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Abstract. A fundamental challenge in zero-knowledge proof systems is implementing
operations that are “foreign” to the underlying constraint system, in that they are
arithmetic operations with a different modulus than the one used by the proof
system. The modulus of the constraint system is a large prime, and common
examples of foreign operations are Boolean operations, field arithmetic, or public-key
cryptography operations. We present novel techniques for efficiently embedding such
foreign arithmetic in zero-knowledge, including (i) equality of discrete logarithms
across different groups; (ii) scalar multiplication without requiring elliptic curve
operations; (iii) proving knowledge of an AES encryption. Our approach combines
rejection sampling, sigma protocols, and lookup protocols. We implement and provide
concrete benchmarks for our protocols.

1 Introduction
Zero-knowledge proofs [GMR89] allow a prover to convince a verifier about the truth of a
statement without revealing more information than its validity. They are a core tool in
complexity theory, cryptography, and security. Over the decades, the cryptographic com-
munity has witnessed a transformative evolution of zero-knowledge proofs, from theoretical
tools to practical systems, with a focus on proving statements about NP relations. The
surge of interest in real-world applications, such as blockchain scalability [BCL+21], private
payments [BCG+14], and more recently authenticity of images and documents [KHSS22;
BCG+22], has catalyzed the development of efficient zero-knowledge proofs across a variety
of systems.

The engineering effort involved in expressing zero-knowledge proof statements is signifi-
cant. Not only is efficiency a challenge, but it requires a non-trivial amount of complex code,
and is prone to errors.1 Mistakes in the instantiation of the statement, particularly when
constraints are missing, can easily void the security guarantees of the proof system [ZKB].

The case of foreign arithmetic is particularly challenging. To write in a SNARK circuit
operating over Fp proving knoweledge of some secret x such that X � gx mod q, where g
is the generator of some finite group, a translator is needed. This translator must map
the modular arithmetic performed modulo q into circuit arithmetic compatible with the
modulus p of the field in which the statement is defined. Additionally, in the case of elliptic
curve groups, the group law must be implemented directly within the circuit. Consequently,
both the efficiency overhead and the attack surface grow dramatically.
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2 Beyond the Circuit

In practice, circuit programming generally relies on domain-specific languages2 and
a large engineering effort has been put into securely programming zero-knowledge gad-
gets for computations over (i) symmetric-key operations, (ii) public-key operations, and
(iii) arithmetic over a foreign finite field. In this paper, we provide techniques that avoid
the need of writing the circuit gadget altogether.

1.1 Our contributions
We provide three protocols:

Protocol Πdleq. Let Gp and Gq to denote groups of different prime order p and q, with
generators pGp, Hpq and pGq, Hqq. We give a Σ-protocol to prove that commitments
in Gp, and Gq have the same secret opening x. Our protocol (Figure 1) requires 3–6
scalar multiplications in each of Gp and Gq (more details in Table 2) and as little as 81
bytes. To achieve our result, we leverage rejection sampling and the Fiat–Shamir with
aborts paradigm. While this proof can always be done with zero-knowledge proofs for NP
statements, generic approaches proposed so far fail to deliver efficient proofs.

Protocol Πdlhash. We offload elliptic curve scalar multiplications from a circuit (Figure 2).
Consider a circuit tasked with proving that X � xG where pX, Gq are public elliptic curve
points and x is a secret integer. Instead of performing scalar multiplication within the
constraint system, we prove knowledge of x outside the circuit (in a Schnorr proof pR, c, zq),
and then bind this proof to the circuit. To bind the proofs, we include a hash h � Hpx, rq of
the witness x and the commitment randomness r in the first flow of the Σ-protocol. Within
the circuit, we prove knowledge of the preimage of H and verify that the public response z
is computed correctly as z � r� cx. This method is most efficient when H is a ZK-friendly
hash function, such as Poseidon, reducing the cost from tens of thousands of circuit
constraints to approximately 300 additional constraints and just two scalar multiplications.
Even with standard hash functions, this approach outperforms the computation of a scalar
multiplication within the circuit. We evaluate an implementation of our protocol [arn] in
Section 4.2.

Protocol Πaes. We provide a gadget that reduces in zero-knowledge the Rijndael (AES)
cipher to a lookup protocol (Figure 3). Given a committed AES key a committed plaintext,
we show that a public ciphertext is correctly computed from them. While any lookup
argument can be used here, to showcase the simplicity of our protocol, in [OKMZ24,
Appendix C] we present a lookup argument that relies solely on (compressed) Σ-protocols
and is of independent interest. For AES-128 our zero-knowledge proof runs in about 30ms.
Using compressed Σ-protocols proof size is 2 848 bytes, and the verifier time is below 20ms.
An evaluation of our open-source implementation can be seen in Table 4. The code is
open-source and released under the BSD license.3

1.2 Applications
We list below some applications that can benefit from our techniques.

Linking credentials and assets inside proofs. One overarching theme of our con-
tributions is the ability to easily and efficiently link commitments and credentials inside
zero-knowledge proofs.

2Some examples: Cairo, Circom, Halo2, Leo, Noir.
3https://github.com/mmaker/tinybear

https://www.cairo-lang.org/
https://docs.circom.io/
https://zcash.github.io/halo2/
https://www.leo-lang.org/
https://noir-lang.org/
https://github.com/mmaker/tinybear


Michele Orrù, George Kadianakis, Mary Maller, Greg Zaverucha 3

Linking Assets. Cross-chain asset transfers between Monero and Ethereum currently re-
quire two separate range proofs4. Using our protocol Πdleq, we can implement an asset
transfer protocol with half the proof size and computational complexity compared
to the existing solution. This difference in efficiency is particularly significant in
blockchain systems, where space optimization is crucial. Moreover, the existing
solution lacks rigorous security analysis.

Linking anonymous credentials. Anonymous credentials can include multiple user attributes,
such as account identifiers, email addresses, and social security numbers [CL04;
BBS04; ASM06; SAB+19; CMZ14; BBDT16; CDDH19; CPZ20]. Using our Πdleq
protocol, credentials can be securely linked through a common attribute, such as
a user ID (say, a small 128-bit scalar), while maintaining anonymity. This linking
capability works seamlessly regardless of whether the credentials are issued by the
same authority or across different issuers. For cross-issuer scenarios, the second
issuer can independently incorporate attributes during blind issuance, though this
requires mutual trust in the respective credential security.

In-circuit proof and signature verification. To implement blind swaps on Bitcoin,
one must construct concurrently-secure blind Schnorr signatures compatible with ed25519.
Fuchsbauer and Wolf [FW24] achieve this by modifying the blind Schnorr protocol to
prove correct computation of the blinded challenge via a SNARK. Πdlhash eliminates the
need for non-native scalar multiplication in their circuit, which currently accounts for 96%
of the code.5 For context, implementing non-native field multiplication for BN254 curves
incurs a 600x overhead in R1CS constraints.6 This optimization extends to blockchain
bridge protocols where signature verification dominates circuit complexity [XZC+22; DD23;
JBK+24].

AES Middleboxes and verifiable encryption. To implement zk-middleboxes [GAZ+22],
AES proofs are essential. While the approach taken in the literature uses xJsnark’s cir-
cuit [KPS18] requires 14K constraints, our solution achieves the same goal with just
2K constraints. This translates to approximately 21x fewer group operations. Further-
more, our Πaes is naturally extensible to multi-blocks and common block cipher modes
of operation. It also fits within the Commit-and-Prove Zero-Knowledge Proof (CP-ZKP)
framework—originally introduced by Kilian [Kil90], extended by Canetti et al. [CLOS02],
and recently proposed for standardization [BCF+21b]—enabling direct links between
AES-encrypted messages, keys, and Pedersen commitments.

1.3 Related work
Discrete Logarithm EQuality (DLEQ) proofs. Without RSA groups, Rdleq is not
easy. A previous attempt at proving discrete logarithm equality across two generic DL
groups was addressed by Agrawal, Ganesh, and Mohassel [AGM18, Appendix D Fig. 12],
who also underline the applications for extending SNARKs. However, the protocol is
more involved than ours: it has soundness error 1/2 and requires soundness amplification
(the prover performs a binary decomposition of the secret, commits to each bit in both
groups, and then cut-and-choose over the bit openings in Gp and Gq). Their proof size is
Opλplog q � log pqq, whereas ours is Opminplogppq, logpqqqq when a range proof is needed

4See https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf. Implemen-
tation: https://github.com/AthanorLabs/atomic-swap.

5Specifically, this eliminates code from https://github.com/mottla/Blind-Schnorr-Signature
s/tree/main/secp256k1_non_native_modP

6Compared to arkwork’s non-native library: https://github.com/arkworks-rs/nonnative.

https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
https://github.com/AthanorLabs/atomic-swap
https://github.com/mottla/Blind-Schnorr-Signatures/tree/main/secp256k1_non_native_modP
https://github.com/mottla/Blind-Schnorr-Signatures/tree/main/secp256k1_non_native_modP
https://github.com/arkworks-rs/nonnative
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in the outside protocol and Op1q for the cases without (this is the case of all examples in
the applications section).

The special case where p � q has been studied by Chaum and Pedersen [CP93].
Benarroch et al. [BCF+21a] provide a protocol for proving equality of commitments over
Z�

N and elliptic-curve groups. The problem of efficiently proving discrete logarithm equality
across different groups can be found in Camenisch and Lysyanskaya [CL02], who describe
an efficient zero-knowledge proof of knowledge that a committed value is in an accumulator.
Values are committed in a group where the discrete logarithm (DL) is hard, while the
accumulator is constructed in an RSA group. The problem considered in this work is
slightly different, because we consider two groups where DL is hard. In the cryptocurrency
area, the problem was already highlighted in Zerocoin [MGGR13], where they use the same
techniques of Camenisch and Lysyanskaya [CL02] to provide an anonymous cryptocurrency.
Dagher et al. [DBB+15] provide proofs of assets, solvency and non-collusion for Bitcoin,
evoking the need of zkSNARKs for efficiency but the associated cost in expressing a large
circuit. Sun et al. [SSS+22] formulate the problem of proving discrete logarithm equality
across pairing-friendly and non-pairing-friendly groups.

The aborting technique we use to avoid leaking information about the secret when the
prover sends a response computed over the integers originates in [Lyu08; Lyu09], where
it was used in the context of lattice-based signatures. It then was adapted to signatures
based on the short discrete log problem in Abdalla et al. [AFLT12]. The setting of this
latter work is closer to ours, and we use the main lemma from it in our analysis.

Public-key operations. Chase et al. [CGM16] introduced a technique that combines
algebraic-based proof protocols, such as Σ-protocols, with proofs based on garbled circuits.
This integration efficiently handles algebraic operations in the former and non-algebraic
operations (e.g. hash functions) in the latter. The linkage between these proof systems
relies on using a private garbling scheme to compute a one-time MAC of the witness and
then proving the correctness of the MAC using a Σ-protocol. However, this technique
requires garbled circuits with privacy properties, as the verifier learning the MAC value
directly reveals the witness. As a result, the approach is not immediately applicable to
proof systems that do not employ private garbled circuits.

GoblinPlonk7 introduces a mechanism for deferring expensive operations in SNARK
circuits by batching them into a single expensive step: when encountering an expensive
operation X � xG, the prover defers the actual computation and directly provides the final
result for X. Once multiple such operations have been deferred, a specialized circuit verifies
the correctness of all deferred operations in a single step. This strategy is orthogonal and
compatible with our techniques.

Ben-Sasson, Chiesa, and Tromer [BCTV14] introduced the notion of curve cycles,
elliptic curves where the scalar field of one curve is equal to the coordinate field of another.
Note that the case where the scalar field is the coordinate field is called anomalous curve,
and they are susceptible to attacks [Sma99; Yas12]. This approach has been shown itself
extremely powerful, but also dangerous: little is known about, and deferred computations in
recursive settings [Val08; CT10; BGH19] have already had a history of subtle vulnerabilities
arising only when the elliptic curve is instantiated with cycles [NBS23].

LegoSNARK [CFQ19] introduced a generic framework for linking different proof systems.
Using the commit-and-prove paradigm [Kil90; CLOS02], it provides a framework and
generic compiler to facilitate the generic integration of proof systems and demonstrates
its applicability across various use cases. Πdlhash can be seen as providing an efficient
specialized LegoSNARK link between Σ-protocols and generic SNARK protocols.

7https://hackmd.io/@aztec-network/B19AA8812

https://hackmd.io/@aztec-network/B19AA8812
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Symmetric-key operations. Designing zero-knowledge (zk) circuits for traditional
symmetric primitives has long been challenging due to the non-algebraic nature of these
primitives. This often introduces substantial computational overhead in zk settings.

A significant line of research addresses this issue by leveraging secure multi-party
computation (MPC) techniques to construct zk proofs for symmetric-key operations.
Among these, MPC-in-the-Head (MPCitH) is a prominent approach, offering highly
efficient performance for small Boolean circuits. This has led to practical applications such
as AES pre-image proofs, which gained renewed attention during the NIST post-quantum
cryptography standardization process.8 However, while MPCitH provides post-quantum
security guarantees, it comes with limitations:

Incompatibility with IOP-Based Proof Systems. Unlike our proposed zero-knowledge proof
system, MPCitH is inherently incompatible with the larger ecosystem of Interactive
Oracle Proofs (IOPs) like Plonk [GWC19], Halo2 [zca], and Marlin [CHM+20]. These
proof systems rely on specific commitment schemes and arithmetic structures that
are difficult to reconcile with MPCitH approaches. In contrast, our approach is
designed to integrate seamlessly with these systems, ensuring compatibility with
widely adopted zk ecosystems.

Proof Size and Efficiency Trade-Offs. MPCitH-based techniques tend to produce large
proofs, which can be problematic in contexts like blockchain applications where
minimizing proof size is crucial. In most blockchain zero-knowledge applications,
relying on DL-based assumptions is the only available choice to reduce size and
optimize Ethereum gas costs. Our approach, which relies on Pedersen commitments,
avoids this issue by leveraging commitments well-suited to large-field arithmetic,
though it remains inherently non-post-quantum sound.

2 Preliminaries
We denote by pG, p, G, Hq the description of a group G of prime order p, with two
“nothing-up-my-sleeve” generators G, H (that is, two generators in G such that the discrete
logarithm of H to the base G is not known to anyone). Groups are additive, and given
a scalar x P Zp, xG indicates scalar multiplication. When needing multiple “nothing-up-
my-sleeve” (NUMS) generators (that is, generators whose respective DL is not known),
we will consider G1, G2, . . . , Gn, H. We denote probabilistic algorithms in sans-serif, and
by writing y Ð Mpxq we denote the act of sampling the value y from the probabilistic
algorithm M on input x. We assume that probabilistic algorithms run in time polynomial
in the security parameter λ (abbrev p.p.t.) and have the security parameter implicitly as
input. We use standard vector notation: by x P Zn

p we refer to elements px1, x2, . . . , xnq,
with xx, yy we denote the inner-product

°
i xiyi and by x b y the “vectorized” tensor

product rxiyjsi�n�j .

DL assumption. The Discrete Logarithm problem asks, given a group generator GrGen,
a group description pG, p, Gq Ð GrGenp1λq and a uniformly-random group element X Ð$ G,
to find x P Zp such that X � xG. The discrete logarithm (DL) is hard for GrGen if no
p.p.t. algorithm solves the discrete logarithm problem with more than neglpλq advantage.

Pedersen commitments. Pedersen’s commitment scheme [Ped92] lets us commit to a
value x P Zp. To do so, sample r Ð$ Zp and set

C :� xG� rH .

8https://csrc.nist.gov/Projects/post-quantum-cryptography

https://csrc.nist.gov/Projects/post-quantum-cryptography
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We say that C is a Pedersen commitment. A pair px, rq P Z2
p is a valid opening if

C � xG� rH. Pedersen commitments are perfectly hiding and computationally binding
under the discrete logarithm assumption. Informally, perfectly hiding means that no
information about the pair px, rq is revealed by C. Computationally binding means that
no efficient adversary can produce two different valid openings px, rq and px1, r1q for a
commitment C. Any adversary that given as input a group description is able to output
a commitment C along with two distinct valid openings immediately gives a solution
to an instance of DL. In fact, if px, rq and px1, r1q are a pair of valid openings, then
logG H � pr � r1q�1px� x1q.

We will also use the well-known fact that Pedersen commitments are additively homo-
morphic: given commitments C, C 1, the sum of the openings px� x1, r � r1q is valid for
the sum of the commitments C � C 1. In addition, when committing to multiple elements
x1, x2, x3, � � � , xn we will use the notation C � °

i xiGi � rH as the commitment to the
vector x � px1, x2, x3, . . . , xnq.

Σ-protocols. We recap the standard of Σ-protocols from Cramer [Cra97] (as described
in Boneh–Shoup [BS20, §19.4]), with a few minor changes to model the prover’s ability to
abort the protocol. Let R be a binary relation of instances denoted by ϕ and witnesses
denotes by w. By Rpϕq we denote the set of possible witnesses for the instance ϕ in R. A
Σ-protocol for the relation R is a three-move protocol between a prover (with inputs ϕ and
w) and a verifier (with input ϕ) consisting of a triple of efficient algorithms pCom, Ch, Respq
run as follows:

• the prover executes pa, ρq Ð Compϕ, wq, sends a and internally stores the state ρ.
Com is a randomized algorithm and may have additional inputs such as the group
description and security parameter

• the verifier sends c Ð Chpq to the prover; c is distributed uniformly at random from
a fixed set of possible challenges

• the prover calls Resppϕ, w, ρ, cq which may return some value z or abort (in which
case we consider z � K)

• finally, the verifier calls Verifypϕ, pa, c, zqq which returns a bit b P t0, 1u. If b � 1 the
verifier accepts the proof, otherwise rejects.

The tuple of exchanged messages pa, c, zq is called transcript; a is called commitment, c is
called challenge, and z response. An accepting transcript pa, c, zq for ϕ is a transcript for
which Verifypϕ, pa, c, zqq � 1. Σ-protocols must satisfy:

• Completeness: A Σ-protocol is δ-complete if honestly-generated transcripts always
verify, except when the prover aborts (with probability δ). More formally, for all
honestly generated transcripts pa, c, zq and pϕ, wq P R we have that

PrrVerifypϕ, a, c, zq � 1 | z � Ks � 1 , and Prrz � Ks � δ

over the choice of prover randomness.

• Special soundness: A Σ-protocol is (computationally) special sound if there exists
an efficient extractor Ext such that for any p.p.t. adversary outputting an instance ϕ
and two (non-aborting) accepting transcripts pa, c, zq, pa, c1, z1q for ϕ such that c � c1,
Extpϕ, pa, c, zq, pa, c1, z1qq returns a valid witness w P Rpϕq except with probability ϵ.
The probability ϵ is called the knowledge error of the protocol.

• Honest verifier zero-knowledge: A Σ-protocol is honest verifier zero-knowledge
(HVZK) if there exists an efficient simulator algorithm Sim such that for all pϕ, wq P R
the distributions

tpa, c, zq | c Ð Chpq; pa, zq Ð Simpϕ, cqu, and
tpa, c, zq | c Ð Chpq; pa, ρq Ð Compϕ, wq; z Ð Resppϕ, w, ρ, cqu
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are indistinguishable. Our definition is sometimes referred to as special HVZK –
special since the challenge is input to the simulator, as opposed to being chosen by
the simulator. If the two distributions are perfectly indistinguishable (which can be
the case for all our protocols), we will say the protocol enjoys perfect special HVZK
since the simulated distribution is identical to the real one.

Two example Σ-protocols relevant to our protocol are Schnorr’s protocol [Sch91], which
proves knowledge of a discrete logarithm and Okamoto’s protocol [Oka93], which proves
knowledge of the opening of a Pedersen commitment. The protocols and their knowledge
extractors are well-known in the literature, see for example the description in the textbook
of Boneh and Shoup [BS20, §19.1, 19.5.1].

Other soundness notions and composition. We often simplify a complex relation
by reducing it to a more manageable sub-claim, which is then addressed in a separate
proof. Instantiations of these sub-protocols as Σ-protocols are also provided, along with
separate security proofs for each component. This approach ensures modularity, as we
anticipate that sub-claims will often be integrated into larger proofs conducted within
external protocols.

The protocol Πaes relies on a (common) relaxation of special soundness, called 3-special
soundness. In a k-special-sound protocol the extractor receives k transcripts, with the
same commitment, but with all different challenges.

If we consider sequential composition of a Σ-protocol, the resulting proof is p2, . . . , 2q-
special sound: it is possible to build a set of accepting transcripts, arranged in a (binary)
tree structure, where every branching node at layer i and index j splits into the two
transcripts demanded for the i-th layer at the j-th round, for which we provide an
extractor. In section Section 5 we relax the above notion slightly, proving p3, . . . , 3, 2q-
special soundness. We note that we compose at most a constant number of special-sound
protocols. Bootle’s et al. [BCC+16, Lemma 1] show that a pn1, . . . , nkq-special sound
protocol satisfies witness-extended emulation [Lin03, Def. 10] if

±k
i ni � polypλq. (In our

case
±

i ni   3log p and the logarithmic factor is involved only when calling the sumcheck
protocol.) A similar approach to ours has been taken by Attema and Cramer [AC20]. For
honest-verifier zero-knowledge, it is possible to consider the transcripts generated by each
HVZK simulator.

If we consider non-interactive proofs, knowledge soundness refers to the existence of
a p.p.t. extractor that can extract a witness from a proof using a trapdoor, and zero-
knowledge referring to the existence of a simulator that can generate a proof without
knowledge of the witness [GOS06; GS08]. In these cases, when embedding the proof
within a Σ-protocol, the special-sound extractor will internally run the extractor of the
non-interactive proof, and the honest-verifier zero-knowledge its simulator to produce the
simulated proof transcript for the sub-proof.

The Fiat–Shamir transformation. As is common in the literature on Σ-protocols and
identification schemes, we present and analyze the interactive version of our protocol with
the understanding that can be easily made non-interactive using the Fiat–Shamir (FS)
transformation [FS87]. In the FS transformation, the prover computes pa, ρq Ð Compϕ, wq
as usual, then computes the challenge as c Ð Hpϕ}aq where H is a cryptographic hash
function whose image is in the codomain of Ch. The response is computed as before, and
the output is pa, c, zq, which can usually be compressed to pc, zq (as in our protocol). The
resulting protocol is secure in the random oracle model, via the forking lemma [PS00].
Again, since the FS transform and the related analysis are well-known, we refer to Boneh
and Shoup [BS20, Chapter 19] for additional details.
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2.1 Σ-reduction protocols
Here we define reductions of knowledge [KP23] for Σ-protocols. A reduction of knowledge
reduces proving knowledge of a witness in a relation R to checking knowledge of a witness
in a (simpler) relation sR. For example, in our analysis of Πdleq R is discrete logarithm
equality across groups, and sR is the range proof on the discrete logarithm.

A Σ-reduction protocol from R to sR is a three-move protocol between a prover (with
inputs ϕ and w) and a verifier (with input ϕ) consisting of a tuple of efficient algorithms
Π :� pCom, Ch, Resp, Verifyq run as follows:

• the prover executes pa, ρq Ð Compϕ, wq, sends a and internally stores the state ρ.
Com is a randomized algorithm and may have additional inputs such as the group
description and security parameter;

• the verifier sends c Ð Chpq to the prover; c is distributed uniformly at random from
a fixed set of possible challenges

• the prover calls Resppϕ, w, ρ, cq which may abort (in which case we consider the
output to be K) or return a value z which is sent to the verifier and a reduced witnesssw P sR.

• finally, the verifier calls Verifypϕ, pa, c, zqq which returns either false or a reduced
instance sϕ for the reduced relation sR.

The tuple pa, c, z, sϕ, swq is called extended transcript; a is called commitment, c is called
challenge, and z response. An accepting transcript pa, c, z, sϕ, swq for ϕ is a transcript for
which Verifypϕ, pa, c, zqq does not output false and psϕ, swq is in the relation sR.
Definition 1. A Σ-reduction protocol Π from R to sR has completeness error δ if

Pr

�
��� pz, swq :� outp ^ sϕ :� outv ^
psϕ, swq P sR

��������
pa, ρq Ð Compϕ, wq
c Ð Chpq;
pz, swq Ð Resppϕ, w, ρ, cq
outv Ð Verifypϕ, pa, c, zqq

�
��� ¥ 1� δ

Definition 2. A Σ-reduction Π for R to sR is 2-special sound if there exists an extractor Ext
such that for any p.p.t. adversary that outputs an instance and two (non-aborting) accepting
transcripts pa, c, z, sϕ, swq, pa, c1, z1, sϕ1, sw1q for ϕ such that c � c1, and Extpϕ, pa, c, z, sϕ, swq,
pa, c1, z1, sϕ1, sw1qq returns a valid witness w P Rpϕq except with probability ϵ. The probability
ϵ is called the knowledge error of the protocol.
Definition 3. A Σ-reduction Π for R to sR is honest-verifier zero-knowledge if there exists
an efficient simulator Sim such that for all pϕ, wq P R the distributions of non-aborting
transcripts:$''&

''%pa, c, z, sϕq
��������

a, ρ Ð Compϕ, wq;
c Ð Chpq;
pz, swq Ð Resppϕ, w, ρ, cqsϕ Ð Verifypϕ, pa, c, zqq

,//.
//-

"
pa, c, z, sϕq ���� c Ð Chpq;

pa, z, sϕq Ð Simpϕ, cq
*

is indistinguishable. Our definition is similar to special HVZK – special since the
challenge is input to the simulator, as opposed to being chosen by the simulator. If the two
distributions are perfectly indistinguishable (which can be the case for all our protocols),
we will say the protocol enjoys perfect special HVZK since the simulated distribution is
identical to the real one.

3 General discrete logarithm equality
In this section we describe Πdleq, our protocol for equality of discrete logarithms. We
prove that two Pedersen commitments in different groups commit to the same value, and
in [OKMZ24, Appendix A, B] we discuss a variant of Πdleq for simple discrete logarithms.
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Table 1: Summary of notation and variables names used throughout Section 3.

p, q Order of the groups Gp and Gq

Gp, Gq Generators of Gp and Gq

Hp, Hq Additional generators of Gp and Gq, independent of Gp, Gq

x, xp, xq The witness as an integer x, or a value mod p or q
bg bit-length of the smaller group, i.e., bg � rlog2pminpp, qqqs
bc bit-length of the challenge c
bx bit-length of the witness x
bf Parameter controlling the probability of aborts

Notation. Since we will have two groups in our protocol, we use the subscripts p and
q to indicate that an element or scalar belongs to Gp or Gq. That is, we denote by
pGp, p, Gp, Hpq the description of a group Gp of prime order p. We will often lift scalars
from Zp to Z in the canonical way, and when we say that values xp P Zp and xq P Zq are
equal we mean they are the same as integers. In Table 1 we summarize the variable names
and notation used in this work.

We prove the following theorem.

Theorem 1. Let Gp and Gq be additive groups of prime order p, q where discrete logarithm
is hard. Let bx, bc, bf P N such that bx � bc � bf   rlog2pminpp, qqqs. Then Πdleq of Figure 1
is a Σ-reduction from the relation

Rdleq :�
" ppXp, Xqq , px, rp, rqqq P pGp �Gqq � pt0, . . . , 2bx�1u � Zp � Zqq :

Xp � xGp � rpHp ^ Xq � xGq � rqHq

*
(1)

to the relation

Rrp :�  pXp, px, rqq P Gp � Z2
p : Xp � xGp � rHp ^ 0 ¤ x   2bx

(
,

with:
• completeness error 2�bf ,
• special soundness error 2�bc ,
• perfect honest-verifier zero-knowledge,
• proof size bc � bf � rlog qs� rlog ps.

Our protocol has a similar structure to Okamoto’s identification protocol [Oka93] and
Chaum–Pedersen’s representation proof [CP93]. The main differences are: the response
value is computed over the integers (so that a single value is used in both groups during
verification) and a range proof πrp, parametrized by the group description pGp, p, Gp, Hpq
and the bound bx, for the relation Rrp. The range proofs ensures that the discrete log “fits”
in both groups. Our analysis will require that the range proof be knowledge-sound, since
in our analysis we need to extract the opening of the Pedersen commitment Xp from both
πrp and from our new protocol, to ensure that both proofs are about the same opening of
Xp (which holds since Pedersen commitments are binding). In practice, πrp can be realized
in constant size with Sharp [CGKR22] when Gp is a prime-order group (we discuss some
options in [OKMZ24, Appendix B]).

We study the protocol as an interactive Σ-protocol (with aborts) with the understand-
ing that it can be directly made non-interactive with the Fiat–Shamir transformation
(cf. Section 2). In the Fiat–Shamir with aborts paradigm, provers in this class will abort
the protocol with a bounded probability: intuitively, the prover will abort when providing
a response would leak information about the witness. When this occurs, the prover and
verifier restart the protocol from the beginning. In the non-interactive version, the prover
repeats locally, and only outputs a non-aborting transcript.
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ProverppXp, Xqq, px, rp, rqqq VerifierpXp, Xqq

k Ð$ t0, . . . , 2bx�bc�bf �1u
tp Ð$ t0, . . . , p�1u
tq Ð$ t0, . . . , q�1u
Kp :� kGp � tpHp

Kq :� kGq � tqHq Kp, Kq

c Ð$ t0, . . . , 2bc�1uc

if c R t0, . . . , 2bc�1u
then abort

z :� k � cx (in Z)
sp � tp � crp pmod pq

sq � tq � crq pmod qq

if z R t2bx�bc , . . . , 2bx�bc�bf �1u
then abort z, sp, sq

Ensure:
(i) zGp � spHp

?
� Kp � cXp

(ii) zGq � sqHq
?
� Kq � cXq

(iii) z R t2bx�bc , . . . , 2bx�bc�bf �1u

Prover and Verifier:
Πrp : ppx, rpq, Xpq P Rrp

Output: πrp # show 0 ¤ xp   2bx

Figure 1: Protocol Πdleq for equality of committed values across groups. The input
commitments are Xp � xGp � rpHp P Gp and Xq � xGq � rqHq P Gq for 0 ¤ x   2bx ,
and rp, rq P Zq.

Parameter selection. We must choose parameters so that bx � bc � bf   bg so that
the response is an integer and no modular reduction occurs in either group. We must
also choose the number of parallel repetitions τ so that τ � bc � 128, for non-interactive
security. In Table 2 we give some possible parameters for a popular selection of groups,
Ristretto9 (which is not pairing-friendly) and the BLS12-381 group [BLS03; Bow17] (which
is pairing-friendly).

3.1 Proof of Theorem 1
We show that Πdleq satisfies statistical completeness with a small error (Lemma 2), special
soundness (Theorem 2), and honest-verifier zero-knowledge (Theorem 3). To prove them,
we first provide a variation of [AFLT12, Lemma 1], which will be useful for arguing
completeness and zero-knowledge.

Lemma 1. In an honest execution of Πdleq the probability that the prover aborts is 1{2bf .
If the prover does not abort, the value z in the transcript is uniformly distributed in
t2bx�bc , . . . , 2bx�bc�bf �1u.

9https://ristretto.group

https://ristretto.group
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Table 2: Possible parameter choices for 128-bit security when Gp is Ristretto and Gq is
BLS12-381. Column τ is the number of repetitions; |π| is the proof size in bytes excluding
the size of the range proof; all other columns are in bits.

bc bx bf τ |π| Notes
192 52 8 1 89B
128 112 12 1 81B Ideal for the credential linking application
64 128 60 2 158B Increase bf since τ � 2 means we can reduce bc

64 180 8 2 145B
32 212 8 4 274B See alternative approach for large x in [OKMZ24, Appendix B].
16 228 8 8 532B See alternative approach for large x in [OKMZ24, Appendix B].

Proof. In the response value z � k�cxp, since k and c are independent and k is distributed
uniformly at random, the value z is distributed uniformly at random in the set

Z0 � tcx, cx� 1, . . . , cx� 2bx�bc�bf �1u .

Let Z � t2bx�bc , . . . , 2bx�bc�bf �1u be the set of responses for which the prover does not
abort, and note that Z is properly contained in Z0. The probability that z P Z is

|Z|{|Z0| � 2bx�bc�bf � 2bx�bc

2bx�bc�bf
� 1� 1{2bf

and hence the probability that the prover aborts is 1{2bf . Consider a fixed response z0 P Z,
we have

Prrz � z0|z P Zs � Prrz � z0s
Prrz P Zs � 1{2bx�bc�bf

|Z|{2bx�bc�bf
� 1

|Z|
and so the response is uniformly distributed in the set of responses that do not cause the
prover to abort.

Given the above lemma, completeness is straightforward.

Lemma 2. Πdleq has completeness error 2�bf .

Proof. By Lemma 1, we have that the prover aborts with probability 2�bf . When the
prover does not abort, the verification equation is always satisfied, since 0 ¤ c   2bc and

zGp � spHp � pk � cxqGp � ptp � crpqHp � Kp � cXp .

Similarly, one proves that also (ii) is satisfied.

3.1.1 Soundness

Our soundness analysis reduces to the binding property of Pedersen commitments, and
establishes the constraints on the protocol parameters bx, bc, and bf .

Theorem 2. If bx � bc � bf   rlog2pminpp, qqqs, Πdleq is a 2-special sound Σ-reduction
from Rdleq to Rrp with knowledge error ϵ � 2�bc�1 � ϵdl, where ϵdl � maxpϵdlp , ϵdlq q is the
advantage in solving the discrete logarithm problem in Gp or Gq.

Proof. We prove 2-special soundness. Let A be an adversary that outputs two accepting
transcripts and reduced witnesses:

pKp, c, z, sp, sqq, psxp, srpq, and pKp, c1, z1, s1p, s1qq, psx1p, sr1pq .
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Those are given as input to Ext, which internally runs the Okamoto extractor for the
proof transcripts pKp, c, z, sp, sqq and pKp, c1, z1, s1p, s1qq. The Okamoto extractor succeeds
with probability 2�bc (since c � c1) in producing witnesses pxp, rpq and pxq, rqq, such that
Xp � xpG� rpHp and Xq � xqG� rqHq. Then, the extractor aborts if

sxp � sx1p , or
pxp, rpq � psxp, srpq , or

pz � cxp, sp � crpq � pz1 � c1xp, s1p � c1rpq , or
pz � cxq, sq � crqq � pz1 � c1xq, s1q � c1rqq

(2)

If none of the above holds, the extractor returns pxp, rp, rqq.
From special soundness, we have two pairs of accepting transcripts proving knowledge of

the opening of a Pedersen commitment in Gp and Gq, namely ppKp, c, z, spq, pKp, c1, z1, s1pqq
and ppKq, c, z, sqq, pKq, c1, z1, s1qqq. If any of the checks in Equation (2) holds, by the
binding property of Pedersen commitments Xp, Kp and Kq, a solution for DL in Gp or
Gq can be found.

We must argue that xp � xq, when seen as integers. From the verification checks (i)
and (ii) we have that D k, k1, a, a1, b, b1 P Z such that

z � k � cxp � ap z � k1 � cxq � bq

z1 � k � c1xp � a1p z1 � k1 � c1xq � b1q

Note that k and k1 are well-defined, since the check above establishes a single commitment
opening for Kp, Kq in each pair of transcripts. The integers pa, a1, b, b1q are non-negative
because verification checks that 2bx�bc ¤ z   2bx�bc�bf and parameters are chosen such
that bx � bc � bf   rlog2pminpp, qqqs. By subtracting the responses corresponding to the
mod p and mod q equations, we have

pz � z1q � pc� c1qxp � pa� a1qp pz � z1q � pc� c1qxq � pb� b1qq,

Without loss of generality, assume that z�z1 is positive. Since πrp ensures that xp is “small”
and |c� c1| is also “small”, then pa � a1q � 0. More precisely, z � z1 has bit-length less
than bg ¤ rlog2ppqs by our choice of parameters (namely the constraint bx � bc � bf   bg),
and check (iii) during verification, which ensures that z   2bx�bc�bf .

Equating the two representations of z � z1, and noting that pa� a1q � 0 we have (still
over Z)

pc� c1qxp � pc� c1qxq � pb� b1qq
pc� c1qpxp � xqq � pb� b1qq

Since q is prime, it must divide pc � c1q or pxp � xqq. But since the bit-length of q is at
least bg, and bg ¡ bc, then q is too large to divide |c� c1|. Therefore q | pxp � xqq which
means that xp � xq pmod qq. Since xp and xq are equal mod q, and the bit-length of xp

is strictly less than rlog2pqqs, it must be that xp � xq over Z as well. To conclude, Ext
extracts a valid witness with error ϵ � 2�bc�1 �maxpϵdlp , ϵdlq q.

Parallel repetitions. The knowledge error might not be negligible depending on the
choice of bc. For τ repetitions, the reduction for the range proofs needs to be done only
once for all repetitions, and the reductions to commitment binding can be done all at once.
This means that τ repetitions of Πdleq lead to a knowledge error 2p�bc�1qτ �maxpϵdlp , ϵdlq q.
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3.1.2 Zero-knowledge

Zero-knowledge with aborts. Schemes where the prover may abort [Lyu09; AFLT12]
are generally not honest-verifier zero-knowledge (HVZK). The challenge in proving HVZK
is in simulating the prover’s commitment message in aborting transcripts. However, it is
often possible to prove the schemes satisfies a relaxed notion of HVZK, sometimes called
no-abort honest-verifier zero-knowledge (naHVZK) [KLS18]. In naHVZK, the simulator
either returns a valid transcript, or returns K and the verifier forgets about the incomplete
session made only of commitment and challenge. Since naHVZK is sufficient to simulate
non-interactive proofs (or signatures) when the Fiat–Shamir transformation is applied,
naHVZK is still a useful notion. Our protocol in Figure 1 is not affected by this limitation:
intuitively, the responses sp, sq, which are distributed uniformly at random in Zp and Zq,
guarantee that the commitment message is always uniformly random, both in aborting
and succeeding transcripts. Thus, we prove standard honest-verifier zero-knowledge, and
our protocol may also be used interactively.
Theorem 3. Πdleq is perfectly honest-verifier zero-knowledge.

Proof. Upon receiving as input c, the simulator samples z uniformly at random from
t2bx�bc , . . . , 2bx�bc�bf �1u and sp and sq uniformly from Zp and Zq. Then the simu-
lator solves for Kp, as Kp :� pzGp � spHpq � cXp (similarly for Kq). With probabil-
ity 1{2bf the simulator outputs pKp, Kq, c,Kq (the abort case) and otherwise outputs
pKp, Kq, c, pz, sp, sqqq.

We now argue that the real and simulated transcripts are identically distributed.
For the prover’s first message, since sp was chosen uniformly by the simulator, then
Kp � kGp � tpHp � kGp � psp � zcqHp is distributed uniformly at random in Gp,
regardless of whether the response is K or pz, sp, sqq. We note that in the abort case k will
be distributed differently in real and simulated transcripts, but because Kp and Kq are
perfectly hiding commitments they are identically distributed. In non-aborted transcripts,
both real and simulated transcripts have uniform z value (in the given range), by Lemma 1
and psp, sqq are sampled uniformly at random in both cases. The abort probability of the
simulator is the same as the honest prover, by Lemma 1 honest transcripts are aborted
with probability 1{2bf exactly as in the simulated case.

4 Trading group operations for hash evaluations
Our protocol Πdlhash for trading elliptic curve group operations for hash evaluations is
described in Figure 2. It is parametrized by a linear morphism M P Gm�n denoting the
linear relation to be proven. Valid choices include M � rGs for discrete logarithm relations
xG � X, or M � rG, Hs for Pedersen commitments rG, Hs � rx0, x1st � x0G� x1H, but
at the core it should be hard to find x, x1 such that Mx � Mx1. The verifier’s inputs
are pX, xhq, respectively commitment and hash of the same value x. We require that the
matri M has a kernel hard to solve, that is:
Definition 4 (Kernel-Matrix Diffie-Hellman [MRV16]). KMDH is hard for a group
generator GrGen and a matrix distribution D if it is infeasible, given a group description
Γ :� pG, p, Gq Ð GrGenp1λq and a matrix M Ð DpΓq in Gn�m to find non-trivial elements
of the null space, that is, to exhibit an x P Zn

p such that Mx � 0 and x � 0.

The simplest examples of the above is the group mapping M � rGs, (where G is the
group generator) which is into and thus perfectly collision resistant. Another valid example
are Pedersen commitments, for which M � rG, Hs (m � 1, n � 2, and H Ð$ G) and the
binding property follows straightforwardly from hardness of DL in G. We will say that
KMDH is hard in G for a matrix M if we consider the distribution D to be the distribution
of matrices M parametrized solely by the group description output of GrGen.
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ProverpX, xh, pxqq VerifierpX, xhq

k Ð$ Zm
p

kh :� Hpkq
K :� Mk kh, K

c Ð$ Zpc

z :� k � cx z

Mz ?
� K � cX

Prover and Verifier:
Πcrh : ppx, kq, xh, kh, c, zq P Rcrh

Output: πcrh # show xh � Hpxq,
#kh � Hpkq, and z � k � cx

Figure 2: Protocol Πdlhash, a Σ-protocol for proving knowledge of x such that X � Mx
and xh � Hpxq.

In addition, in order to provide HVZK, the hash function H must be compatible with
the group GrGen: it must be computationally hard to distinguish the pair pMx, Hpxqq
from the pair pMx1, Hpx1qq for x � x1. We call this notion hiding-compatibility.

Definition 5. Let f � tfλuλ, h � thλuλ be two function families indexed in λ P N with
domain Xλ. pf, hq are hiding-compatible with error ϵhc if the distributions

tx Ð$ Xλ : pfλpxq, hλpxqqu and tx, s Ð$ Xλ : pfλpxq, hλpsqqu

have statistical distance ϵhc.

We prove the following theorem:

Theorem 4. Let m, n P polypλq. Let M P Gm�n be a matrix over some group G, and H
be a collision-resistant hash function. Then, Πdlhash of Figure 2 is a Σ-reduction from the
relation

Rdlhash :� tppxh, Xq, xqq : X � Mx ^ xh � Hpxqu , (3)

to the relation

Rcrh :� tppx, kq, xh, kh, c, zq : xh � Hpxq ^ kh � Hpkq ^ z � k � cxu .

with:
• perfect completeness,
• knowledge soundness error ϵkmdh,
• honest-verifier zero-knowledge with error ϵhc,
• proof size |H|�m � |G|� n � |Zp|.

Πdlhash requires at the end a proof for the pre-image of a collision-resistant hash function
H, parametrized by the field Zp, that is, a proof for the relation Rcrh.

This protocol can be instantiated (for instance) using our Πaes from Section 5, taking
particular care in tweaking the block size to be large enough in order to provide sufficient
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collision resistance,10 but this proof can of course be provided with any other general-
purpose proof system for collision-resistant hash functions, algebraic or boolean.

4.1 Proof of Theorem 4
Completeness is straightforward: the response z � k � cx satisfies Mz � Mk � cpMxq �
K � cX by linearity of M , and validity of the proof πcrh relies on completeness of the
underlying proof for the relation Rcrh. In the remainder of this section, we focus on proving
soundness (Lemma 3) and zero-knowledge (Lemma 4) We then discuss the concrete
efficiency of our protocol when instantiated for simple discrete logarithm relations.

4.1.1 Soundness

Our soundness analysis assumes that M is “binding” (i.e., KMDH is hard for M).

Lemma 3. Πdlhash a 2-special sound Σ-reduction from Rdlhash to Rcrh with knowledge error
ϵkmdh.

Proof. We prove 2-special soundness, extracting x such that X � Mx and hx � Hpxq.
Consider a p.p.t. adversary that outputs two accepting transcripts and reduced witnesses:

pK, kh, c0, z0q, px0, k0q and pK, kh, c1, z1q, px1, k1q , (4)

with c0 � c1. We claim that x0 is the witness, and now argue that it is indeed valid. Since
both transcripts are accepting, the extracted x0, x1, k0, k1 satisfy

Hpx0q � Hpx1q � xh , k0 � z0 � c0x1 pmod pq ,

Hpk0q � Hpk1q � kh , k1 � z1 � c1x1 pmod pq .
(5)

If k0 � k1 or x0 � x1, we found a break for collision-resistance of H. Since the two
transcripts of Equation (4) are valid, define x :� pc0 � c1q�1pz0 � z1q satisfying

K � Mz0 � c0Mx � Mz1 � c1Mx .

(Note c0 � c1, so the inverse always exists.) Since k0 � k1 and x0 � x1, we have

z0 � c0x0 � z1 � c1x0 pmod pq
Mz0 � c0Mx � Mz1 � c1Mx

If x0 � x, we have a non-trivial element of the kernel of M since pc0px�x0q, c1px�x0qq are
different (c0 � c1) and have the same image under M . Therefore, x0 � x � x1 and hence
Mx0 � X. In addition, from Equation (5), Hpx0q � xh. To conclude, px0, X, xhq P Rdlhash
with error ϵkmdh.

4.1.2 Zero-knowledge

Similarly to the case of soundness, in the statement below we assume that the proof πcrh is
zero-knowledge. More information about the zero-knowledge property of πcrh can be found
in Section 2.

Lemma 4. Πdlhash is honest-verifier zero-knowledge with error ϵhc.
10A secure hash mode for AES, derivative of the Davies-Meyer construction, has been proposed in

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aesh
ash.pdf.

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
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Table 3: The protocol Πdlhash vs non-native scalar multiplication inside a Groth16 [Gro16]
circuit (“Naive”). The hash function used is Poseidon [GKR+21] and the proof size is in
bytes after applying the Fiat–Shamir transformation, for two popular choices of elliptic
curves. Benchmarks on a laptop equipped with an Intel i7-1370P CPU and 32GB of RAM
running Debian Linux.

|π| Prover time R1CS constraints
Πdlhash (BN254) 256 20ms 325
Naive (BN254) 128 10.1s 1.7 million
Πdlhash (BLS12-381) 336 21ms 325
Naive (BLS12-381) 192 17.6s 2.5 million

Proof. The zero-knowledge simulator samples c, z, k� Ð$ Zp � Zn
p � Zn

p and computes
R :� Mz � cX, and rh :� Hpk�q. Then, simulates πcrh for the statement pτ, px, kqq and
returns the transcript pR, rh, c, z, πcrhq We show that it is difficult for an adversary to
distinguish simulated transcripts from genuine transcripts generated by an honest prover
via a hybrid argument on the distribution of prover transcripts:

H1 An honestly-generated prover transcript is a tuple pK, kh, c, z, πq where K � Mk for
some k uniformly distributed and kh :� Hpkq, z � cx� k. The proof π is honestly
generated for ppx, kq, pxh, khqq P Rcrh.

H2 This game behaves identically to the previous except that πcrh is now computed using
the simulator for the statement pxh, kh, c, zq. The two distributions are indistinguish-
able by zero-knowledge of πcrh.

H3 Replace the computation of kh: instead of honestly computing it via kh :� Hpkq,
sample k� Ð$ Zn

p and compute kh :� Hpk�q. This follows directly from hiding-
compatibility of pM, Hq.

H4 Compute the elements pK, c, zq differently: instead of computing K � Mk and
z :� k � cx for some uniformly distributed c P Zp and k, we sample c, z Ð$ Zp � Zn

p

and compute K � Mz� cx. The two distributions are both uniformly distributed
satisfying the relation K � Mz� cx and perfectly indistinguishable. (The adversary
cannot see the order in which values are sampled).

The simulated transcript is exactly the distribution output of the simulator. Therefore,
the protocol Πdlhash is honest-verifier zero-knowledge.

4.2 Efficiency
Roughly speaking, Πdlhash saves Opλ log pq constraints from the zero-knowledge SNARK
circuit and trading them off with twice a hash circuit evaluation. Let |H| denote the
size of the output of the hash function H and |πcrh| the size of the proof πcrh. For a
linear relation M P Gn�m, the prover time and proof size of Πdlhash the proof size will
be |π| � pn � 1q|F| � |H| � |πcrh| after applying the Fiat–Shamir transformation and the
prover time will be dominated by m multi-scalar multiplications of size n, plus the cost for
computing the sub-proof πcrh.

We benchmark our proof system for simple DL relations, using M � rGs, Posei-
don [GKR+21] as the CRH function H, and πcrh using R1CS and Groth16 [Gro16].11 In
Table 3 we benchmark the performance of Πdlhash against non-native scalar multiplication
xG using the double-and-add algorithm inside a SNARK circuit, for an x P Zp of 255 bits.
In this case, Πdlhash reduces the number of constraints of about 4 orders of magnitude. We
expect more recent proofs based on custom gates such as Plonk to have a lower (but still
signigicant) gap. In Table 3 we benchmark the performance of Πdlhash against the naive

11https://github.com/arnaucube/sigmabus-poc

https://github.com/arnaucube/sigmabus-poc
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approach of performing a non-native scalar multiplication xG using the double-and-add
algorithm inside a SNARK circuit, for an x P Zp of 255 bits.

5 Rijndael via one lookup
The Rijndael cryptosystem [DR91] is a symmetric encryption algorithm, established as
Advanced Encryption Standard (AES) by NIST in 2001 [AES01], which has become a
widely-used standard for securing electronic data globally. We prove the following theorem:

Theorem 5. Πaes of Figure 3 is a Σ-reduction from the relation

Raes :�

$''''&
''''%

ppctx, M, Kq, pm, µ, k, κqq : ctx � AESpk, mq
^ M �

¸
i

miGi � µHi

^ K �
¸

i

kiGi � κHi

,////.
////-

, (6)

to the relation

Rlup :�
!
ppf , ϕq, F, tq : F � °n

i�1 fiGi � ϕH ^ @i P r1, ns, fi P ttju|t|j�1

)
.

where AES is the Rijndael block cipher, and m, k are the bit-strings of (respectively) message
and key. The proof system enjoys:

• perfect completeness,
• knowledge soundness error ϵdl � 5{p,
• perfect honest-verifier zero-knowledge,
• proof size |G|.

Protocol. The protocol is illustrated in Figure 3. Prover and verifier see the AES
encryption as a circuit of three low level functions:

(1) the XOR operation, denoted with infix notation as the map ` : F28 � F28 Ñ F28 :
pa, bq ÞÑ a� b ;

(2) multiplication by t2u in Rijndael’s Galois field rj2 : F28 Ñ F28 : a ÞÑ α � a, where
α2 � 1 is a non-trivial 2-root of unity the field F28 ;

(3) the S-Box operation, denoted sbox : F28 Ñ F28 that maps a to its modular inverse
a�1 if a � 0 otherwise 0 and combines the result with an affine transformation.

In fact,SubBytes consists solely of one application of sbox, ShiftRows is a permutation,
MixColumns is a linear transformation over F28 and as such can be written as composition
of ` and rj2, and AddRoundKey is a simple XOR operation. With a slight abuse of notation,
we consider component-wise applications of the above functions: st1 :� sboxpstq denotes
the application of the S-Box operation to each element of the state st P pF28q16.

Denote with w :� ptr, kschq :� AesTracepm, kq the witness vector, containing the
computation trace of the AES state across the different rounds, grouped in bit-segments,
denoted tr, a vector of small integers in t0, . . . , 28�1u. This algorithm computes interme-
diate state values sti,j for each round i, and returns their concatenation as the execution
trace is detailed in [OKMZ24, Appendix E]. After committing to w, consider the following
matrices and equations that hold for a valid cipher trace tr:

• Sxor,L, Sxor,R, Sxor,O: matrices of the left inputs, right inputs, and outputs of XOR.
We have that

Sxor,L � tr ` Sxor,R � tr � Sxor,O � tr (7)

if and only if all ` operations over the AES trace are computed correctly.
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ProverppM, K, ctxq, pm, µ, k, κqq VerifierpM, K, ctxq

ptr, kschq :� AesTracepm, kq
ω Ð$ Zp

W :�
°

wiPtr}ksch wiGi � ωH
W

c Ð$ Zp

c

pcm, ckq :� pc, c2q
f :� pm }k } trq pcsbox, crj2, cxorq :� pc3, c4, c5q

ϕ :� cmµ � ckκ � ω tsbox :� ri � csbox � sboxpiqs255
i

G1 :� S � pcmG0..|m| } ckG0..|k| }Gq trj2 :� ri � crj2 � rj2piqs255
i

F :� W � cmM � ckK txor :�
�
i � cxorj � c2

xorpi ` jq
�127

i,j

t :� ptsbox}trj2}txorq

Prover and Verifier:
Πlup : ppf , ϕq, |f |, t, F q P Rlup

Output: πlup # show f � t

Figure 3: Πaes for proving that ctx is the correct AES-encryption of message m with key
k committed as M , K; the matrix S is defined in Equation (13).

• Srj2,I, Srj2,O: select the inputs and outputs of multiplication by t2u in Rijndael’s field.
We have that

rj2 pSrj2,I � trq � Srj2,O � tr (8)
if and only if all rj2 operations over the AES trace are computed correctly.

• Ssbox,I, Ssbox,O: select the inputs and outputs of the S-Box. We have that

sbox pSsbox,I � trq � Ssbox,O � tr (9)

if and only if all sbox operations over the AES trace are computed correctly.
Instead of checking Equations (7) to (9) directly, the verifier sends challenges cxor, crj2, csbox
and we check that:

Sxor,L � tr� cxorSxor,R � tr� c2
xorSxor,O � tr � txor :� ri� cxorj � c2

xor � pi` jqs255
i,j�0 (10)

Srj2,I � tr� crj2Srj2,O � tr � trj2 :� ri� crj2 � rj2piqs255
i�0 (11)

Ssbox,I � tr� csboxSsbox,O � tsbox :� ri� csbox � sboxpiqs255
i�0 (12)

where (abusing notation) the subset symbol indicates that all elements in the left-hand
side vector appear in the right-hand side vector. In other words, upon receiving a challenge
csbox, the prover computes x� csbox � y and proves that it is contained in i� csbox � sboxpiq
(for i P t0, . . . , 28�1u). We proceed similarly for the other operations. Range-checks and
shuffles need not be performed, as extraction of a valid witness can be already guaranteed
from the lookup protocol itself.

Equations (10) to (12) can be then proven with a generic lookup protocol Πlup, but some
improvements can be made on top. First, lookups can be easily batched concatenating the
respective instances and proving the concatenation is contained in the concatenation of
the respective tables.
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Second, the relative Boolean functions B : Fn
2 Ñ Fn

2 where each component is evaluated
independently, i.e. Bpvq � pbpv0q, . . . , bpvnqq for b : F2 Ñ F2 can (naïvely) be seen as a
lookup table of size N :� 2n. To optimize the concrete efficiency of our protocol, for such
functions we instead perform c lookups over tables of size c

?
N , for some c P t1, 2, 4, 8u.

This comes at the cost of committing to a larger vector w of size c � N . For instance,
in the case of 8-bit XOR, we consider two lookups of 4-bit segments instead of a single
lookup of size 28 instead of a single one of size 216). In our implementation, we selected
c P 1, 2, 4, 8 in the case of AES, we have a single table of size 3 � 28 � 768 elements. In our
implementation, for AES-128 and AES-256 we represent the key and the message split
into 4-bit segments, i.e. m � pm0, . . . , m31q with 0 ¤ mi   16 for all i’s. If values are too
large then decomposition will fail. Overall, the protocol simply boils down to generating a
witness vector of all intermediate computation results and looking up the elements of the
computation trace in a table of 768 elements. In AES-128 the computation trace consists
of 1232 elements and looks up 1808 elements in a table of 768; in AES-256 the computation
trace consists of 1744 elements and 2576 elements to look up in a table of 768.

While the commitment F to f is part of the statement, it is never sent throughtout the
protocol. One may obtain it via a linear transformation of the generators used: consider
the matrix S parametrized by the challenges crj2, csbox, cxor

S :�
�
� Ssbox,I � csbox Ssbox,O

Srj2,I � crj2 Srj2,O
Sxor,L � cxor Sxor,R � c2

xor Sxor,O

�
� (13)

and note that f � Sw, and thus F � xw, S �Gy � ωH.

5.1 Proof of Theorem 5
In this section, we prove Theorem 5 showing that it satisfies completeness, special soundness,
and honest-verifier zero-knowledge. The analysis is fairly simple as the core of the protocol
boils down to one batch lookup invocation.

Completeness is straightforward: the verifier of Πaes internally computes the vector
t :� ptsbox}trj2}txorq, sees F as a Pedersen commitment under generators S � G, and
internally invokes the lookup protocol verifier. Completeness of the whole protocol
immediately follows from completeness of the lookup protocol.

Zero-knowledge is guaranteed by the hiding property of the commitment scheme.
Specifically, the zero-knowledge simulator just samples a random element W Ð$ G. The
result follows by a union bound.

Lemma 5. The protocol Πaes for the relation Raes is 3-special sound with knowledge error
ϵdl � 5{p.

Proof Sketch. Consider an adversary that outputs valid transcripts and reduced witnesses
pW, c0q, f0, pW, c1q, f1, and pW, c2q, f2, with c0 � c1, c1 � c2, and c0 � c2. Let J1 and J2
denote the indices of f encoding the XOR constraints of the initial state and the state at
the end of the 0-th round. (Recall that the first round consists solely of AddRoundKey and
the 0-th key is the AES key itself.) Consider the linear system in unknowns x, y, z P Zp:�

�b0
b1
b2

�
� �

�
�1 c5

0 c10
0

1 c5
1 c10

1
1 c5

2 c10
2

�
�
�
�x

y
z

�
� (14)

where bi P tfi,jujPJ1
Y tfi,jujPJ2

Y tϕju which admits one solution since c0 � c1 � c2, and
thus the matrix is Vandermonde. (We assume p much larger than 5.) The extractor checks
x, y, z P t0, . . . , 24�1u and z � x` y. If found, the extractor outputs the recovered values
as the witness for the relation Raes. The extractor outputs K if no such values exist.
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Table 4: Comparison between zero-knowledge AES-128 schemes and our protocol Πaes.
Proof size |π| is in bytes. “Proof Type” indicates the techniques used among MPC-in-the-
Head [IKOS07], FRI-based [BBHR18], or DL-based, and between parenthesis we indicate
if they are plausibly post-quantum for the zero-knowledge property. Benchmarks on a
laptop equipped with an Intel i7-1370P CPU and 32GB of RAM running Debian Linux.

Proof type |π| Prover time Verifier time PQ (ZK)
PICNIC1-L3 [CDG+17] MPCitH 74134 3.2ms 2.5ms ✓ (✓)
PICNIC2-L3 [CDG+17] MPCitH 27173 123ms 41ms ✓ (✓)
FAEST [BBdS+23] MPCitH 6336 14ms 13ms ✓ (✓)
Preon128A [CCC+23] FRI 139000 64s 414ms ✓ (✓)
Preon128B [CCC+23] FRI 372000 65s 576ms ✓ (✓)
Lambdaclass [lam] DL 855 34s ? ✗ (✓)
Ours (Σ-protocols) DL 80864 37ms 13ms ✗ (✓)
Ours (compressed-Σ) DL 2848 180ms 16ms ✗ (✓)

If the extractor outputs K, it follows that exists (different) xj , yj , zj P t0, . . . , 24�1u
such that xj`yj � zj and xj�yjc5

j �zjc10
j � fj,0. (This is always the case since the proofs

are valid.) However, this means that the adversary has found two different openings for
the commitment F � W � cmM � ckK, which is a contradiction to the binding property
of Pedersen commitment, which itself happens only with probability ϵdl. We are left with
arguing that the values extracted are indeed from the commitments M and K, which
follows from the Schwartz-Zippel lemma. Thus, the knowledge error of the extractor is at
most ϵdl � 5{p.

5.2 Efficiency
The overall prover’s time cost consists of the cost of running the lookup protocol over |f |
needles into a haystack vector |t| of 28 � 28 � 216{c elements (in our implementation, 768),
plus a multi-scalar multiplication of size c � n for small elements (of size 28{c) and one
scalar multiplication (for zero-knowledge). When instantiated with Πlup from [OKMZ24,
Appendix C] the prover and verifier time complexity are dominated by a linear number of
group and field operations.

For the AES-128 cipher with c � 2, the prover performs MSMs of 1808 and 3616 Zp

elements, and the verifier one MSM of 3616 elements. For the AES-256 cipher with c � 2,
the prover handles MSMs of 2576 and 3488 elements. The prover’s larger MSM can be
precomputed during an offline phase, reducing the final cost.

We have implemented and made Πaes available as an open-source library in Rust using
the arkworks library12, released under the BSD license.13 Being based on Σ-protocols,
the proof size is linear in the size of the witness. Additionally, we highlight that in the
Σ-protocol Πlin ([OKMZ24, Figure 7]), the commitment operation (which is the most
expensive of the whole protocol) is independent of the witness and can be precomputed in
an offline phase. As part of our implementation, we revisited arkworks’ implementation of
Pippenger’s algorithm and optimized it for small scalars: in order to perform an MSM
of the form

°
i xiGi, we consider buckets B1, . . . , B8 and add Gi to the bucket Bi if the

i-th bit of xi is set. Finally, we return
°

i 2iBi. We also employ a batch version of the
sumcheck protocol which is described in [OKMZ24, Appendix D]. A summary of our
benchmarks is shown in Table 4, comparing Πaes with curve25519 [Ber06] and alternative
approaches. Note that, in the table, the cryptographic assumptions used are different:
FRI- and MPCitH-based proofs are for digital signatures and are thus proving equality of

12https://arkworks.rs
13https://github.com/mmaker/tinybear

https://arkworks.rs
https://github.com/mmaker/tinybear
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secret keys; Lambdaclass’s implementation also considers the keyschedule (whereas we do
consider only the cipher). Our AES-128 zero-knowledge proof runs in about 30 ms on a
MacBook M1 Pro.
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