
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 35 pages.

https://doi.org/10.62056/aee0iv7sf
Check for updates

Relations Among New CCA Security Notions for
Approximate FHE

Chris Brzuska1, Sébastien Canard2, Caroline Fontaine3, Duong Hieu Phan2,
David Pointcheval4,5, Marc Renard3,6 and Renaud Sirdey6

1 Aalto University, Espoo, Finland
2 Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

3 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
Gif-sur-Yvette, France

4 DIENS, Ecole normale supérieure, CNRS, Inria, PSL University, Paris, France
5 Cosmian, Paris, France

6 Université Paris-Saclay, CEA, List, Palaiseau, France

Abstract.
In a recent Eurocrypt’24 paper, Manulis and Nguyen have proposed a new CCA
security notion, vCCA, and associated construction blueprints to leverage both
CPA-secure and correct FHE beyond the CCA1 security barrier. However, because
their approach is only valid under the correctness assumption, it leaves a large
part of the FHE spectrum uncovered, as many FHE schemes used in practice turn
out to be approximate and, as such, do not satisfy the correctness assumption. In
this paper, we improve their work by defining and investigating a variant of their
security notion which is suitable for a more general case where approximate FHE are
included. As the passive security of approximate FHE schemes is more appropriately
captured by CPAD rather than CPA security, we start from the former notion to
define our vCCAD new security notion. Although we show that vCCA and vCCAD

are equivalent when the correctness assumption holds, we establish that vCCAD

security is strictly stronger than vCCA security in the general case. In doing so,
we interestingly establish several new separation results between variants of CPAD

security of increasing strength. This allows us to clarify the relationship between
vCCA security and CPAD security, and to reveal that the security notions landscape
is much simpler for correct FHE than when approximate ones are included — in
which case, for example, we establish that multiple challenges security notions are
strictly stronger than single-challenge ones for both CPAD and vCCAD security.
Lastly, we also give concrete construction blueprints, showing how to leverage some
of the blueprints proposed by Manulis and Nguyen to achieve vCCAD security. As
a result, vCCAD security is the strongest CCA security notion known so far to be
achievable by both correct and approximate FHE schemes.
Keywords: FHE · CPAD · CCA security · SNARK · Verifiability

1 Introduction
Since its inception more than ten years ago, Fully Homomorphic Encryption (FHE) has been
the subject of a lot of research toward more efficiency and better practicality. From a security

This work was supported by the France 2030 ANR Projects ANR-22-PECY-003 SecureCompute.
E-mail: chris.brzuska@aalto.fi (Chris Brzuska), sebastien.canard@telecom-paris.fr (Sébastien

Canard), caroline.fontaine@cnrs.fr (Caroline Fontaine), hieu.phan@telecom-paris.fr (Duong
Hieu Phan), david.pointcheval@ens.fr (David Pointcheval), marc.renard@cea.fr (Marc Renard),
renaud.sirdey@cea.fr (Renaud Sirdey)

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-10 Accepted: 2025-03-11

https://doi.org/10.62056/aee0iv7sf
https://crossmark.crossref.org/dialog/?doi=10.62056/aee0iv7sf&domain=pdf&date_stamp=2025-03-28
mailto:chris.brzuska@aalto.fi
mailto:sebastien.canard@telecom-paris.fr
mailto:caroline.fontaine@cnrs.fr
mailto:hieu.phan@telecom-paris.fr
mailto:david.pointcheval@ens.fr
mailto:marc.renard@cea.fr
mailto:renaud.sirdey@cea.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Relations Among New CCA Security Notions for Approximate FHE

perspective, however, FHE still raises a number of questions and challenges. In particular,
all the FHE usable in practice, BFV [Bra12, FV12], BGV [BGV12], CKKS [CKKS17]
and TFHE [CGGI16], achieve CPA security but are trivially CCA1 insecure. Although
it is well-known that malleability is contradictory with CCA2 security, building efficient
FHE constructions achieving some degree of CCA security (e.g. CCA1) remains a very
important open challenge.

From a theoretical perspective, a significant step has been recently achieved by Manulis
and Nguyen in [MN24] with the introduction of the notion of vCCA security, which is
proven to be strictly stronger than CCA1 security while being achievable by FHE-based
malleable schemes through several construction blueprints. In essence, these construction
strategies consist in starting from a CPA secure and correct FHE and augmenting it
with the machinery required for proving the well-formedness of fresh ciphertexts (i.e.
ciphertexts which are direct outputs of the encryption function) as well as that of evaluated
ciphertexts (i.e. ciphertexts derived from well-formed fresh ciphertexts by means of genuine
homomorphic operations), with the decryption function of the augmented scheme returning
� when the proof verification fails. The intuition behind such construction strategies is
that the proof machinery downgrades attackers to CPA ones and that, as a result, some
form of CCA security is achieved by the augmented scheme. Although several techniques
can be used to ensure the well-formedness of fresh ciphertexts (such as signatures in
the private key setting, or Naor-Yung [NY90] in the public key setting), their approach
intimately relies on Succinct Non-interactive Arguments of Knowledge (SNARKs) to
enforce the well-formedness of evaluated ciphertexts. Under the assumption that the
underlying SNARK is simulation-extractable, it then becomes possible to define a new
(single challenge) security game along with a new security notion called vCCA, in the spirit
of the CCA2 game: whereas the (second step) CCA2 game decryption oracle rejects the
challenge ciphertext, the vCCA security game (second step) decryption oracle rejects all
byproducts of the challenge ciphertext, identified by means of the SNARK extractor. One
of Manulis and Nguyen’s main contributions is to show, interestingly, that the resulting
security notion, vCCA, is strictly stronger than CCA1 (no second step oracle) as well as a
strict relaxation of CCA2 (because the CCA2 decryption oracle is more permissive than
the vCCA decryption one). They also investigate the relationship between vCCA security
and other CCA2 relaxations such as RCCA, and others.

Another very important security notion for FHE, introduced by Li and Micciancio
in [LM21], is that of CPAD security. It formalizes the security of FHE against a slight and
seemingly benign extension of CPA security: in CPAD, the adversary is granted access
only to a highly constrained decryption oracle which accepts only genuine ciphertexts, or
ciphertexts derived from genuine ciphertexts by means of genuine homomorphic operations.
The initial intuition is that, by knowing the cleartext inputs of an FHE calculation, the
adversary should be able to compute all the outputs of that decryption oracle by his or
herself and, as a consequence, that CPAD security is implied by or even equivalent to
CPA security. However, the correctness assumption implicitly lies at the heart of this
reasoning and Li and Micciancio [LM21] demonstrated that these intuitions are not true
for approximate FHE schemes such as CKKS for which it turns out that the CPAD

decryption oracle outputs leak the LWE noises in the ciphertexts, resulting in the ability
for the adversary to easily and practically recover the secret decryption key of the scheme.
Although initially introduced for approximate FHE, recent works [CSBB24, CCP+24] have
shown that the non-approximate FHE schemes that were previously considered immune to
CPAD attacks are, contrary to this folklore belief, all CPAD insecure as soon as decryption
errors can (or can be made to) occur with a non-negligible probability.

In their paper, Manulis and Nguyen [MN24] define and study vCCA security only under
the correctness assumption and address only very briefly CPAD security, essentially claiming
informally that their vCCA scheme construction blueprints also apply to approximate

C. Brzuska et al. 3

FHE “with the caveat that approximate FHE schemes need to be CPAD-secure”. In the
present paper, we clarify the relationship between vCCA security and CPAD security,
and propose a new CCA security notion, vCCAD, covering the spectrum of both correct
and approximate FHE schemes. We show that both notions are equivalent when the
correctness assumption holds, but establish that vCCAD security is strictly stronger than
vCCA security in the general case where approximate FHE are allowed. In doing so, we
interestingly establish several new separation results between variants of CPAD security of
increasing strength. This allows us to show that vCCA security does not imply CPAD

security, but rather a much weaker single-challenge “CCA1 style” variant of it. We also
reveal that the security notion landscape is much simpler for correct FHE than in the
general case where, for example, we establish that multiple challenges security notions are
strictly stronger than single-challenge ones for both CPAD and vCCAD security. Lastly,
we study concrete construction blueprints, and show how to leverage some of the blueprints
proposed in [MN24] to achieve the new and stronger vCCAD security.

Our first motivation for this study is practical: although the construction blueprints
discussed in [MN24] and Sec. 6 may not be amenable to efficient implementations in their
full generality, it seems possible to instantiate them in use-cases requiring only special
classes of homomorphic calculations to be performed. When this is possible, vCCA and
vCCAD security provide a yardstick to achieve CCA security in a context where decryption
oracles often naturally occur in many application scenarios for FHE. We elaborate more on
this point in our concluding remarks (Sec. 7). Our second motivation is more theoretical,
as this line of works allows to better understand and probe the limitations of FHE in terms
of CCA security with, as we establish in this paper, vCCAD security as the strongest
CCA security notion known so far to be achievable by FHE in the general regime where
approximate/non-exact schemes are considered (with most practically used FHE schemes
falling in that later category).

1.1 Summary of security notions and contributions
In this work, we study the following (non standard) security notions:

• CPAD: the multiple challenges passive security notion introduced in [LM21] for
approximate FHE.

• CPAD
2 ≡ CPAD

SC: restriction of CPAD to the single challenge case.

• CPAD
1 : restriction of CPAD

2 with the decryption oracle closing after the challenge
request (similar in spirit to the CCA1/CCA2 definitions). Note that CPAD

1 is
different from non-adaptive CPAD as defined and studied in [LM21].

• vCCASC: the single challenge CCA security notion introduced in [MN24] for correct
FHE. Note that it is simply denoted vCCA in [MN24].

• vCCA: the multiple challenges variant of vCCA (this variant was not considered in
[MN24]).

• vCCAD: our main new multiple challenges CCA security notion for FHE in the
general regime which includes approximate FHE.

• vCCAD
SC: restriction of vCCAD to the single challenge case.

Note that, following standard conventions from [BDJR97], the multiple challenges notions
will sometimes be prefixed by LOR- to avoid any ambiguity with the corresponding single
challenge notions (also known as FTG).

With this in mind, the contributions of this paper are the following:

4 Relations Among New CCA Security Notions for Approximate FHE

• When the correctness assumption holds for the underlying FHE, we show that:

– CPAD
1 , CPAD

2 ≡ CPAD
SC and CPAD security are all equivalent to CPA security.

– vCCASC, vCCA, vCCAD
SC and vCCAD security are all equivalent.

• In the general case where the correctness assumption does not necessarily hold and
approximate FHE are allowed, the picture we reveal is much more interesting:

– For CPAD security, we establish that CPAD
1 ≺CPAD

2 ≺CPAD, where the ≺ op-
erator stands for the “is strictly weaker” relation. As a bonus, this settles
the question of the relationship between single and multiple-challenge CPAD

security that was left open in [LM21].
– We clarify the relationship between vCCA and CPAD security by showing that

CPAD
1 ≺vCCASC but that vCCASC security implies neither CPAD

2 nor CPAD

security (and vice-versa), contrary to what was informally claimed in [MN24].
– For vCCA security, we further establish that vCCASC≡ vCCA and that

vCCASC≺vCCAD
SC. Thus, we demonstrate that our new security notion is

strictly stronger than vCCA security, even in the single challenge case.
– Lastly, for vCCAD security, we prove that CPAD≺vCCAD, and further prove

that vCCAD
SC≺vCCAD. This implies that vCCAD is the strongest of all these

notions in the general FHE case and that it is the one that should be strived
for.

• Lastly, we revisit the CPA-to-vCCA FHE scheme construction blueprints proposed in
[MN24] under the correctness assumption and turn them, when possible, into CPAD-
to-vCCAD blueprints. In particular, we are able to do so and prove the vCCAD

security of the Encrypt-then-MAC (private key, designated verifier), Encrypt-then-
Sign (private key, public verifier), and CCA2-Companion-Ciphertext (public key,
designated verifier) blueprints; but we also show that the Naor-Yung-based blueprint
(public key, public verifier) cannot be used when the (perfect) correctness assumption
does not hold. In this later case (public key, public verifier), we thus propose a new
blueprint, Encrypt-then-Prove, which achieves vCCAD (and vCCA) security in the
general setting where the correctness assumption does not necessarily hold.

Figure 1 summarizes the relationships between these notions in the general case. When
proving relationships between security notions, we make a difference between the correct
case or correct regime, where the FHE correctness assumption is assumed to hold, and the
general case or general regime, where approximate FHE are allowed. This terminology is
used consistently in the paper.

1.2 Paper organization
This paper is organized as follows. After some preliminaries (Sect. 2), Sect. 3 introduces
the definition of vCCAD security and recalls the definitions of CPAD and vCCA security.
In this section, we also investigate the definitional connections between these notions.
Then, in Sect. 4, we investigate the relationship among the single challenge variants of
these security notions in both the restricted setting where the correctness assumption
holds and in the general case where approximate FHE are allowed. Then, in Sect. 5, we
focus on unveiling the relationships between the single and multiple-challenge variants of
these security notions as well as the relationships between the multiple-challenge variants
between each other. Sect. 6 is devoted to prove the security of several generic scheme
construction blueprints with respect to the stronger multiple-challenge vCCAD security
notion. Sect. 7 then concludes the paper.

C. Brzuska et al. 5

CPA CPAD
1

vCCASC

vCCA

CPAD
2

vCCAD
SC

CPAD

vCCAD CCA2

Figure 1: Summary of the security notions investigated in this paper and their relationships
in the general regime, where approximate FHE are allowed. Note that all single arrows
are strict implications, and recall that CPAD

2 ≡ CPAD
SC is the restriction of CPAD to the

single challenge case and that CPAD
1 is the restriction of CPAD

2 with the decryption oracle
closing after the challenge request. Please also remind that notions without a subscript in
their names are multiple challenge ones and that, for consistency, we denote by vCCASC
the single challenge security notion defined in [MN24]. We emphasize that all the relations
shown on this figure involve at least one new notion introduced in this paper and are, as a
consequence, new relations.

2 Preliminaries
We define an encryption scheme E = (KeyGen, Enc, Dec) over key space K, plaintext domain
P and ciphertext domain C as a triplet of PPT algorithms:

• KeyGen: on input 1λ, outputs an encryption key ek and a decryption key sk.

• Encek: on input m ∈ P and the encryption key ek, outputs an encryption c ∈ C of m.

• Decsk: on input c ∈ C and the decryption key sk, outputs a decryption m ∈ P ∪ {�} of
c.

Let COIN denote the randomness space of E . We will sometimes externalize the randomness
used in the encryption function by means of the notation Encek(m; r), with m ∈ P and
r ∈ COIN (in this case, the function Encek ∶ P × COIN Ð→ C is deterministic). When ek is
public, we say that E is a public-key encryption scheme. Conversely, when ek has to remain
private and an adversary can create valid ciphertexts with at most neg(λ) probability
using only public knowledge, we say that E is a private-key encryption scheme. When for
all (ek, sk) ∈ K and all m ∈ P we have that

Pr
r∈COIN

(Decsk(Encek(m; r)) ≠m) ≤ neg(λ), (1)

we say that E is correct. When the above equality always holds, we will talk about
perfect correctness. A ciphertext is valid if it is the output of the encryption function for
some message m ∈ P, that is, if there exists m ∈ P and some randomness r ∈ COIN such
that c = Encek(m; r). We further say that E is verifiable if there exists a PPT algorithm
Verif, taking a ciphertext as input, which tells whether or not this ciphertext is valid
with a neg(λ) probability of error for an adversary with knowledge of only public data.
For verifiable schemes, the decryption function with input ciphertext c outputs � when
Verif(c) = False. Note that for all non-homomorphic schemes considered in this paper, Decsk
will always be a deterministic polynomial-time algorithm. When there is no ambiguity, we
omit the ek and sk subscripts to Enc and Dec to lighten the notation.

Given a function class FH , we define a homomorphic encryption (HE) scheme EH as an
encryption scheme augmented by a deterministic1 polynomial-time algorithm Eval which,

1As is the case for the mainstream FHE schemes such as BFV, BGV, TFHE and even CKKS.

6 Relations Among New CCA Security Notions for Approximate FHE

on input f ∈ FH and c1, ..., cK ∈ CK , where K denotes the arity of function f , outputs a
new evaluated ciphertext. When EH satisfies condition (1) and when Eval is such that for
all (ek, sk) ∈ K, all f ∈ FH and all m1, ..., mK ∈ PK

Pr
r⃗∈COINK

(Dec(Eval(f, Enc(m1; r1), ..., Enc(mK ; rK))) ≠ f(m1, ..., mK)) ≤ neg(λ),

we say that EH is a correct HE scheme. When this is not the case, we say that EH is an
approximate HE scheme. Consistently with [LMSS22], to avoid arbitrary schemes with
unreliable Eval to be marketed as approximate HE schemes, we add an additional condition
that, for some (small) ε ≥ 0, the following holds

Pr
r⃗∈COINK

(∣∣Dec(Eval(f, Enc(m1; r1), ..., Enc(mK ; rK))) − f(m1, ..., mK)∣∣∞ ≤ ε) ≥ pε, (2)

with pε ≥ 3
4

2. We will sometimes refer to a scheme satisfying this property as an ε-correct
scheme. When EH achieves correctness only for FC ⊂ FH , it is said to be FC-correct (in
the spirit of [ABMP24]).

All the HE schemes we consider in this paper are public-key. Also note that for
the homomorphic schemes considered in this paper, Decsk is by default a deterministic
polynomial-time algorithm, unless explicitly stated otherwise (e.g. CKKS with noise
flooding as defined in [LMSS22] has a probabilistic decryption algorithm). When � ∈ EH .P ,
we will further always assume a consistency property which requires that ∀m⃗, r⃗ ∈ PK ×
COINK ,

Dec(Eval(f, Enc(m1; r1), ..., Enc(mK ; rK))) ≠ �, (3)
and

Dec(Eval(f, c1, ..., cK)) = �, (4)
whenever ∃i ∶ Dec(ci) = �.

As in [MN24], for signatures and MAC we use the standard definitions respectively
Σ = (KeyGen, Sign, Verify) and M = (KeyGen, Tag, Verify) and assume SUF-CMA security.
In our case, EUF-CMA security will not be sufficient because we essentially use signatures
as a building block for CCA2 encryption schemes in the private key setting. Lastly, we
consider straightline-extractable SNARK, Π = (Setup, Prove, Verify), over function class
FE (slightly departing from [MN24] which required simulation-extractability). Indeed, in
the security proofs of the constructions we study in Sect. 6, we are in the setup where only
the adversary generates proofs and where our simulator only invokes the SNARK extractor
when Π.Verify(π) = True on a proof π. Additionally, because we do not investigate circuit
privacy, we do not need zk-SNARKs to prove correct homomorphic derivations. Formal
definitions for these notions are recalled in appendix A.

3 Defining vCCAD security
This section introduces our vCCAD security notion which is an extension of both vCCA
and CPAD (hence the name). As they both are extensively referred to in this paper, we
start by recalling the games associated with these two notions. We then define the vCCAD

game.

3.1 The CPAD game
The CPAD game has been introduced in the context of approximate FHE. CPAD security is
a slight extension of CPA security defined by the following Left-Or-Right multiple-challenge
security game.

2We use this probability only to prove non-negligible advantages in some of our proofs. In practice pε

is typically chosen above 1− 2−40. In some contexts, e.g. [ABMP24], pε even has to be at least 1− neg(λ).

C. Brzuska et al. 7

Given a homomorphic encryption scheme

EH = (KeyGen, Enc, Dec, Eval),

an adversary A and value λ for the security parameter, the game is parameterized by a bit
b

$←Ð {0, 1}, unknown to A, and an initially empty state S of message-message-ciphertext
triplets:

• Key generation. Run (ek, sk)← KeyGen(1λ), and give ek to A (when the scheme is
public-key).

• Encryption request. When A queries (plaintext, m), m ∈ P compute c = Enc(m),
give c to A and do

S ∶= [S; (m, m, c)].

• Challenge request. When A queries (test messages, m0, m1), m0, m1 ∈ P2

(m0 ≠m1) compute c = Enc(mb), give c to A and do

S ∶= [S; (m0, m1, c)].

• Evaluation request. WhenA queries (eval, f, l1, . . . , lK) (li ∈ {1, ..., ∣S∣},∀i), compute

m′0 = f(S[l1].m0, . . . , S[lK].m0),

and
m′1 = f(S[l1].m1, . . . , S[lK].m1),

as well as
c′ = Eval(f, S[l1].c, . . . , S[lK].c),

give c′ to A and do
S ∶= [S; (m′0, m′1, c′)].

• Decryption request. When A queries (ciphertext, l) (l ∈ {1, ..., ∣S∣}) proceed as
follows: if S[l].m0 ≠ S[l].m1 then return � to A. Otherwise return Dec(S[l].c).

• Guessing stage (after polynomially many interleaved encryption and decryption
requests). When A outputs (guess, b′), the outcome of the game is determined as
follows. If b′ = b then A wins the game. Otherwise, A loses the game.

A number of points should be emphasized with respect to the above game. First,
the decryption oracle accepts only ciphertexts from the game state which are necessarily
well-formed (either produced by an encryption or challenge request, or derived by the
evaluation oracle via an evaluation request i.e., derived by correctly applying homomorphic
operators to well-formed ciphertexts). As such, the above game does not capture any
CCA aspects. Second, when S[l].m0 = S[l].m1, it is important that the decryption oracle
returns Dec(S[l].c) and not S[l].m0 (or, equivalently in that case, S[l].m1). For correct
FHE, this has no impact, as Dec(S[l].c) = S[l].m0 = S[l].m1 in that case (and, as A
learns nothing it does not already know, CPAD security coincides with CPA security for
correct FHE). However, for approximate FHE, even when S[l].m0 = S[l].m1, we have (with
overwhelming probability) that Dec(S[l].c) ≠ S[l].m0 and Dec(S[l].c) ≠ S[l].m1. Thus
for approximate FHE, the decryption oracle grants A access to information she cannot
compute on her own, possibly resulting in a guessing advantage depending on whether or
not the cryptosystem at hand is CPAD secure. Additionally, let us also emphasize that, in
the above game, A has control of the homomorphic calculations that are performed as
f is included in the evaluation request. As a last remark, we acknowledge the fact that

8 Relations Among New CCA Security Notions for Approximate FHE

explicitly adding encryption requests to the above game is redundant as these are simply
challenge requests with m0 = m1 (as was assumed in the original definition of [LM21]).
However, since we are going back and forth between single and multiple challenges security
notions in the sequel, we feel that this explicitation may avoid later confusions. Although
the number of allowed challenge requests may vary from one security notion to another,
the number of encryption requests an adversary can perform always remains “unlimited”.

In addition to the above multiple-challenge notion initially defined in [LM21], we also
define and consider the following weaker restrictions of it:

• CPAD
2 ≡ CPAD

SC: restriction of CPAD to the single challenge case where the adversary
is allowed only one request of the form (test messages, m0, m1) with m0 ≠m1.

• CPAD
1 : restriction of CPAD

2 with the decryption oracle closing after the challenge
request (similar in spirit to the CCA1/CCA2 definitions, hence the choice for the
notations).

Note that CPAD
1 is different from non-adaptive CPAD as defined and studied in [LM21].

Indeed, there is a slight difference between the notion of adaptability as understood in the
multiple-challenge context of [LM21] (the adversary performs all its requests at once) and
that which is usually assumed between single-challenge CCA1 and CCA2 (the adversary
performs all its decryption requests before the unique challenge ciphertext is published).

3.2 The vCCA game
We now consider the vCCA game as recently introduced in [MN24]. Contrary to the
CPAD game presented in the previous section, that game is single challenge meaning that
the adversary performs only one request to the challenge oracle with m0 ≠m1. As already
stated in Sect. 1.1, we will now consistently refer to the original game and security notion in
[MN24] as vCCASC and reserve the vCCA naming for its multiple challenge generalisation
which we introduce and study in Sect. 5. Also, in the vCCASC security game, the
cryptosystem is augmented with a PPT witness extractor Extract ∶ C×X Ð→ FE ∪{id}×C∗,
where X denotes a set of auxiliary data, such that:

• For any ciphertext c ∈ C which is obtained by invoking Eval(f, c1, ..., cK),

Extract(c, aux) = (f, c1, ..., cK).

• Otherwise, Extract(c, aux) = (id, c).

Let us emphasize that all the construction blueprints which will be discussed in Sect.
6 embed proof material in their ciphertexts and rely on a SNARK to enforce correct
homomorphic evaluations over some input ciphertexts, Intuitively, the above Extract thus
corresponds to the extractor of that underlying SNARK which allows to retrieve a witness
from the proven statement as well as auxiliary data forming the trace of the execution
of the adversary (as formally defined in Sect. A). Because such an extractor exists only
with respect to provers able to produce valid proofs, we will further assume, in the case of
Designated-Verifier SNARKs, that the adversary is given access to a verification oracle.
By abuse of notations we will omit the aux argument in the sequel.

In particular, the above definition implies that

Extract(Eval(f, Enc(m1, r1), ..., Enc(mK , rK))) = (f, Enc(m1, r1), ..., Enc(mK , rK)). (5)

By extension, we also expect that

Extract(Enc(m, r)) = (id, Enc(m, r)). (6)

C. Brzuska et al. 9

Being single challenge, the vCCASC game therefore has two decryption oracles3. Before
the unique challenge encryption oracle request, the first step decryption oracle is simply as
follows.

• Decryption request (1st step). When A queries (ciphertext, c): return her Dec(c).

Then, after the generation of the unique challenge ciphertext c∗:

• Decryption request (2nd step). When A queries (ciphertext, c) proceed as follows.

1. Let
(f, c1, ..., cK) = Extract(c).

2. If
c∗ ∈ {c1, ..., cK} (7)

then return � to A.
Otherwise return her Dec(c).

As such, the vCCASC game is exactly the single challenge CCA2 game, with the second
step decryption oracle being augmented with case 1 above (which, in essence, filters out all
byproducts of the challenge ciphertext). Let us emphasize that vCCASC security is defined
and investigated in [MN24] only under the (strong) assumption that S is correct. However,
let us also highlight that the correctness assumption plays no role in the above definition
which remains meaningful in the general regime where approximate FHE are allowed.

As a last comment, let us underline that, although its definition seems intrinsically
single-hop (e.g., limited to one homomorphic evaluation over fresh ciphertexts), vCCASC
security can, at least in principle, be extended to the multi-hop setting by allowing recursive
calls to Extract [MN24, Remark 2, p. 28]. Still, as emphasized in [MN24] and later in Sect.
6, coming up with practically credible constructions for achieving vCCA security limited
to the single-hop setting is already quite challenging yet sufficient to cover a wide range of
FHE use-cases.

3.3 vCCAD security: definitions and first properties
Contrary to the original vCCA security game introduced and studied in [MN24] (which,
again, we refer to as vCCASC in this paper), the vCCAD game is a multiple challenge
one. Due to subtleties that will soon be clear, we first define it in the private key setting,
starting from the CPAD game in Sect. 3.1 without the evaluation oracle and assuming, as
in vCCASC, the existence of the same extractor.

In the private key setting, the vCCAD game decryption oracle is defined as:

• Decryption request. When A queries (ciphertext, c) proceed as follows:

1. Let
(f, c1, ..., cK) = Extract(c).

2. If
f(left(c1), ..., left(cK)) ≠ f(right(c1), ..., right(cK)) (8)

then return � to A.
Otherwise return her Dec(c).

3Of course, the vCCASC game has no evaluation oracle as the adversary performs the homomorphic
evaluations on its own in both the private and public key setting.

10 Relations Among New CCA Security Notions for Approximate FHE

Where for any ciphertext c ∈ C we define

left(c) = { S[i].m0 if ∃i ∶ S[i].c = c,
� otherwise,

(9)

as well as,

right(c) = { S[i].m1 if ∃i ∶ S[i].c = c,
� otherwise,

(10)

and with the convention that f(m1, ..., mK) = � when ∃i ∶mi = �. Note that if the left and
right evaluations both give �, condition (8) is not satisfied and Dec(c) is returned to A.
Remark 1. It is clear that any ciphertext accepted by the vCCAD game decryption oracle
is also accepted by the LOR-CCA2 game one but not vice-versa. For example, ciphertext
Eval(sum, c∗, Enc(1)) is accepted by the LOR-CCA2 decryption oracle (but rejected by
the vCCAD one) and trivially allows an adversary to win the CCA2 game. It follows that
vCCAD security is a strict relaxation of CCA2 security (which is well-known to exclude
malleability4). †
Remark 2. In the private key setting, well-formed fresh ciphertexts (including challenge
ones) can only be obtained by means of (encryption or challenge) oracle requests. Therefore,
all such ciphertexts are registered in the game state S. It then follows that for any ciphertext
of the form

c = Eval(f, Enc(m1), ..., Enc(mK))
we have that left(c) ≠ � and right(c) ≠ �. However, when the correctness assumption
does not hold, we may have that Dec(c) ≠ f(left(c1), ..., left(cK)) as well as Dec(c) ≠
f(right(c1), ..., right(cK)). †

If we compare the vCCASC game in previous Sect. 3.2 and the single challenge variant,
vCCAD

SC, of the above game, vCCASC’s second step oracle filters out all byproducts of the
challenge ciphertext whereas (single challenge) vCCAD

SC filters out only those byproducts
which allow to disciminate which of the two challenge plaintexts was encrypted.
Remark 3. From the definition of the two games, it is clear that all the ciphertexts
accepted by the vCCASC decryption oracle are also accepted by the vCCAD

SC one (but not
vice-versa). There are indeed two types of ciphertexts which are rejected by the vCCASC
decryption oracle but accepted by the vCCAD

SC one:

1. Ciphertexts obtained through a legit call to Eval over well-formed fresh ciphertexts
(with one of them being the challenge ciphertext) for which condition (8) does not
hold, e.g. Eval(f, c∗, Enc(m2), ..., Enc(mK)) with

f(m∗0, m2, ..., mk) = f(m∗1, m2, ..., mk),

where m∗0 and m∗1 denote the two challenge plaintexts. For example, ciphertext
Eval(mul, c∗, Enc(0)) fall into this category.

2. Ciphertexts obtained through a legit call to Eval over arbitrary ciphertexts, with one
of them being the challenge ciphertext and at least one of the others being ill-formed.

†
Throughout this paper and in particular in the separation results we establish, we

(almost) always exploit the first of the above two gaps. As will be seen in Sect. 6, the
second gap will be closed in the constructions themselves by including the machinery
necessary for the decryption function of the proposed schemes to reply � when given either
an ill-formed ciphertext or an evaluated ciphertext over non well-formed ones.

4Additionally, it is well known that LOR-CCA2 security is equivalent to (single challenge) CCA2 (a.k.a.,
FTG-CCA2) in both the public key [BDPR98] and private key [BDJR97] settings.

C. Brzuska et al. 11

3.3.1 Defining vCCAD security in the public key case.

In the public key setting, the adversary can generate well-formed fresh ciphertexts inde-
pendent of the challenge on his or her own. So only challenge-dependent fresh ciphertexts
are guaranteed to be registered in the game state. In order to perform the left and right
cleartext evaluations we therefore need a mean to access the messages that were given as
inputs to the encryption function for well-formed ciphertexts that the adversary generated
by his or herself. Note that, when the correctness assumption does not hold (which is
also the regime under which we are willing to operate in this paper), these inputs cannot
be recovered by merely decrypting those ciphertexts within the vCCAD game decryption
oracle.

Therefore, to define the vCCAD game in the public key setting we need an additional
extractor, denoted Extract′, for recovering the encryption function inputs for fresh well-
formed ciphertexts i.e.,

Extract′(c) = { (m; r) when c ∶= Enc(m, r),
� otherwise.

(11)

Following this, in the public key setting, the vCCAD game decryption oracle is then
defined similarly to the private key case but with the notable difference that the left and
right functions are replaced by the left′ and right′ functions defined as

left′(c) = { S[i].m0 if ∃i ∶ S[i].c = c,
Extract′(c).m otherwise,

as well as,

right′(c) = { S[i].m1 if ∃i ∶ S[i].c = c,
Extract′(c).m otherwise.

Following this, we however emphasize that, as we shall later see in Sect. 6, among the
two public key vCCASC scheme construction blueprints considered in [MN24], only the one
in which fresh ciphertexts are defined as the association of an FHE ciphertext encrypting
m by means of randomness r and another ciphertext encrypting the concatenation of m
and r under a CCA2-secure encryption scheme is applicable in the general case where
the correctness assumption may not hold. In this approach the well-formedness of fresh
ciphertext is verified by first decrypting the companion CCA2 ciphertext to recover m and
r and then checking that the associated FHE ciphertext is indeed equal to EH .Enc(m, r).
This, in essence, provides the additional extractor, Extract′, expected in the above definition.

3.3.2 vCCAD security vs CPAD security.

As a warm-up, let us now prove a first separation result between CPAD and vCCAD

security.

Lemma 1. vCCAD security implies CPAD security.

Proposition 1 (CPAD /Ô⇒vCCAD). If there exists a vCCAD-secure scheme S, then
there exists a scheme S′ which is CPAD-secure but not vCCAD-secure.

Proof. Let us start from a vCCAD-secure scheme S = (KeyGen, Enc, Dec, Eval). We now
consider the scheme S′ which is exactly S except that we modify the decryption function
such that it leaks sk for a given randomly chosen input c△ ∈ C i.e.,

Dec′(c) = { sk if c = c△,
Dec(c) otherwise.

12 Relations Among New CCA Security Notions for Approximate FHE

Additionally, S′ public material now includes c△. The CPAD security of S′ then follows
from the CPAD security of S (by Lemma 1) as well as the fact that the CPAD game
decryption and evaluation oracles take state indices rather than ciphertexts as argument.
As a consequence, a CPAD adversary against S′ cannot add c△, nor any byproduct of c△

obtained by means of homomorphic operations, to the game state (with non-negligible
probability). Yet, S′ is trivially vCCAD-insecure, as a vCCAD adversary against S′ can
submit c△ to the vCCADgame decryption oracle and get sk in return.

This simple proof pattern will occur several times in this paper.

4 Relations among the single challenge notions
We consider in this section the single challenge variants of vCCAD and vCCA which we
respectively denote vCCAD

SC and vCCASC. Following Sect. 3.2, in these single challenge
variants, we allow only one challenge request with m0 ≠m1. The challenge ciphertext and
the associated messages are respectively denoted c∗, m∗0 and m∗1. We further consider in
this section the single challenge variant of CPAD which we denote CPAD

SC. In the single
challenge case, we can further meaningfully split CPAD

SC in CPAD
1 and CPAD

2 ≡ CPAD
SC.

Analogously to the distinction between CCA1 and CCA2, in CPAD
1 , the CPAD

SC decryption
oracle closes after the challenge request is performed.

4.1 Relations between single-challenge variants of CPAD

Because CPAD security collapses onto CPA security in the correct regime, then CPAD
1 is

equivalent to CPAD
2 in that regime. In the general regime, however, we have the following

separation result (considering that CPAD
2 trivially implies CPAD

1).

Proposition 2 (CPAD
1 /Ô⇒CPAD

2). If there exists an FHE scheme S which is CPAD
2 -

secure, then there exists an FHE encryption scheme S′ which is CPAD
1 -secure but CPAD

2 -
insecure.

Proof. Let us consider a CPAD
2 -secure FHE scheme S = (KeyGen, Enc, Dec, Eval). Consider

the approximate scheme S′ = (KeyGen′, Enc′, Dec′, Eval′) built from S such that

Enc′(m) = Enc(m + g(m)),

where g is some function such that g(0) ≠ 0, and KeyGen′, Dec′ and Eval′ are similar to
those of S.

S′ is CPAD
1 -secure. Indeed, let us show that a CPAD

1 adversary A against S′ allows to
build a CPAD

2 adversary B against S. This reduction is simple: as B can simulate a CPAD
1

game encryption request on m by sending m + g(m) to the CPAD
2 challenger encryption

oracle, and can simulate the challenge request with m0 ≠m1 by sending m0 + g(m0) and
m1 + g(m1) to the CPAD

2 challenger. Both evaluation and decryption requests from A are
transferred as is by B. As a CPAD

1 adversary, A does not perform any decryption request
after its unique challenge request (and B then just replies � to such requests).

S′ is not CPAD
2 -secure. The adversary issues the unique encryption request with

m0 ≠m1 to get
m∗0, m∗1, Enc′(m∗b),

say with m∗0 = 0 and m∗1 = K. It subsequently asks for an encryption of 0, c0, and then
asks for the computation of

cmul = Eval′(mul, c0, c∗)

C. Brzuska et al. 13

which the CPAD
2 decryption oracle accepts as it is associated to the triplet (0, 0, cmul) in

the game state (cmul is an encryption of 0 with respect to S′). Now, recall the definition
of ε and pε in Eq. 2 (p. 6). Then, assuming that the adversary has chosen K such that

∣∣g(0)2 − (K + g(K))g(0)∣∣∞ > 2ε, (12)

it can decide that b = 0 when

∣∣Dec′(cmul) − g(0)2∣∣∞ ≤ ε

and b = 1 otherwise, and win the CPAD
2 game with with probability at least pε.

As an informal illustrative example for the above proof (assuming for simplicity sake
P = Zt, for some plaintext modulus t >> ε), we can choose g(m) = 1 for all m. So, when
b = 0, Dec(cmul) falls in I0 = [1−ε, 1+ε] and when b = 1 it falls in IK = [K +1−ε, K +1+ε].
Then, if we choose m∗1 =K > 2ε, we get I0 ∩ IK = ∅, ensuring condition (12) above.

Note that this result is different from Proposition 2 in [LM21] which establishes that
there exists (approximate) FHE schemes which are non-adaptive CPAD secure while being
adaptive CPAD insecure. Indeed, as already pointed in Sect. 3.1, there is a slight difference
between the notion of adaptability as understood in the multiple-challenge context of
[LM21] (the adversary performs all its requests at once) and that which is usually assumed
between single-challenge CCA1 and CCA2 (the adversary performs all its decryption
requests before the challenge is published).

4.2 Relations between vCCASC and single-challenge variants of
CPAD

Let us emphasize that the issue of approximate schemes is only succinctly and informally
discussed in [MN24]. Indeed, from a construction point of view, that paper claims to define
blueprints for constructing vCCA-secure schemes from “state-of-the-art FHE such as TFHE
or CKKS with the caveat that approximate FHE schemes need to be CPAD-secure”5. It
turns out that the results in this section clarify the relationship between vCCASC security
and CPAD security in the general regime where approximate FHE are allowed: vCCASC in
fact requires much less than full-blown CPAD security but rather its weaker “CCA1 style”
variant, CPAD

1 . Implicitly, we consider here a generalization of vCCASC security beyond
the correctness assumption. However, as argued in Sect. 3.2, in terms of security game
definition, there is no dependency on the correctness assumption. Indeed, in [MN24], that
assumption only steps in for proving the vCCASC security of the proposed constructions.

Proposition 3. vCCASC security implies CPAD
1 security.

Proof. By definition, a CPAD
1 adversary can only perform decryption requests which are

independent of the challenge ciphertext. It thus follows that any request performed by a
CPAD

1 adversary can also be performed by a vCCASC one.

Proposition 4 (vCCASC /Ô⇒ CPAD
2). If there exists a vCCASC-secure scheme S, then

there exists a scheme S′ which is vCCASC-secure and CPAD
2 -insecure.

The proof is similar to the proof of Proposition 2 and deferred to Appendix B.1

Proposition 5 (CPAD
2 /Ô⇒ vCCASC). If there exists a CPAD

2 -secure scheme S, then
there exists a scheme S′ which is CPAD

2 -secure and vCCASC-insecure.

The proof is essentially identical to that of Proposition 1 and deferred to Appendix
B.2.

5Following the recent attacks in [CSBB24, CCP+24], the authors of [MN24] further updated their
ePrint version to put additional emphasis on the FHE correctness assumption (see Remark 1 on p. 5 and
Sect. 5.4).

14 Relations Among New CCA Security Notions for Approximate FHE

4.3 Relations between vCCASC and vCCAD
SC security

In this section, we establish the relationships between vCCASC security (recall that only
vCCASC is studied in [MN24] and, as such, only denoted vCCA) and vCCAD

SC in both the
correct regime and the general regime where approximate FHE are allowed. In a nutshell,
we establish that, although the two notions are equivalent in the correct regime, vCCAD

SC
security is strictly stronger than vCCASC is the general case.

Lemma 2. vCCAD
SC security implies vCCASC security.

Proof. By definition of the two games, all decryption requests accepted by the vCCASC
decryption oracle are also accepted by the vCCAD

SC one (recall also Remark 3 on p. 10).
It thus follows that any request performed by a vCCASC adversary can also be performed
by a vCCAD

SC one.

Note that the above implication holds in the general regime i.e., independently of the
correctness assumption.

We then prove a first result showing that vCCASC /Ô⇒vCCAD
SC in the correct regime,

under some condition on the probability that an adversary may bypass plaintext awareness.

Proposition 6. Let S be a vCCASC-secure scheme and let µ� denotes the probability that
Dec(u) = � for u

$←Ð C, then, under the correctness assumption, there exists an adversary
against the vCCAD

SC-security of S which achieves advantage (1 − µ�)(1 − 1/∣P ∣).

Proof. Consider a vCCASC-secure scheme S = (KeyGen, Enc, Dec, Eval) and assume m∗0 = 0,
m∗1 = 1 and c∗ = Enc(m∗b). We now consider the following vCCAD

SC attack against S. First,
A picks a ciphertext crnd uniformly at random in C. It then performs,

cmul = Eval(mul, c∗, crnd).

where cmul (as well as crnd) decrypts to � with probability µ�6. Now, since it is a
byproduct of the challenge ciphertext via an invocation of Eval, ciphertext cmul is rejected
by the vCCASC game decryption oracle. However, cmul is accepted by the vCCAD

SC game
decryption oracle: since crnd cannot be part of the vCCAD

SC game state (as A does not
know the associated plaintext), then neither can be cmul. When Dec(cmul) = 0, then A
decides that b = 0 and, under the correctness assumption, wins the vCCAD

SC game with
probability 1 − 1

∣P ∣ . Hence the claim.

Note that thanks to condition (2), this proposition can also easily be generalized to the
general regime which also include approximate FHE schemes (in this case A decides that
b = 0 when ∣∣Dec(cmul)∣∣∞ ≤ ε and wins the game with advantage pε(1 − µ�)(1 − 1/∣P ∣)).
However this result is of limited interest as the above attack leads to a non-negligible
advantage only if S is such that 1−µ� > neg(λ)7. However, as already discussed in Sect. 3.2
(recall Remark 3, page 10 and its follow up discussion) all the vCCASC-secure constructions
proposed in [MN24] and revisited in Sect. 6 include the machinery necessary for their
decryption function to return � when given either an ill-formed ciphertext (which will then
be the case of crnd with at least 1 − neg(λ) probability) or an evaluated ciphertext over
non well-formed ones (which is then the case of cmul). As a consequence, it is interesting
to study the relationship between vCCASC-security and vCCAD

SC-security under the well-
formedness assumption whereby the adversary is limited to exploit only legit ciphertexts
(well-formed fresh ciphertexts or ciphertexts derived from fresh well-formed ciphertexts via
legit homomorphic evaluations).

6Following the consistency assumption (4) (Sect. 2).
7An example of such a scheme could be that of a LWE scheme where � is returned when ∣e′∣ ≥ T

for some threshold value T , with e′ = b − (⟨a, sk⟩ +∆ ⌈ ((b−⟨a,sk⟩)
∆ ⌋). With q ≤ O(λ), we then indeed get

(1 − µ⊥) = 4T
q
> neg(λ).

C. Brzuska et al. 15

Proposition 7. Under both the FHE correctness and (the above) well-formedness assump-
tions, vCCASC security is equivalent to vCCAD

SC security.

Proof. Following Lemma 2 we have that vCCAD
SC security implies vCCASC security. For

the other direction, we will now show that given a successful adversary A, working under
the well-formedness assumption, against the vCCAD

SC security of a scheme S, there exists
a successful adversary B, also working under the well-formedness assumption, against the
vCCASC security of S which uses A as a subroutine. Then A can issue the following
requests which B emulates as follows:

• When A issues a vCCAD
SC game encryption request for plaintext m, then B issues a

vCCASC game encryption request to get ciphertext c which it returns to A.

• When A issues the unique vCCAD
SC game challenge request for plaintexts m∗0, m∗1

(m∗0 ≠ m∗1), then B issues a vCCASC game challenge request to get ciphertext c∗

which it returns to A. Additionally, B stores m∗0, m∗1 as well as c∗.

• When A issues a vCCAD
SC game decryption request for well-formed (recall that A

works under the well-formedness assumption) ciphertext c, then B runs the extractor
over c to get

(f, c1, ..., cK) = Extract(c),

and then proceeds as follows:

– If c∗ /∈ {c1, ..., cK}, B simply issues a vCCASC game decryption request and
forward the resulting plaintext (which is necessarily not �) to A.

– Otherwise (assuming wlog that the challenge ciphertext appears only once as
the first position argument), B issues vCCASC game decryption requests for
c2, ..., cK , getting plaintexts m2, ..., mK which were the associated encryption
function inputs (because of the correctness assumption). Then B compute r0 =
f(m∗0, m2, ..., mK) and r1 = f(m∗1, m2, ..., mK) and returns r0 when r0 = r1 (in
this case, under the correctness assumption, r0 = r1 = Dec(c)) and � otherwise.

Thus, B can duly simulate all the vCCAD
SC game requests issued by A.

Note that this proof is performed under the well-formedness assumption whereby
all ciphertexts exploited by the adversary are well-formed. If we take a glimpse at the
constructions that will be discussed in Sect. 6, this means that the SNARK proofs of
correct homomorphic evaluations are always valid and that the associated extractor always
exists. Thus, for the Designated-Verifier case, B does not need access to a verification
oracle. Also, because this proof is done under the correctness assumption, Extract′ (as
defined in Sect. 3.2, Eq. (11)) is not needed for B to recover the encryption function
inputs (as these can be recovered via calls to the decryption oracle of the vCCASC game
that B is playing against).

In the general case, however, it turns out that the two notions can be separated as
established by the following proposition.

Proposition 8 (vCCASC /Ô⇒vCCAD
SC). In the general regime, if there exists a vCCAD

SC-
secure scheme S, then there exists a scheme S′ which is vCCASC-secure but vCCAD

SC-
insecure, even against an adversary working under the well-formedness assumption.

The proof works similarly to that of Proposition 2 (and Proposition 4) and is deferred
to Appendix B.3.

Following Lemma 2 and Proposition 8 we can conclude that vCCAD
SC security is strictly

stronger than vCCASC security in the general regime.

16 Relations Among New CCA Security Notions for Approximate FHE

5 Relations among the multiple challenge notions
5.1 Relations between CPAD

SC and CPAD security
In this section, we first focus on CPAD and study the relationship between the single
and multiple-challenge variants of this notion. This is an interesting question as, unless
the FHE scheme is restricted to the evaluation of univariate functions, the usual hybrid
argument e.g. in [BDJR97] (theorem 4) for showing the equivalence (up to an increase
in advantage linear in the number of challenge ciphertexts) between FTG-CPA8 (resp.
FTG-CCA) and LOR-CPA (resp. LOR-CCA) does not work directly. This is so because
an adversary confronted to a hybrid game (where the encryption oracle replies according
to b = 0 up to a random point after which it replies according to b = 1) can detect the
transition between the first and second phase since ciphertexts from the two phases may
interact via evaluation requests. The relationship between single and multiple-challenge
variants of CPAD was also explicitly left as an open question in [LM21].

Then, we also establish that, for CPAD, the single and multiple challenge variants are
(without surprise) equivalent in the correct regime and, more interestingly, that the two
notions can be separated in the general regime (which is the non-trivial CPAD setting).

We first recall the following well-known theorem from [BDJR97].

Theorem 1. For any encryption scheme S = (KeyGen, Enc, Dec), LOR-CPA is equivalent
to FTG-CPA9.

For CPAD security, in the correct FHE regime, we have the following equivalence. This
equivalence is not surprising since CPAD security collapses onto CPA security for correct
FHE.

Proposition 9. For any correct FHE scheme, S = (KeyGen, Enc, Dec, Eval), CPAD security
is equivalent to CPAD

SC security.

Proof. For a correct FHE scheme, it is well-known that LOR-CPAD is equivalent to
LOR-CPA [LM21]. This means that an adversary to the LOR-CPAD game has exactly
the same advantage as an adversary to the LOR-CPAD game without the decryption
oracle, which is the same as the LOR-CPA game plus the evaluation oracle (recall that the
LOR-CPAD game decryption oracle, Sect. 3.1, takes indices from the game state rather
than ciphertexts as input). Let us call this the LOR-CPAE game (“CPA with an evaluation
oracle”). It is easy to see that LOR-CPAE is exactly LOR-CPA. For the same reasons,
CPAD

SC is equivalent to FTG-CPA. The claim then follows from theorem 1 above.

In the general regime where approximate FHE are allowed, things are more interesting
as we can actually separate the two notions. We start by proving the separation in the
special case of additive FHE scheme.

Proposition 10. In the general regime, if there exists an additive HE scheme S which
is CPAD-secure, then there exists an additive HE scheme S′ which is CPAD

SC-secure and
CPAD-insecure.

Proof. So let us start with a CPAD-secure additive HE scheme

S = (KeyGen, Enc, Dec, Eval).
8Recall that Find-Then-Guess (FTG) is the terminology for single challenge security notions in the

foundational papers [BDJR97, BDPR98].
9More precisely [BDJR97] established that the advantage of a LOR-CPA (resp. LOR-CCA) adversary

is bounded by qeαsc, where qe is an upper bound the number of encryption queries with m0 ≠m1 and αsc
is the advantage of an FTG-CPA (resp. FTG-CCA) adversary.

C. Brzuska et al. 17

Then, consider the scheme S′ = (KeyGen′, Enc′, Dec′, Eval′) such that

Enc′(m) = Enc(m + g(m)),

where g is some non linear function such that g(a+b) ≠ g(a)+g(b)10. Additionally KeyGen′,
Dec′ and Eval′ are the same as those of S. The proof is further done under the mild
assumption that the plaintext space of S admits no divisor of 0.

S′ is CPAD
SC-secure. First of all, let us remark that the CPAD

1 security of S′ follows
from the CPAD security of S and the fact that the approximation noise g(m) is independent
of S secret key material (which is the only information not available to a CPAD

1 adversary).
So to break the CPAD

SC security of S′, an attacker has to exploit the challenge ciphertext.
However, after the adversary issues his or her unique challenge request with m0 ≠m1 to
get m∗0, m∗1 and c∗ = Enc′(m∗b), it can only

• asks for a decryption of c∗, which is rejected by the CPAD
SC decryption oracle since

m∗0 ≠m∗1,

• asks for a decryption of csum = Eval′(sum, c∗, c(1), ..., c(K)) where11 all the c(i)’s
are such that m

(i)
0 = m

(i)
1 . The decryption of csum is also blocked by the CPAD

SC
decryption oracle since

m∗0 +∑
i

m
(i)
0 ≠m∗1 +∑

i

m
(i)
1 .

So the adversary can learn nothing on b and the CPAD
SC-security of S′ follows.

S′ is not CPAD-secure. Now let the adversary issue two challenge requests with
m0 ≠m1 getting,

m∗0, m∗1, c∗ = Enc′(m∗b),
as well as

m†
0, m†

1, c† = Enc′(m†
b),

such that Z = m∗0 +m†
0 = m∗1 +m†

1 and g(m∗0) + g(m†
0) ≠ g(m∗1) + g(m†

1). The adversary
then computes

csum = Eval′(sum, c∗, c†)
which the CPAD decryption oracle accepts since the left and right evaluations both give Z
i.e., csum is an encryption of Z with respect to S′. However, with respect to S, csum is an
encryption of Z + g(m∗b) + g(m†

b), hence the adversary gets Dec′(csum) = Dec(csum) such
that

∣∣Dec′(csum) −Z − g(m∗b) − g(m†
b)∣∣∞ ≤ ε

as a result of a decryption request on csum (recall the definition of ε and pε in Eq. 2, p.
6). Since g(m∗b) + g(m†

b) ≠ g(m∗b +m†
b) and g(m∗0) + g(m†

0) ≠ g(m∗1) + g(m†
1) (and further

assuming that ∣∣G0 −G1∣∣∞ > 2ε with Gb = g(m∗b) + g(m†
b)), the adversary recovers b with

probability at least pε, leading the claim.

To informally illustrate this (considering for simplicity sake P = Zt, for some large
prime plaintext modulus t), assuming ε << 10000 for the sake of an example, we can
consider the following concrete setup, where B = 10000 and g(x) = 2ε⌊x/B⌉2 12. Then, as

10More precisely, we need g such that there exists a, b, a′ and b′ such that a + b = a′ + b′ while
g(a) + g(b) ≠ g(a′) + g(b′).

11Under the assumption that ∀m∗0 , m∗1 ∈ P such that m∗0 ≠m∗1 and ∀k ∈ N∗ we have k ∗m∗0 ≠ k ∗m∗1 , we
can assume, without loss of generality that c∗ appears only once and in the first place in the Eval′(sum, ...)
arguments. Note that this requirement can easily be satisfied by P being a field.

12Stricto sensu, to ensure the boundedness of g(x), it would be preferable to choose g(x) =
2ε min (L, ⌊x/B⌉2) with e.g. L = 5 for our example to work. That way, S′ is also an approximate
FHE scheme consistent with our definition (2) (p. 6).

18 Relations Among New CCA Security Notions for Approximate FHE

above, the adversary chooses m⋆0 = m†
0 = 10000 as well as m⋆1 = 0 and m†

1 = 20000. With
these parameters, Z = 20000 and Dec′(csum) belongs (with probability pε) to [20000 +
3ε, 20000 + 5ε] when b = 0, or to [20000 + 7ε, 20000 + 9ε] when b = 1.

Because the proof of Proposition 10 relies strongly on the additive-only property of
the scheme to prove that single challenge attacks are not possible, the fact of being FHE
(i.e. allowing also multiplication) could prevent the separation. Hence, we now further
establish the separation result without the restriction to additive HE schemes.

Proposition 11 (CPAD
SC /Ô⇒CPAD). In the general regime, if there exists an FHE scheme

S which is CPAD-secure, then there exists an FHE scheme S′ which is CPAD
SC-secure and

CPAD-insecure.

Proof. So let us start with a CPAD-secure FHE scheme

S = (KeyGen, Enc, Dec, Add, Mul).

Then, consider the scheme S′ = (KeyGen′, Enc′, Dec′, Add′, Mul′) such that

Enc′(m) = (Enc(m), Enc(g(m))) = (c0, c1) = c,

(with g being the same as in the proof of the previous Proposition 10) and

Dec′(c) = Dec(c0) +Dec(c1).

Now we consider the following homomorphic addition and multiplication operators:

Add′(c, c′) = (Add(c0, c′0), Add(c1, c′1))

and
Mul′(c, c′) = (Mul(c0, c′0), Enc(0)).

Essentially, in S′, the approximation noise is encrypted separately to the message (to make
both easily separable) and the multiplication operator resets that noise. So as soon as
the adversary performs a multiplication, it closes the information channel that function g
opens. Although S′ is fully homomorphic, we therefore end up in the same conditions as
in the proof of Proposition 10. Indeed, in any successful CPAD

SC or CPAD attack involving
both homomorphic additions and multiplications, the multiplications are redundant.

Since CPAD security trivially implies CPAD
SC security, the following result is a direct

consequence of Proposition 11.

Corollary 1. In the general regime, CPAD is strictly stronger than CPAD
SC.

Note that the above proposition (partly) settles the question of the relationship between
single and multiple-challenge CPAD security that was left open in [LM21] (p. 14): “It
remains an interesting open question to find out the relationship between (q; ℓ)-IND-CPAD

and (q; ℓ+1)-IND-CPAD securities (and same for SIM-CPAD).” (in their notations, ℓ is the
number of queries to the encryption oracle with m0 ≠m1 and q the number of decryption
queries). Indeed, we have shown above that, even for q = 1, there exists homomorphic
schemes which are (q; 1)-CPAD-secure while being (q, 2)-CPAD-insecure (in the notations
of [LM21]). Of course, to completely settle the above question we also need to prove
separation or equivalence of (q, ℓ)-CPAD-security and (q, ℓ + 1)-CPAD-security with ℓ > 2.
We solve this remaining question in Appendix D, where we establish that these notions
can be separated (Proposition 19).

C. Brzuska et al. 19

5.2 Relations between vCCASC and vCCA security
Recall that [MN24] defines and studies only vCCASC security (also recall that in that
paper it is simply referred to as vCCA). The question of the relationship between vCCASC
security and LOR-vCCA security (or simply vCCA security with our present conventions)
therefore deserves to be settled. So let LOR-vCCA denote the multiple challenges variant
of vCCA in which the decryption oracle condition (7) is replaced by

C∗ ∩ {c1, ..., cK} ≠ ∅, (13)

where C∗ is the set of challenge ciphertexts. We then have the proposition below.
Proposition 12. vCCA security is equivalent to vCCASC security.
Proof. The standard hybrid argument, e.g. in the proof of [BDJR97, Theorem 4] (which
corresponds to Theorem 1 for both CPA and CCA), holds without modification, since an
adversary confronted to a hybrid game (where the encryption oracle replies according to
b = 0, up to a random point after which it replies according to b = 1) cannot detect the
transition between the first and second phases. Indeed, although challenge ciphertexts from
both phases may interact via homomorphic evaluations, condition (13) above guarantees
that such interactions lead to ciphertexts rejected by the above LOR-vCCA decryption
oracle.

Note that in the above proof, we make no assumption about the correctness of the
FHE scheme, so the above equivalence holds in the general regime.

As a consequence of Proposition 8, this establishes that the single challenge variant of
vCCAD security, vCCAD

SC, is already strictly stronger than the multiple challenge variant
of vCCA.

5.3 Relations between vCCAD
SC and vCCAD security

Lastly, we now unveil the relationship between the single and multiple challenge variant of
vCCAD security. Similarly to the CPAD case, there is a distinction between the correct
and general regime.
Proposition 13. In the correct regime, vCCAD is equivalent to vCCAD

SC.
Proof. The claim follows directly from Proposition 7 (and its straightforward generalization
to the multiple challenges variants of vCCA and vCCAD) as well as Proposition 12.

We now turn to the general regime and, as in Sect. 5.1, first consider the case of
linearly homomorphic schemes.
Proposition 14. In the general regime, if there exists an additive HE scheme S which is
vCCAD-secure, then there exists an additive HE scheme S′ which is vCCAD

SC-secure and
vCCAD-insecure.

The proof proceeds similarly to that of Proposition 10 and is deferred to Appendix B.4.
Proposition 15 (vCCAD

SC /Ô⇒vCCAD). In the general regime, if there exists an FHE
scheme S which is vCCAD-secure, then there exists an FHE scheme S′ which is vCCAD

SC-
secure and vCCAD-insecure.
Proof. Identical to that of Proposition 11.

Since vCCAD security trivially implies vCCAD
SC security, the following result is a direct

consequence of Proposition 15.
Corollary 2. In the general regime, vCCAD is strictly stronger than vCCAD

SC.
It follows that vCCAD security is the strongest CCA security notion so far known to

be achievable by FHE in the general regime.

20 Relations Among New CCA Security Notions for Approximate FHE

6 Construction blueprints
In this section, we revisit three out of the four13 construction blueprints proposed in
[MN24] to leverage CPA-secure and correct FHE schemes into vCCASC-secure schemes,
and study both their applicability in the general regime where approximate FHE are
allowed as well as their vCCAD security. Additionally, we propose a new construction
blueprint for the public key setting, which we refer to as Encrypt-then-Prove. As such, we
emphasize that all but the latter blueprints are not new.

6.1 Private key constructions
We first consider the Encrypt-then-Sign construction blueprint proposed in [MN24]. The
construction is built over a public-key FHE scheme EH , a public-key signature scheme
Σ = (KeyGen, Sign, Verify), as well as a (publicly verifiable or designated-verifier) SNARK,
Π = (Setup, Prove, Verify), for langage

L1 = {ce∣∃f ∈ FH ,∃(c1, π1), ..., (cK , πK) ∈ CK ,
Σ.Verify(Σ.pk, ci, πi),∀i
ce = EH .Eval(EH .pk, f, c1, ..., cK)

} , (14)

to obtain an encryption scheme E⋆H defined as follows:

• E⋆H .KeyGen: run EH .KeyGen, Σ.KeyGen, Π.Setup, let ek = (EH .pk, Σ.sk) as well as
sk = (EH .sk, Σ.pk, [Π.vk]).

• E⋆H .Enc: given m ∈ P generate ciphertext

(c, π) = (EH .Enc(EH .pk, m), Σ.Sign(Σ.sk, c)).

• E⋆H .Eval: given ciphertexts (c1, π1), ..., (cK , πK) such that Σ.Verify(ci, πi),∀i, gener-
ate ciphertext (ce, πe) such that

ce = EH .Eval(EH .pk, f, c1, ..., cK),

and
πe = Π.Prove(ce, (f, (c1, π1), ..., (cK , πK))).

• E⋆H .Dec: given ciphertext (c, π) return EH .Dec(EH .sk, c) when Σ.Verify(Σ.pk, c, π) =
True or Π.Verify([Π.vk], c, π) = True, and � otherwise.

Intuitively, the essence of this construction is to rely on a trusted encryption oracle
that generates only well-formed ciphertexts with respect to EH and signs them such that
they are recognizable. As such, this construction is not public key, due to the presence of
Σ.sk in ek. Also, let us emphasize that this construction satisfies the compactness property
which is implicitly assumed for FHE as the size of the output of Eval is independent of
the size of f and, in particular, of its arity, thanks to the succinctness of the SNARK. For
completeness, we also provide in Appendix C a variant of this constructions which may be
more practical, however at the expense of input privacy and compactness.

The above Encrypt-then-Sign construction was proved in [MN24] to lead a vCCASC-
secure scheme from a CPA-secure correct FHE scheme, a SUF-CMA-secure signature
scheme and a simulation-extractable SNARK (which implies the existence of an extractor
as defined in Sect. 3.2). Their proof technique consists in showing that a successful
vCCASC attack over scheme E⋆H implies a successful CCA2 attack against the private key
(non homorphic) encryption scheme obtained by associating EH and Σ. It turns out that

13We did not revisit their Naor-Yung-based blueprint, as it is only applicable when the underlying FHE
is perfectly correct.

C. Brzuska et al. 21

the security of this construction goes beyond this setting as we now prove that the above
Encrypt-then-Sign blueprint in fact offers vCCAD security beyond the correct FHE regime,
as long as we instantiate it from a CPAD-secure rather than CPA-secure/correct FHE. To
do so, we proceed in the next proof with two steps of game hopping, respectively relying
on the SUF-CMA security of the signature scheme and the straightline-extractability of
the SNARK, followed by a final reduction towards the CPAD security of the underlying
FHE scheme.

Proposition 16 (Encrypt-then-Sign). Let A be an adversary against the vCCAD security
of E⋆H , then, under the assumption that Σ is SUF-CMA secure and Π is straightline-
extractable, there exists an adversary B against the CPAD security of EH which uses A as
a subroutine.

Proof. We thus start with the vCCAD security game between an adversary A and the
challenger. For all the following games Gi, let us call Oi the event “adversary A outputs 1
in the game Gi”. We now consider a sequence of games, starting from G0, which is the
vCCAD game.

First game hop. Let G1 denote the same game as G0 except that the challenger replaces
the signature verification for a given fresh ciphertext by checking whether it has generated
it, i.e. starting from an initially empty state SΣ = []:

• When it outputs a fresh ciphertext (c, π) following an encryption or a challenge
request, it updates its internal state SΣ = [SΣ; (c, π)].

• When it has to verify the signature of a fresh ciphertext (c, π), following a decryption
request, it replies True if and only if (c, π) ∈ SΣ.

Clearly, the two above games proceed identically unless the following failure event occurs:
“A succeeds in forging a signature (which will be accepted in G0 and denied in G1)”, then
breaking the SUF-CMA security of Σ. Hence,

∣P (O0) − P (O1)∣ ≤ AdvSUF-CMA
A,Σ .

Second game hop. We now consider game G2, which is the same as G1 except that the
challenger replaces all verifications of the proofs under Π by invoking a verification oracle
and then the straightline extractor to get the witnesses it checks by itself, i.e.

• When it has to verify a proof associated with an evaluated ciphertext (c, π), following a
decryption request, it first invoke a verification oracle to determine whether or not the
proof is correct. Then it runs the extractor to get the witnesses f, (c1, π1), ..., (cK , πK)
(following language L1) and checks the statement by itself (with the (ci, πi)’s signa-
tures being checked as in G1).

Then, G1 and G2 proceed identically unless the following failure event occurs: “A succeeds
in forging a valid proof such that the extracted witness is invalid”, thus breaking the
knowledge soundness of Π. Hence,

∣P (O1) − P (O2)∣ ≤ AdvKnowledge Soundness
A,Π .

Let us now show that an adversary B against the CPAD security of EH can be built using
A against G2 (or equivalently G0) as a subroutine.

Final reduction. We are now in the last game, where we build an adversary B against
the CPAD security, from the adversary A: B initially runs Π.Setup and Σ.KeyGen and
communicates the associated public material to A. Additionally, B mimics the CPAD

game state and initially starts with an empty state SB = []. Then, given a ciphertext c,
we denote by idx(c), its index in the game state SB (which is the same as the index at
which the ciphertext is stored in the CPAD game state S). Then A can issue the following
requests, which B emulates as follows:

22 Relations Among New CCA Security Notions for Approximate FHE

• When A issues a vCCAD game encryption request for plaintext m, then B issues a
CPAD game encryption request to get ciphertext c. B then does SB ∶= [SB; (m, m, c)],
generates π = Σ.Sign(Σ.sk, c) and return (c, π) to A.

• When A issues a vCCAD game challenge request for plaintexts m0, m1 (m0 ≠m1),
then B issues a CPAD game challenge request to get ciphertext c. B then does
SB ∶= [SB; (m0, m1, c)], generates π = Σ.Sign(Σ.sk, c) and return (c, π) to A.

• When A issues a vCCAD game decryption request for ciphertext (c, π), B proceeds
as follows:

– If Σ.Verify(Σ.pk, c, π) = True (i.e., when (c, π) is a fresh well-formed ciphertext)
B issues a CPAD game decryption request on idx(c) and return the result to A.

– If Π.Verify([Π.vk], c, π) = True, B invokes Π’s Extract procedure over (c; π) to
get f ; (c1; π1), ..., (cK ; πK). In this case, if Σ.Verify(Σ.pk, ci, πi)) = False for
some i B returns � to A. Otherwise (when (c, π) is a well-formed evaluated
ciphertext), B then does a CPAD game evaluation request with parameters
f ; idx(c1), ..., idx(cK) and get ciphertext c′ = c (recall that Eval is deterministic)
in return (with also the effect of adding c′ = c along with the associated left and
right cleartext evaluations in the CPAD game state), B also performs the left
and right cleartext evaluations for itself to get

m′0 = f(SB[idx(c1)].m0, ..., SB[idx(cK)].m0)

and
m′1 = f(SB[idx(c1)].m1, ..., SB[idx(cK)].m1)

and do SB ∶= [SB; (m′0, m′1, c′)]. Finally, B issues a CPAD game decryption
request with idx(c′) = ∣SB ∣ and returns the result to A.

– Otherwise, B returns � to A.

Thus, B can duly simulate all the vCCAD game requests issued by A. And eventually, B
forwards the decision of A: when A wins, B wins.

Remark that in the above proof, the simulator B does not provide an evaluation oracle
and, hence, does not generate any proofs: B only invokes the SNARK extractor when
Π.Verify(π) = True on a proof π it has not generated. So A has only access to proofs it
has generated by itself and, as such, has no access to any simulator oracle against Π. It
follows that the straightline-extractability of Π is sufficient for the vCCAD security of the
construction to hold without any additional non-malleability property for the SNARK.

6.2 Public-key constructions
We now consider the public key, designated-verifier14 construction blueprint proposed in
[MN24] which we refer to as the CCA2-Companion-Ciphertext approach in this paper.
The construction is built over a public-key FHE scheme EH , a public-key (CCA2-secure)
scheme E = (KeyGen, Enc, Dec), and a publicly verifiable or designated verifier SNARK
Π = (Setup, Prove, Verify) for langage

L2 = {ce, c1, ..., cK ∣∃f ∈ FH , ce = EH .Eval(EH .pk, f, c1, ..., cK)} , (15)

to obtain encryption scheme E⋆H :
14In [MN24] terminology this just tells whether or not the well-formedness of fresh ciphertexts is verifiable

publicly or privately. This is independent of whether the SNARK is publicly verifiable or designated-verifier.

C. Brzuska et al. 23

• E⋆H .KeyGen: run EH .KeyGen, E .KeyGen, Π.Setup, let ek = (EH .pk,E .pk) as well as
sk = (EH .sk,E .sk, [Π.vk]).

• E⋆H .Enc: given m ∈ P generate ciphertext, with ∣ denoting the concatenation operator,
(c, π) = (EH .Enc(EH .pk, m; r),E .Enc(E .pk, m∣r)) (the CCA2 companion ciphertext is
denoted by π as its intent is to act as a proof of knowledge, see below).

• E⋆H .Eval: given ciphertexts (c1, π1), ..., (cK , πK), compute

(ce = EH .Eval(EH .pk, f, c1, ..., cK), πe = Π.Prove((ce, c1, ..., cK), f)).

and return ciphertext ((ce, πe), (c1, π1), ..., (cK , πK)).

• E⋆H .Dec (fresh ciphertext): given (c, π), unless Verif(E .sk, c, π) = True return � and
otherwise return EH .Dec(EH .sk, c)15.

• E⋆H .Dec (evaluated ciphertext): given ciphertext ((ce, πe), (c1, π1), ..., (cK , πK)), if
Verif(E .sk, ci, πi) = True,∀i and Π.Verify([Π.vk], ce, πe), return EH .Dec(EH .sk, ce).
Return � otherwise.

with Verif(E .sk, c, π) running (m′, r′) = E .Dec(E .sk, π) and returning True if and only if

c = EH .Enc(EH .pk, m′; r′).

Intuitively, the essence of this construction is to define fresh ciphertexts as the association
of an FHE ciphertext encrypting m by means of randomness r and another ciphertext
encrypting the concatenation of m and r under a CCA2-secure encryption scheme, as
a proof of knowledge. This indeed allows to verify the well-formedness of these fresh
ciphertexts by first decrypting the companion CCA2 ciphertext to recover m and r16 and
then checking that the associated FHE ciphertext is indeed equal to EH .Enc(EH .pk, m; r).
Note that the verification may succeed when EH .Dec(EH .sk,EH .Enc(EH .pk, m; r)) ≠ m
which is what we want when the correctness assumption does not hold for EH .

Equivalently, following [MN24], we may consider the verification performed by means
of E as a designated-verifier proof of knowkedge ΠE for language

L3 = {c∣∃m ∈ P,∃r ∈ COIN, c = EH .Enc(EH .pk, m; r)} , (16)

with the following functions:

• ΠE .Setup: E .KeyGen.

• ΠE .Prove(c, (m, r)): returns π = E .Enc(m∣r).

• ΠE .Verify(c, π): let m′∣r′ = E .Dec(E .sk, π), return True if c = EH .Enc(EH .pk, m′; r′)
and False otherwise.

We then have the following Lemma which we prove in Appendix B.5.

Lemma 3. If E is a public-key CCA2-secure encryption scheme, ΠE is a designated-verifier
proof of knowledge for language L3 (Eq. 16), with zero-knowledge property and straightline
extractability.

15Here, we slightly depart from the construction of [MN24] in the following sense. When decrypting
a fresh ciphertext (c, π), they indeed proceed by calling E.Dec(E.sk, π) to get m and r and return m
when Verif(E.sk, c, π) = True (i.e., they never decrypt the FHE ciphertext). We, on the contrary, return
EH .Dec(EH .sk, c) when Verif(E.sk, c, π) = True. Although both options are equivalent under the correctness
assumption of EH , this is not the case in the general regime. However, when EH is CPAD-secure (as
required for the construction in the general regime), this difference has no security implications.

16As such, in the CCA2-Companion-Ciphertext construction, we exactly get the additional straigthline-
extractor Extract′ needed in the vCCAD game definition in the public key case (Sect. 3.3).

24 Relations Among New CCA Security Notions for Approximate FHE

The approach, however, has the drawback that it cannot achieve any form of input
privacy as this verification requires the knowledge of the CCA2 scheme decryption key and,
as a consequence, can be performed only in the decryption function of the overall scheme,
requiring the availability of the input ciphertexts. This also makes it non compact.

The above CCA2-Companion-Ciphertext blueprint was proved in [MN24] to lead a
vCCASC-secure scheme from a CPA-secure correct FHE scheme, a CCA2-secure scheme
and a simulation-extractable SNARK (which implies the existence of an extractor as
defined in Sect. 3.2). Their proof technique consists in showing that a successful vCCASC
attack over scheme E⋆H implies a successful CCA2 attack on the companion CCA2 scheme.
As in the previous section, it turns out that the security of this construction goes beyond
this setting as we now prove that it also achieves vCCAD security in the general regime,
as long as we instantiate it from a (strong) CPAD secure rather than, as in [MN24], a
CPA-secure/correct FHE. The notion of strong CPAD (sCPAD) security has recently been
introduced in [BJSW24] with the main difference that, in the strong CPAD game, the
adversary further controls the randomness that serves to create an otherwise well-formed
ciphertext from a message m. That paper also shows that sCPAD is strictly stronger than
CPAD. Taking a glimpse at the proof of the next proposition, it turns out that in the last
reduction (when B operates both EH and Π), the fresh ciphertexts generated by A must
end up in the challenger’s internal state (then B can make the latter perform the evaluation
request which will also put the very same evaluated ciphertext that A is asking for to
decrypt within the challenger state). For this reason, we indeed need to communicate the
randomness to the encryption oracle of the challenger which is therefore exactly a sCPAD

rather than a CPAD challenger.
In a nutshell, the next proof proceeds with two steps of game hopping, respectively

relying on the CCA2 security of E (or, equivalently, the straightline-extractability of ΠE
above) and the straightline-extractability of Π1, followed by a final reduction towards the
CPAD security of the underlying FHE scheme.

Proposition 17 (CCA2-Companion-Ciphertext). Let A be an adversary against the
vCCAD security of E⋆H , then, under the assumption that E is CCA2-secure and Π is
straightline-extractable, there exists an adversary B against the sCPAD security of EH

which uses A as a subroutine.

Proof. Let us start with the game G0 which is the vCCAD game.
First game hop. Let us now consider the game G1 which is the same as G0 except

that the challenger call a verification oracle instead of verifying by itself proofs under ΠE .
It then follows from the the knowledge soundness of proof of knowledge ΠE (Lemma 3),
that G0 and G1 are exactly the same. Indeed, the extractor used in the verification oracle
operates exactly as ΠE .Verify does, since ΠE .Verify already extract the witness of the proof.
Hence,

∣P (O0) − P (O1)∣ = 0

Second game hop. As in the proof of Proposition 16 we now consider game G2, which
is the same as G1 except that the challenger replaces all verifications of the proofs under
Π by invoking a verification oracle and then the straightline extractor to get the witnesses
it checks by itself. This is the same second step as in the proof of Proposition 16.

Final reduction. The end of the proof is quite similar to that of Proposition 16 except
that we slightly modify the CPAD encryption oracle (but not the challenge oracle) such that
it further takes randomness r as a parameter. This modification exactly fits the definition
of Strong CPAD introduced in [BJSW24] and is thus the reason why we now show that an
adversary B against the sCPAD (rather than CPAD) security of EH can be built using
A against G2 (or equivalently G0) as a subroutine. Then, B initially runs Π.Setup and
ΠE .Setup and communicates the associated public material toA (which does not contain the
verification key of the designated-verifier proof ΠE). When B receives a challenge request

C. Brzuska et al. 25

with m0 ≠ m1, it forwards it to the sCPAD challenger to get c = EH .Enc(EH .pk, mb; r)
with unknown b and r, B then updates SB ∶= [SB; (m0, m1, c)] and returns (c, π′) for a
simulated proof π′, that is indistinguishable from a real proof for A, without the verification
material, under the zero-knowledge property (of a designated-verifier proof system). When
B processes a decryption request (assuming evaluated ciphertexts), B retrieves the input
ciphertexts using Π.Extract. The input ciphertexts which are challenge ones are already
in his or her internal state (ditto for the sCPAD challenger). For the input ciphertexts
which are challenge-independent, the message and randomness are recovered by B via the
straightline-extractor ΠE .Extract, which thus implements the Extract′ defined in Sect. 3.3.
Then B can issue the proper sCPAD encryption requests (with the additional randomness
parameter) to populate the sCPAD challenger state (and his or her mirrored one at the
same time). Then B can issue the sCPAD evaluation request with the appropriate game
state indices to obtain c′ = c (due to the deterministic evaluation assumption) and add it
to the sCPAD challenger game state. Finally, B issues the sCPAD decryption request with
idx(c).

Lastly, let us emphasize that the (compact) Naor-Yung-based [NY90] construction of
[MN24], which, in order to encrypt a plaintext, associates two FHE ciphertexts of this plain-
text under different keys, and bind them by a proof that these two ciphertexts are encrypting
the same plaintext, requires perfect correctness. Indeed, in [NY90] (definition 3.4), the
scheme used in the construction must verify ∀m ∈ P,∀r ∈ {0; 1}p(n), Dec(Enc(m, r)) =m,
and this strong property lies at the heart of the validity of the proof in [NY90], see also
[DNR04]. As such it is not applicable in the general case where approximate FHE schemes
are allowed.

Still, vCCAD-secure constructions achieving compactness in the public-key setting can
be obtained by replacing the CCA2-companion ciphertext (which essentially provides a
designated-verifier proof of plaintext awareness) by a publicly-verifiable zk−SNARK Π0
for language L3 (Eq. 16). This leads to a new Encrypt-then-Prove construction blueprint
which is identical to the first Encrypt-then-Sign blueprint in previous Sect. 6.1, but with
the signature scheme Σ replaced by Π0 and the SNARK Π replaced by a SNARK Π1
(which can be either publicly verifiable or designated verifier) for the following language

L4 = {ce∣∃f ∈ FH ,∃(c1, π1), ..., (cK , πK) ∈ CK ,
Π0.Verify(ci, πi),∀i
ce = EH .Eval(EH .pk, f, c1, ..., cK)

} .

Π0 has to be publicly verifiable since Π1’s proofs are generated by the adversary which
cannot be granted access to a private verification key for Π0.

We now prove the vCCAD security of this latter construction. For this last proof,
we proceed again with two steps of game hopping, this time respectively relying on the
simulation-extractability of Π0 and the straightline-extractability of Π1, followed by a final
reduction towards the CPAD security of the underlying FHE scheme.

Proposition 18 (Encrypt-then-Prove). Let A be an adversary against the vCCAD security
of E⋆H . Then, under the assumption that Π0 is simulation-extractable and Π1 is straightline-
extractable, there exists an adversary B against the sCPAD security of EH which uses A as
a subroutine.

Proof. As in the proof of Proposition 17 we consider games G0, G1 and G2 which respec-
tively are the original vCCAD game, the game in which the challenger is modified to rely
on a verification oracle instead of verifying by itself proofs under Π0 and the game in which
the challenger is further modified in the same way for the verification of the proofs under
Π1. Then, G0 is indistinguishable from G2 following the same game-hoping arguments as
in the proof of Proposition 17 (recall that we already formalized the verification performed
by means of the CCA2 scheme E as a proof of knowledge ΠE for the same language as
that of Π0).

26 Relations Among New CCA Security Notions for Approximate FHE

Final reduction. Finally, as a last step, there remains to show that an adversary B
against the sCPAD security of EH can be built using an adversary A against G2 (or
equivalently G0) as a subroutine. For this last step, we then proceed similarly as in the
last reduction in the proof of Proposition 17 but with B operating both Π0 and Π1. The
main difference is that we construct an adversary B against the sCPAD security of scheme
E ′H (rather than EH) which is obtained from scheme EH by just modifying the encryption
function such that it also generates a proof of well-formedness i.e.,

(c, π) = E ′H .Enc(EH .pk, m; r) = (EH .Enc(EH .pk, m; r), Π0.Prove(c, (m, r))).

In particular, upon decrypting a fresh ciphertext, E ′H decryption function ignores any proof
material and for evaluated ciphertexts E ′H decryption function does not takes any proof as
argument. Because Π0 is zero knowledge, the sCPAD security of E ′H directly follows from
that of EH under the simulation soundness of Π0. Then challenge and decryption requests
are processed as in the proof of Proposition 17 with the following slight differences:

• When B receives a challenge request with m0 ≠ m1, it forwards it to the sCPAD

challenger (against E ′H) to get (c, π) = (EH .Enc(EH .pk, mb; r), Π0.Prove(c, (mb, r))),
updates its internal state SB ∶= [SB; (m0, m1, c)] and returns (c, π) to A.

• Extract′ (required in the simulation of A’s decryption requests) is realized by means
of Π0 extractor which B can invoke.

Note that B only has access to the traces of execution of A (which forms the auxiliary data
of Π0’s extractor), therefore Extract′ is not defined for proofs generated by the sCPAD

challenger (and thus B cannot retrieve b by that mean).

As a last remark, let us emphasize that Prop. 17 and 18 perform reductions towards a
“CPAD” challenger in a public-key CCA setting. In order for the reduction to properly rely
on the challenger’s decryption oracle to handle decryption requests from the adversary,
it has to populate the challenger’s internal state with the well-formed fresh ciphertexts
generated on its own by the adversary (which, in that case, controls the encryption
randomness). To do so, the proof hence necessarily has to operate in the adversarially-
chosen encryption randomness setup which is exactly accounted by Strong CPAD (vs
“standard” CPAD). Note that this does not apply to the private key setting, as in this case
the adversary does not generate any well-formed fresh ciphertexts by itself. We think the
only way whereby this reliance on Strong CPAD could be avoided, would be by proceeding
via a reduction which does not have to rely on a challenger with a decryption oracle (e.g a
reduction to the CPA rather than “CPAD” security of the FHE scheme). This however
cannot be done without introducing additional assumptions about the FHE scheme as
the reduction would then have to be able to handle the adversary decryption requests
without relying on any decryption oracle. This may be possible with some LWE-based
schemes relying on noise flooding to achieve CPAD security (a question we leave as an
open problem), but this does not appear possible in the general setting that our paper
addresses.

7 Conclusion and future work
Following the work of Manulis & Nguyen [MN24] as well as the improvements on that
work we presented in this paper, designing practical FHE-style malleable schemes enforcing
CCA security properties beyond the CCA1 barrier seems within reach, at least for specific
applications. Indeed, recent advances in SNARK for ring arithmetic, such as [GNS23],
give us the necessary toolbox for attempting concrete instantiations of the construction
blueprints discussed in Sect. 6. Furthermore, in many usual applications of FHE, the set

C. Brzuska et al. 27

of algorithms that needs to run in the encrypted domain is very limited (for example, a
FHE aggregation server involved in a Federated Training protocol for a machine learning
model may only have to run a simple average [GSCS+23] or a majority voting algorithm
[GSPZ+21, GSZS+23]). This gives us hope to be able to design practical vCCAD-secure
schemes with simplified SNARK or Verifiable Computing techniques tailored to these
sets of algorithms. Lastly, it will also be interesting to investigate which building blocks
are friendly towards each others e.g., finding “SNARK friendly” signature schemes for
concrete instantiation of the Encrypt-then-Sign blueprint. Regarding the Encrypt-then-
Prove blueprint, we also think that targeting applications requiring only linear operations
by means of a (R)LWE-based scheme with a Regev-style public-key (so that all well-formed
ciphertexts end up being linear combinations of the encryptions of 0 forming the public
key) might be a good playground towards obtaining first practical instantiations of the
blueprint.

Also, following a recent burst of new CPAD attacks on both noise-flooded CKKS and
“exact” schemes such as BFV, BGV or TFHE [GNSJ24, CSBB24, CCP+24] new FHE
security paradigms are being proposed. As an example, Alexandru et al. [ABMP24] have
proposed a new weaker variant of CPAD security, termed application-aware security. In
essence, this new definition acknowledges that for non-exact FHE schemes, CPAD security
should be defined relatively to a function class FC and a ciphertext noise estimation
strategy, rather than absolutely. With respect to that new security notion, the cryptosystem
parameters should then be set relatively to these, and the homomorphic evaluations should
be limited to the functions or circuits in the class. However, one of the main drawbacks
of the application-aware approach is that the burden of enforcing the above constraints
lies, so far, solely on the library user’s shoulders (see also [BBB+22] and, in particular,
its new Sect. 2.6.1). As a starting point, an interesting line of research would then be to
connect the application-aware paradigm with both vCCA and vCCAD security notions by
defining new weaker variants of these notions, e.g. FC-vCCA and FC-vCCAD security,
for leveraging somewhat correct (and CPA) or CPAD schemes, i.e. schemes achieving
correctness or CPAD security only over FC , to CCA security levels. For example, the
vCCASC and vCCAD decryption oracles may further check that f /∈ FC in conditions (7)
and (8), respectively (which is precisely what is suggested for the CPAD game evaluation
oracle in [ABMP24]). Our intuitions are that the picture depicted in this paper will be
relatively similar for these restricted security notions but we leave this for further work.
However, a difficult point will be to capture the dependency of the application aware
approach upon noise estimation strategies in meaningful CCA security notions, with the
hope of achieving both beyond CCA1 security and relieving the library users of the burden
of enforcing by hand the constraints of that paradigm.

Acknowledgments
The authors would like to thank the anonymous referees for a number of suggestions that
helped improving this paper.

References
[ABMP24] A. Alexandru, A. Al Badawi, D. Micciancio, and Y. Polyakov. Application-

aware approximate homomorphic encryption: Configuring FHE for practical
use. Technical Report 203, IACR ePrint, 2024. URL: https://eprint.iacr.
org/2024/203.

[BBB+22] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov,

https://eprint.iacr.org/2024/203
https://eprint.iacr.org/2024/203

28 Relations Among New CCA Security Notions for Approximate FHE

R. V. Saraswathy, K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett, V. Vaikun-
tanathan, and V. Zucca. OpenFHE: Open-source fully homomorphic encryption
library. In WAHC, pages 53–63, 2022. doi:10.1145/3560827.3563379.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In IEEE SFCS, pages 394–403, 1997. doi:10.1109/
SFCS.1997.646128.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In CRYPTO, pages 26–45, 1998.
doi:10.1007/BFb0055718.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. ACM ITCS, pages 309 – 325, 2012. doi:
10.1145/2090236.2090262.

[BJSW24] O. Bernard, M. Joye, N. P. Smart, and M. Walter. Drifting towards better
error probabilities in fully homomorphic encryption schemes. Technical Report
1718, IACR ePrint, 2024. URL: https://eprint.iacr.org/2024/1718.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In CRYPTO, pages 868–886, 2012. doi:10.1007/978-3-6
42-32009-5_50.

[CCP+24] J. H. Cheon, H. Choe, A. Passelègue, D. Stehlé, and E. Suvanto. Attacks
against the IND-CPAD security of exact FHE schemes. In CCS, pages 2505 –
2519, 2024. doi:10.1145/3658644.3690341.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT,
pages 3–33, 2016. doi:10.1007/978-3-662-53887-6_1.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT, pages 409–437, 2017.
doi:10.1007/978-3-319-70694-8_15.

[CSBB24] M. Checri, R. Sirdey, A. Boudguiga, and J.-P. Bultel. On the practical CPAD
security of “exact” and threshold FHE schemes. In CRYPTO, pages 3–33,
2024. doi:10.1007/978-3-031-68382-4_1.

[DNR04] C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from
decryption errors. In EUROCRYPT, pages 342–360, 2004. doi:10.1007/97
8-3-540-24676-3_21.

[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
Technical Report 2012/144, IACR ePrint, 2012. URL: https://eprint.iacr.
org/2012/144.

[GNS23] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez. Rinocchio: SNARKs for ring
arithmetic. J. Cryptol., page 41, 2023. doi:10.1007/s00145-023-09481-3.

[GNSJ24] Q. Guo, D. Nabokov, E. Suvanto, and T. Johansson. Key recovery attacks
on approximate Homomorphic Encryption with nonworst-case noise flooding
countermeasures. In Usenix Security, pages 7447–7461, 2024. URL: https://ww
w.usenix.org/conference/usenixsecurity24/presentation/guo-qian.

https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://eprint.iacr.org/2024/1718
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/3658644.3690341
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-031-68382-4_1
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/s00145-023-09481-3
https://www.usenix.org/conference/usenixsecurity24/presentation/guo-qian
https://www.usenix.org/conference/usenixsecurity24/presentation/guo-qian

C. Brzuska et al. 29

[GSCS+23] A. Grivet-Sébert, M. Checri, O. Stan, R. Sirdey, and C. Gouy-Pailler. Com-
bining Homomorphic Encryption and differential privacy in federated learning.
In IEEE PST, pages 1–7, 2023. doi:10.1109/PST58708.2023.10320195.

[GSPZ+21] A. Grivet-Sébert, R. Pinot, M. Zuber, C. Gouy-Pailler, and R. Sirdey. SPEED:
secure, private, and efficient deep learning. Machine Learning, pages 675–694,
2021. doi:10.1007/s10994-021-05970-3.

[GSZS+23] A. Grivet-Sébert, M. Zuber, O. Stan, R. Sirdey, and C. Gouy-Pailler. A
probabilistic design for practical homomorphic majority voting with intrinsic
differential privacy. In WAHC, pages 47–58, 2023. doi:10.1145/3605759.36
25258.

[LM21] B. Li and D. Miccianccio. On the security of homomorphic encryption on
approximate numbers. In EUROCRYPT, pages 648–677, 2021. doi:10.1007/
978-3-030-77870-5_23.

[LMSS22] B. Li, D. Miccianccio, M. Schultz, and J. Sorrell. Securing approximate
homomorphic encryption using differential privacy. In CRYPTO, pages 560–
589, 2022. doi:10.1007/978-3-031-15802-5_20.

[MN24] M. Manulis and J. Nguyen. Fully homomorphic encryption beyond IND-CCA1
security: Integrity through verifiability. In EUROCRYPT, pages 63–93, 2024.
doi:10.1007/978-3-031-58723-8_3.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In ACM STOC, pages 427–437, 1990. doi:10.114
5/100216.100273.

[VKH23] A. Viand, C. Knabenhans, and A. Hithnawi. Verifiable fully homomorphic
encryption. Technical Report 2301.07041, arXiv, 2023. URL: https://arxiv.
org/abs/2301.07041.

A Formal preliminaries on SNARKs
Let us recall the formal definition of (zero-knowledge) succinct non-interactive arguments of
knowledge (zk-SNARKs), for a Boolean relation R on words or statements u and witnesses
w, of an NP language. The NP language L being defined as L = {u∣∃w,R(u, w) = True}.

Let us remark that all the notions below define proofs of knowledge. Succintness is a
special property for SNARKs. Zero-knowkedge is an independent property.

Definition 1 (SNARK). A SNARK Π is defined by three algorithms,

Setup(1λ,R): on input 1λ and an NP relation R, the generation algorithm outputs a
common reference string crs, assumed to be used in both subsequent algorithms. It
can optionally output a verification key vk that is secret in the case of designater-
verifier SNARK;

Prove(u, w): given an instance u and a witness w such that R(u, w) = True, this algorithm
produces a proof π;

Verify([vk], u, π): on, the optional verification key vk, an instance u, and a proof π, the
verifier algorithm outputs False (reject) or True (accept);

satisfying the following properties:

https://doi.org/10.1109/PST58708.2023.10320195
https://doi.org/10.1007/s10994-021-05970-3
https://doi.org/10.1145/3605759.3625258
https://doi.org/10.1145/3605759.3625258
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-031-15802-5_20
https://doi.org/10.1007/978-3-031-58723-8_3
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273
https://arxiv.org/abs/2301.07041
https://arxiv.org/abs/2301.07041

30 Relations Among New CCA Security Notions for Approximate FHE

Correctness. For any u ∈ L, with witness w,

Pr [V([vk], u, π) = False crs← Setup(1λ,R), π ← Prove(u, w)] ≤ neg(λ);

Succintness. The size of the proof is linear in the security parameter λ, i.e. independent
of the size of the computation or the witness;

Knowledge-Soundness. For any PPT adversary Aks there exists a PPT extractor EA
such that:

Pr
⎡⎢⎢⎢⎢⎢⎣

crs← Setup(1λ,R)
Verify([vk], u, π) = True ((u, π), aux)← Aks(crs)
∧ R(u, w) = False w ← EA(crs, (u, π), aux)

⎤⎥⎥⎥⎥⎥⎦
≤ neg(λ).

Intuitively, this means that for any prover able to produce a valid proof π for a
statement u in the language, there exists an efficient extractor that outputs a witness
w for the given statement u, from a trace aux of the execution of the adversary;
In case of Designated-Verifier SNARK, the adversary is given access to a verification
oracle.

Zero Knowledge. There exists a stateful interactive polynomial-size simulator Sim =
(Simcrs, SimProve) such that for all stateful interactive distinguishers D, the two
probabilities are negligibly close:

Pr[R(u, w) = True ∧D(π) = 1 crs← Setup(1λ,R), (u, w)← D(crs),
π ← Prove(u, w)];

Pr[R(u, w) = True ∧D(π) = 1 (crs, trap)← Simcrs(1λ), (u, w)← D(crs),
π ← SimProve(crs, trap, u)].

In case of Designated-Verifier SNARK, the distinguisher is just given the crs and not
the verification key.

We stress that the above notation of extractor EA limits to a straightline extractability
(without possible rewinding), but this is what we will need.

B Additional proofs
B.1 Proof of proposition 4 (vCCASC /Ô⇒CPAD

2 , p. 13)
Proof. We proceed similarly to the proof of Proposition 2. Let us start from a vCCASC-
secure scheme S = (KeyGen, Enc, Dec, Eval) from which we build the scheme S′ with the
only modification that

Enc′(m) = Enc(m + g(m)).
with g as in the proof of Proposition 2.
S′ is vCCASC-secure. Let A be a successful adversary against the vCCASC security of
S′. It is then easy to build an adversary B against the vCCASC security of S. Indeed, B
simulates A encryption (respectively challenge) requests simply by forwarding m + g(m)
(respectively m0+g(m0) and m1+g(m1)) as an encryption (respectively challenge) request
to the vCCASC challenger against S. All other requests are transferred “as is” by B to the
vCCASC game against S.
S′ is CPAD

2 -insecure. Identical to proof of Proposition 2: the CPAD
2 decryption oracle

accepts the cmul ciphertext since it is duly registered in the game state within the triplet
(0, 0, cmul) as an encryption of 0 with respect to S′.

C. Brzuska et al. 31

B.2 Proof of proposition 5 (CPAD
2 /Ô⇒ vCCASC, p. 13)

Proof. The proof is essentially identical to that of Proposition 1, but starting from a
CPAD

2 -secure scheme S from which we create a scheme S′ in a similar way. On one hand,
the CPAD

2 -security of S′ follows from that of S and the fact that a CPAD
2 adversary against

S′ cannot add c△ to the game state. On the other hand, the vCCASC-insecurity of S′

follows from the fact that the vCCASC game decryption oracle accepts c△ as it bears no
relationship with the challenge ciphertext.

B.3 Proof of proposition 8 (vCCASC /Ô⇒vCCAD
SC, p. 15)

Proof. We proceed similarly to the proof of Proposition 2 (and Proposition 4). Let us
start from a vCCAD

SC-secure scheme S = (KeyGen, EncDec, Eval) from which we build the
scheme S′ with the only modification that

Enc′(m) = Enc(m + g(m)).

with function g as in the proof of Proposition 2.
S′ is vCCASC-secure. Since S is vCCAD

SC-secure, it is also vCCASC-secure (from Lemma
2). Now, let A be a successful adversary against the vCCASC security of S′. It is then
easy to build an adversary B against the vCCASC security of S. Indeed, B simulates A
encryption (respectively challenge) requests simply by forwarding m + g(m) (respectively
m0 + g(m0) and m1 + g(m1)) as an encryption (respectively challenge) request to the
vCCASC challenger against S. All other request are transferred “as is” by B to the
vCCASC game against S.
S′ is vCCAD-insecure. Identical to proof of Proposition 2: the vCCAD

SC decryption oracle
accepts the cmul ciphertext as, recall (9) and (10), left(cmul) = right(cmul) = 0 (as cmul is
an encryption of 0 with respect to S′).
Since this latter attack involves only legit ciphertexts, it can be performed by an adversary
working under the well-formedness assumption.

B.4 Proof of proposition 14 (p. 19)
Proof. We proceed similarly to the proof of Proposition 10. So let us start with a vCCAD-
secure additive HE scheme S = (KeyGen, Enc, Dec, Eval) from which we build the scheme
S′ with the only modification that

Enc′(m) = Enc(m + g(m)),

where g is as in the proof of Proposition 10.
S′ is vCCAD

SC-secure. Since vCCAD security trivially implies vCCAD
SC security, S is

vCCAD
SC-secure. Let A be a successful adversary against the vCCAD

SC security of S′. It is
then easy to build an adversary B against the vCCAD

SC security of S. Indeed, B simulates
A encryption and challenge requests simply by adding g(m) to m. All other request are
transferred “as is” by B to the vCCAD

SC game against S.
S′ is vCCAD-insecure. Identical to proof of Proposition 10: the vCCAD decryption oracle
accepts the csum ciphertext as, recall (9) and (10), left(csum) = right(csum) = Z (as an
encryption of Z with respect to S′).

B.5 Proof of Lemma 3 (p. 23)
Proof. Correctness. For any c ∈ L3, with witness (m∣r), we are interested in the following

probability,

Pr [ΠE .Verify([vk], c, π) = False π = ΠE .Prove(c, (m∣r))]

32 Relations Among New CCA Security Notions for Approximate FHE

which can be rewritten as (E .pk, E .sk, EH .pk and EH .sk omitted for compacity-sake),

Pr
⎡⎢⎢⎢⎢⎢⎣

E .Dec(π) = (m′∣r′) ≠ (m∣r) ∧ EH .Enc(m′, r′) ≠ c π = E .Enc((m∣r))
∨ c = EH .Enc(m, r)

E .Dec(π) = (m∣r) ∧ EH .Enc(m, r) ≠ c

⎤⎥⎥⎥⎥⎥⎦
.

Since the two events in the above left-hand side disjunction are incompatible, we
can separate the above as,

Pr [E .Dec(E .sk, π) = (m′∣r′) ≠ (m∣r) π = E .Enc(E .pk, (m∣r))
∧ EH .Enc(EH .pk, m′, r′) ≠ c c = EH .Enc(EH .pk, m, r)]

+

Pr [E .Dec(E .sk, π) = (m∣r) π = E .Enc(E .pk, (m∣r))
∧ EH .Enc(EH .pk, m, r) ≠ c c = EH .Enc(EH .pk, m, r)] .

As EH .Enc is deterministic, the second of the two above terms is 0. We are then left
with the first term which is bounded by,

Pr [E .Dec(E .sk, π) = (m′∣r′) ≠ (m∣r) π = E .Enc(E .pk, (m∣r))
c = EH .Enc(EH .pk, m, r)] ≤ neg(λ),

under the (mild) assumption that E is statistically correct, following Eq. (1).

Knowledge-Soundness. For any PPT adversary Aks there exists a PPT extractor EA
such that:

Pr
⎡⎢⎢⎢⎢⎢⎣

Verify([vk], c, π) = True crs← Setup(1λ,R)
∧ ((c, π), aux)← Aks(crs)

R(c, w) = False w ← EA(crs, (c, π), aux)

⎤⎥⎥⎥⎥⎥⎦
≤ neg(λ).

In the present case, EA is exactly E .Dec() (i.e., the extractor is independent of any
auxiliary data and is explicitly invoked by Verify). Hence, the above probability is

Pr
⎡⎢⎢⎢⎢⎢⎣

EH .Enc(EH .pk, m′, r′) = c crs← Setup(1λ,R)
∧ (c, π) ∶= ((c, π), aux)← Aks(crs)

EH .Enc(EH .pk, m′, r′) ≠ c (m′∣r′) ∶= E .Dec(E .sk, π)

⎤⎥⎥⎥⎥⎥⎦
= 0

As EA is E .Dec(), this is a straightline extractor.

Zero-Knowledge. The simulator can simply generate a ciphertext for a random plaintext,
which will be indistinguishable from the correct ciphertext, under the indistinguisha-
bility of E . In addition, this indistinguishability still holds with a verification oracle
access, that would be simulated by a call to the decryption oracle, thanks to the
CCA2 security.

C Additional blueprints
To improve the practicality of the Encrypt-then-Sign construction of Sect. 6.1 (at the
expense of input privacy and compactness), it is also possible to modify it such that the
statements for which the Π outputs a proof during Eval does not have to include the
verification of the input ciphertexts’ signatures. In that case, both the input and output
ciphertexts must be available to the decryption algorithm which is then responsible for
verifying the signatures of the former. When this is the case, Π is for the simpler language
L2 (i.e., (15) instead of (14)) and Eval and Dec are modified as follows:

C. Brzuska et al. 33

• E⋆H .Eval: given ciphertexts (c1, π1), ..., (cK , πK) compute

(ce = EH .Eval(EH .pk, f, c1, ..., cK), πe = Π.Prove((ce, c1, ..., cK), f)).

and return ciphertext ((ce, πe), (c1, π1), ..., (cK , πK)).

• E⋆H .Dec (fresh ciphertext): given (c, π), if Σ.Verify(Σ.pk, c, π) = True return
EH .Dec(EH .sk, c), and return � otherwise.

• E⋆H .Dec (evaluated ciphertext): given ((ce, πe), (c1, π1), ..., (cK , πK)) return
EH .Dec(EH .sk, ce) when Π.Verify([Π.vk], ce, πe) = True and
Σ.Verify(Σ.pk, ci, πi) = True,∀i and � otherwise.

In this modified construction, the signature scheme can be replaced by a MAC M =
(KeyGen, Tag, Verify), leading to the Encrypt-then-MAC blueprint studied in [MN24] from
a vCCA perspective, and initially proposed and proved CCA1-secure under a slightly
weaker variant of (usual) CCA1 security in [VKH23].

D Separation between (q, ℓ)-CPAD-security and (q, ℓ+1)-
CPAD-security

Proposition 19. Let ℓ be any polynomial in the security parameter. If there exists a
scheme S which achieves (q; ℓ)-IND-CPAD-security, then there exists a scheme S′ achieving
(q; ℓ)-IND-CPAD-security, but not (q; ℓ + 1)-IND-CPAD-security.

Proof. Analogously to the proof of Proposition 1, let

S = (KeyGen, Enc, Dec, Eval).

be an approximate FHE scheme that is (q; ℓ)-IND-CPAD-secure and achieves ε-correctness
for ε = 1 (recall definition (2) on page 6). For simplicity sake, we do this proof under the
mild assumption that the plaintext domain of S is Zq, for a large enough modulus q. Let
a0, .., aℓ, a′0, .., a′ℓ be 2ℓ + 2 pairwise distinct values in the domain such that a0 = 1. We
define a scheme S′ = (KeyGen′, Enc′, Dec′, Eval′) where encryptions, once again, consist of 2
ciphertexts where the 2nd ciphertext occasionally encrypts noise, but this time only for a0:

Enc′(m) = (Enc(a0), Enc(3)) if m = a0 = 1
Enc′(m) = (Enc(m), Enc(0)) else

and let h be the function h(m0, m1) = m0 + m0 ⋅ m1, then we define decryption first
homomorphically evaluating h and then decrypting:

Dec′(c) = Dec(Eval(h, c0, c1)). (17)

Note that the reason why we use the above rather than the more direct decryption function

Dec′(c) = h (Dec(c0), Dec(c1)) .

will become clear in the reduction at the end of the proof where it is allowed to submit
the output of Eval(h, c0, c1) to the decryption oracle of a challenger against S but not the
two ciphertexts c0 and c1, in Eq. (17), separately. For ciphertexts c honestly generated by
Enc, Dec′ achieves ε′-correctness for ε′ = 4, because we increase the noise for encryptions
of a0 by 3 ⋅ a0 = 3. Next, let f∗ be the function

f∗(x0, .., xℓ) = (x0 = a0) ⋅ .. ⋅ (xℓ = aℓ) + (x0 = a′0) ⋅ .. ⋅ (xℓ = a′ℓ),

34 Relations Among New CCA Security Notions for Approximate FHE

where the equality check (y = z) returns 1 iff y and z are equal. So, f∗ returns 1 iff
(x0, .., xℓ) = (a0, .., aℓ) or (x0, .., xℓ) = (a′0, .., a′ℓ). Having defined f∗, we define Eval′ to
delete noise when f ≠ f∗, i.e.,

Eval′(f, c⃗) = (Eval(f, c⃗0), Enc(0)) if f ≠ f∗,

where c⃗0 denotes all the first ciphertext components of the pairs of ciphertexts in the
vector c⃗. Moreover, when f = f∗, we keep the noise of the first entry:

Eval′(f, c⃗) = (Eval(f∗, c⃗0), c⃗1,0) if f = f∗,

where c⃗1,0 is the 2nd ciphertext component of the first ciphertext pair in c⃗. Since the 2nd
component of a ciphertext can be at most 3 by definition of Enc and this norm is preserved
by Eval and since f∗ is a function with binary output, S′ achieves ε′-correctness for ε′ = 4.

Attacking (q; ℓ + 1)-IND-CPAD-security. An adversary against (q; ℓ + 1)-IND-CPAD-
security of S′ can now query

(test messages, ai, a′i)

for all i ∈ {0, .., ℓ}, receiving a vector c⃗ of ℓ + 1 ciphertext pairs. It then queries

(eval, f∗, c⃗)

receiving back a pair (c0, c1) which it submits for decryption and receives back a value
v. If ∣v∣ ≤ 1, the adversary returns 1. If v ≥ 2, the adversary returns 0. This decryption
query is allowed because f∗(a0, .., aℓ) = f∗(a′0, .., a′ℓ) = 1. If b = 0, v is a noisy encryption
of 3 under S and thus ε-close to 3 for ε = 1. If b = 1, v is a noisy encryption of 0 under S
and thus ε-close to 1 and thus, the adversary has advantage 1.

Proving (q; ℓ)-IND-CPAD-security. To prove (q; ℓ)-IND-CPAD-security of S′, we
proceed via several game hops. Game 0 is the same as the (q; ℓ)-IND-CPAD game for S′

with secret bit b = 0. Game 1 is the same as Game 0, but for challenge queries even if
mb = a0, adds Enc(0) as 2nd ciphertext component rather than Enc(3). Game 2 is the
same as Game 1, but uses bit b = 1. Game 3 is the same as Game 2, but swaps back to
using Enc(3) as 2nd ciphertext component rather than Enc(0) to answer challenge queries
for a0, so that Game 3 is equal to the (q; ℓ)-IND-CPAD-security game for S′ with b = 1.

Each of the game-hops reduces to (q; ℓ)-IND-CPAD-security of S. We first focus on
the most interesting game-hop from Game 1 to Game 2 and then briefly discuss the other
two reductions.

Game 1 to Game 2. Let A be an distinguisher between Game 1 and Game 2. We
construct an adversary B against the (q; ℓ)-IND-CPAD-security of S which forwards all
encryption queries for messages m by A to its own experiment to obtain the 1st ciphertext
component, and makes an encryption query for 3 to obtain the 2nd ciphertext component
if m = a0 and an encryption query of 0, else. Moreover, B forwards challenge queries
by A for messages (m0, m1) as challenge queries to its own experiment to obtain the
1st part of the ciphertext and then queries 0 to its encryption oracle to obtain the 2nd
ciphertext component. For evaluation queries, B strips off the first ciphertext components
and forwards them to its own evaluation oracle to obtain the 1st ciphertext component
(recall that evaluation and decryption requests should stricto sensu be made on state
indices, then B needs to maintain a map between its own state and that of its challenger
and these states are different since the CPAD challenger’s one contains the results of
Enc(0), Enc(3) and Eval(h, .) requests, which are unknown to A). For the 2nd ciphertext
component, if f = f∗, B keeps the noise component of the 1st ciphertext pair in the query.

C. Brzuska et al. 35

If f ≠ f∗, then B makes an encryption query for 0 to obtain the 2nd ciphertext component
of Eval′.

For decryption queries, B first makes an evaluation query combining ciphertext compo-
nents as Eval′ would, and then makes a decryption query to its own experiment. In the
end B returns the same bit as A. Let’s assume w.l.o.g. that A only makes valid decryption
queries (i.e. the experiment does not return �). We now argue that all decryption queries
by B are indeed accepted by B’s experiment. If the 2nd component of a ciphertext (c0, c1)
encrypts 0, then the experiment of B rejects if and only if the experiment of A rejects,
because m0 +m0 ⋅m1 = m0 +m0 ⋅ 0 = m0. Thus, the only difference can occur when A
submits a ciphertext (c0, c1) for decryption, where neither c0 nor c1 are encryptions of 0.

There are two possibilities: (c0, c1) was the result of an encryption query of a0 in which
case decryption is allowed. Recall that even if a0 is part of a challenge query, then the 2nd
component will be an encryption of 0. Thus, the 2nd option for c1 encrypting non-zero
noise is that (c0, c1) was the result of an evaluation query for f∗ where the first component
was an encryption of a0 (not resulting from a challenge query17) and the other components
were encryptions of a1,..,aℓ (as else, c0 would encrypt 0). In A’s game, such a decryption
query is only allowed, if those encryptions of a1,..,aℓ came from the encryption oracle, not
from the challenge oracle, since swapping any of the ai for a different value would lead f∗

to evaluate to 0 ≠ 1. However, if all encryptions of a0, a1,..,aℓ come from an encryption
oracle, then they are allowed in B’s game, too.

Game 0 to Game 1. For the game hop from Game 0 to Game 1 (and analogously from
Game 2 to Game 3), the reduction B turns all challenge queries into an encryption query
to obtain the first ciphertext component, since both Game 0 and Game 1 always encrypt
the left message (the right message in the game-hop from Game 2 to Game 3). For the
2nd ciphertext component, B makes an encryption query for 0, unless the message is a0.
In this case, B makes a challenge query for (0, 3). Emulation of evaluation and decryption
queries is similar to the previous reduction. Once more, let us assume w.l.o.g. that A only
makes valid decryption queries and let us argue that all decryption queries by B are indeed
allowed. Firstly, decryptions of challenge queries involving a0 are not allowed in A’s game,
since challenge queries would be associated to two different left and right values in the
challenger’s state. The only other interesting case are decryption queries for results of
evaluation queries on f∗ where an encryption of a0 was involved and all the other values
were encryptions of a1,..,aℓ. However, since A has only ℓ challenge queries and a0 was
already part of a challenge query, at least one of the encryptions of a1,..,aℓ must come
from an encryption query. In this case, however, decryptions of the result of an evaluation
of f∗ on these values is not allowed since swapping out one of the ai by a different value
leads f∗ to evaluate to 0 ≠ 1 and the ciphertext corresponding to a0 came from a challenge
query.

Thus, S′ is indeed (q; ℓ)-IND-CPAD-secure, but not (q; ℓ + 1)-IND-CPAD-secure.

17If a0 = 1, f∗ can be applied on an output of f∗ : f∗(f∗(a0, . . . , aℓ), a1, . . . , aℓ), the 2nd component in
the result of this evaluation will not be an encryption of 0.

	Introduction
	Summary of security notions and contributions
	Paper organization

	Preliminaries
	Defining vCCAD security
	The CPAD game
	The vCCA game
	vCCAD security: definitions and first properties

	Relations among the single challenge notions
	Relations between single-challenge variants of CPAD
	Relations between vCCASC and single-challenge variants of CPAD
	Relations between vCCASC and vCCADSC security

	Relations among the multiple challenge notions
	Relations between CPADSC and CPAD security
	Relations between vCCASC and vCCA security
	Relations between vCCADSC and vCCAD security

	Construction blueprints
	Private key constructions
	Public-key constructions

	Conclusion and future work
	References
	Formal preliminaries on SNARKs
	Additional proofs
	Proof of proposition 4
	Proof of proposition 5
	Proof of proposition 8
	Proof of proposition 14 (p. 19)
	Proof of Lemma 3 (p. 23)

	Additional blueprints
	Separation between (q,)-CPAD-security and (q,+1)-CPAD-security

