
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 27 pages.

https://doi.org/10.62056/ayl86chdj
Check for updates

Legacy Encryption Downgrade Attacks against
LibrePGP and CMS

Falko Strenzke and Johannes Roth

MTG AG, Darmstadt, Germany

Abstract. This work describes vulnerabilities in the specification of AEAD modes
and Key Wrap in two cryptographic message formats. Firstly, this applies to AEAD
packets as introduced in the novel LibrePGP specification that is implemented by
the widely used GnuPG application. Secondly, we describe vulnerabilities in the
AES-based AEAD schemes as well as the Key Wrap Algorithm specified in the
Cryptographic Message Syntax (CMS). These new attacks exploit the possibility
to downgrade AEAD or AES Key Wrap ciphertexts to valid legacy CFB- or CBC-
encrypted related ciphertexts and require that the attacker learns the content of the
legacy decryption result. This can happen in two principal ways: either due to the
human recipient returning the decryption output to the attacker as a quote or due to
a programmatic decryption oracle in the receiving system that reveals information
about the plaintext. The attacks effect the decryption of low-entropy plaintext blocks
in AEAD ciphertexts and, in the case of LibrePGP, also the manipulation of existing
AEAD ciphertexts. For AES Key Wrap in CMS, full key decryption is possible. Some
of the attacks require multiple successful oracle queries. The attacks thus demonstrate
that CCA2 security is not achieved by the LibrePGP and CMS AEAD or Key Wrap
encryption in the presence of a legacy cipher mode decryption oracle. The proper
countermeasure to thwart the attacks is a key derivation that ensures the use of
unrelated block cipher keys for the different encryption modes.
Keywords: AEAD · downgrade · CMS · LibrePGP · decryption-oracle

1 Introduction
This work describes downgrade attacks that violate the confidentiality and authenticity
properties of authenticated encryption, technically referred to as AEAD for “authenticated
encryption with additional data”, as specified in the LibrePGP protocol and in the long-
standing CMS protocol [Hou07].1 LibrePGP is a recent fork of the OpenPGP standard in
a proposed IETF draft [KT23] that introduces AEAD ciphers with the OCB Encrypted
Data packet, referred to as OCB Packet throughout this work. However, official releases of
GnuPG2 already implement the new packet starting from GnuPG version 2.3 [gnu] and also
the RNP OpenPGP library3 supports it. CMS is a widely used standard for cryptographic
messages protected by encryption and signatures based on public key algorithms and using
X.509 certificates. It supports AES-CCM and AES-GCM as AEAD modes [Hou07]. One
of the prominent usages of CMS is in the S/MIME protocol for email encryption and
signature [STR19].

E-mail: falko.strenzke@mtg.de (Falko Strenzke), johannes.roth@mtg.de (Johannes Roth)
1This work was carried out in the scope of Project 480 – “Integration von Post-Quanten Kryptografie

in den E-Mail-Client Thunderbird” commissioned by the German Federal Office For Information Security
(BSI)

2https://www.gnupg.org/
3https://www.rnpgp.org/software/rnp/

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-10 Accepted: 2025-03-11

https://doi.org/10.62056/ayl86chdj
https://crossmark.crossref.org/dialog/?doi=10.62056/ayl86chdj&domain=pdf&date_stamp=2025-03-31
https://orcid.org/0009-0006-6574-2904
https://orcid.org/0009-0003-7400-8822
mailto:falko.strenzke@mtg.de
mailto:johannes.roth@mtg.de
https://www.gnupg.org/
https://www.rnpgp.org/software/rnp/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

We further show that AES Key Wrap with Padding [HD09] as a content-encryption
algorithm in CMS suffers from a vulnerability that leads to full decryption of the wrapped
key in the presence of a CBC-decryption oracle.

In the following, we use the term modern cipher mode to denote AEAD as well as Key
Wrap schemes.

1.1 Previous Work
Decryption oracle attacks against symmetric encryption schemes are long known. A
fundamental trait of all such attacks is the ability of the attacker to craft manipulated
versions of the ciphertext he wishes to decrypt and send them to a recipient, who can be
given by a human user with his messaging client or an autonomous IT system, and who
will reveal certain information about the decrypted plaintext. Based on this information,
the attacker learns parts of the original plaintext.

One fundamental type of attack are CBC padding oracles [Vau02]: Given that an
implementation indicates whether the padding pattern that is used to indicate the number
of unused bytes in the final block of a CBC encrypted message was erroneous or not, the
whole CBC ciphertext can be decrypted.

Other authors [KS00, JKS02] have shown that legacy encryption schemes for human
readable messages that use CFB or CBC encryption are prone to exhibit what can be
called fully-revealing oracles: The attacker manipulates in a specific way an encrypted
email that he wishes to decrypt, and sends the manipulated version to the original recipient.
The recipient sees a message with no interpretable meaning, i.e., appearing just as garbled
characters, and thus might send a reply which quotes the message that he received back to
the attacker. Due to the quoted decrypted message being related to the original plaintext,
the attacker can decrypt the original plaintext. More sophisticated approaches to trick a
user into acting as a decryption oracle are described in the more recent work [MBP+19].

Format oracles [MRLG15] are yet another class of oracles which might reveal information
about the plaintext. Format oracles are similar to CBC padding oracles, only that the
errors that are indicated to the attacker have a different source. They stem from routines
that verify certain aspects of the message format, such as application-specific file formats
or specific character encodings for text files. In a recent work [IPK+23], a format oracle in
iOS Mail was successfully used for the decryption of S/MIME emails.

All of the decryption oracle attacks have in common that they allow the decryption
of messages encrypted under a legacy encryption mode by the use of a decryption oracle
for the same encryption mode. Specifically, they exploit that the legacy encryption mode
offers no integrity protection. In contrast to this, the modern cipher modes such as the
AEAD modes achieve integrity protection of the ciphertext. AEAD modes thus prevent
the attacker from using the AEAD decryption as an oracle: all his manipulated versions
of the ciphertext will be rejected on the cryptographic level already with overwhelming
probability.

However, in 2013, Jager, Paterson, and Somorovsky described a cross-mode attack
against XML encryption using the AEAD scheme CCM [JPS13]. Specifically, their attack
achieves the decryption of low-entropy plaintext blocks in CCM-encrypted XML-messages
by exploiting the legacy XML CBC decryption. The attack uses the CBC decryption result
obtained from the oracle to emulate the block decryption of the underlying cipher. This
work shows that even AEAD-encrypted messages are at risk of being decrypted by oracle
attacks, provided that a decryption oracle exists for a legacy encryption mode under the
same key.

The work [JPS13] also shows the use of AES KeyWrap in XML encryption to be
vulnerable to downgrade attacks. Here, the assumption is again the presence of a CBC
decryption oracle.

Falko Strenzke, Johannes Roth 3

1.2 Our contributions
The contributions of this work reveal vulnerabilities of the LibrePGP and the CMS protocol
with respect to oracle attacks against modern cipher modes and are based on exploiting
the presence of a legacy cipher decryption oracle.

For CMS, our work demonstrates the transferability of the previously described attacks
by Jager et al. [JPS13] to CMS. Namely, the AES-based AEAD schemes AES-CCM
and AES-GCM are subject to attacks that use downgrading of ciphertexts to AES-CBC
encryption of CMS. Like the attacks described by Jager et al., they allow the decryption of
a low entropy block in the plaintext if the attacker knows the position of that block inside
the plaintext. Furthermore, we show AES Key Wrap, used in CMS as a content-encryption
algorithm, to be vulnerable to CBC-downgrade attacks as well. This encryption mode is
used for instance for the protection of Symmetric Key Package Content Types [Tur11].

For LibrePGP, we introduce novel attacks that allow the manipulation of LibrePGP
OCB ciphertexts and the decryption of low entropy blocks with a known position as in
the case of CMS.

The downgrade attacks that we present can thus be grouped into three types: a) the
manipulation of AEAD ciphertexts – this is possible in the case of LibrePGP; b) decryption
of high-entropy messages – this applies to the use of AES Key Wrap in CMS; and c) the
decryption of low entropy plaintext blocks, i.e., plaintext blocks where only a few bytes
are unknown to the attacker. This latter attack applies both in the case of LibrePGP
and CMS. In each of these cases, the downgrade attack requires as a precondition that an
oracle for a legacy encryption mode is available to the attacker.

In order to enhance the understanding of basic properties of these decryption oracle
attacks, we introduce the terms forward decryption oracle and inverse decryption oracle to
describe the relation between the block cipher operations of the modern cipher mode under
attack and the legacy decryption mode that is realized by the oracle. This distinction is
useful since fundamental properties of the attacks depend on this categorization.

Forward decryption oracles are given when the legacy mode implements the same
block cipher direction, i.e., block encryption or decryption, that is needed in the modern
cipher mode operation that is being attacked. Since the oracle provides the block cipher
direction needed in the operation that is attacked, this type of oracle typically allows for
full plaintext recovery: In a very simplified view of such attacks, the attacker can simply
execute the attacked algorithm, and whenever the block cipher operation is needed that
they cannot carry out themselves due to lack of knowledge of the cipher key, they query
the legacy mode decryption oracle that performs the required block cipher operation for
them.

Inverse decryption oracles on the other hand provide the opposite cipher direction
of the one needed to carry out the operation under attack. This restricts the attack to
verifying guesses for the plaintext and thus only allows attacks on low entropy plaintext
blocks.

Table 1 groups the attacks from previous work and our own contributions into these
two types of oracle attacks. Note that the oracle is always assumed to be a decryption
oracle. In the case of the attack against LibrePGP’s OCB decryption, which makes use of
the block cipher encryption as well as decryption, and where the legacy decryption oracle
features the block cipher encryption, the oracle has to be classified as an inverse one since
at least for one of the cipher operations needed in the attack only the inverse operation is
provided by the oracle.

The structure of the paper is as follows. In Sec. 2 and 3 we introduce the new attacks
against LibrePGP and CMS, respectively. Sec. 4 reports on the responsible disclosure
process and Sec. 5 discusses the appropriate countermeasures to thwart the attacks.
Finally, Sec. 6 gives the conclusion.

4 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

Table 1: Classification of decryption oracles in previous work and in our contributions. The first
column indicates the oracle type. The second column gives the reference to the attack. The
third column indicates the modern cipher mode that is subject to the attack together with the
direction (encryption or decryption) that is needed during the attack. The forth column specifies
the direction of the underlying block cipher operation for the operation referred to in the previous
column. The final two columns indicate the same information for the legacy encryption scheme
that is used as an oracle in the attack.

Attacked modern mode Legacy mode decryption
oracle

ty
pe Attack Mode &

direction
Implied
block cipher
direction

Mode &
direction

Implied
block cipher
direction

in
ve

rs
e

[JPS13] AES-CCM
decr.

encr. CBC decr. decr.

This work: LibrePGP
OCB decr. (Sec. 2.6)

OCB decr. encr. & decr. CFB decr. encr.

This work: CMS
AES-CCM or
AES-GCM decr. (Sec.
3.3)

AES-CCM or
AES-GCM
decr.

encr. CBC decr. decr.

fo
rw

ar
d

[KS00] CFB decr. encr. CFB decr. encr.
This work: LibrePGP
OCB manip. (Sec.
2.5)

OCB encr. encr. CFB decr. encr.

[JPS13] and this
work: AES KeyWrap
decr (Sec. 3.5)

AES
KeyWrap
decr.

decr. CBC decr. decr.

2 Attacks against LibrePGP OCB packets
In the following subsections, we first introduce some preliminaries in Sec. 2.1. Following,
in Sec. 2.2 we explain how OpenPGP legacy-mode-decryption can be leveraged to an ECB
encryption oracle. Sec. 2.4, 2.5, and 2.6 describe the novel attacks. Our proof-of-concept
implementation of one of these attacks is described in Sec. 2.7. Finally, Sec. 2.8 explores
the potential of real world applications based on LibrePGP for being vulnerable to our
attacks.

2.1 Preliminaries: OpenPGP and LibrePGP message encryption
2.1.1 OpenPGP and LibrePGP hybrid encryption

Public-key encrypted messages in OpenPGP function according to the well-known asym-
metric/symmetric hybrid encryption approach: The encrypted message begins with one or
more public key encrypted session key (PKESK) packets, one for each recipient. When
decrypting the respective PKESK packet with their own private key, the recipient receives
the session key. Then follows the data that is symmetrically encrypted under the session
key. The data to be encrypted always has to be enveloped in a valid packet, e.g., a Literal
Data (LIT) Packet. In LibrePGP, the following types of symmetrically encrypted data
packets exist:

• Symmetrically Encrypted Data (SED) Packet, defined in OpenPGP, i.e. RFC 4880
[CDF+07]. This packet is encrypted using a slightly modified variant of CFB
encryption without any integrity protection.

• Symmetrically Encrypted Integrity Protected Data (SEIPD) Packet, defined in

Falko Strenzke, Johannes Roth 5

OpenPGP, i.e. RFC 4880 [CDF+07]. This packet type is used in conjunction with
a Modification Detection Code (MDC) Packet: The data to be CFB-encrypted is
formed by the sequence of the message, enveloped for instance in a LIT packet, and
an MDC packet containing the SHA-1 hash of the LIT packet including its packet
header. SEIPD packets also use CFB encryption. The verification of the SHA-1 hash
of the plaintext data contained in the MDC packet provides an ad-hoc mechanism
for the protection of the ciphertext’s integrity. The shortcomings of this packet type,
which is not relevant for the attacks at hand, are addressed in App. A.

• OCB Packet, defined in LibrePGP [KT23]. OCB packets encrypt data using one of
the two AEAD modes OCB or EAX, where the latter is marked as deprecated.

2.1.2 The LibrePGP OCB Packet with OCB mode encryption

The OCB encryption algorithm [KR14] takes as input the key, a nonce, the plaintext, and
additional data. The latter is authenticated but does not become part of the resulting
ciphertext. It outputs a ciphertext at the end of which is the authentication tag.

An OCB Packet may consist of more than one OCB chunk. Each chunk is a complete
OCB ciphertext ending with the corresponding authentication tag. At the very end of
the OCB Packet, an empty OCB chunk is encrypted to produce the final authentication
tag. The additional data input to the OCB encryption algorithm for each chunk includes
the index of the chunk within the packet. This ensures that the sequence of the chunks
cannot be changed without being detected by the recipient. The detailed structure of the
additional data used in each chunk is given in App. B.

The nonce used for the encryption of each chunk in an OCB Packet is V ⊕ I, where
V ∈ {0, 1}120 is the initialization vector supplied on the protocol level and I is the chunk
index encoded as a big-endian value of the same width as V . The chunk index is counted
starting from zero.

2.1.3 SED Packet encryption in OpenPGP

The encryption of SED packets makes use of the CFB mode. In this mode, encryption of
a block is given as Ci = Ek(Ci−1)⊕ Pi and the decryption as Pi = Ek(Ci−1)⊕ Ci with
i ∈ {1, . . . , n} and where Ek() is the encryption of a block under the key k, and C0 = IV
is the initialization vector.

The encryption of SED packets in OpenPGP does not use CFB straightforwardly,
but is realized by a two-step CFB encryption which we describe in the following. Here,
and throughout this work, all encryption operations are performed using the session key
k resulting from the decryption of the corresponding PKESK packet without explicitly
noting the use of k. Table 2 specifies various notations used in the algorithms.

• First, CFB-encrypt a bit string Y ∈ {0, 1}144 where Y [96 : 127] = Y [128 : 143], i.e.,
the last two octets are a copy of the preceding two octets, the remaining octets
chosen at random, and an IV of all zero bits.

• Let the result of this first encryption step be H.

• Set IV← H[16 : 143]

• CFB-encrypt the payload data using the IV computed in the previous step and
append the encryption result to H to form the complete OpenPGP-CFB ciphertext.

6 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

Table 2: Notation used throughout this work. Numerous items have been taken without or with
minor adaptions from [KR14].

|k| the bit length of the value k
b The letter b denotes the block width of the underlying

block cipher in bits.
[0]x The bit string formed by x zero bits.
X[i] The i-th bit of the string S (indices begin at 0, so if X is

011, then X[0] == 0, X[1] == 1, X[2] == 1).
X[a : b] The substring of the bit string X ranging from the bit

positions a to b inclusive.
str2num(S) The big-endian conversion of a bit string S into an integer

(e.g., str2num(1110) == 14).
num2str(i, n) The big-endian conversion of an integer i into a bit

string of length n (e.g., num2str(14, 4) = 1110 and
num2str(1, 2) == 01).

ocbDouble(S) If S[1] == 0, then ocbDouble(S) = (S[2 : 128] ∥ 0); other-
wise, ocbDouble(S) = (S[2 : 128] ∥ 0)⊕([0]120 ∥ 10000111).

Ek(X) AES block encryption of the block X under the key k.
In some instances the indexing with k is omitted, as in
this work we are not concerned with any variation in the
employed block cipher key.

The corresponding decryption algorithm is given in Alg. 1. The condition “have quick-
check” and its relevance for attacks on actual OpenPGP implementations will be discussed
further down. In case that this condition is true and the comparison of the redundant bytes
in Step 3 of this algorithm fails, the decryption is aborted with an error and no plaintext is
output. If an attacker inputs random ciphertexts for decryption, and the condition “have
quick-check” is true, then the decryption succeeds only with a probability of 2−16.

Algorithm 1 OpenPGP’s SED two-step CFB decryption. The two arguments to SED-DecK()
are the first-step and second-step ciphertexts, respectively.

1: Algorithm SED-DecK(H ∥B1 ∥ . . . ∥Bm) with H ∈ {0, 1}144 and Bi ∈ {0, 1}128

2: Y ← CFB-decryptK([0]128, H) // Y ∈ {0, 1}128+16

3: if have quick-check AND Y [96 : 127] ̸= Y [128 : 143] then
4: Abort with error (output no plaintext)
5: end if
6: IV← H[16 : 143]
7: return CFB-decryptK(IV, B1 ∥ . . . ∥Bm)
8: end Algorithm

2.2 OpenPGP SED Packet CFB decryption as an ECB encryption
oracle

As a prerequisite to the attacks developed further down, in this section we show how the
OpenPGP SED Packet CFB decryption can be used as an ECB encryption oracle by
straightforward transformations on the returned plaintext and address the applicability of
the decryption oracle to currently existing LibrePGP implementations.

If an attacker has access to the algorithm SED-DecK given in Alg. 1 as a decryption
oracle, an ECB encryption oracle can be built on top of this as specified in Alg. 2. See
Fig. 1 for a depiction of how the ECB encryption oracle is built from the CFB decryption
oracle.

Note that if the condition “have quick-check” in Alg. 1 amounts to “true”, this increases
the number of queries necessary to retrieve a decryption result from the CFB-decryption

Falko Strenzke, Johannes Roth 7

Algorithm 2 ECB mode encryption realized through an SED CFB decryption-oracle for a
sequence of n block cipher blocks Bi in one call. b is the block size of a cipher block in bits. In
case the call to SED-DecK() in line 4 does not return a plaintext due to an error condition, this
algorithm also aborts with an error and without returning a plaintext.
1: Algorithm ECB-Enc-OcK(B1 ∥ . . . ∥Bn)
2: Bn+1 = [0]b
3: R = random bit string ∈ {0, 1}144

4: P = P1 ∥ . . . ∥Pn+1 = SED-DecK(R ∥B1 ∥B2 ∥ . . . ∥Bn+1)
5: for i = 1 to n do
6: Qi = Pi+1 ⊕Bi+1
7: end for
8: return {Qi|i = 1, . . . n}
9: end Algorithm

Table 3: Overview of OpenPGP implementations regarding aspects that influence their suscepti-
bility to SED decryption oracle attacks.

Implementation Supports SED de-
cryption

Enforces quick-
check

GnuPG 2.4 limited in default con-
figuration (see text)

no

RNP 1.17.0 yes yes

oracle by a factor of 216 on average. However, the implementation of the “quick-check”
poses a vulnerability in itself [MZ06]. Accordingly, the LibrePGP specification warns in
its “Security Considerations” section, to use the quick-check, if at all, then with care.
While GnuPG itself does not implement the quick-check, RNP does so, as we inferred
from the source code. Table 3 gives an overview of the SED decryption support of both
implementations.4

In the following we investigate in how far the GnuPG application realizes an SED
oracle. When decrypting an SED Packet with GnuPG, the following message is output

gpg: WARNING: message was not integrity protected
gpg: decryption forced to fail!

and the file is still decrypted if the output is written to stdout, i.e., if no output
file was specified on the command line. However in this case, as long as the option
ignore-mdc-error is not set in the GnuPG configuration file, the application exits with
a non-zero exit code. If an output file was specified, the file is deleted again afterwards.
Also the corresponding function of the GPGME library returns an error code for SED
decryption [Koc24].

2.3 Appearance of a LIT Packet when Decrypting a Random
Ciphertext

In the course of the attacks against LibrePGP AEAD that we will develop further down, the
attacker has to feed crafted ciphertexts into the CFB-decryption oracle. These ciphertexts
appear as random ciphertexts from the point of view of the recipient and will decrypt to
data that appears as random as well. However, the OpenPGP packet semantics prescribe
that a decrypted plaintext must start with a valid packet from a certain set of suitable
packet types. According to the LibrePGP specification, the plaintext must contain either
an Encrypted Message, a Signed Message, a Compressed Message, or a Literal Message.

4According to the Sequoia interoperability test suite, the latest RNP version 1.17.0 supports SED
decryption. See https://tests.sequoia-pgp.org/#SED_encrypted_message

https://tests.sequoia-pgp.org/#SED_encrypted_message

8 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

Table 4: Structure of an OpenPGP literal data (LIT) packet and estimated or presumed probabil-
ities for the respective field to take on a valid value based on an entirely randomized plaintext.
The symbols given in the first column are used in Fig. 1.

Symbol Field
name

Size in bytes Condition for valid-
ity

Estimated
probability
for validity

T packet tag
for LIT

1 T = 0xcb (new format)
OR T ∈ four valid old
format tag octets

5/256

L = (L1, . . . , Ln) body
length

∈ {0, 1, . . . , 5} unknown

O format 1 O = 0x62 (binary) OR
O = 0x74 (text) OR
O = 0x75 (UTF-8) OR
O = 0x6d (MIME)

1/64

f filename-
len

1 none 1

N = (N1, . . . , Nf) filename ∈
{0, 1, . . . , 255}

valid UTF-8 5 unknown

D = (D1, . . . , D4) date 4 presumably none 1
body as specified by

L
valid UTF-8 in case of
format octet 0x74 and
0x75

unknown

However, it is easy to see that from these message types the only one that can actually
appear with non-negligible probability as a valid message in the pseudorandom plaintext is
the Literal Message which is realized by a LIT Packet. The reason is that all other packets
allowed by the standard need further successful processing which is highly improbable to
achieve by chance: Processing random data as a compressed data packet will suffer from
high chance of an error during decompression, and even in case of successful decompression
requires the by-chance appearance of another valid packet in the decompressed data.
Furthermore, processing random data as encrypted or signed packets entails the attempted
decryption or signature verification which fails with overwhelming probability.

Since the protocol requires a valid LIT packet to appear in the decrypted data, the
body of which is the plaintext returned to the application, only a subset of the crafted
ciphertexts result will cause a decryption result to be returned by the CFB-decryption
oracle. In the following, we explain the theoretical conditions according to the LibrePGP
standard for a valid LIT packet and from this derive an estimate of the probability for
such a packet to appear in the decryption result for a random ciphertext.

Table 4 shows the structure of a LIT packet with theoretically derived probabilities
for successful processing of random data where possible. According to these derived
probabilities, the probability for a valid LIT Packet to appear for a random ciphertext
is at most 5/256 + 1/64 ≈ 3, 5%. If the correctness of the body length and the UTF-8
encoding is also verified by an implementation, it is further reduced.

From our practical evaluation described in Sec. 2.7 we found a success rate for obtaining
a decryption result for the initial oracle question of about 1.8%. This is quite close to the
estimated probability as it differs only by approximately a factor of two.

5It is unknown to us whether a valid UTF-8 encoding is enforced during decryption in GnuPG or RNP.

Falko Strenzke, Johannes Roth 9

2.4 A high-level view of the attacks on LibrePGP OCB Packet
encryption

In the following subsections we provide the attacks against the LibrePGP OCB Packet
encryption based on the presence of an OpenPGP SED decryption oracle. Specifically,
these are an attack that allows for the manipulation of an existing OCB Packet (Sec. 2.5),
and an attack that enables the decryption of low entropy plaintext blocks (Sec. 2.6).

The underlying idea of the attacks is to perform the algorithm needed to achieve the
desired computation with the help of the SED decryption oracle. Within this algorithm,
whenever the block cipher encryption operation is needed, the respective CFB decryption
oracle implied by the SED decryption oracle is queried to retrieve the respective operation
result, making use of the fact that an SED decryption oracle can be trivially transformed
to an ECB encryption oracle (see Sec. 2.2). As an optimization to reduce the number of
oracle queries that are required to conduct a specific attack, the attacker provides as many
blocks to the oracle in a single query as possible according to the parallelisability of the
block cipher operations in the attack algorithm.

However, as explained in Sec. 2.3, the probability for a crafted ciphertext that is input
to the CFB-decryption oracle to return a plaintext is relatively low due to the requirement
of the appearance of a valid LIT Packet header in the decrypted data by chance. This
is another aspect that has to be taken into account when designing the attacks. The
solution to this problem is to divide the query ciphertext into two parts: a leading part,
which covers the maximal possible length of the LIT Packet header, and a second part,
which contains the blocks to be decrypted, which we refer to as the oracle blocks. During
the attack, the first part of the ciphertext is varied in sequential oracle queries until a
decryption result is obtained.

After having received a decryption result in this way, the attacker can reuse the leading
part of the ciphertext to conduct further queries for different oracle blocks. In the following,
we refer to the task of achieving a decryption result for a given set of oracle blocks as an
oracle question. In this terminology, the above says that the initial oracle question involves
numerous oracle queries, but after a successful initial oracle question the remaining oracle
questions each only require a single oracle query.

Accordingly, the general attack algorithm for the attacks against LibrePGP can be
described on a high level of abstraction as follows. Depending on which attack is executed,
the attacker executes the OCB encryption (for the attack given in Sec. 2.5) or an algorithm
that allows for the decryption of low entropy plaintext blocks (for the attack in Sec.
2.6). In either case, the executed algorithm only requires the ECB-encryption under the
unknown key. Whenever such an ECB-encryption operation is needed, the attacker resorts
to querying the SED-oracle in order to perform the required ECB-encryption. From a
high-level perspective, the attack is executed as follows:

1. Start the execution of the attack algorithm.

2. When for the first time encountering a step that requires the ECB encryption under
the session key, determine the first oracle question, i.e., the oracle blocks that need
to be ECB-encrypted.

(a) Generate the first part of the ciphertext randomly and append to it the byte
sequence of the first of oracle question.

(b) Input the ciphertext to the decryption oracle.
(c) If the oracle does not output any plaintext, go back to Step 2a.

3. Evaluate the answer from the decryption oracle. As discussed further down, due to
a variability in the length of the LIT packet header, this implies determining the
offset of the decrypted oracle blocks within the plaintext returned by the oracle.

10 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

1st step ct random block random block oracle-block1 oracle-block2

DCFB(random block) DCFB(random block) DCFB(oracle-block2) DCFB(oracle blockn+1)

oracle-blockn+1

seam block

E() E() E() E() E()

in first query: sequence
of repeated blocks in

LIT packet body

T|L1|...|Ln|O|f|N1|...|Nf|D1|D2|D3|D4| literal data (LIT) packet body

!

sequence of repeated blocks in ciphertext

literal data (LIT) packet header with
length between 6 and 266 bytes

oracle-blockn

DCFB(oracle-blockn)

E()

EECB(oracle-block1) EECB(oracle-blockn)

offset of oracle blocks
in LIT packet body result

Figure 1: Overview of the structure of a LIT packet and the resulting offset of the returned oracle
plaintext within the ciphertext. For the meaning of the symbols in the green block representing
the LIT packet header see Table 4. The exclamation mark in the speech bubble at the seam block
indicates the possible case that with the corresponding natural probability a number of the final
bytes of the seam block are equal to the final bytes of the first DCFB(oracle block) and thus the
beginning of the block repetition pattern is recognized falsely too early.

4. Save the first part of the ciphertext that was generated randomly in the last execution
of Step 2a and use it for all further oracle queries.

5. Continue the algorithm execution and process all further oracle questions arising in
the course of the algorithm execution.

(a) Determine the next oracle question and append the data to be ECB-encrypted
to the first part of the ciphertext that was saved in Step 4.

(b) Input the ciphertext to the decryption oracle.
(c) Evaluate the answer from the decryption oracle.
(d) Continue at Step 5a unless all oracle questions needed during the algorithm

execution have been answered by the oracle.

Fig. 1 gives an overview of the relations between the OpenPGP SED-ciphertext, the
resulting plaintext, and the semantics of the LIT packet which has to be found in the
OCB plaintext while processing the first oracle question in the manner described in the
abstract algorithm above. In the top left corner we see the first-step ciphertext of the
SED two-step CFB decryption, the tail of which is used as the IV of the subsequent CFB
decryption. After it, in the top row follows the sequence of the random blocks, all of which
are chosen independently by the attacker during his attempts to achieve a first successful
query. After the last random block follow the oracle blocks, i.e., those ciphertext blocks,
that the attacker wishes to have CFB-decrypted, i.e., block-encrypted. Note that according
to the specification of the CFB mode, the final oracle block is not block-decrypted and
thus cannot be used to retrieve an encrypted block.

In the next row we find the operations E() for block encryption under the respective
session key and the bit-wise XOR operations on the blocks. Beneath that row we find
the decryption result that starts with the decryption results of the leading random blocks
which is entirely pseudorandom. The decryption of the first oracle block yields the seam
block, which bears no useful information for the attacker. Then follow the blocks that are
the result of the CFB-decryption of the oracle blocks.

Falko Strenzke, Johannes Roth 11

In the subsequent row we find the indication of the semantic interpretation of the
decryption result. The green data block represents the header of the LIT packet.

In the following, we elobarate how the attacker can reliably identify the decryption
result of the oracle blocks in the decryption result. Since, as shown in Tab. 4, two LIT
packet header fields have a variable length, namely the body length field, ranging from 0
to 5 bytes and the filename field, ranging from 0 to 255 bytes, the offset of the decryption
result within the ciphertext has a corresponding variation as well.

In both the attacks from Sec. 2.5 and 2.6, the initial oracle question contains two
different blocks, that we refer to as A and B in the following, that need to be ECB-
encrypted (i.e., CFB-decrypted). Accordingly, the attacker needs a means for achieving
orientation within the decryption result in order to be able to identify A and B during
the first oracle question. In order to achieve this, the oracle blocks placed into the query
need to exhibit a pattern that can be recognized in the decryption result. A block pattern
in the ciphertext that achieves this is for instance AABAAB etc. When receiving the
decryption result, the attacker can identify the repeated blocks as the CFB-decryption of
the blocks A and thus also identify the CFB-decryption of B.

As a further consequence, it is important to ensure that during the first oracle question,
the sequence of leading random blocks in the ciphertext is long enough so that its end is
under all circumstances within the decryption result returned by the application. Otherwise,
namely if some of the decrypted oracle blocks are part of the packet header, the attacker
will not be able to reliably determine which of the oracle blocks with respect to their
absolute ordering is the first one he received in the decryption result. This will make it
difficult to craft the ciphertexts for the subsequent oracle questions. On the other hand, if
the first oracle block appears in the decryption result, the attacker determines its offset
from the beginning of the decryption result and can reuse this offset to determine the
start of the decrypted oracle blocks in the further oracle questions without the need for a
pattern detection as described above for the first oracle question.

There is, however, the caveat that he cannot determine the start of the pattern with
certainty in all cases. This is because with probability 1/256, the last octet of the seam
block will be identical to the last octet of each of the blocks of the first pair. This lets
him determine the position of EECB(oracle-block1) one octet too early (or more octets too
early if there are further accidental such matches). Furthermore, with the same probability,
the same type of error can occur if the final byte of the decryption results of A and B
are identical. Accordingly, a straightforward implementation of the attack in the manner
described above fails with a probability of 1/128.

2.5 Insertion of new OCB chunks
In this section we develop attacks that allow the insertion of new chunks with attacker
chosen plaintext into an existing OCB Packet based on the exploitation of an SED
decryption oracle. The attacker can replace chunks in an existing ciphertext or append
new chunks at the end of the plaintext.

According to Alg. 4, Step 26, the authentication tag of each chunk is given as T =
Ek(sñ ⊕ Fñ ⊕ L$)⊕HASH(K, A), where the variable names correspond to those used in
Alg. 3 and 4.

In order to achieve the computation of the tag T of an OCB chunk, the attacker runs
Alg. 3. He first needs to query the CFB-oracle to receive the value L∗. Based on the
knowledge of L∗ he can compute L$ and Li for i ⩾ 0.

We find that Sm =
⊕

i=0,...m Ek(Ai ⊕ Fi). Note that the result of the OCB-HASH
algorithm is S = Sm if |A| = i× 128 for an integer i. Otherwise, the final non-full block
receives a padding but this does not introduce any fundamental changes so for the sake of
simplicity we ignore this case in our description of the attack that follows.

12 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

Algorithm 3 computing the value of HASH for an OCB GnuPG AEAD chunk.

1: Algorithm OCB-Hash(key k ∈ {0, 1}|K|, additional data A ∈ {0, 1}∗)
2: L∗ = Ek([0]128)
3: L$ = ocbDouble(L∗)
4: L0 = ocbDouble(L$)
5: Li = ocbDouble(Li−1) for any integer i > 0
6: m = ⌊|A|/128⌋
7: parse A as A1 ∥A2 ∥ . . . ∥Am ∥A∗ where |Ai| = 128 for each 1 ⩽ i ⩽ m and 0 ⩽ |A∗| < 128
8: F0 = [0]128 // Offset
9: for i ← 1 to m do

10: Fi = Fi−1 ⊕ Lntz(i)
11: end for
12: if |A∗| > 0 then
13: n← m + 1
14: Fn = Fm ⊕ L∗
15: An = (A∗ ∥ 1 ∥ [0]127−|A∗|)
16: else
17: n← m
18: end if
19: S0 = [0]128 // Sum
20: for i ← 1 to n do
21: Si = Si−1 ⊕ Ek(Ai ⊕ Fi)
22: end for
23: return S = Sn

24: end Algorithm

Algorithm 4 OCB encryption algorithm with the parameters key, nonce, additional data, and
plaintext in that order. It returns the ciphertext C with |C| = |P |+ taglen

1: Algorithm OCB-ENCRYPT(k ∈ {0, 1}keylen, N ∈ {0, 1}120, A ∈ {0, 1}∗, P ∈ {0, 1}∗)
2: compute values L∗, L$, and Li for 0 ⩽ i according to Step 2 in Alg. 3 et seq.
3: m̃ = ⌊|P |/128⌋
4: parse P as P1 ∥P2 ∥ . . . ∥Pm̃ ∥P∗ where |Pi| = 128 for each 1 ⩽ i ⩽ m̃ and 0 ⩽ |P∗| < 128
5: N= num2str(taglen mod 128, 7) ∥ [0]120−|N|||1||N
6: q = str2num(N [123 : 128]) // “bottom”
7: f = Ek(N [1 : 122] ∥ [0]6) // “Ktop”
8: l = f ||(f [1 : 64]⊕ f [9 : 72]) // “Stretch”
9: G0 = l[1 + q : 128 + q] // “Offset”

10: s0 = [0]128 // “Checksum”
11: for 1 ⩽ i ⩽ m̃ do
12: Gi = Gi−1 ⊕ Lntz(i)
13: Ci = Gi ⊕ Ek(Pi ⊕Gi)
14: si = si−1 ⊕ Pi

15: end for
16: if |P∗| > 0 then
17: ñ← m̃ + 1
18: Gñ = Gm̃ ⊕ L∗
19: u = Ek(Gñ) // “Pad”
20: Cñ = P∗ ⊕ u[1 : |P∗|]
21: Pñ = P∗ ∥ 1 ∥ [0]127−|P∗|

22: sñ = sm̃ ⊕ Pñ

23: else
24: ñ← m̃
25: end if
26: T = Ek(sñ ⊕Gñ ⊕ L$)⊕HASH(K, A)
27: return C = C1 ∥C2 ∥ ... ∥Cñ ∥T [1 : taglen]
28: end Algorithm

Falko Strenzke, Johannes Roth 13

For the creation of an entirely new AEAD-encrypted chunk for the plaintext P to be
inserted into an existing OCB packet encrypted under an unknown key, but for which an
SED-decryption oracle is available, the attacker has to take the following steps:

1. The attacker chooses a plaintext P and determines the OCB nonce N and the
additional data A according to the intended index of the chunk in the OCB Packet.

2. Compute the values in Alg. 4 from Steps 5 and 6.

3. Create the query ciphertext R1 = [0]128︸ ︷︷ ︸
plaintext
block for L∗

∥ N [1 : 122] ∥ [0]6︸ ︷︷ ︸
plaintext block for f

.

4. Retrieve the ECB-encryption of R1 from the oracle and parse it into two blocks as
ECB-encrypt(R1) = L∗ ∥ f (Alg. 4, Step 7). This step represents the first oracle
question. Note that executing the first oracle question is subject to the procedure
described in Sec. 2.4, which covers all possible failures of single oracle queries.

5. Compute the value of l from f (Alg. 4, Step 8).

6. Compute the required values of L∗ and {Li} according to Alg. 3, Steps 2 and
following.

7. Compute from the {Li} all required values of {Fi} according to Alg. 3, Steps 8, 10,
and 14.

8. Compute from l, L∗, and {Li} all required values of {Gi} according to Alg. 4, Steps
9, 12, and 18.

9. Compute the value sñ =
⊕

i=1,...,ñ Pi according to Alg. 4, Steps 14 and 22.

10. Create the oracle ciphertext
R2 = P1 ⊕G1 ∥P2 ⊕G2 ∥ . . . ∥Pm̃ ⊕Gm̃︸ ︷︷ ︸

regular ciphertext encryption

∥ Gñ︸︷︷︸
for P∗

∥ sñ ⊕ Fñ ⊕ L$︸ ︷︷ ︸
for tag computation

∥ A1 ⊕ F1 ∥ . . .︸ ︷︷ ︸
for HASH(K, A)

and use it to query the ECB encryption oracle a second time. This second oracle
question is not subject to potential failures since according to the explanations in
Sec. 2.4 it reuses the initial part of the ciphertext found during the execution of the
first oracle question above.

11. He thus receives from the ECB encryption oracle all values necessary to compute all
the ciphertext blocks C1, . . . , Cñ using Alg. 4, Steps 13 and 20.

12. Note: the values needed for the computation of HASH(K, A) according to Alg. 3 have
already been retrieved through the second oracle question above (namely Ek(Ai⊕Fi))
and the first question (namely Ek([0]128)).

13. He computes the tag T = Ek(sñ ⊕ Fñ ⊕ L$)︸ ︷︷ ︸
from query R2

⊕HASH(K, A)︸ ︷︷ ︸
using query R2

.

2.6 Decryption of low entropy blocks
If the plaintext of a LibrePGP OCB Packet contains low entropy blocks, i.e. blocks for the
contents of which the attacker can create a reasonably short list of possible values for each
block, he can find the correct guess out of this list by the following attack. For the sake
of simplicity, we give a description of the attack for only attacking a single block within
the ciphertext, excluding the final potential non-full block. Please note that failures to
obtain a decryption result during the first oracle question are treated in the same way as
described in Sec. 2.5.

14 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

• He has a set of h guesses U = {Ui | 1 ⩽ i ⩽ h and Ui ∈ {0, 1}128} for the plaintext
block Pt at block position t for a ciphertext C.

• He conducts the first oracle question in the same way as in the procedure described
in Sec. 2.5 and thus can compute the values {Gi} (see Step 8 in that section).

• He then computes the set of oracle blocks {Qi = Ui ⊕Gt|Ui ∈ U}.

• He creates a second query ciphertext r2 = Q1 ∥Q2 ∥ . . . ∥Qh and feeds it to the ECB
encryption oracle.

• The returned ECB-encryption result is parsed into blocks as D1 ∥D2 ∥ . . . ∥Dh.

• He computes {Xi = Gt ⊕Di|1 ⩽ i ⩽ h}.

• If there is one Xj = Ct, then the attacker knows that Uj = Pt.

The attack functions since the blocks Xi = Gt⊕Ek(Ui⊕Gt) are the expected ciphertext
blocks for the plaintext guesses in U at the plaintext position t.

We want to point out that in the special case where the attacker has partial control over
the plaintext of the attacked message, such an attack can be extended to a full plaintext
recovery by successively modifying the block-offset into the unknown plaintext and thus
applying a divide-and-conquer style attack to recover one unknown plaintext byte at a
time. This type of attack is referred to as blockwise chosen-boundary attack by the original
authors [DR]. In [JPS13] it is applied to the inverse decryption oracle attacks against
XML encryption. This potential extension of the attack also applies to the equivalent
attacks against CMS presented in Sec. 3.3.

2.7 Practical attacks on GnuPG
We implemented6 and successfully tested an attack which replaces an OCB chunk with
plaintext containing only whitespaces of the same size as the original chunk within an
existing OCB-encrypted LibrePGP OCB Packet using AES as the cipher by performing
the procedure described in Sec. 2.5. The OCB Packet to be modified was created with
GnuPG 2.4.3 with the command

gpg --output <out-file> -a --recipient <recipient> --force-aead --aead-algo=ocb -z0 --chunk-size
=6 --encrypt <plaintext-file>

Compression was disabled with the option -z0 since otherwise the changes in the middle
of the plaintext lead to a decompression error with high probability. The chunk size was
set to 64 bytes in order make the attack feasible for a small ciphertext. The execution
of the attack according to Sec. 2.5 involves the initial query step, in which the random
leading part of the OpenPGP CFB ciphertext, having a length of 256 bytes, is varied
until a successful answer is returned. The leading random pattern is followed by 20 oracle
blocks. When running the initial query step against GnuPG 2.2.27 as the decryption oracle
for the SED ciphertext, the probability to obtain a decryption result was about 1.8% per
ciphertext. The probability for a decryption result which allows the recovery the oracle
blocks was about 1.4%. That the latter is slightly lower than the former is understandable
since a randomly occurring too short decryption result may not contain sufficiently many
decrypted oracle blocks.

When a decryption result is returned, our attack application identifies the start of the
oracle block pattern by searching for the repeated block pattern and optionally verifies
with the help of the correct session key provided as a command line option, that the oracle

6The attack tool is open source and is available at https://github.com/crypto-security-tools/v
5-aead-decr-oracle

https://github.com/crypto-security-tools/v5-aead-decr-oracle
https://github.com/crypto-security-tools/v5-aead-decr-oracle

Falko Strenzke, Johannes Roth 15

blocks were correctly ECB-encrypted. We point out that, for reasons of simplicity, our
implementation of the attack deviates from the optimized procedure described in Sec. 2.5
in that it only uses a fixed oracle block in the initial oracle query and thus needs one more
oracle query than the described optimized procedure.

For the oracle queries following the initial one, the leading part of the ciphertext
determined in the first oracle question is reused and thus the algorithmic oracle calls
beyond the first one only afford a single query to the SED decryption. The modified
AEAD ciphertext is then successfully decrypted using GnuPG 2.4.3.

2.8 Possibly vulnerable applications using GnuPG
As stated in Sec. 2.2, in the default configuration, i.e. without setting the configuration
option ignore-mdc-error, the GnuPG command line application outputs the plaintext
on the stdout and exits with a non-zero exit code when decrypting an SED Packet. An
application using GnuPG that rejects the output in case of a non-zero exit code is thus
not vulnerable to the attacks. Note that this still does not mean that sending LibrePGP
packets with GnuPG is safe, since the vulnerability is a principal problem of the LibrePGP
protocol and its manifestation depends on the implementation choices of the recipient’s
client.

Regarding the question under which circumstances real world applications using Li-
brePGP OCB packets could be vulnerable against our attacks, we suggest two main
scenarios. The first one is given where a human user reveals the full plaintext, due to it
appearing as “garbled”, to the attacker. The large number of initial queries needed for
the first oracle question, which according to the success probability given in Sec. 2.7, is
in the domain of multiple tens or hundreds could potentially be distributed over a set of
users.7 In this case, the victim, against whom the full attack is conducted, would only
observe two oracle queries (in the case of the attack from Sec. 2.5) which they have to
answer with the resulting “garbled” decryption result.

However, note that conducting this attack against LibrePGP-based email encryption
is not realistic, since an email client that is vulnerable against our attacks would also
expose the vulnerability of SEIPD packets being downgradeable to SED Packets, which
was exploited in the Efail attack [PDM+18]. This vulnerability can be exploited much
more straightforwardly, i.e., with only a single modified ciphertext. Accordingly, for any
application that also supports OpenPGP SEIPD packets, which clearly is the case for
current email clients, the vulnerability of SEIPD packets would be the much greater
problem.

The second conceivable scenario for a realistic decryption oracle would be the presence
of format oracles [MRLG15]. A format oracle is given when an error message due to an
invalid message format reveals information about the plaintext. Such an oracle might
possibly also be exploitable via a timing side channel, which might allow to recover detailed
information about the type of error and its position in the plaintext. On the one hand,
a setting where format oracles reveal the values of individual octets in the decrypted
plaintext during automated processing would lead to an even larger number of queries.
On the other hand, such a setting would also make the execution of a large number of
queries generally more feasible than in the case of required user interaction. However, we
did not analyze this possibility further due to the absence of widely used applications that
use OpenPGP or LibrePGP encryption in a protocol that makes oracle attacks feasible.
Accordingly, this attack vector remains a hypothetical one.

7To give an idea about the number of required trials for the first oracle question: a Bernoulli chain
with a success probability of 1.4% for each event and 50 events leads to a probability of ≈ 50% for at
least a single successful event. This means that after 50 queries for the initial oracle question, at least one
successful answer can be expected with a probability of 50%.

16 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

3 Attacks on AES-CCM, AES-GCM, and AES Key
Wrap in CMS

In this section we describe our novel attack against AES-CCM and AES-GCM in CMS.
After giving some preliminaries in Sec. 3.1 and 3.2, we introduce our new attack in Sec. 3.3.
In Sec. 3.4 we then discuss briefly the applicability of the attacks to S/MIME-encrypted
emails and point out the possibility of CBC-downgrade attacks against AES Key Wrap in
CMS in Sec. 3.5.

3.1 Hybrid encryption in CMS
Like OpenPGP, CMS employs a hybrid encryption model that realizes the content-
encryption with two message parts. As the first part of a typical encrypted CMS message,
a symmetric content-encryption key (CEK) is delivered by means of a RecipientInfo
structure. The CEK is used to encrypt the content that follows as the second message
part. This makes it possible to create an encrypted CMS message using the same CEK
to multiple recipients, by supplying one RecipientInfo for each of them. CMS defines
a number of RecipientInfo types [Hou09] that transfer the CEK using public-key and
secret-key methods.

3.2 AEAD modes in CMS
RFC 5084 [Hou07] defines AES-CCM [Dwo04] and AES-GCM [Dwo07] as AEAD modes
for CMS. Both of these AEAD modes employ the CTR mode for the data encryption
with a publicly known nonce used as the basis for the derivation of the counter block, the
encryption of which yields the key stream S:

S = (S0, S1, . . . Sn) = (AES-Ek (CTR0) , AES-Ek (CTR1) , . . . , AES-Ek (CTRn)) ,

where CTRi is the counter block derived from the block index i and the AEAD nonce value.
The details of the derivation of the counter blocks CTRi for AES-CCM and AES-GCM in
CMS are irrelevant to our attacks and thus are omitted here. Given the key stream S, the
counter mode encryption is performed as C = (C0, C1, . . . , Cn) with Ci = Pi ⊕ Si and Pi

being the i-th plaintext block. A non-full final block Pn is handled by truncating Sn and
Cn to the same length as Pn.

3.3 A cross-mode attack against CMS AEAD modes
In the following, we describe an attack in which the attacker generates a CBC ciphertext
that, when decrypted by a CBC decryption oracle, allows the decryption of a low entropy
block in an AES-CCM or AES-GCM ciphertext. It is in principle analogous to the previously
published attack against XML encryption [JPS13], but improves upon it regarding the
number of necessary oracle queries: while the previous work only decrypts a single block
guess in one oracle query, in our attack the decryption of all block guesses are performed
simultaneously in one oracle query. This improvement is, however, only effective for a
decryption oracle which returns the complete plaintext to the attacker. When a padding
oracle or format oracle is exploited, the parallelisation of block decryption queries will
naturally not work, since such an oracle typically only allows at most the determination of
a single byte per oracle query.

The attack is executed as follows:

• Generate the set of h guesses {Ui} with i ∈ {1, . . . , h} for the target plaintext block
Pt at position t in the original CMS AEAD ciphertext. The corresponding ciphertext
block in the target CTR ciphertext is labelled Ct.

Falko Strenzke, Johannes Roth 17

• Compute the corresponding set of guessed key stream blocks {Qi = Ui ⊕ Ct|i =
1, . . . , h}.

• Create the CBC ciphertext as the oracle input:

– Choose CBC-IV as Q0 arbitrarily.
– Form the CBC ciphertext as the sequence of the guess blocks (Qi|i = 1, . . . h).

• Then the CBC decryption oracle will compute the sequence of plaintext blocks:
(Pi = AES-Dk (Qi)⊕Qi−1|i = 1, . . . h).

• The attacker receives the plaintext (Pi) and computes the block sequence
(Xi = Pi ⊕Qi−1|i = 1, . . . h). This sequence represents the block-wise decryption of
(Qi).

• Let Ht be the counter block at position t in the AEAD ciphertext, i.e., for the
correct guess of the target key stream block Qv at index v ∈ {1, . . . , h} we have
Qv = AES-Ek (Ht).

• Note that for the correct guess we have Xv = AES-Dk (Qv) ⊕ Qv−1 ⊕ Qv−1 =
AES-Dk (Qv) = Ht.

• Thus, if the attacker finds a block Xv = Ht in (Xi|i = 1, . . . h) then

– the guess Qv = Uv ⊕ Ct for the key stream block is correct
– and thus the corresponding guess Uv for the plaintext block Pt is correct.

Note that since CMS does not place any restrictions on the format of the decrypted content,
in contrast to the case of LibrePGP or OpenPGP legacy decryption oracles, on the level
of CMS all oracle queries are successful. This may not apply to protocols used on top of
CMS, as we elobarate in the next section.

3.4 Applicability to S/MIME-encrypted emails
S/MIME [STR19] builds upon CMS, making it directly vulnerable to attacks on CMS. In
the case of email, in principle, a decryption oracle can easily be realized by a human user
viewing the “garbled” mail in his mail user agent (MUA) and replying with the quoted
original message to the attacker, as described in Sec. 1. However, as already pointed out
in that section and also in Sec. 2.8, the ability to display such a “garbled” message implies
other more severe vulnerabilities regarding the manipulation of legacy-mode-encrypted
messages [PDM+18]. Accordingly, it can be expected that well-maintained MUAs realize
countermeasures that make such decryption oracle attacks hard or infeasible. We found
that for instance the widely used MUA Thunderbird refuses to display CBC-encrypted
emails where a single byte was manipulated (leading to a full random binary plaintext
block according to the properties of CBC).

However, as the work by Ising et al. [IPK+23] shows, there might exist more so-
phisticated attack vectors exploiting automated and observable message processing by
MUAs.

3.5 Downgrade Attacks against AES Key Wrap in CMS
As pointed out already by Jager et al. [JPS13], the availability of a CBC decryption
oracle allows to decrypt keys encrypted with AES Key Wrap according to RFC 3394
[SH02a]. This is due to the fact that the Key Wrap decryption algorithm employs the
block cipher decryption operation under the respective key encryption key (KEK) as the

18 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

only secret operation. Accordingly, an attack can be mounted by running the AES Key
Wrap decryption (unwrap) operation and querying the CBC decryption oracle analogously
to the attack given in Sec. 3.3 whenever the block cipher block decryption is required.

As an example for a potentially vulnerable setup, RFC 6160 specifies the cryptographic
protection of a Symmetric Key Package [Tur11] in CMS. It prescribes that AES Key
Wrap with Padding [HD09] be used as the content-encryption algorithm. Accordingly,
attacks downgrading AES Key Wrap to CBC encryption are possible. The attacker simply
starts the execution of the “Extended Key Unwrapping Process” defined in [HD09], and
whenever he needs the block decryption operation, he queries the CBC decryption oracle
by submitting the same CMS message, exchanging only the encrypted content to regular
CBC encrypted content and placing the block to be decrypted as the ciphertext. Figure
3 in App. C depicts the attack on the basis of the CMS data structures. Note that
CMS generally specifies the typical redundant padding scheme to be applied when the
content-encryption algorithm operates on the granularity of blocks, where each unused
byte in the final block has the value of the number of unused bytes [Hou09, Sec. 6.3]. Thus
a generic padding oracle is indeed conceivable in CMS implementations.

Such an attack is always possible when an AES Key Wrap algorithm is used as the
content-encryption algorithm and a block decryption oracle for the same content-encryption
key is available, here given through a CBC decryption oracle. The vulnerability is thus
manifest in CMS independently of the specific application context of the Symmetric Key
Package content. It also equally applies to the original AES Key Wrap without padding
[SH02b, Dwo12].

4 Responsible disclosure
Prior to the publication of our results, we informed both the GnuPG and the RNP project
as the only implementations of LibrePGP OCB Packets known to us. The maintainer of
the GnuPG project declared that GnuPG was not vulnerable to the described attacks
without setting the ignore-mdc-error configuration property to allow for SED decryption.
However, as described in Sec. 2.2, due to the specific way GnuPG behaves without this
configuration property being set when decrypting SED packets, our attacks may still be
seen as applicable to the default configuration of GnuPG (given the non-zero exit code from
GnuPG does not prevent the decrypted content from being displayed). Moreover, LibrePGP
is a general standard and other implementations may behave differently regarding whether
and how SED decryption is supported.

We disclosed the vulnerability of the AES-based AEAD schemes in CMS on the LAMPS
mailing list8 as it might have affected the ongoing standardization of the KEMRecipientInfo.
This working group inside the IETF is responsible for amending the CMS standards
framework. As a result, a new RFC to address the vulnerability was adopted by the
LAMPS working group, as further explained in Sec. 5.1.

The vulnerability of AES Key Wrap in CMS was not separately disclosed by us. We did
not see any necessity for this, since, as explained in Sec. 5, the countermeasure proposed
for the AES-based AEAD schemes equally prevents the attack on AES Key Wrap, at least
the straightforward one described in Sec. 3.5.

5 Countermeasures
We discuss appropriate countermeasures to thwart the presented attacks against AEAD in
LibrePGP and CMS.

8https://mailarchive.ietf.org/arch/msg/spasm/TTtMQlcpGRq_bThfJl-HnqqGLGI/

https://mailarchive.ietf.org/arch/msg/spasm/TTtMQlcpGRq_bThfJl-HnqqGLGI/

Falko Strenzke, Johannes Roth 19

5.1 Employment of a key derivation
The appropriate countermeasure to thwart AEAD downgrade attacks is to apply a key
derivation to the session key to ensure that each symmetric encryption mode uses a different
content-encryption key. The underlying paradigm is known as key separation. Such a
measure has been realized in RFC 9580 [WHWN24], the official successor of the previous
OpenPGP standard [CDF+07]. One important feature of the key derivation function is
that it may not be built from the block cipher encryption under the input key, as in that
case the key derivation itself might be subject to downgrade attacks.

According to the feedback that we received from the GnuPG maintainer, a corresponding
countermeasure in the LibrePGP specification is not foreseen.

For CMS, as the consequence of the revelation of our attack, RFC 9709 [Hou25] was
drafted and subsequently published by the LAMPS working group. It specifies an optional
key derivation using HKDF [KE] to be applied to the key encrypted in the RecipientInfo
in order to derive the content-encryption key. The content-encryption algorithm ID enters
the key derivation as the additional info input parameter to the HKDF and thus makes
the derived key dependent on the content-encryption algorithm.

This proposed countermeasure in CMS effectively prevents both the attacks against
the AES-based AEAD schemes as well as against AES Key Wrap as a content-encryption
algorithm. However, besides functioning as a content-encryption algorithm, there are other
potential uses of AES Key Wrap in CMS which are not affected by this countermeasure, such
as in the KEKRecipientInfo. In the KEKRecipientInfo, a previously exchanged symmetric
key encryption key (KEK) is identified as to be used for the decryption of the content-
encryption key. If a receiving implementation accepted AES-CBC as a key-encryption
algorithm specified in the KEKRecipientInfo, then it would still be vulnerable. A cursory
test of the OpenSSL command line CMS tool showed that it does not perform decryption
based on a KEKRecipientInfo that specifies AES-CBC as the content decryption algorithm.9
Furthermore, there is the remote possibility that the KEK used in the KEKRecipientInfo
can be used for content decryption in a different context. This could be the case in a
custom key management mechanism, as can be implemented in CMS via the generic
OtherRecipientInfo structure. Then again, it is conceivable that in such a custom setup the
previously exchanged KEK can be used for content decryption and thus a CBC decryption
oracle could reveal the content-encryption key. Accordingly, though we could not identify
a straightforward attack route against such uses of AES Key Wrap, insecure uses of it that
are vulnerable to CBC downgrade attacks cannot be entirely precluded in the context of
CMS.

Besides providing key separation between the different encryption modes, it is advisable
to also ensure key separation between different ciphers. Otherwise, should it be the
case that one cipher supported by the protocol can be used to leak the key through the
decrypted plaintext, then a cross-cipher decryption oracle attack might be used to reveal
the key of a strong cipher. For the proposed solution in the LAMPS draft, key separation
between ciphers is fulfilled, since the algorithm identifiers in CMS are specific for the
encryption mode as well as for the cipher [Hou07].

5.2 Disabling SED decryption in LibrePGP
A straightforward implementation countermeasure effective for the current state of Li-
brePGP is to not support the deprecated SED decryption. However, this countermeasure
has the drawback that it can only be enforced by the receiving client and for the sender

9In the master branch of https://github.com/openssl/openssl/blob/master/crypto/cms/cms_env.c,
at least up to the commit e87a347, viewed on 2025-01-10, the routine responsible for the decryption of
the KEK in a KEKRecipientInfo, cms_RecipientInfo_kekri_decrypt, always assumes the usage of a Key
Wrap variant as the key-encryption algorithm.

https://github.com/openssl/openssl/blob/master/crypto/cms/cms_env.c

20 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

of an OCB Packet it would remain unknown if the receiving client is vulnerable or not.
Furthermore, it would make it impossible for users to decrypt stored legacy data that was
still encrypted with SED. The current LibrePGP specification only discourages but does
not forbid the support of SED decryption and mandates precaution measures for it: “This
[i.e., SED] packet is obsolete. An implementation MUST NOT create this packet. An
implementation MAY process such a packet but it MUST return a clear diagnostic that a
non-integrity protected packet has been processed. The implementation SHOULD also
return an error in this case and stop processing.”10 This prescription is of course ambiguous,
since “MAY process” and “SHOULD [. . .] stop processing” are obviously conflicting choices.
Accordingly, it may be said that GnuPG realizes this countermeasure, but nevertheless the
attack is still possible when a calling application or a human user of GnuPG’s command
line interface accepts the decryption result despite the non-zero exit code of GnuPG, as
explained in Sec. 2.2.

The application of the analogous countermeasure to CMS as a general one is infeasible
as of today, since contrary to the SED encryption in OpenPGP, CBC-encryption is still
widely used in CMS, for instance in S/MIME-encrypted emails.

6 Conclusion
In this work we introduce novel attacks exploiting the same principal design error in
LibrePGP and CMS AEAD encryption, as well as certain uses of the AES Key Wrap in CMS,
namely the absence of an algorithm-dependent key derivation for the content-encryption
key in order to ensure key separation between the different encryption modes. The attacks
against CMS are analogous to those previously published for XML encryption [JPS13].
While the attacks are shown to be realistic under the assumption of a fully-plaintext-
revealing legacy-cipher-mode decryption oracle, we cannot point out any vulnerable real
world application. On the contrary, we come to the conclusion that the presumably most
widely deployed application layer protocols using these two cryptographic protocols, namely
secure email with PGP/MIME and S/MIME, will be affected by our attacks to a lesser
degree than by previous attacks against legacy-mode-encrypted emails like for instance
Efail [PDM+18]. However, experience has shown that the reliance on the unexploitability
of principal cryptographic vulnerabilities due to the specifics of typical protocol and
application implementations is often unfounded. This is apparent for instance regarding
the recurrence of padding oracle attacks against CBC [Mö14, AFP13] and PKCS#1 v1.5
encryption [Ble98, BSY18] in TLS. Works like [IPK+23] show that through unexpected
features of applications, observable decryption oracles may exist even where the nature
of the protocol does not suggest their presence. Consequently, we hold that our results
for LibrePGP and CMS should be taken seriously and appropriate countermeasures be
integrated into these protocols.

References
[AFP13] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky Thirteen: Breaking

the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security
and Privacy, pages 526–540, 2013. doi:10.1109/SP.2013.42.

[Ble98] Daniel Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS#1. In CRYPTO, pages 1–12. Springer-
Verlag, 1998. doi:10.1007/BFb0055716.

10https://datatracker.ietf.org/doc/html/draft-koch-librepgp-03#section-5.8

https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1007/BFb0055716
https://datatracker.ietf.org/doc/html/draft-koch-librepgp-03#section-5.8

Falko Strenzke, Johannes Roth 21

[BSY18] Hanno Böck, Juraj Somorovsky, and Craig Young. Return Of Bleichenbacher’s
Oracle Threat (ROBOT). In Proceedings of the 27th USENIX Conference on
Security Symposium, SEC’18, page 817–832, 2018. https://eprint.iacr.
org/2017/1189.pdf.

[CDF+07] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. RFC 4880 –
OpenPGP Message Format, November 2007. https://datatracker.ietf.o
rg/doc/html/rfc4880.

[Cry] Cryptography StackExchange Post. Why is plain-hash-then-encrypt not a
secure MAC? https://crypto.stackexchange.com/questions/16428/w
hy-is-plain-hash-then-encrypt-not-a-secure-mac/16431#16431.

[DR] T. Duong and J. Rizzo. Here come the ⊕ Ninjas. Unpublished manuscript,
2011, https://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun2
1.pdf.

[Dwo04] Morris Dworkin. NIST Special Publication 800-38C – Recommendation for
Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality , 2004.

[Dwo07] Morris Dworkin. NIST Special Publication 800-38D – Recommendation for
Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
, 2007.

[Dwo12] Morris Dworkin. NIST Special Publication 800-38F – Recommendation for
Block Cipher Modes of Operation: Methods for Key Wrapping, December
2012. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST
.SP.800-38F.pdf.

[gnu] gnupg.org. gnupg/NEWS. https://dev.gnupg.org/source/gnupg/brows
e/master/NEWS.

[HD09] R. Housley and M. Dworkin. RFC 5649 — Advanced Encryption Standard
(AES) Key Wrap with Padding Algorithm, August 2009. https://datatrac
ker.ietf.org/doc/html/rfc5649.

[Hou07] R. Housley. RFC 5084 – Using AES-CCM and AES-GCM Authenticated
Encryption in the Cryptographic Message Syntax (CMS), November 2007.
https://datatracker.ietf.org/doc/html/rfc5084.

[Hou09] R. Housley. RFC 5652 – Cryptographic Message Syntax (CMS), 2009. https:
//tools.ietf.org/html/rfc5652.

[Hou25] R. Housley. RFC 9709 – Encryption Key Derivation in the Cryptographic
Message Syntax (CMS) Using HKDF with SHA-256, January 2025. https:
//datatracker.ietf.org/doc/rfc9709/.

[IPK+23] Fabian Ising, Damian Poddebniak, Tobias Kappert, Christoph Saatjohann,
and Sebastian Schinzel. Content-Type: multipart/oracle - tapping into
format oracles in email End-to-End encryption. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4175–4192, Anaheim, CA, August
2023. USENIX Association. URL: https://www.usenix.org/conference/
usenixsecurity23/presentation/ising.

https://eprint.iacr.org/2017/1189.pdf
https://eprint.iacr.org/2017/1189.pdf
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc4880
https://crypto.stackexchange.com/questions/16428/why-is-plain-hash-then-encrypt-not-a-secure-mac/16431#16431
https://crypto.stackexchange.com/questions/16428/why-is-plain-hash-then-encrypt-not-a-secure-mac/16431#16431
https://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
https://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://dev.gnupg.org/source/gnupg/browse/master/NEWS
https://dev.gnupg.org/source/gnupg/browse/master/NEWS
https://datatracker.ietf.org/doc/html/rfc5649
https://datatracker.ietf.org/doc/html/rfc5649
https://datatracker.ietf.org/doc/html/rfc5084
https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc5652
https://datatracker.ietf.org/doc/rfc9709/
https://datatracker.ietf.org/doc/rfc9709/
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://www.usenix.org/conference/usenixsecurity23/presentation/ising

22 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

[JKS02] Kahil Jallad, Jonathan Katz, and Bruce Schneier. Implementation of Chosen-
Ciphertext Attacks against PGP and GnuPG. In Agnes Hui Chan and Virgil
Gligor, editors, Information Security, pages 90–101, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg. doi:10.1007/3-540-45811-5_7.

[JPS13] Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky. One bad apple:
Backwards compatibility attacks on state-of-the-art cryptography. In 20th
Annual Network and Distributed System Security Symposium, NDSS 2013,
San Diego, California, USA, February 24-27, 2013, 2013. https://www.ndss
-symposium.org/ndss2013/ndss-2013-programme/one-bad-apple-backw
ards-compatibility-attacks-state-art-cryptography/.

[KE] H. Krawczyk and P. Eronen. RFC 5869 — HMAC-based Extract-and-Expand
Key Derivation Function (HKDF).

[Koc24] Werner Koch. Private communication, 2024.

[KR14] T. Krovetz and P. Rogaway. RFC 7253 – The OCB Authenticated-Encryption
Algorithm, 2014. https://datatracker.ietf.org/doc/html/rfc7253.

[KS00] Jonathan Katz and Bruce Schneier. A Chosen Ciphertext Attack Against
Several E-Mail Encryption Protocols. In 9th USENIX Security Symposium
(USENIX Security 00), Denver, CO, August 2000. USENIX Association. URL:
https://www.usenix.org/conference/9th-usenix-security-symposium
/chosen-ciphertext-attack-against-several-e-mail-encryption.

[KT23] W. Koch and R. H. Tse. LibrePGP Message Format, November 2023. https:
//www.ietf.org/archive/id/draft-koch-librepgp-00.html#section-5
.14.

[Mag15] J. Magazinius. Openpgp seip downgrade attack, October 2015. http://www.
metzdowd.com/pipermail/cryptography/2015-October/026685.html.

[MBP+19] Jens Müller, Marcus Brinkmann, Damian Poddebniak, Sebastian Schinzel,
and Jörg Schwenk. Re: What’s Up Johnny? – Covert Content Attacks on
Email End-to-End Encryption, 2019. arXiv:1904.07550.

[MRLG15] Florian Maury, Jean-René Reinhard, Olivier Levillain, and Henri Gilbert.
Format Oracles on OpenPGP. In Kaisa Nyberg, editor, Topics in Cryptology —
CT-RSA 2015, pages 220–236, Cham, 2015. Springer International Publishing.
https://www.ssi.gouv.fr/uploads/2015/05/format-Oracles-on-OpenP
GP.pdf. doi:10.1007/978-3-319-16715-2_12.

[MZ06] Serge Mister and Robert Zuccherato. An Attack on CFB Mode Encryption
as Used by OpenPGP. In Bart Preneel and Stafford Tavares, editors, Selected
Areas in Cryptography, pages 82–94, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. doi:10.1007/11693383_6.

[Mö14] Bodo Möller. This POODLE bites: exploiting the SSL 3.0 fallback, 2014.
https://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodl
e-bites-exploiting-ssl-30.html.

[PDM+18] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jörg Schwenk. Efail:
Breaking s/mime and openpgp email encryption using exfiltration channels. In
Proceedings of the 27th USENIX Conference on Security Symposium, SEC’18,
page 549–566, USA, 2018. USENIX Association.

https://doi.org/10.1007/3-540-45811-5_7
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/one-bad-apple-backwards-compatibility-attacks-state-art-cryptography/
https://datatracker.ietf.org/doc/html/rfc7253
https://www.usenix.org/conference/9th-usenix-security-symposium/chosen-ciphertext-attack-against-several-e-mail-encryption
https://www.usenix.org/conference/9th-usenix-security-symposium/chosen-ciphertext-attack-against-several-e-mail-encryption
https://www.ietf.org/archive/id/draft-koch-librepgp-00.html#section-5.14
https://www.ietf.org/archive/id/draft-koch-librepgp-00.html#section-5.14
https://www.ietf.org/archive/id/draft-koch-librepgp-00.html#section-5.14
http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
https://arxiv.org/abs/1904.07550
https://www.ssi.gouv.fr/uploads/2015/05/format-Oracles-on-OpenPGP.pdf
https://www.ssi.gouv.fr/uploads/2015/05/format-Oracles-on-OpenPGP.pdf
https://doi.org/10.1007/978-3-319-16715-2_12
https://doi.org/10.1007/11693383_6
https://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodle-bites-exploiting-ssl-30.html

Falko Strenzke, Johannes Roth 23

[Per02] T. Perrin. Openpgp security analysis, September 2002. https://www.ietf
.org/mail-archive/web/openpgp/current/msg02909.html.

[SH02a] J. Schaad and R. Housley. Advanced Encryption Standard (AES) Key Wrap
Algorithm, September 2002. https://datatracker.ietf.org/doc/html/
rfc3394.

[SH02b] J. Schaad and R. Housley. RFC 3394 — Advanced Encryption Standard
(AES) Key Wrap Algorithm, September 2002. https://datatracker.ietf
.org/doc/html/rfc3394.

[STR19] J. Schaad, S. Turner, and B. Ramsdell. RFC 8551 – Secure/Multipurpose
Internet Mail Extensions (S/MIME) Version 4.0 Message Specification , 2019.
https://tools.ietf.org/html/rfc8551.

[Tur11] S. Turner. RFC 6160 — Algorithms for Cryptographic Message Syntax
(CMS) Protection of Symmetric Key Package Content Types, April 2011.
https://datatracker.ietf.org/doc/html/rfc6160.

[Vau02] S. Vaudenay. Security Flaws Induced by CBC Padding – Applications to
SSL, IPSEC, WTLS. In Advances in Cryptology – EUROCRYPT 2002, pages
543–545. Springer-Verlag, 2002. doi:10.1007/3-540-46035-7_35.

[Wag] David Wagner. Email Subject: Re: BIG question about using and storing
IV’s. http://www.cs.berkeley.edu/~daw/my-posts/mdc-broken.

[WHWN24] Ed. Wouters, P, D. Huigens, J. Winter, and Y. Niibe. RFC 9580 – OpenPGP,
July 2024. https://www.rfc-editor.org/rfc/rfc9580.html.

A Insecurity of OpenPGP SEIPD packets under adap-
tively chosen ciphertext attacks

SEIPD packets specified in OpenPGP have two shortcomings: first of all, they can be
downgraded to SED packets and then the malleability of SED packets can be used to
modify the message [Per02, Mag15]. See also [PDM+18] for comprehensive overview of
further aspects to the downgrade attacks and their exploitation in a decryption oracle
attack. In this work, we show that in principle, in a considerably more complex attack,
though, LibrePGP OCB packets can also be downgraded to SED packets.

A second shortcoming of SEIPD packets is that they do not achieve CCA2 security,
i.e. are vulnerable to adaptively chosen ciphertext attacks, even when not considering
downgrade attacks to SED. This type of weakness is for instance outlined in [Wag, Cry].
In the following, we demonstrate this weakness through a worked example.

In the CCA2 game, the adversary has to submit two challenge plaintexts M0 and M1
of the which the challenger encrypts a random one. The adversary receives the challenge
ciphertext C, which is thus the encryption of either M0 or M1 and he wins if, after further
decryption queries for arbitrary ciphertexts excluding the challenge ciphertext, he can
determine which of the two messages was encrypted to yield C. The idea of the attack is
to construct one of the challenge plaintexts such that it contains a valid encoded SEIPD
Packet that, after appropriate manipulation of the ciphertext, will appear as a valid
decryption result, which allows for the identification of this message. The valid encoding
of a SEIPD in OpenPGP is

LIT-hdr||message||MDC(LIT-hdr, message),

https://www.ietf.org/mail-archive/web/openpgp/current/msg02909.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg02909.html
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394
https://tools.ietf.org/html/rfc8551
https://datatracker.ietf.org/doc/html/rfc6160
https://doi.org/10.1007/3-540-46035-7_35
http://www.cs.berkeley.edu/~daw/my-posts/mdc-broken
https://www.rfc-editor.org/rfc/rfc9580.html

24 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

where “LIT-hdr” denotes the header of the LIT packet wrapping the message and the
MDC Packet at the end contains the hash of the preceding data.

Specifically, the attacker submits two challenge plaintexts where M0 is built as d1 ||
LIT-hdr1 || MDC(LIT-hdr1 ||m) || d2, i.e., which contains a sequence of arbitrary data d1,
then a LIT packet enveloping the message m and the MDC packet associated with the
preceding LIT packet, and then arbitrary data d2. Before the CFB-encryption, the message
M0 will be enveloped as

LIT-hdr2 ||M0||MDC(LIT-hdr2 ||M0)

= LIT-hdr2 || d1 ||LIT-hdr1 ||m ||MDC(LIT-hdr1 ||m) || d2 ||MDC(LIT-hdr2 || . . .).

M1 is just a random plaintext of the same length. After receiving the challenge ciphertext
C, which is either the encryption of M0 or M1, the adversary can determine which of the
two messages was encrypted by stripping-off from C the packet header of the outer LIT
and d1 at the beginning as well as d2 at the end and feeding this modified ciphertext C ′

to the decryption oracle. C ′ will only be a valid ciphertext if it decrypts to valid SEIPD
plaintext, i.e., having the appropriate LIT header in front of the message m and the fitting
MDC Packet following it. In this case it will decrypt to the plaintext message m. This
will only be the case for M0 but not for M1. He thus wins the CCA2 game.

To apply this attack to OpenPGP SEIPD packets, M0 needs to be chosen with proper
alignment of the inner LIT packet. Fig. 2 depicts the required alignments.

Falko
Strenzke,Johannes

R
oth

25

0 | 0 | | 0

r0| r1 | | r15 r14 | r15| p1,0 |p1,1| ... p2,0|p2,1| ... | p2,15 p3,0|p3,1| ... | p3,15

C0 C1 C3C2

E() E() E() E() E()

P0

implicit
IV

P1 P2 P3

LIT-hdr2 | d1 | LIT-hdr1||m | MDC(LIT-hdr1||m)) | d2 | MDC(LIT-hdr2||...)

C'0 (= C3)

p4,0|p4,1| ... | p4,15

C4

E()

C'1 (= C4)0 | 0 | | 0

r*1 | r*1| p4,2| p4,3 | ...r'0| r'1 | | r'15

P'0 = random P'1 = P4

LIT-hdr1||m | MDC(LIT-hdr1||m)

E() E()

randomization string

randomization string

P4

Plaintext for CFB
 encryption for the
SEIPD-enveloped

message M0

Plaintext from CFB
decryption of C' which

amounts to the SEIPD-
enveloped message m

C'

implicit
IV

Figure 2: Depiction of an adaptively chosen ciphertext attack against SEIPD encryption assuming a block size of 16 bytes. Here, E() indicates block encryption
under the given block cipher key and ⊕ denotes XOR. The violet plaintext consisting of the bytes p1,0, p1,1, . . . is the message M0 prepared by the attacker
enveloped in the outer LIT packet with the header LIT-hdr2. Above the blocks P0, P1, . . ., the semantic interpretation of the decrypted plaintext is depicted in
the same color. The light blue boxes show the resulting ciphertext C. The red and orange boxes represent the manipulated ciphertext C′ and the plaintext
resulting from its decryption. Here the red boxes represent repositioned ciphertext and plaintext blocks and the orange ones entirely different blocks. The red
and orange arrows and XOR operators indicate the data flows and operations during decryption of C′.

26 Legacy Encryption Downgrade Attacks against LibrePGP and CMS

Table 5: Structure of the additional data for the GnuPG AEAD chunks. The individual fields’
encodings are omitted here since they are irrelevant to the described attack.

field size in bytes in chunks . . .
Packet Tag in new format encoding 1 all
version number 1 all
cipher algorithm 1 all
encryption mode 1 all
chunk size 1 all
big-endian chunk index 8 all
msg. total bytes length 8 only in final

B Structure of the additional data in a LibrePGP OCB
Packet OCB chunk

The structure of the additional data of each chunk in a LibrePGP OCB Packet is shown
in Table 5.

C Depiction of the attack against the AES Key Wrap
decryption operation in CMS

Fig. 3 depicts the attacks against AES Key Wrap in CMS that are given in Sec. 3.5.

Falko Strenzke, Johannes Roth 27

not crypto-
graphically
proctected

Public-Key
decryption

Recipient's
Private key

Content
Encryption

Key

encrypted-
Content

encrypted-
Content-
Algorithm

Key Wrap
decryption

identifies
algorithm

identifies
algorithm

CBC
decryption

encrypted-
Content

encrypted-
Content-
Algorithm

Enveloped-
Data

Key-
Encryption-
Algorithm-
Identifier

Recipient-
Identifier

Encrypted-
Key

KeyTrans-
Recipient-

Info

information
leak

Padding
check

identical

transferred
key

...

encrypted-
ContentInfo

Block
decryption

oracle

Key Wrap
decryption
algorithm

de
cr

yp
ts

Figure 3: Depiction of the attack against CMS EnvelopedData for the protection of Symmetric Key
Package Content Types [Tur11]. In the upper half, the asymmetric decryption of the RecipientInfo
structure is shown, which is the same for the decryption of the regular ciphertext as well as
during the attack. In the lower half, on the left hand side the processing of the original symmetric
ciphertext is shown, where the symmetric decryption is performed using the AES Key Wrap
algorithm. At the bottom the attack algorithm is depicted. It is given by simply executing the
AES Key Wrap decryption algorithm by using the CBC decryption oracle whenever the AES
block decryption operation under the content-encryption key (CEK) must be performed. On
the right hand side, the processing of the corresponding attacker-modified symmetric ciphertext
is shown. Since the encryptedContentAlgorithm field, which signifies the symmetric decryption
algorithm to use, is not cryptographically protected, the attacker can cause the query ciphertext
to be decrypted under the same CEK as for the original ciphertext. The encrypted content is
CBC-decrypted, and the attacker may learn the decryption result from a CBC padding oracle.

	Introduction
	Previous Work
	Our contributions

	Attacks against LibrePGP OCB packets
	 Preliminaries: OpenPGP and LibrePGP message encryption
	OpenPGP SED Packet CFB decryption as an ECB encryption oracle
	Appearance of a LIT Packet when Decrypting a Random Ciphertext
	A high-level view of the attacks on LibrePGP OCB Packet encryption
	Insertion of new OCB chunks
	Decryption of low entropy blocks
	Practical attacks on GnuPG
	Possibly vulnerable applications using GnuPG

	Attacks on AES-CCM, AES-GCM, and AES Key Wrap in CMS
	Hybrid encryption in CMS
	AEAD modes in CMS
	A cross-mode attack against CMS AEAD modes
	Applicability to S/MIME-encrypted emails
	Downgrade Attacks against AES Key Wrap in CMS

	Responsible disclosure
	Countermeasures
	Employment of a key derivation
	Disabling SED decryption in LibrePGP

	Conclusion
	References
	Insecurity of OpenPGP SEIPD packets under adaptively chosen ciphertext attacks
	Structure of the additional data in a LibrePGP OCB Packet OCB chunk
	Depiction of the attack against the AES Key Wrap decryption operation in CMS

