcs, pages 16:1–16:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LI
PIcs.ITCS.2019.16, doi:10.4230/LIPICS.ITCS.2019.16.

[BM03] Andrei Z. Broder and Michael Mitzenmacher. Survey: Network applications
of bloom filters: A survey. Internet Math., 1(4):485–509, 2003. doi:10.108
0/15427951.2004.10129096.

[BT24] Allison Bishop and Hayder Tirmazi. Adversary resilient learned Bloom filters.
IACR Cryptol. ePrint Arch., page 754, 2024. URL: https://eprint.iacr.
org/2024/754.

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling.
In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19,
2020, pages 49–62. ACM, 2020. doi:10.1145/3375395.3387643.

[CFG+78] Larry Carter, Robert W. Floyd, John Gill, George Markowsky, and Mark N.
Wegman. Exact and approximate membership testers. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San
Diego, California, USA, pages 59–65. ACM, 1978. doi:10.1145/800133.8
04332.

https://doi.org/10.1145/3406325.3451041
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1007/s00145-018-9293-0
https://doi.org/10.1007/S00145-018-9293-0
https://doi.org/10.1007/S00145-018-9293-0
https://doi.org/10.1145/3498334
https://doi.org/10.1145/362686.362692
https://doi.org/10.4230/LIPIcs.ITCS.2019.16
https://doi.org/10.4230/LIPIcs.ITCS.2019.16
https://doi.org/10.4230/LIPICS.ITCS.2019.16
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096
https://eprint.iacr.org/2024/754
https://eprint.iacr.org/2024/754
https://doi.org/10.1145/3375395.3387643
https://doi.org/10.1145/800133.804332
https://doi.org/10.1145/800133.804332

Chen Lotan, Moni Naor 17

[CPS19] David Clayton, Christopher Patton, and Thomas Shrimpton. Probabilistic
data structures in adversarial environments. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 1317–1334, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3319535.3354235.

[DW03] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple
hash functions. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, June 9-11, 2003, San Diego, CA, USA, pages 629–638. ACM,
2003. doi:10.1145/780542.780634.

[FPUV22] Mia Filic, Kenneth G. Paterson, Anupama Unnikrishnan, and Fernando
Virdia. Adversarial correctness and privacy for probabilistic data structures.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 1037–1050, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3548606.356062
1.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press, 2001. URL: http://www.wisdom.weizm
ann.ac.il/%7Eoded/foc-vol1.html, doi:10.1017/CBO9780511546891.

[KBC+18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 489–504. ACM, 2018. doi:10.1145/3183
713.3196909.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating
adaptive streaming from oblivious streaming using the bounded storage model.
In Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part III, volume 12827 of Lecture Notes in Computer Science,
pages 94–121. Springer, 2021. doi:10.1007/978-3-030-84252-9_4.

[KS06] Gil Kalai and Shmuel Safra. Threshold phenomena and influence: Perspectives
from mathematics, computer science, and economics. In Allon G. Percus,
Gabriel Istrate, and Cristopher Moore, editors, Computational Complexity and
Statistical Physics, Santa Fe Institute Studies in the Sciences of Complexity,
pages 25–62. Oxford University Press, 2006.

[Mit18] Michael Mitzenmacher. A model for learned Bloom filters and optimizing
by sandwiching. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages 462–471, 2018. URL:
https://proceedings.neurips.cc/paper/2018/hash/0f49c89d1e7298b
b9930789c8ed59d48-Abstract.html.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
doi:10.1017/CBO9780511813603.

[NO22] Moni Naor and Noa Oved. Bet-or-pass: Adversarially robust Bloom filters. In
Theory of Cryptography - 20th International Conference, TCC 2022, Chicago,
IL, USA, November 7-10, 2022, Proceedings, Part II, volume 13748 of Lecture
Notes in Computer Science, pages 777–808. Springer, 2022. doi:10.1007/97
8-3-031-22365-5_27.

https://doi.org/10.1145/3319535.3354235
https://doi.org/10.1145/780542.780634
https://doi.org/10.1145/3548606.3560621
https://doi.org/10.1145/3548606.3560621
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1007/978-3-030-84252-9_4
https://proceedings.neurips.cc/paper/2018/hash/0f49c89d1e7298bb9930789c8ed59d48-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0f49c89d1e7298bb9930789c8ed59d48-Abstract.html
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1007/978-3-031-22365-5_27
https://doi.org/10.1007/978-3-031-22365-5_27

18 Adversarially Robust Bloom Filters: Monotonicity and Betting

[NPB21] Sabuzima Nayak, Ripon Patgiri, and Angana Borah. A survey on the roles
of Bloom filter in implementation of the named data networking. Computer
Networks, 196:108232, 2021. URL: https://www.sciencedirect.com/scie
nce/article/pii/S1389128621002747, doi:10.1016/j.comnet.2021.10
8232.

[NY15] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume
9216 of Lecture Notes in Computer Science, pages 565–584. Springer, 2015.
doi:10.1007/978-3-662-48000-7_28.

[Pag08] Rasmus Pagh. Cuckoo hashing. In Ming-Yang Kao, editor, Encyclopedia of
Algorithms - 2008 Edition. Springer, 2008. doi:10.1007/978-0-387-30162
-4_97.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms,
51(2):122–144, 2004. URL: https://doi.org/10.1016/j.jalgor.2003.12
.002, doi:10.1016/J.JALGOR.2003.12.002.

[TRL12] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory
and practice of bloom filters for distributed systems. IEEE Commun. Surv.
Tutorials, 14(1):131–155, 2012. doi:10.1109/SURV.2011.031611.00024.

https://www.sciencedirect.com/science/article/pii/S1389128621002747
https://www.sciencedirect.com/science/article/pii/S1389128621002747
https://doi.org/10.1016/j.comnet.2021.108232
https://doi.org/10.1016/j.comnet.2021.108232
https://doi.org/10.1007/978-3-662-48000-7_28
https://doi.org/10.1007/978-0-387-30162-4_97
https://doi.org/10.1007/978-0-387-30162-4_97
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/J.JALGOR.2003.12.002
https://doi.org/10.1109/SURV.2011.031611.00024

	Introduction
	Notation and Preliminaries
	Probabilistic Statements
	Bloom Filters Preliminaries

	Robustness Definitions of Bloom filters
	Modeling the Adversary
	Robustness Definitions
	Resilience of Bloom Filters Against Different Adversaries

	Relationships: Monotone Test Resilience and its Implications
	Resilience to Monotone tests does not imply one to BP tests

	References

